

GOVERNMENT OF SIKKIM OFFICE OF THE DIVISIONAL FOREST OFFICER TERRITORIAL DIVISION MANGAN MANGAN, NORTH SIKKIM

Memo No.: 223 /TDM/F&ED

To,

The Addl. Chief Secretary-cum-PCCF Forest & Environment Department Forest Secretariat Deorali, Gangtok.

Sub: <u>Diversion of 11.1521ha of forest land for widening of existing road (NH 310A) to NHDL specification with paved shoulder from Mangan to Chungthang in Chungthang under Chungthang Territorial Range in North Sikkim by BRO, Government of India- reg</u>

Sir,

With reference to letter no: IRO/KOL/SK/ROAD/146764/2021/160 dated: 22/04/2022, the additional information that was requested for further processing of the proposal has been completed offline for the above mentioned proposal by Territorial Division Mangan.

Response for letter no: IRO/KOL/SK/ROAD/146764/2021/160 dated: 22/04/2022, are as follows:

1. Kml file of the entire forest land proposed for diversion is not uploaded. Complete kml file may be uploaded.

Uploaded.

2. Some portion (approx. 2Ha) of proposed CA Land in Rangma CA site is categorized as moderately Dense Forest as per decision support system. It may be Rechecked.

The same has been clarified and will be uploaded in parivesh. Enclosed.

- 3. Some components (like CII, D I & DIII) of Compensatory Afforestation (CA) scheme is not in accordance of para 2.8.(iii) of Handbook of Forest (Conservation) Act,1980 and Forest conservation rules, 2003 (Guidelines and clarification). It may be revised
 - Components C II is necessary for the supervision of the CA site at there is shortage of staff in Range and also their supervision will help in avoiding any illegal activities during the process of widening.

Components DI & D III is necessary for meeting of the unseen expenses like purchase of stationeries, for providing TA & DA for the field staff to monitor the Project site and CA Site.

4. It is not clear, whether Biodiversity Conservation and Management Plan for the Project is duly approved by CWLW, Sikkim or not. Copy of the approval of the said is required to be uploaded.

> A space is managed in the Management plan for the observation to be made by CWLW.

5. Biodiversity Conservation and Management plan should be based on publication of WII- Eco friendly measures to mitigate impact of linear Infrastructure on Wildlife and direction issued by the CWLW from time to time.

Rectified and re-submitted Enclosed.

6. Plot- wise/ village wise details of Forest land proposed for diversion need to be uploaded.

Enclosed.

7. In part II, vegetation density of the proposed site is mentioned as 0.01% but in site inspection report it is reported 0.1%. It may be clarified.

While submitting the report, there were some typing errors in part II. The actual density cover of vegetation is 0.1% Hence, it is rectified and uploaded in parivesh. Enclosed.

- 8. Copy of the Gram Sabha resolutions related to FRA Certificate. Uploaded in Parivesh.
- 9. It is not clear, whether the cost of the project i.e. Rs. 29635.4cr as mentioned is for this project or for some consolidated projects.

Replied by User Agency (Enclosed).

10. Details and current status of the other widening proposals of NH310A or proposals under same package.

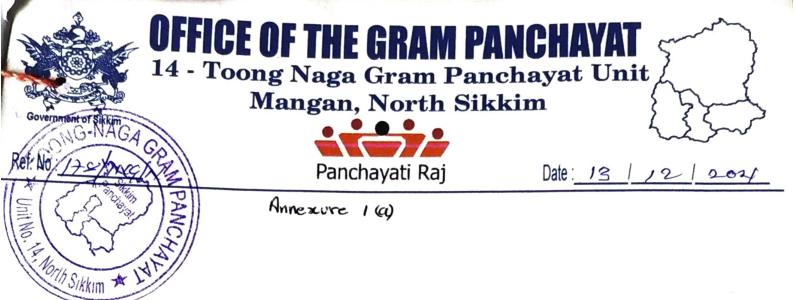
Replied by User Agency (Enclosed).

Officer Mangan Territorial Division Mangan

FORM - I

(For linear projects) Government of Sikkim Office of the District Collector, North District, Mangan

TO WHOMSOEVER IT MAY CONCERN


In compliance of the Ministry of Environment and Forests (MoEF), Government of India's letter no.11-9/98-FC (pt.) dated 3/8/2009 wherein the MoEF issued guidelines on submission of evidences for having initiated and completed the process of settlement of rights under the Schedules Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 ('FRA', for short) on the forestland proposed to be diverted for non-forest purposes read with MoEF's letter dated 05/02/2013 wherein the MoEF have issued certain relaxation in respect of linear projects, it is certified that **11.1521ha** of forest land proposed to be diverted in favour of **BRO**, (name of user agency) for diversion of **11.1521ha** of forest land for widening of existing road (NH 310A) to NHDL specification with paved shoulder from **Mangan to Chungthang in Chungthang** under Chungthang Territorial Range by **BRO**, Government of India (purpose for diversion of forest land) in **North** district falls within jurisdiction of Naga Namgor village and Chungthang village (s) in **Chungthang** tehsil. It is further certified that:-

- a. The complete process of recognition and vesting of forest rights under the FRA has been carried out for the entire 11.1521 hectares of forest land proposed for diversion. The Gram Sabha's consent is not required vide Ministry of Environment and Forests (FC Division), Govt. of India letter F. No. 11-9/98-FC (pt) dated 05/02/2013
- b. The diversion of forest land for facilities managed by the Government as required under section 3 (2) of the FRA have been completed and the concerned Gram Panchayats/Dzumsas have given their consent to it. Copy of consent letter(s) annexed at Annexure 1 (a).
- c. The proposal does not involve recognised rights of Primitive Tribal Groups and Pre-Agricultural communities.

Encl:- As above.

Signature District Col

(Full name and official seal of the District Collector)

TO WHOM IT MAY CONCERN

This is to certify that we The Panchayat Member of 14Tong Naga GPU have no objection regarding acquisition of Forest Land measuring 2.5214 Ha. under Chungthang Territorial Range, Toong villge for Package I (Mangan-Chungthang Road) under Bharatmala Pariyojana in the district of North in the state of Sikkim.

Further there should not be any encroachment in Forest Land other than the proposed.

TOONG NAGA GRAM PA JCHAYAT Jnit No. 14, North Sikkim LATE Member (Naga Ward Me Ward) Toong Ward Member (Kimrong Ward) (Rel Ward) (Manul Ward) (Nadey Ward) bub-Divisional Magistrate Sub-division Office Land Revenue & Disaster Management Dupit. Chungthang, North Sikkim

Pin 930 086 C/o 99 APO

23 Sep 2022

181 101

211/Bharatmala/Pkg-I/ 64 /E2

O/o The Divisional Forest Officer North Territorial, Mangan Pin 737116

CONSULTANCY SERVICE FOR CARRYING OUT FEASIBILITY STUDY, PREPERATION OF DETAILED PROJECT REPORT AND PROVIDING PRECONSTRUCTION SERVICES ON RESPECT OF UPGRADATION OF TWO LANE WITH PAVED SHOULDERS NH CONFIGURAION OF CORRIDORS UNDER BHARATMALA PROJECT, NH CONNECTIVITY TO BACKWARD AREAS /RELIGIOUS/TOURISTS PLACES OF THE COUNTRY AND ADB FUNDED PROJECTS IN THE STATE OF SIKKIM : MANGAN (310A) KODIYONG CHUNGTHANG – LACHUNG – YUMTHANG – YEME-SAMDONG BORDER & CHUNGTHANG – LACHEN MONASTERY LOG BRIDGE – MUGUTHANG & NAKU TO NAKULA IN STATE OF SIKKIM

<u>Sub.</u>: DIVERSION OF 11.1521 HA FOR WIDENING OF EXISTING ROAD (NH 310A) TO NHDL SPECIFICATION WITH PAVED SHOULDER FROM MANGAN OF DESIGN KM 0+000 TO CHUNGTHANG OF DESIGN KM 27+476 IN CHUNGTHANG FOREST DIVISION IN SIKKIM BY BRO <u>– Submission of</u> compliance of User Agency part for observations raised by RO-Kolkata, MOEF&CC for PKG-I (Chungthang) - reg.

Ref.: A. FC proposal no.: FP/SK/ROAD/148024/2021 submitted on 04/10/2021 B. RO-Kolkata, MoEF&CC IRO/KOL/SK/Road/148024/2021/160 dated 20.04.2022

Sir,

1. Please refer to the above cited subject and references. In this regard, it is to submit the compliance of User Agency (BRO) part for observations raised by RO-Kolkata, MoEF&CC vide above ref. B.

2. The details of compliance as per the para/EDS no. of the above ref.B observations are as tabulated below:

EDS / Para no.	Observation by RO-Kolkata, MoEF&CC, Govt. of India	Compliance by User Agency	Remarks
i.	kml file of the entire forest land proposed for diversion is not uploaded. Complete kml file may be uploaded.	Correct kml file for total forestland proposed for diversion is re-submitted in red colour polygon overlapping with the Proposed Right of Way (PRoW) in cyan colour. The same is uploaded on Parivesh portal by consultant (EPTISA) on 19.09.2022 on our behalf.	Same uploaded on Parivesh portal.
II.	Some portion (approx. 2 ^e ha) of proposed CA land in Rangma CA site is categorized as moderately dense forest as per Decision Support System. It may be rechecked	Not under User Agency	Compliance by State Government
íii.	Some components (like C.II, D.I & D.III) of Compensatory Afforestation (CA) scheme is not in accordance of para 2,8(iii) of Handbook of Forest (Conservation) Act, 1980 and Forest Conservation Rules, 2003 (Guidelines & Clarification), it may be revised.	Not under User Agency	Compliance by State Government
ív.	It is not clear, whether Biodiversity Conservation and Management Plan for the project is duly approved by CWLW, Sikkim or not. Copy of the approval of the said is required to be uploaded		Compliance by State Government

PH2

/ Para no.	MoEF&CC, Govt. of India	Compliance by User Agency	Remarks
v.	Biodiversity Conservation and Management Plan should be based on publication of WII-Eco- friendly Measures to Mitigate Impacts of Linear Infrastructure on Wildlife and direction issued by the CWLW from time to time. It should be specific to mitigate the disturbance expected to arise from the implementation of this project.	Not under User Agency	Compliance by State Government
vi.	Plot-wise/ village wise details of forest land proposed for diversion need to be uploaded	Details are attached and the same is updated in the Forest Clearance proposal on Parivesh portal	Same is updated in the Forest Clearance proposal on Parivesh portal
vii.	In Part-II, vegetation density of the proposed site is mentioned as 0.01% but in Site Inspection Report it is reported 0.1%. It may be clarified.	Not under User Agency	Compliance by State Government
viii.	Copy of the Gram Sabha resolution related to FRA certificate	Not under User Agency	Compliance by State Government
ix.	It is not clear, whether the cost of the project i.e. Rs.29635.4 cr as mentioned is for this project or for some consolidated projects.	The cost of project has been errorneously entered on Parivesh Portal by the Consultant (EPTISA). The project consists of nine (9) financial packages. The tentative cost of project for all nine (9) packages is Rs.5,981.19 cr and Package I (Mangan Forest Division & Chungthang Forest Division) is Rs.290.37 cr is that of the under which the subject FC proposal of 11.1521 ha is submitted for Chungthang Forest Division.	Same updated in the Forest Clearance proposal on Parivesh portal
Х.	Details and current status of the other widening proposals of NH310A or proposals under same Package.	Details are attached and the same is uploaded on Parivesh portal	Same uploaded on Parivesh portal

3. In view of the above, all observations raised by RO-Kolkata, MoEF&CC have ben rectified & resubmitted/reuploaded on "Parivesh" for further processing of above ref. A Forest Clearance proposal. The FC proposal was submitted 04.10.2021 and observations from RO-Kolkata, MoEF&CC, Govt. of India was received on 20.04.2022. At present FC Proposal is pending at your good office (DFO) as per EDS raised by Regional Office Kolkata (attached Timeline of MoEF&CC).

4. You are kindly requested to treat this matter most urgent for your necessary action please.

5. Your kind consideration in this regard is highly soliciated please.

(Prashant Suregaonkar) Maj Officer Commanding

Encl.:

- A. kml file of forest land proposed for diversion (11.1521 ha)
- B. Plot-wise details of forest land proposed for diversion (11.1521 ha)
- C. Details & current status of NH 310 A project
- D. Timeline of MoEF&CC

The Addl. Chief Secretary cum PCCF,

Forest and Environment Department, Government of Sikkim Forest Secretariat, Deorali-737 102 Gangtok, East Sikkim Email:<u>pccf-</u> fewd@sikkim.gov.in . sik@envis.nic.in

The CCF-cum-Nodal Officer, Forest Conservation Act (FCA), Office of the Addl. Chief Secretary-cum-PCCF, Forest and Environment Department, Forest Secretariat, Deorali, Gangtok-737 102, Government of Sikkim Email: <u>fca.sikkim@gmail.com</u> HQ CE (P) Swastik C/o 99 APO Pin 931717

- For info please

- For info please

- For info please

HQ 758 BRTF

C/o 99 APO Pin 930758

M/S EPTISA India Private Limited

Unit 1203, 12th Floor, Tower-1, PS Srijan Corporate Park, Plot No. 2, Block EP & GP, Sector V, Salt Lake City Kolkata – 700 091, (W.B) E – Mail: <u>Vsehgal@eptisa.com</u> <u>saibalkumarbanerjee@eptisa.com</u> For info w.r.t your letter No. EPTISA/BRO /DPR/22-23/Sikkim Pr.- 109 dated 19 Sep 2022 requested to liaise with state Govt for early rectification of shortcomings raised by RO,Kolkata at the earliest.

For info please

Diversion of 11.1521 ha in Chungthang Forest Sub Division for "WIDENING OF EXISTING ROAD (NH 310A) TO NHDL SPECIFICATION WITH PAVED SHOULDER FROM MANGAN OF DESIGN KM 0+000 TO CHUNGTHANG OF DESIGN KM 27+476 IN THE STATE OF SIKKIM UNDER PROJECT SWASTIK OF BRO"

SI.	Plot	A moo	GPS Co-ordinate			
No.	no. Area		Longitude	Latitude		
1	922	0.4701	88°38'38.366"E	27°33'2.68"N		
2	930	0.1095	88°38'38.366"E	27°33'2.68"'N		
3	935	0.0005	88°39'4.214"E	27°33'1'.144''N		
4	922	0.2596	88°39'4.122''E	27°33'1.11"N		
5	1588	0.3000	88°39'13.545"E	27°33'14.76"N		
6	1592	0.3410	88°39'15.791"E	27°33'14.468''N		
7	1600	0.2410	88°39'17.932"E	27°33'17.998''N		
8	1582	0.0588	88°39'15.12"E	27°33'22.132''N		
9	1544	0.0207	88°39'8.787''E	27°33'33.701''N		
10	1578	0.0201	88°39'9.07"E	27°33'35.697''N		
11	1547	0.0114	88°39'5.249"E	27°33'44.72"N		
12	1549	0.0133	88°39'5.26"E	27°33'45.502"N		
13	1526	0.0080	88°39'4.56"E	27°33'51.136"N		
14	1556	0.0764	88°39'5.534''E	27°33'49.979''N		
15	1472	0.0027	88°39'4.544"E	27°33'53.086''N		
16	1096	0.0894	88°39'8.706"E	27°34'51.738''N		
17	1134	0.2735	88°39'5.261"E	27°34'37.359''N		
18	1142	0.0281	88°38'58.844"E	27°34'26.243''N		
19	1149	0.0299	88°39'4.79"E	27°34'32.877''N		
20	1130	0.0943	88°39'6.634''E	27°34'39.026''N		
21	1126	0.0247	88°39'5.726"E	27°34'43.788''N		
22	1474	0.1000	88°39'4.682"E	27°33'54.145"N		
23	1301	0.9340	88°38'59.677"E	27°34'22.416''N		
24	1342	1.2200	88°39'1.236"E	27°34'11.814''N		
25	1472	0.2000	88°39'4.544"E	27°33'53.086''N		
26	1476	0.1500	88°39'4.649"E	27°33'56.499"N		
27	1487	0.3440	88°39'2.806"'E	27°34'4.45"N		
28	1385	0.2460	88°39'1.87E	27°34'4.448"N		
29	1387	0.1720	88°39'2.814''E	27°34'7.274"N		
30	1409	0.2580	88°39'3.767"E	27°34'4.47''N		
31	1394	1.0170	88°39'2.654''E	27°34'11.159"N		
32	1276	2.0560	88°39'0.929''E	27°34'21.61"N		
33	1473	0.0580	88°39'4.605"E	27°33'53.504"N		
34	1475	0.0240	88°39'4.663''E	27°33'54.979''N		
-35	1374	0.2040	88°38'59.907"E	27°34'6.697''N		
- 36	1344	0.0520	88°38'59.706"E	27°34'7.943"N		

eptisa C.U. Som Prakash Mitra Environmental Expert

1 | Paget

Diversion of 11.1521 ha in Chungthang Forest Sub Division for "WIDENING OF EXISTING ROAD (NH 310A) TO NHDL SPECIFICATION WITH PAVED SHOULDER FROM MANGAN OF DESIGN KM 0+000 TO CHUNGTHANG OF DESIGN KM 27+476 IN THE STATE OF SIKKIM UNDER PROJECT SWASTIK OF BRO"

SI.	Plot	• ·	GPS Co-c	ordinate	
No.	no.	Area	Longitude	Latitude	
37	704	0.2411	88°38'48.484"E	27°35'58.803''N	
38	734	0.5212	88°38'59.762"E	27°35'42.233''N	
39	732	0.1170	88°38'59.848"E	27°35'42.17"N	
40	728	0.0038	88°39'1.997''E	27°35'41.714"N	
41	1026	0.7610	88°39'6.345"'E	27°35'12.865"N	
requi	t Area ed for rsion	11.1521		,	

(VAIBHA♥ SRIVASTAVA) Major, OC Contract 86 RCC(GREF)

National Highway 310 A project under BORDER ROADS ORGANIZATION, GOVERNMENT OF INDIA

Details and current status of the other widening proposals of NH 310 A or proposals under same package.

The project is of total length 242.200 km starts from Mangan to Karem via Chungthang and Chungthang to Nakula in the state of Sikkim which is presently targeted with total nine (9) financial packages with sub-packages.

The submitted Forest Clearance proposal no. FP/SK/ROAD/146764/2021 is from Toong Bridge to Chungthang under Chungthang Forest Sub-Division of financial Package no. I.

The details of targeted road stretch which is of strategic importance of Government of India is tabulated as below:

Package No.	Sub Package No.	Project Stretches	Design Start Chainage (km)	Design End Chainage (km)	Length (m)	Status
PKG-I	Mangan	Mangan Forest Divsion	0+000	17+830	27476	Project Status: Under DPR stage. Clearance status: Forest Clearance proposal is submitted vide no. FP/SK/ROAD/146764/2021 on 03.09.2021 for forest land area 10.6759 ha and presently under RO-Kolkata, MoEF&CC for checking.
	Chungthan g	Chungthang Forest Divison		27+476	21410	Project Status: Under DPR stage. Clearance status: Forest Clearance proposal is submitted vide no. FP/SK/ROAD/148024/2021 on 04.10.2021 for forest land area 11.1521 ha presently EDS raised by RO-Kolkata, MoEF&CC on 21.04.2022.
PKG-II	-	Chungthang Bypass	0+000	3+042	3042	Project Status: Under DPR stage. Clearance status: Yet to be submitted
	PKG-IIIA	Chungthang to Lachen along approved alignment including first Tunnel	0+000	27+600	27600	Project Status: Under DPR stage. Clearance status: Yet to be submitted
PKG-III	PKG-IIIB	Lachen to Zeema via Lachen 2nd Tunnel	27+600	33+938	6338	Project Status: Under DPR stage. Clearance status: Yet to be submitted
	PKG-IIIC	Lachen Bypass	0 (27+600)	5+200 (33+938)	5200	Project Status: Under DPR stage. Clearance status: Yet to be submitted

Package No.	Sub Package No.	Project Stretches	Design Start Chainage (km)	Design End Chainage (km)	Length (m)	Status
	PKG-IIID	Realignment near 86 RCC camp	0 (1+000)	5+000 (6+500)	5000	Project Status: Under DPR stage. Clearance status: Yet to be submitted
	PKG-IVA	Chunghthang to Lachung	0+000	21+000	21000	Project Status: Under DPR stage. Clearance status: Yet to be submitted
PKG-IV	PKG-IVB	Lachung Tunnel	21+000	23+950	2950	Project Status: Under DPR stage. Clearance status: Yet to be submitted
PKG-V	PKG-VA	Lachung to Shingba	23+950	31+746	7796	Project Status: Under DPR stage. Clearance status: Yet to be submitted
	PKG-VB	Shingba to Yumthang	31+746	52+808	21062	Project Status: Under DPR stage. Clearance status: Yet to be submitted
PKG-VI	-	Yumthang to Yumesumdong	52+808	84+160	31352	Project Status: Under DPR stage. Forest Clearance proposal is submitted vide no. FP/SK/ROAD/154584/2021 on 18.04.2022 for forest land area 116.1 ha presently "DFO" stage with Nodal Officer, FCA, Sikkim
PKG-VIA	-	Yumesumdong to Kareng	0+000	19+000	19000	Project Status: Under DPR stage. Clearance status: Yet to be submitted
PKG-VII	-	Zeema to Muguthang (Greenfield)	0+000	41+100	41100	Project Status: Under DPR stage. Clearance status: Yet to be submitted
PKG-VIII	-	Muguthang to Naku	0+000	11+700	11700	Project Status: Under DPR stage. Clearance status: Yet to be submitted
PKG-IX	-	Naku to Nakula	0+000	11+270	11270	Project Status: Under DPR stage. Clearance status: Yet to be submitted

FOREST AND ENVIRONMENT DEPARTMENT GOVERNMENT OF SIKKIM GANGTOK

Ref. No: CWLW/2023

Date: 04-3-2023

To,

The Regional Officer, Integrated Regional Office, Kolkata Ministry of Environment and Forests, Government of India

Subject: Approval and Forwarding of the Comprehensive Biodiversity Conservation Plan

Madam,

This is with reference to the Comprehensive Biodiversity Conservation Plan prepared in response to the six roads being constructed by CPWD and BRO in the Mangan district of Sikkim having a total declared length of 137.22 km and a declared financial outlay of Rs 2321.62 crores. The strategy to have one Comprehensive Biodiversity Conservation Plan instead of six separate plans is commendable as it will result in a perspective approach, economy of scale and avoidance of risk of overlap. The nine main components of this plan namely reducing human wildlife conflict, strengthening forest protection, strengthening participatory conservation, strengthening forest protection infrastructure, reducing wildlife predation by feral dogs, strengthening ex-situ conservation, mitigation of biodiversity loss due to project-driven landslides and erosion, building capacity and knowledge management are very relevant to this landscape to mitigate the anticipated impacts due to these six linear infrastructure projects. It is recommended that the user agencies take all due diligence measures to contain the impact of the construction activities to the Right of Way diverted. The wildlife passage plan as well as the non-structural mitigation measures are also detailed in this plan.

This plan has been prepared in consultation with the Wildlife Institute of India and their suggestions have been incorporated (enclosed in Annexure III). This area in biodiversity rich but understudied, and hence the research component is been prioritized. Other than the regular conditions imposed, an undertaking must be taken from the user agencies regarding the future installation and construction of all suggested mitigation measures derived from the results and recommendations of these biodiversity studies notwithstanding the cost or engineering modifications involved.

This Comprehensive Biodiversity Conservation Plan (CBCP) having an outlay of Rs 49.80 crore is approved and recommended for onward submission to Integrated Regional Office of the Ministry of Environment, Forest and Climate Change, Government of India.

Yours faithfully,

(Dr. Sandeep Tambe, IFS) Chief Wildlife Warden cwlwsikkim@gmail.com

Comprehensive Biodiversity Conservation Plan

Report Submitted to the Integrated Regional Office, MoEFCC, Kolkata

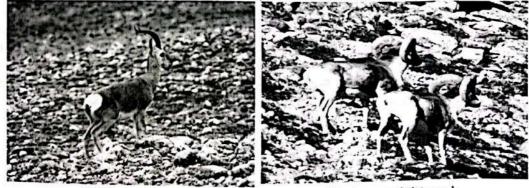
Scanned with CamScanner

Table of Contents

Executive summary

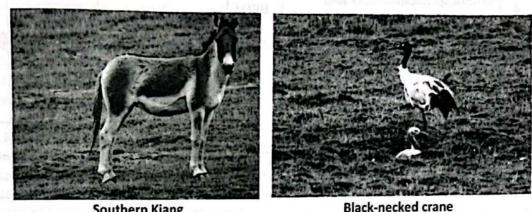
- 1. Unique context and biodiversity values
- 2. Proposed linear infrastructure projects
- 3. Process followed
- 4. Threats, gaps and proposed strategy
 - 4.1 Human-wildlife conflict management
 - 4.2 Participatory biodiversity conservation
 - 4.3 Strengthening Forest protection
 - 4.4 Strengthening protection infrastructure
 - 4.5 Reducing wildlife predation by feral dogs
 - 4.6 Strengthening ex-situ biodiversity conservation
 - 4.7 Mitigation of biodiversity loss due to project-driven landslides and erosion
 - 4.8 Awareness and capacity building
 - 4.9 Research and knowledge management
- 5. Budgetary plan
- 6. Monitoring mechanism
- 7. Wildlife Passage Plan
- 8. Non-structural mitigation and management measures
- 9. Key references
- **10. CWLW Comments**
- 11. Annexure
 - I. Biodiversity checklist
 - II. Maps of the proposed roads
 - III. Comments and Suggestions of the Wildlife Institute of India on the Comprehensive Biodiversity Conservation Plan (CBCP) along with the response of the state forest department
 - IV. Siting and design of the bridges and culverts

Executive summary


The Comprehensive Biodiversity Conservation Plan has been prepared in response to the six new roads of CPWD and BRO planned in the Mangan district of Sikkim. All these roads are required for providing defence purpose connectivity for rapid movement of troops, transportation of commodities, armaments and other essential facilities to defence needs. These roads give connectivity to the Indo-China border and are hence, important from strategic point of view. Instead of a piecemeal approach, a comprehensive proposal has been prepared to account for the cumulative impacts and to also ensure transparency and efficiency during execution. The project area for the Comprehensive Biodiversity Conservation Plan spans across the northern and eastern part of the Khangchendzonga landscape in the Eastern Himalaya which is the third highest landscape globally and the highest and steepest terrain in the country. This area is also a biodiversity hotspot spanning across both the greater Himalaya and the Trans-Himalaya and lies in the fringe of the Khangchendzonga National Park a UNESCO designated world heritage site. This landscape harbours significant biodiversity including two third of the country's Tibetan gazelle, one third of the Tibetan argali, the only population of southern Kiang, the only breeding population of the black-necked crane in the eastern Himalaya along with several other rare, endangered and threatened species. This region also forms the corridor of the Royal Bengal Tiger and there is evidence of it migrating from the neighbouring Neora Valley National Park in West Bengal during winter. The main thrust of this proposal is to mitigate the threats to biodiversity arising out of the new linear infrastructure coming up and the consequent rise in human presence. The main threats perceived are increased predation of wildlife by feral dogs and rising human wildlife conflict. While the main gaps are limited infrastructure, human capacity and research inputs. The project aims to address these threats and gaps by developing an integrated biodiversity management plan. The nine main components of this plan are reducing human wildlife conflict, strengthening forest protection, strengthening participatory conservation, strengthening forest protection infrastructure, reducing wildlife predation by feral dogs, strengthening ex-situ conservation, mitigation of biodiversity loss due to project-driven landslides and erosion, building capacity and knowledge management. The total budget of this plan amounts to Rs 49.80 crore for a period of 5 years. The monitoring mechanism has also been spelt out. The wildlife passage plan adapted to this steep mountain terrain is also provided along with the non-structural mitigation and management measures. This biodiversity conservation plan has been prepared in consultation with Wildlife Institute of India and their suggestions have been incorporated. The plan has been approved by the Chief Wildlife Warden for onward submission to the Integrated Regional Office of MoEFCC.

Scanned with CamScanner

1. Unique context and biodiversity values


The impacted area spans across the northern and eastern part of the Khangchendzonga landscape in the Eastern Himalaya which is the third highest landscape globally and the highest and steepest terrain in the country. This area is also a biodiversity hotspot spanning across both the greater Himalaya and the trans-Himalaya and lies in the fringe of the Khangchendzonga National Park a UNESCO designated world heritage site. Consequently, it is designated as a separate biogeographic province 1D by the Wildlife Institute of India. The area also forms the headwaters of the river Teesta and is dotted with several glaciers and high-altitude lakes many of which are regarded as sacred. Improved ecological health of this ecosystem translates to sufficient water in the rivers and streams even in the lean season, which sustains agricultural and horticulture crops, directly translating to food and health security of the downstream towns and villages This area is also contiguous with the Tibetan Plateau with the altitude ranging from between 4000m and 5500m. The vegetation here is sparse, devoid of trees, dominated by graminoids, forbs and a few shrubs. The biodiversity significance of the area is unmatched. This area harbours globally significant biodiversity including snow leopard, two third of the country's Tibetan gazelle, one third of the Tibetan argali, the only population of southern Kiang, the only breeding population of the black-necked crane in the eastern Himalaya along with several other rare, endangered and threatened species. This region also forms the corridor of the Royal Bengal Tiger and there is evidence of it migrating from the neighbouring Neora Valley National Park in West Bengal. The Himal is also a repository of valuable medicinal plants, which form the basis for the indigenous systems of medicine. Most of the peaks, lakes, rivers and caves here are considered sacred and are visited by pilgrims to pay homage. This area is also traditionally used by native herders for yak and sheep herding who practice transhumant rotational grazing practices. These areas are also under heavy defence deployment with extensive presence of the Indian Army and the Indo Tibetan Border Police (ITBP). After the 2017 Doklam and 2020 Galwan incidents along the Sino-Indian border, the border areas have been further reinforced with more troops and development of new infrastructure. Dogs being camp followers have benefitted from this development and their population has increased several-fold. Due to its remoteness, harsh climate and lack of infrastructure this area has a weak presence of the forest department. The detailed list of biodiversity elements (flora and fauna) is provided for in Annexure-I.

Tibetan gazelle

Tibetan argali (Nayan)

Southern Kiang

2. Proposed linear infrastructure projects

There are a total of 6 linear infrastructure projects being implemented by CPWD and BRO, for which this Comprehensive Biodiversity Conservation Plan has been prepared. All these roads are required for providing defence purpose connectivity for rapid movement of troops, transportation of commodities, armaments and other essential facilities to defence needs. These roads give connectivity to the Indo-China border and are hence, important from strategic point of view. The details of these diversions is placed below. The map of these roads is also provided in Annexure-II. The distribution of the total outlay of this plan amongst the 6 roads is in proportion to the length of the road and is also detailed in the last column with heading 'cost to be levied for BC plan'.

Table 1: Details of the 6 linear infrastructure projects

SI no.	Diversion	User Agency	Declared Project Cost	Declared Road Length	Cost Ratio	Cost Levied for BC plan			
i be galvi jo oj	Diversion of 141.124 ha. forest land for non-forest use in Toong Partem Pt. 4865 Tamze Border Road Forest Proposal	BRO -	1498.89	84.42	65%	32.15			
2	Diversion of <u>19.36</u> ha. of Forest land for Muguthang to 20r link road by ITBP	CPWD	278.08	10.70	12%	5.96			
3	Diversion of 11.1521 ha of forest land for widening of existing road (NH310A) to NHDL specification with Paved Shoulder from Toong KM)+00 to Chungthang of design KM 27+476 in Mangan Division, Sikkim by BRO	BRO	296.40	29.00	13%	3.36			

Scanned with CamScanner

7

Pc in Crores

4	Diversion of 10.6759 Ha of forest land for widening of existing road (NH310A) to NHDL specification with Paved Shoulder from Mangan KM)+00 to Toong of design KM 17+870 in Chungthang Division, Sikkim by BRO	BRO		1		3.00
5	Diversion of 4.86 Ha. KNP/Wildlife land for construction of ITBP Ph-II road from 20r Link point to 20r (Goma)	CPWD	39.25	2.70	2%	0.84
5	18.82 Ha. Forest/WL land for construction of ITBP road from 20r Link point to Zanak	CPWD	209.00	10.40	9%	4.48
	1+ P. 1		2321.62	137.22	100%	49.80

The justification for preparing a Comprehensive Biodiversity Conservation Plan instead of six separate biodiversity conservation plans is as follows:

- Comprehensive projects with pooled resources enable perspective planning and adopt a more diagnostic approach with a futuristic outlook
- Economy of scale becomes a reality as many functions such as procurement, research, planning and evaluation can be integrated
- The cumulative impact of projects is often much more than the sum of the individual impacts as these projects have a cascading effect on biodiversity
- Implementing several projects with similar components in the same geographical area run the risk of overlap
- Review of this management plans by WII also highlights the need for adopting an integrated approach of a Comprehensive Biodiversity Conservation Plan

3. Process followed

Instead of piecemeal preparation of biodiversity conservation plan for the six roads separately, an integrated biodiversity conservation plan has been prepared to ensure that the cumulative impacts of these linear infrastructure intrusions are addressed in a comprehensive manner. The implementation of this comprehensive plan will also be efficient as the activities will all be integrated without the risk of duplicacy or overlap. A participatory process involving consultations and field visits by scientists and field managers was followed for the preparation of this biodiversity conservation plan. Field visits were undertaken by the Wildlife Institute of India during September 2022. Also, several rounds of consultations were organized by the department with other stakeholders such as Animal Husbandry and Veterinary Services Department (AHVS), Sikkim Anti Rabies and Animal Health Programme (SARAH), forest wildlife divisions, forest territorial divisions, FCA wing, WWF and others before finalizing this plan. A presentation of the draft plan was made on 21st Jan, 2023 followed by a finalization workshop on 30th Jan, 2023 in the Forest Department. This draft plan was shared with the Wildlife Institute of India (WII) and their comments obtained as well (Annexure III). The review of the plan by WII and the details of the cross drainage structures from the user agencies (CPWD and BRO) was obtained in Feb 2023, following which this plan was finalized.

4. Threats, gaps and proposed strategy

The nine main components of this plan are human wildlife conflict, participatory conservation, forest protection, strengthening forest protection infrastructure, wildlife predation by feral dogs, ex-situ conservation, building capacity and knowledge management.

4.1 Human-wildlife conflict management

Rising instances of human-wildlife conflict specially crop damage and livestock kills are being reported from the state. Crop damage by wild boar and Assamese macaque, and livestock kills by Himalayan Black Bear are reported frequently from this area. Also, at times cases of grievous human injury by Himalayan Black Bear sometimes even leading to death are reported from the forest fringe villages. Other than these animals, there are also stray incidences involving the common leopard, leopard cat, martens, civets, barking deer, snakes and squirrels as well. The scale of damage caused due to conflict is considerable and the resentment of the local populace towards wildlife and the Forest department is an understatement. There are several cases of local agriculturalists completely abandoning farming and animal husbandry due to the losses incurred because of conflict. This is a very serious threat, since livelihood options in the mountains are limited and for most farming is the only source of sustenance.

Figure 2: Grievous injury to humans caused by Himalayan Black Bear are rising

4.1.1 Anticipated impacts

Linear infrastructure intrusions into natural ecosystems such as roads and highways create disturbance to the wildlife habitats and to wildlife as well. The actual area impacted by linear projects is far more compared to area diverted. There is a direct loss of habitat during establishment and maintenance of linear project. This may happen due to clearing of vegetation, dumping of excavated earth and material movement of heavy vehicles and earth movers, creation of labour camps etc. The effect of these disturbances may persist in the landscape for years to decades. This results in higher instances of human-wildlife conflict as wildlife corridors and habitats get disturbed. Hence, there is a need to strengthen the preparedness of the forest department to deal with more instances of crop damage, livestock kills and human injury. The

cost of the tranquilizing drugs is very high and they have a limited shelf life. Also due to the challenging mountainous terrain of the state, immobilization, capture and translocation of wildlife involves cages to be transported manually to set traps for capture. Carrying the cage with trapped animal inside is a big task. Also, there is wastage of tranquilizers and darts due to obstructions from heavy undergrowth. Hence, there is a need to be equipped with the most updated practical and effective tools to aid in immediate and future planning for managing conflict. Also, recently the ex-gratia rates for livestock kills have been rationalized to ensure adequate compensation in alignment with the market value.

4.1.2 Mitigation strategy

netro necrostrativas alla doctrorel

Hence, the proposed strategy is four-pronged namely: 1) Ex-gratia payments for livestock kill and human injury 2) Procurement of tranquilizing guns, cages, equipment and supplies 3) Mobilization of team and rescue and release operations 4) Procurement and deployment of wildlife deterrent devices. The total cost of this human wildlife conflict management component comes to Rs 6.60 crore as detailed in Section 5.

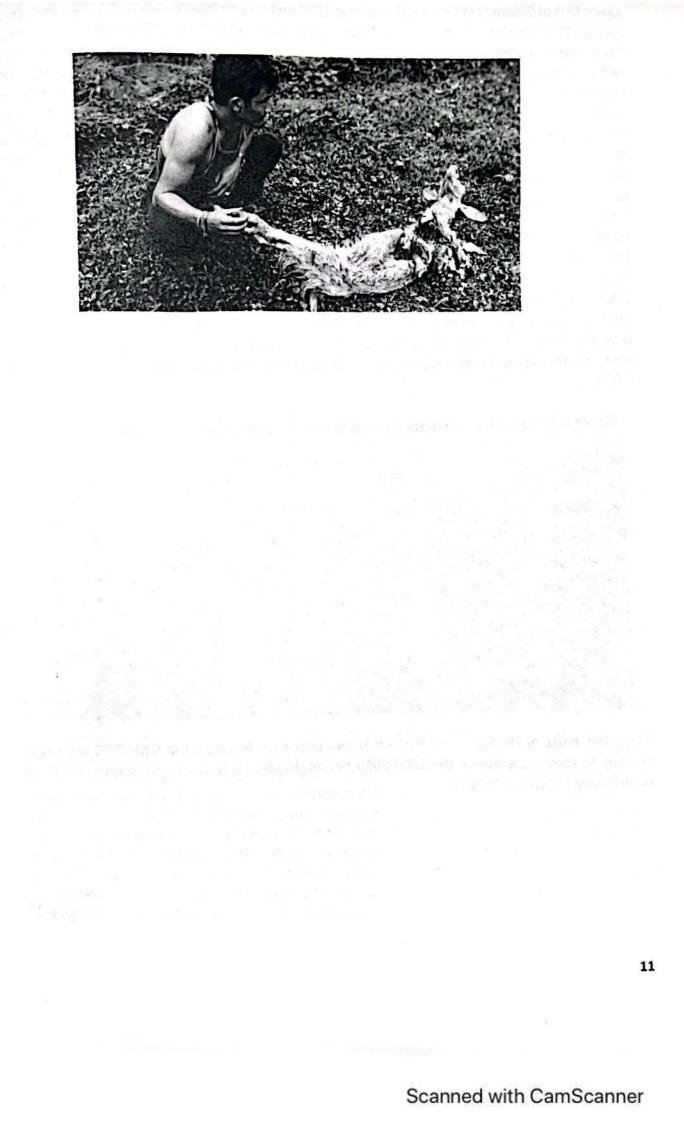
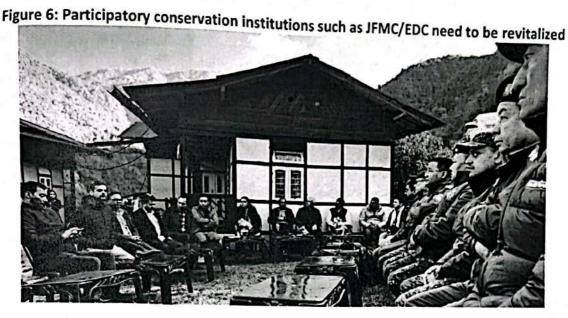


Figure 3: Transportation of cages with the animal is a herculean task in hilly terrain

Figure 4: Livestock kills by Himalayan Black Bear in winter are rising

the second state of the second state of the second state of the second state of the

a service of the serv


4.2 Participatory biodiversity conservation

About 59% of Sikkim (4187 sq. km) lies above 3000 meters and most of this is classified as Reserve Forests. This sub-alpine and alpine landscape of the Sikkim Himalayas locally referred to as Himal. has a unique ecosystem and cultural and wildlife values associated with it. Though most of lower and middle hill forests have been brought under the Joint Forest Management (JFMC/EDC) network, the upper hill forests of the Himalayas, inspite of determined efforts, still continue to be under inadequate management, beset with threats and need urgent interventions. The main threats being unplanned trekking tourism, hunting and trapping of wild animals, smuggling of medicinal and aromatic plants, wildlife predation by feral dogs and lack of awareness amongst the security forces. Effective conservation of the Himal by forest staff alone is very difficult due to its high altitude, remoteness, tough terrain, harsh climate and limited resources available. Further lack of adequate infrastructure and facilities make every patrolling visit more like an expedition, with a large contingent of support staff and resultant high attendant costs. Hence, the Himal Rakshak or Mountain Guardian policy was launched by Sikkim Forest Department in 2006 to strengthen community-based conservation in the high-altitudes where typical JFMCs/EDCs do not have outreach. Community resource persons were recognized as "the honorary guardians of mountains" and were given stewardship of the alpine areas. This initiative is unique, due to its aspiration of capacity-building among local community members to help conserve the alpine areas including the high reaches of the Khangchendzonga National Park (KNP).

Figure 5: Himal Rakshak initiative needs to be extended to the northern part of the state

For other parts of Northern and Eastern Sikkim which are forested, the JFMC/EDC are not as vibrant as they were during the 2000-2010 period. Hence, there is a need to revitalize these community-based institutions.

4.2.1 Anticipated impacts

2

Linear infrastructure projects open up biodiversity rich areas to the outside world by making the access and exploitation easy. Biodiversity resources that were earlier not easily accessible now become a commodity to be traded in the market. Regulatory and enforcement agencies are not able to move fast enough due to which pristine areas get depleted of biological resources. The trans-Himalayan region of Sikkim which was earlier inaccessible, will now get opened up for easy access to the outside world and subsequently also for tourism. Due to the high-altitude and harsh climate, conventional conservation needs to be supplemented with innovative means to strengthen the intelligence and surveillance network. Hence, while the Himal Rakshak policy has been implemented in the southern part of the KNP, it now needs to be extended to the eastern and northern part. With growing defence establishments, rising population of feral dogs, threat of trapping and hunting wildlife, accelerating impacts of climate change and other threats, the alpine areas in the northern part of Sikkim too need to be brought under the participatory conservation framework. The existing JFMC/EDC are too weak to tackle this new threat and hence they need to be revived.

4.2.2 Mitigation Strategy

It is proposed for constitution of Himal Rakshaks (HRs) for northern part of KNP for participatory management of trans-Himalayan unique ecosystem as the traditional knowledge and the experience of local community plays a crucial role. A total of 20 Himal Rakshaks are planned for the Northern part of KNP comprising members of the local Lachen Tourism Development Committee, local Eco-development Committee and the local herders (Dokpas). Subsequently, capacity building of HRs will be taken up in partnership with organizations such as World Wildlife Fund (WWF) in basic biodiversity monitoring techniques and reporting wildlife crimes. Identity cards will be provided to all the HRs. Provision of field equipment such as high-altitude trekking gears, field jackets, shoes etc. will also be provided along with one-time financial incentive. Participatory conservation will be given a further boost by constituting 'green volunteers' to strengthen the conservation of forests, environment and wildlife and supported in a similar

manner as the Himal Rakshaks. These 'green volunteers' will be enlisted and their capacity building carried to support the conservation of forests, environment and biodiversity. Similarly, 40 JFMC/EDC will be strengthened in the northern and eastern part in the forested regions. This will be done by reconstituting, institution building, capacity building and exposure visits. These institutions need be broad-based, follow democratic decision making and eventually contribute in biodiversity monitoring and surveillance. They will be trained in record keeping, accounting, forest monitoring and supported with exposure visits both within and outside the state. They will also be provided with field equipment such as high-altitude trekking gears, field jackets, shoes etc. Entry-point activities will also be carried out as a confidence-building measure. Veterinary health camps will be organized which will benefit both the livestock husbandry as well as reduce the spread of contagious diseases to wild herbivores. Also, the cultural assets will be identified especially those that help in strengthening the conservation ethos and belief systems of the sacred landscape and renovated.

The total cost of this participatory biodiversity conservation component comes to Rs 5.45 crore as detailed in Section 5.

4.3 Strengthening Forest protection infrastructure

The forest areas comprise mostly of temperate oak forests and subalpine conifer forests. Also due to natural calamities, landslides are very common impacting forests and nearby human habitations. The geology of the eastern Himalayas is weak as the mountains are young-fold. The situation is further aggravated due to the steep terrain and heavy annual precipitation of more than 250 cm. The forests specially in the 1000-2000 m zone are susceptible to forest fire. Though hunting of wildlife has come down over the last few decades, sporadic events from armed transborder hunters, local bush meat hunting and tree felling does get reported once in a while.

4.3.1 Anticipated impacts

The wildlife predation by feral dogs, increased instances of hunting and poaching, laying traps and snares, deepening human wildlife conflict, high probability of smuggling of medicinal plants, more frequent road kills, greater probability of forest fire etc. which will need better preparedness of the forest staff. Thus, the regular monitoring of these areas, which were earlier not easily accessible, will become an absolute necessity due to the presence of heavy earth moving machineries, people and labour camps. Business as usual will result in irreversible biodiversity loss. Also, natural calamities such as landslides and forest fires will increase due to road building activity for which mitigation measures will need to be put in place. Threats from trans-border hunting and local bush meat hunting need to be also countered. The forest staff too need to be better equipped in terms of equipment, mobility, communication and infrastructure.

of "restrictor and backing to the book book by showing and when your to

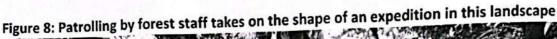


Figure 7: Illegal felling of trees in the reserve forests

4.3.2 Mitigation strategy

The mitigation strategy will involve equipping forest staff with gears, wireless communication and vehicles so that they can respond to crisis in a timely manner. Natural calamities such as forest fire will need to be addressed. Fencing at the vulnerable points will also be needed to secure forests. Special high-altitude gears, transportation facilities, clothing etc must be provided to the frontline staff posted in difficult areas so as to strengthen and support them. Physical presence of forest and wildlife staff in these remote high-altitude locations needs to be incentivized so that it will act as a deterrent against forest and wildlife offences. Incentive needs to be provided to the frontline staff posted and functioning in the trans-Himalaya (above 4000 m). These staff have to endure hardships such as thin mountain air, cold sub-zero temperature, limited access to medical facilities, poor infrastructure etc. Thus, providing special incentive will serve as a motivation for them.

Hence, the total investment planned in the forest protection component is Rs 6.65 crore as detailed in Section 5.


4.4 Strengthening forest protection infrastructure

The valleys of Lhonak chu, Tso Lhamo, Lhasar and Chopta valley that constitute the Sikkim trans-Himalaya do not have a physical presence of the forest department. The trans-Himalayas of Sikkim is characterized by sporadic presence of forest personnel due to a lack of infrastructure and severe winter and snow storms. The main reason being the high altitude and harsh climate with temperatures dipping to minus 35 degrees during winter accompanied with fierce snow storms. Forest infrastructure in the high altitudes is non-existent as there is not a single forest office or residence for forest personnel. As a result, forest protection and enforcement is sporadic and uneven. Due to heavy snow storms and harsh weather, camping in alpine tents is also not feasible. This lack of infrastructure also impacts the operationalization of research studies, biodiversity monitoring and sterilization programs. Other than this high-altitude infrastructure, even the existing infrastructure comprising of the range office complex in Lachen and Tshungthang is in a dilapidated condition and needs upgradation.

4.4.1 Anticipated impacts

Lack of infrastructure directly results in uneven monitoring, delayed response, high transportation costs as there are no 'boots on the ground'. The biodiversity in this landscape was till date protected due to lack of easy access and transportation. Accessing Muguthang from Thangu involved a back breaking trek in the high altitude with the Lunak la pass at 5900 metres posing a formidable barrier. Linear infrastructure projects open up biodiversity rich areas to the outside world by making the access and exploitation easy. Regulatory and enforcement agencies are typically not able to move fast enough due to which pristine areas get depleted of biological resources. Now with the entire stretch from Thangu to Muguthang becoming motorable it is anticipated that the entire length of the Lhonak valley will get opened up for visitors and tourists. Biodiversity resources that were earlier not easily accessible now become a commodity to be traded in the market. The trans-Himalayan region of Sikkim which was earlier inaccessible, will now get opened up for easy access to the outside world and subsequently also for tourism.

4.4.2 Mitigation Strategy

Hence, the imperative for biodiversity conservation in the trans-Himalayas is to establish permanent infrastructure and man it to ensure regular surveillance, monitoring and enforcement. In this regard it is proposed to establish the Trans-Himalaya Biodiversity Monitoring Station using Passive Solar Building Technology in partnership with HIAL https://www.hial.edu.in/Ladakh, founded by the renowned innovator Sonam Wangchuk. When the ambient temperature outside is minus 20 degrees, this technology ensures that the inside temperature is at 10 degrees without heating https://www.youtube.com/watch?v=oBtSoWh1hlg. HIAL has also partnered with the Indian Army and other government departments in Ladakh to scale up this technology in the high altitude areas. It is proposed to construct and furnish one such station structure using this technology in the Sikkim trans-Himalayas. The existing forest staff infrastructure at Lachen and Tshungthang will be upgraded. Also, the existing forest rest houses in the vicinity will be renovated and a transit accommodation created at Tshungthang to enable more frequent monitoring along with three new forest checkposts on these new roads wherever needed.

The total cost of this forest protection infrastructure component comes to Rs 8.30 crore as detailed in Section 5.

4.5 Reducing wildlife predation by feral dogs

The rising populations of feral dogs in forest areas in the state of Sikkim specially in the north and eastern part is of great concern. In areas that are of high biodiversity significance, reports of wildlife depredation by these dogs have become frequent. These dogs are known to hunt in packs and have been reported to prey upon wildlife such as blue sheep, Tibetan gazelle, Himalayan marmot, musk deer, Himalayan goral, serow, red panda, etc. The population of these dogs is closely linked to the camps of military and paramilitary forces, as these dogs are known to feed on the improperly disposed food waste.

Figure 10: Feral dogs in the same niche occupied by the endangered snow leopard

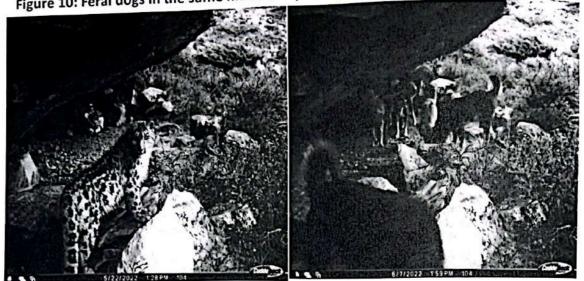
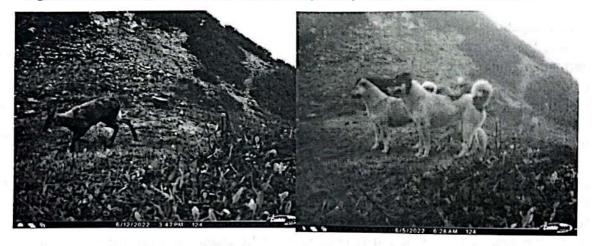



Figure 11: Feral dogs in the same niche occupied by the endangered musk deer

4.5.1 Anticipated impacts

Due east of the Lhonak valley lies the Chhombo chu valley which has an established road network with defence establishments for several decades now. This valley provides an interesting insight regarding the impacts of roads and highways on biodiversity. There are close to 600 feral dogs in this valley who hunt in packs and prey upon wildlife. Now that the Lhonak valley is being opened up and provided easy access with motorable road, the future scenario in the absence of mitigation measures will be similar. Source dog populations from the nearby towns and villages will now be able to easily disperse and occupy this new territory. The Tibetan marmots, blacknecked cranes, pikas and other small mammals and birds will be easy game for these ferocious predators. Participatory research by ATREE found that in this landscape the feral dogs cause severe fatalities to yak calves. This has led to high economic losses to pastoralists, with an estimated 40% of yak calves being lost every year.

4.5.2 Mitigation strategy

The Animal Birth Control (ABC) programme is the suggested measure for controlling dog populations. It is a long-term intervention that will start showing results after continuous efforts of sterilizing atleast 70 percent of the dog population. While sterilization is underway, there is a need to scale it up. Also, sensitization of the armed forces and reducing their food waste is also needed to control the dog population. The strategy proposed is three-fold: i) Firstly it aims to ensure proper disposal of food waste from the security establishments by ensuring their collection by the nearby local body and by piloting of the Organic Waste Composter (OWC) ii) Secondly, it aims to scale up the ongoing ABC programme in partnership with the Animal Husbandry Department, Govt. of Sikkim to achieve higher coverage iii) Providing garbage collection vans to local bodies to support solid waste management of defence establishments The total cost of this reducing wildlife predation by feral dogs component comes to Rs 1.90 crore as detailed in Section 5. The expected outcomes of this component is a reduction in the population of feral dogs in forests and a significant reduction in wildlife predation in the forest areas of north and east Sikkim.

4.6 Ex-situ biodiversity conservation

The Himalayan Zoological Park (HZP) is the only ex-situ conservation facility in the state situated at Bulbuley in the vicinity of Gangtok. It was established in 1997 and spreads across 230 ha. It is an ideal location for ex-situ conservation of globally threatened and endangered wildlife. Also, it has ample scope for expansion, adding new enclosures and wild animals. The zoo now has a collection of 78 specimens belonging to 18 species. The animals of interest under captivity are the Red Panda, the State animal of Sikkim, the Common Leopard, the Himalayan Black Bear, the Large Indian Civet, the Palm Civet, the Leopard Cat, the Yak, the Goral, The Himalayan Thar, Blue Sheep etc. Birds consist of the Kalij Pheasant Schedule-I species and the rest are exotic species such as Golden, Silver and Lady Amherst's Pheasants. There is a need to strengthen the ex-situ conservation infrastructure for conservation and education purposes. The HZP falls under the category of Mini Zoo as per the Central Zoo Authority's classification but it has tremendous scope

for expansion. The HZP has an approved master layout plan and the developments are proposed accordingly.

4.6.1 Anticipated impacts

Sikkim is a haven for birds with nearly 550 species constituting nearly half of the national avifaunal wealth. Growing linear infrastructure in the form roads and highways will result in fragmentation of habitat. There are several rare, endangered and threatened avifauna such as black necked crane, pheasants, partridges, owls, birds of prey, vultures etc. that need special conservation attention. This linear infrastructure poses a real threat to ground nesting birds such as partridges and pheasants due to the anticipated spread of feral dogs in their habitat. The wellknown direct effects of roads on birds include habitat loss and fragmentation, vehicle-caused mortality, pollution, and poisoning. Nevertheless, indirect effects may exert a greater influence on bird populations. These effects include noise, artificial light, barriers to movement and edges associated with roads. Hence, there is a need to strengthen the avifaunal infrastructure in the zoo. The zoo has been facing the menace of feral dogs as well as wild animals posing a threat to the rescued and exhibit animals. Due to lack of fencing, there was an outbreak of canine distemper virus and the zoo lost 18 Red Pandas which effectively halted the conservation breeding programme. Also, a Himalayan Black Bear from the wild entered into the zoo premises and resulted in casualty of herbivores (Musk Deer, Barking Deer, Ghoral, Himalayan Tahr and Blue Sheep) in the exhibit areas. Also, due to the road construction activities it is anticipated that floral elements will be damaged and there is a possibility of weeds proliferating in the areas where the dense forest canopy is opened.

4.6.2 Mitigation strategy

The mitigation strategy comprises of two approaches namely strengthening the zoo infrastructure and predator proof fencing of the zoo. There is a need of an aviary which will serve the dual purpose of conservation and education. This will help to increase the foot fall in the zoo and as well further strengthen and extend the zoo. The aviary is proposed with raised platform walk way. It will have RCC fencing with predator proof design with chain link mesh above with enrichment suiting the birds and visitors experience. This intervention will bring in added revenue resulting in self-sufficiency and sustainability of the park. The aviary will be designed in consultancy with experts who have designed such walk-in aviary in the country. The total investment proposed is Rs 2.00 crore.

Chain-link (predator proof) fencing of the entire zoo (230 ha) is a priority which comes to around 12.8 Km, to safeguard the animals as well as prevent the spread of zoonotic diseases from feral dogs, cattle etc. Also, the HZP is located on prime land just 3 km from Gangtok city, and is susceptible to encroachments, hence this fencing will also safeguard the zoo from this threat. As the zoo spreads over 230 ha, it serves both as in-situ as well as ex-situ biodiversity conservation. Hence, once the external fencing is completed, subsequently, internal partitions (soft release facility) can be created as per the approved master layout plan for soft release in future. Hence, we would like to propose for half of the total perimeter amounting to Rs 3.00 crore from this plan in Phase-I.

set of a start of the start of the start of the start of the

strengthening rescue and rehabilitation of impacted floral species due to road construction activities and weed eradication will also be carried out with an outlay of Rs 4.00 crore.

Hence, the total investment planned in the ex-situ biodiversity conservation component is Rs 9.00 crore as detailed in Section 5.

4.7 Mitigation of biodiversity loss due to project driven landslides and erosion

This component will protect the valley side damage due to hill road construction comprising of managing surface runoff, treating minor landslides and slope stabilization. Due to the steep terrain of the site, often road cutting spoils roll down the valley side causing damage to the valley side slope. Also, the improper siting of cross drainage structures results in aggregation of surface runoff and its discharge along unnatural sites causing damage to the slope. The total investment planned in this component is Rs 6.00 crore as detailed in Section 5.

4.8 Building awareness and capacity building

Various stakeholders have an impact on this landscape such as the defence establishment, tourism personnel, nomadic pastoralists and the local community. Sensitizing these stakeholders and building capacity can play an important role in the implementation of this biodiversity plan as well as future conservation. The forest department personnel also have expertise and experience in managing forested habitats, but managing a cold desert will need a new set of skills.

Figure 13: Awareness programs for the forest fringe local communities

4.8.1 Anticipated impacts

Development of roads and highways in this landscape will result in new types of threats such as wildlife predation by feral dogs, increased instances of hunting and poaching, deepening human wildlife conflict, high probability of smuggling of medicinal plants, more frequent road kills etc., which will need better awareness and capacity amongst the stakeholders. Business as usual will

result in irreversible biodiversity loss. Improper food waste management will result in a proliferation of feral dogs and their predation of native wildilfe.

4.8.2 Mitigation strategy

The mitigation strategy will need sensitization of the defence forces and training of forest frontline staff on biodiversity conservation in this unique landscape. The defence forces establishment keep on getting transferred every few years, hence this has to be an ongoing exercise. The defence forces need to manage their food waste responsibly, stop feeding the feral dogs, respect the endangered biodiversity, protect the wetlands and ensure that there is no sporadic hunting of wildlife. The native herders need to be partnered with for making participatory conservation work as they have continuous on-ground presence in this landscape. The local community-based institutions such as JFMC/EDC and others too needs to be sensitized and their capacity built. The frontline staff need to be trained to take up higher responsibilities by building capacity. The staff can be sponsored to attend various trainings and workshops including the WII Certificate course, Induction trainings, wildlife immobilization trainings and various other trainings and workshops. Exposure visits of students from the fringe villages will also help in creating awareness and local stewardship for the natural heritage.

Hence, the total investment planned in the awareness and capacity building component is Rs 1.40 crore as detailed in Section 5.

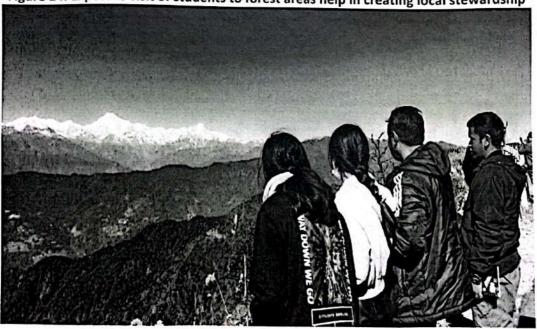
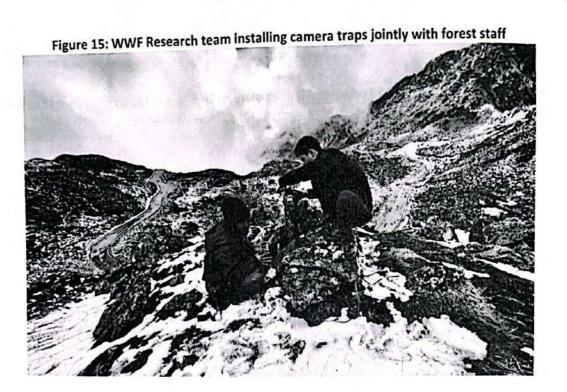


Figure 14: Exposure visit of students to forest areas help in creating local stewardship

4.9 Research and knowledge management

There is limited knowledge and data on the high altitudes and trans-Himalayan ecosystems. The population, distribution and threats faced by flora and fauna is yet to be scientifically assessed.

Action research that provides knowledge for decision making is needed to plan conservation action as well as assess the impact of biodiversity conservation interventions.


consistent mente send a sen aporte integration and the first send of the Million family of the Million family of the Integration of the analysis and the sendence of the sender of the sender of the sender to public the sendence of

a free stand is first if the stand of the standard of the standard of the standard standard in the standard standard

for the second of the second second

Scanned with CamScanner

a particular physical and the state of the state of the

4.9.1 Anticipated impacts

There is a significant gap in the knowledge about the presence, distribution, population size, habitat preference and movement patterns of many mammal species along with the prevalence of illegal activities like poaching, medicinal plant collection, etc. Long term, year-round monitoring stations can fill these knowledge gaps, providing useful data for relevant conservation actions and interventions. Also, habitat preference and movement patterns of snow leopards at a fine scale is not known. The lack of this information affects the quality of the species-specific conservation actions. There is limited baseline data available for wild ungulates and feral dogs. Hence, we are unable to quantify changes in population over time, and also aid in framing conservation objectives, assess their feasibility, concentrate efforts, and define a time-period within which progress can be evaluated. The lack of this information restricts the understanding of the population trends for wild ungulates and the effectiveness of the birth-control efforts for the feral dogs.

4.9.2 Mitigation strategy

The action research proposed jointly with WWF-India and others comprises of three studies which will be taken up jointly with forest department namely 1) Long term biological monitoring: The long-term biological monitoring will be carried out by identifying permanent to set up around 200 camera traps that will be kept functional all year round. These will be used to estimate the population size, distribution, habitat preference and movement patterns of snow leopards, other co-predators (Tibetan wolf, free-ranging dog, Pallas's cat, etc.) and prey species (blue sheep, Tibetan argali, musk deer, etc.). These will also be used to know the degree of human presence in some remote areas and the detection of poaching instances. 2) Radio collaring of snow leopards: by fitting 5 snow leopards with radio collars to study their movement patterns and

behaviour 3) Population estimation surveys for wild ungulates and free-ranging dogs: by using the 'double observer' method for wild ungulates and free-ranging dogs. Double-observer surveys will be conducted on previously identified and fixed routes once every year to estimate the population size of the wild ungulates and free-ranging dogs. These studies will help monitor the impact of the proposed interventions and create a credible baseline for evidence-based policy making an annual population estimation exercise is proposed in partnership with WWF India.

Studies planned with Wildlife Institute of India and others will cover the 1) Population, breeding ecology and ranging patterns of the black-necked crane, 2) Ecological and genetic assessment of the Southern Kiang, Tibetan Gazelle, Tibetan Argali, Himalayan Marmot etc. 3) Population assessment, monitoring and disease prevalence among mountain ungulates 4) Assessing highaltitude lakes and rivers for their biodiversity values 5) Effect of increasing border infrastructure an defence camp practices on biodiversity 6) Development of integrated conservation plan for cold desert region of Sikkim and 7) Development of Management Plan for the Pangolakha Wildlife Sanctuary.

The department also plans to take up habitat monitoring of important floral species and recovery programs. Also, procurement of equipment for field kits, camera traps, surveillance cams etc. for inhouse biodiversity monitoring and research is also included. Hence, the total investment planned in the research and knowledge management component is Rs 3.50 crore as detailed in Section 5.

Figure 16: WWF Research team conducting the snow leopard population census in Sikkim

5. Budgetary plan The plan is prepared for a duration of 5 years keeping in mind the time taken for projects to take off after a preparatory phase.

	R	s in lakhs
No.	Component	Budget
A	Human Wildlife Conflict Management	660
B	Participatory Biodiversity Conservation	545
c	Strengthening Forest Protection	665
D	Strengthening Forest Protection Infrastructure	830
E	Reducing Wildlife Predation by Feral dogs	190
F	Strengthening Ex-situ Biodiversity Conservation	900
G	Mitigation of biodiversity loss due to project driven landslides and erosion	600
н	Building Awareness and Capacity building	140
1	Research and Knowledge Management	350
	Subtotal	4880
-	Administrative costs	50
100	Monitoring and evaluation	50
	TotaL	4980

Table 2: Summary table of the components with budget

Table 3: Detailed table of the plan components with budget

Rs in lakhs

	THE REPORT OF A REAL PROPERTY OF A REAL PROPERTY.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			the second se	TT Turning
No.	Activity	Unit cost		Units		Budget
Α	Human Wildlife Conflict Management			States and		a state of the state
1	Ex-gratia for livestock kill and human injury, death and medical expenses	40	Per year	5	Years	200
2	Procurement of tranquilising guns, cages, equipment and supplies	60	Per year	5	Years	300
3	Mobilization of rescue team and release operations	20	Per year	5	Years	100
4	Procurement and deployment of wildlife deterrent devices	20	Per year	3	Years	60
В	Participatory Biodiversity Conservation	n				A State

1	Strengthening of JFMC/EDCs for biodiversity conservation and EPA of the committees affected by the roads	5	per JFMC/EDC	40	JFMC/EDC	200
2	Strengthening and supporting Himal Rakshaks / Green Volunteers for forest, environment and biodiversity monitoring	25	Per year	5	Years	125
3	Veterinary health camp in the fringe villages	5	per camp	20	camps	100
4	Preservation and conservation of outstanding universal values of KNP World Heritage Site - renovation, repair and preservation of tangible and intangible cultural values and sites	15	per site	8	sites	120
С	Strengthening Forest Protection			In Case	Mar al and a state	EL STALL
1	Frontline staff: Arms, ammunition, equipment and gear	25	per year	4	years	100
2	Incentivization of frontline staff posted in cold desert (above 4000m)	10	per year	5	years	50
3	Forest fire protection	25	per year	4	years	100
4	Forest fencing for protection	100	per year	2	years	200
5	Strengthening of WT Communication system	50	Unit	1	unit	50
6	Procurement of vehicles	15	per vehicle	8	vehicles	120
7	Procurement of patrolling bikes	1.5	per vehicle	30	bikes	45
D	Strengthening Forest Protection Infrastr	ucture	The support			
1	Cold Desert Biodiversity Monitoring Station CDBMS - Passive Solar Heated Structures (Construction and Furnishing)	100	per station	1	stations	100
2	Construction of forest checkpost for the new roads	40	per checkpost	3	checkposts	120
3	Renovation of forest complex at Lachen and Chungthang including staff quarters	100	per complex	2	complexes	200
84	Construction of transit accommodation at Tshungthang for high altitude monitoring	80	per unit	1	unit	80

163-194 .05

0

.

40

27

	5 Renovation of forest rest house(s) for forest monitoring	40	per year	2	years	8
6	5 Improving patrolling tracks and ecotrails	50	per year	5	years	25
E	Reducing Wildlife Predation by Feral d	ogs		The second		
-1	Sterilization of feral dogs ABC in partnership with SARAH	20	per year	5	years	100
2	Piloting Organic Waste Composters (OWC) for defence establishments	12	per composte r	5	composters	60
3	Providing garbage collection vans to local bodies to support solid waste management of defence establishments	15	per vehicle	2	vehicles	30
F	Strengthening Ex-situ Biodiversity Cons	servatio	n	- Contra	and the state	
1	Predator proof fencing for the zoo	150	Per year	2	years	300
2	Avian rescue, rehabilitation, education and awareness facility	100	Per year	2	years	200
3	Strengthening rescue and rehabilitation of impacted floral species due to road construction activities	80	Per year	5	years	400
G	Mitigation of biodiversity loss due to pr	roject di	riven landslide	es and	erosion	
1	Surface runoff management through catchwater drains	20	per year	5	years	100
2	Moisture management through soil moisture conservation	20	per year	5	years	100
3	Checking vegetation loss through slope stabilization	100	per year	4	years	400
H	Building Awareness and Capacity building	ng				Provide La
1	Sensitization of defence establishments and other stake holders	2	per workshop	10	workshops	20
	Sensitization, awareness and exposure visits on biodiversity of Sikkim to students	4	per program	5	programs	20

001

Ĩ

27

(16)

28

Scanned with CamScanner

3	Training of frontline staff on biodiversity assessment, conservation, enforcement, rescue and release, human wildlife conflict, participatory conservation, immobilization etc.	5	per training	20	trainings	100
4	Research and Knowledge Management	Verte la		The second		
1	Annual population estimation studies of feral dogs, ungulates and snow leopard by WWF and others	10	per year	5	years	50
2	Procurement of field kits, camera traps and equipment for biodiversity monitoring and research	25	per year	2	years	50
3	Biodiversity studies and preparation of biodiversity conservation plans by Wildlife Institute of India and others	50	per year	4	years	200
4	Habitat mapping of important floral species and species recovery of key floral species	25	per year	2	years	50
	Subtotal	Sun Mar		A CONTRACTOR	· · · · · · · · · · · · · · · · · · ·	4880
1	Administrative costs	10	per year	5	years	50
	Monitoring and evaluation	10	per year	5	years	50
A DEC	Total	the state	Convertient	to all the set	Part a strategical	4980

The justification of the budget is provided below:

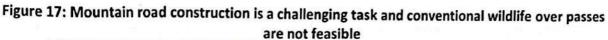
- Special biogeographic status of the area: The area impacted by the roads is a special Biogeographic Province 1D as classified by the Wildlife Institute of India whose extent is limited to only about 1000 km². It is the only significant expanse of the unique cold desert ecosystem in the eastern Himalayas.
- Globally significant biodiversity: This area is a repository of significant populations of several
 endangered species and houses two third of the country's Tibetan gazelle, one third of the
 Tibetan argali, the only population of southern Kiang, the only breeding population of the
 black-necked crane in the eastern Himalaya along with several other rare, endangered and
 threatened species. This region also forms the corridor of the Royal Bengal Tiger and there is
 evidence of it migrating from the neighbouring Neora Valley National Park in West Bengal.
- Area impacted versus area diverted: While the compensatory conservation budgets are
 assessed in proportion of the forest area diverted or as a ratio of the project costs, what we
 need to assess is the area impacted and the biodiversity value of the region at stake. In this
 case, globally significant biodiversity values are at stake and also the area impacted is much
 more than the area diverted. The hill cutting, slope destabilization, rock blasting, muck
 disposal, establishing labour camps, increased human presence, unsuitable waste disposal
 and others will result in a long-term disturbance and damage to biodiversity.

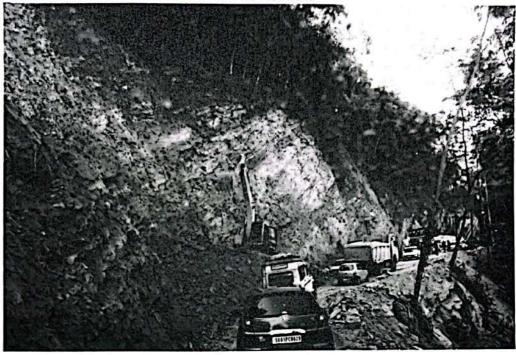
29

6. Monitoring mechanism

The operational mechanism proposed to implement this plan is by having a committee at state level comprising of the heads of Forest, Environment, Wildlife, FCA, research NGOs and others. The committee will be headed by the Secretary with CEO CAMPA as the member secretary. The terms of reference of this committee will be to plan the implementation modalities, partitioning of the programme components across different geographies, circles and divisions, preparation of the APO and overall planning, monitoring, evaluation and other related matters. Items-requiring centralized purchase for the purpose of economy of scale and standardization will also be done by this committee. The studies by WII, WWF and others will provide a good indication of the key performance indicators namely the population of snow leopard, ungulates, feral dogs and other threats on a yearly basis. Also, since these studies will be taken up independently, it will also function as an independent evaluation of the project impact.

tensed bine to pack of the areas file area hupeded by the roads areas the


noreane of Europhytics and film and ancarate hears here effer and "starf Westel on put Automoreane versus firm a divertant. Worke the compariant time integer from Westel and respond to integer of of the finemer energy diverses of as a reflet of the project resist eductive


Connection to the main formation of a set of the set of A set of the B set of the set of the

and minere as a count to a long seem all study, and and advector to wheel one way

and see the second of the shaking set of the Wildlin tentitute of its

uld that is not constant by

7. Wildlife Passage Plan

The landscape impacted in Sikkim by these six roads comprises of two ecosystems the Greater Himalaya and the Trans-Himalaya. Road construction in this mountain terrain is a challenging task and will involve hill cutting on steep slopes. This wildlife passage plan has been prepared keeping in mind the topographic constraints of this landscape.

- In the Greater Himalayan part, the terrain is amongst the highest, steepest and most rugged in the country. It is also characterized by young-fold mountains with weak geology and a dense drainage network. In this mountainous landscape, as there will be steep cuts along the hill side during road construction, the larger animals are expected to move along the drainage areas such as *jhoras* and streams. On the Trans-Himalayan portion which is a cold desert, the roads will pass through the southern portion of the Tibetan plateau which is a vast, arid upland with rolling hillocks and devoid of forests or trees. The visibility on this landscape is unobstructed and the alignment will run across a relatively less dense drainage network. In this relatively flat terrain, there is less hindrance perceived to animal movement in the proposed alignment.
- Therefore, the bridges across these drainages should be of adequate width and height in order to act as underpasses for wildlife. Considering the topographic constraints, the locations may be decided jointly by the User Agency and the DFO-Mangan. The height of the underpass/minor bridge may be up to 3-5 m and the span of the underpass/minor bridge may be kept up to 20-30 m for such underpass. The guidelines for animal passage have been provided in the publication "Eco-friendly measures to mitigate impacts of linear infrastructure on wildlife" prepared by WII under technical advice of MoEF&CC, NTCA and NHAI. Wildlife passage plan for linear

31

infrastructure has been made mandatory by NBWL which has prescribed these guidelines in several instances while according clearances to linear infrastructure projects. Ministry of Road Transport & Highways vide letter No. RW-NH-11013/02/2019-S&R (P&B) dated 29th May 2019 has also advocated the prescriptions to all implementing agencies to implement mitigation strategies as per said guidelines. On smaller drainage lines, the box culverts will need to be constructed of adequate width and vertical clearance to provide safe passage for smaller mammals, amphibians, reptiles etc. These bridges and culverts will have sufficient space between the abutments and the watercourse to enable animals to pass safely during high water levels. Also, ledges will be incorporated in the bridge and culvert design as appropriate. These bridges and culvert will assist in safe passage of animals including large animals in the region.

- Also, the roads under construction do not connect any heavily populated habitations and are
 primarily for use for defence purposes. Hence, the traffic on these roads is going to be
 naturally regulated.
- The siting and design of these bridges and culverts for both these ecosystems is provided for in Annexure-IV.

8. Non-structural mitigation and management measures

The following non-structural mitigation and management measures are also recommended:

- Typically, road construction in the mountains involves extensive damage to the valley side as the
 excavated material is thrown on the downhill side. This adverse impact of the road construction
 should be taken care by cut and fill method. The muck excavated should be used for filling
 embankments, retaining walls and should be used for other construction structures and the
 remaining muck generated should be disposed in proposed dumping sites only.
- To avoid frequent repairs and disturbances, carriageway pavement inside forest area should be rigid, having well planned road side drainage and utility ducts.
- User agency will make provision of vegetative or mechanical canopy closure option for movement
 of arboreal wildlife.
- User agency will install overhead signboard at every 500 meter in the forest area about animal crossing, restriction on feeding animal, garbage dumping, parking, honking, etc. specifically keeping in mind the tourists who may visit the area. These signages need to specify the code of conduct and important biodiversity of the areas, speed limit etc.
- Enough speed breakers/rumble strips should be constructed at regular intervals to prevent road accidents and wildlife collisions.
- Post completion of the road, the monitoring and maintenance of mitigation structure will be done
 jointly on advice of forest department and at cost of user agency.
- Traffic should not be allowed on this road for civilians between sunset to sunrise as animal movements are high during these hours and will result in collisions and mortality.
- No labour shall trespass in forest area apart from the designated construction site.
- No damage to any wildlife including habitat shall be done in the neighbouring area.
- The user agency will report all road kills or accident of any wild animals and deposit the carcasses to the office of the concerned DFO wildlife to be dealt according to the prevailing laws.
- Dumping of solid and liquid waste shall be scientifically dealt with by the User Agency in order to avoid feral/free ranging dogs to gather in the area.

a of send mark yip toket do if 32

- There should be no defacing of rocks and other natural formations.
- The local names of the places should not be distorted. No unusual naming of the natural area like lakes and peaks and mountains etc., which is not in the interest of local community, should be done.
- Construction of religious structures shall not be allowed.
- The Army/paramilitary personnel at all levels should be sensitised regarding the protection and conservation of the natural habitat of the area.
- The user agency shall ensure that the labourers do not indulge in illegal collection of rare and valuable medicinal plants or floral species.
- A monitoring committee shall be constituted under chairmanship of the DFO Mangan (Territorial) with the DFO Wildlife (North), DFO KNP and representatives of the User Agency as members. This Committee shall submit monthly report to the CF Wildlife/Director KNP on progress of work and compliance of the conditions laid out under this report as well as other if any.
- The User Agency shall abide by all the directions of the Hon'ble Supreme Court, provisions of the Wild Life (Protection) Act, 1972, directions of the Ministry of Environment Forest and Climate Change and conditions imposed by the monitoring committee headed by the DFO Mangan (Territorial) from time to time.
- The activities shall be liable to periodic check by officers of the Forest Department. The officers
 may order stoppage of work if it is found that any of the above provisions have not been complied
 with.
- An annual compliance certificate on the stipulated conditions shall be submitted by the project proponent to the Chief Wildlife Warden.
- Completion certificate will be issued only after written certification from chairman of monitoring committee countersigned by Chief Wildlife Warden that all the conditions are satisfactorily complied with.

9. Key references

- ATREE (2020). Designing a comprehensive human-wildlife conflict (HWC) management strategy in select districts/landscapes of Sikkim.
- Snow Leopard Population Estimation of India (SPAI) (2022). Forest and Environment Department and WWF India, Gangtok, Sikkim.

33

Scanned with CamScanner

Comprehensive Biodiversity Conservation Plan

Report Submitted to the Integrated Regional Office, MoEFCC, Kolkata

February 2023

Photo Credits:

Cover photo: Black necked crane breeding in the marshy areas in Muguthang in North Sikkim Photo credit: Dr. Gopi G.V., Wildlife Institute of India, Dehradun

Back cover photo: Tiger photo-captured in camera traps in the remote montane forests of North Sikkim

Photo credit: GTF/NTCA/FEWMD/WWF-India

Comprehensive Biodiversity Conservation Plan

Report Submitted to the Integrated Regional Office, MoEFCC, Kolkata

February, 2023

67

Table of Contents

Executive summary

- 1. Unique context and biodiversity values
- 2. Proposed linear infrastructure projects
- 3. Process followed
- 4. Threats, gaps and proposed strategy
 - 4.1 Human-wildlife conflict management
 - 4.2 Participatory biodiversity conservation
 - 4.3 Strengthening Forest protection
 - 4.4 Strengthening protection infrastructure
 - 4.5 Reducing wildlife predation by feral dogs
 - 4.6 Strengthening ex-situ biodiversity conservation
 - 4.7 Mitigation of biodiversity loss due to project-driven landslides and erosion
 - 4.8 Awareness and capacity building
 - 4.9 Research and knowledge management
- 5. Budgetary plan
- 6. Monitoring mechanism
- 7. Wildlife Passage Plan
- 8. Non-structural mitigation and management measures
- 9. Key references
- **10. CWLW Comments**
- 11. Annexure
 - I. Biodiversity checklist
 - II. Maps of the proposed roads
 - III. Comments and Suggestions of the Wildlife Institute of India on the Comprehensive Biodiversity Conservation Plan (CBCP) along with the response of the state forest department
 - IV. Siting and design of the bridges and culverts

Executive summary

The Comprehensive Biodiversity Conservation Plan has been prepared in response to the six new roads of CPWD and BRO planned in the Mangan district of Sikkim. All these roads are required for providing defence purpose connectivity for rapid movement of troops, transportation of commodities, armaments and other essential facilities to defence needs. These roads give connectivity to the Indo-China border and are hence, important from strategic point of view. Instead of a piecemeal approach, a comprehensive proposal has been prepared to account for the cumulative impacts and to also ensure transparency and efficiency during execution. The project area for the Comprehensive Biodiversity Conservation Plan spans across the northern and eastern part of the Khangchendzonga landscape in the Eastern Himalaya which is the third highest landscape globally and the highest and steepest terrain in the country. This area is also a biodiversity hotspot spanning across both the greater Himalaya and the Trans-Himalaya and lies in the fringe of the Khangchendzonga National Park a UNESCO designated world heritage site. This landscape harbours significant biodiversity including two third of the country's Tibetan gazelle, one third of the Tibetan argali, the only population of southern Kiang, the only breeding population of the black-necked crane in the eastern Himalaya along with several other rare, endangered and threatened species. This region also forms the corridor of the Royal Bengal Tiger and there is evidence of it migrating from the neighbouring Neora Valley National Park in West Bengal during winter. The main thrust of this proposal is to mitigate the threats to biodiversity arising out of the new linear infrastructure coming up and the consequent rise in human presence. The main threats perceived are increased predation of wildlife by feral dogs and rising human wildlife conflict. While the main gaps are limited infrastructure, human capacity and research inputs. The project aims to address these threats and gaps by developing an integrated biodiversity management plan. The nine main components of this plan are reducing human wildlife conflict, strengthening forest protection, strengthening participatory conservation, strengthening forest protection infrastructure, reducing wildlife predation by feral dogs, strengthening ex-situ conservation, mitigation of biodiversity loss due to project-driven landslides and erosion, building capacity and knowledge management. The total budget of this plan amounts to Rs 49.80 crore for a period of 5 years. The monitoring mechanism has also been spelt out. The wildlife passage plan adapted to this steep mountain terrain is also provided along with the non-structural mitigation and management measures. This biodiversity conservation plan has been prepared in consultation with Wildlife Institute of India and their suggestions have been incorporated. The plan has been approved by the Chief Wildlife Warden for onward submission to the Integrated Regional Office of MoEFCC.

1. Unique context and biodiversity values

The impacted area spans across the northern and eastern part of the Khangchendzonga landscape in the Eastern Himalaya which is the third highest landscape globally and the highest and steepest terrain in the country. This area is also a biodiversity hotspot spanning across both the greater Himalaya and the trans-Himalaya and lies in the fringe of the Khangchendzonga National Park a UNESCO designated world heritage site. Consequently, it is designated as a separate biogeographic province 1D by the Wildlife Institute of India. The area also forms the headwaters of the river Teesta and is dotted with several glaciers and high-altitude lakes many of which are regarded as sacred. Improved ecological health of this ecosystem translates to sufficient water in the rivers and streams even in the lean season, which sustains agricultural and horticulture crops, directly translating to food and health security of the downstream towns and villages This area is also contiguous with the Tibetan Plateau with the altitude ranging from between 4000m and 5500m. The vegetation here is sparse, devoid of trees, dominated by graminoids, forbs and a few shrubs. The biodiversity significance of the area is unmatched. This area harbours globally significant biodiversity including snow leopard, two third of the country's Tibetan gazelle, one third of the Tibetan argali, the only population of southern Kiang, the only breeding population of the black-necked crane in the eastern Himalaya along with several other rare, endangered and threatened species. This region also forms the corridor of the Royal Bengal Tiger and there is evidence of it migrating from the neighbouring Neora Valley National Park in West Bengal. The Himal is also a repository of valuable medicinal plants, which form the basis for the indigenous systems of medicine. Most of the peaks, lakes, rivers and caves here are considered sacred and are visited by pilgrims to pay homage. This area is also traditionally used by native herders for yak and sheep herding who practice transhumant rotational grazing practices. These areas are also under heavy defence deployment with extensive presence of the Indian Army and the Indo Tibetan Border Police (ITBP). After the 2017 Doklam and 2020 Galwan incidents along the Sino-Indian border, the border areas have been further reinforced with more troops and development of new infrastructure. Dogs being camp followers have benefitted from this development and their population has increased several-fold. Due to its remoteness, harsh climate and lack of infrastructure this area has a weak presence of the forest department. The detailed list of biodiversity elements (flora and fauna) is provided for in Annexure-I.

Figure 1: Endangered biodiversity of the Sikkim Trans-Himalaya

Tibetan gazelle

Tibetan argali (Nayan)

Southern Kiang

Black-necked crane

2. Proposed linear infrastructure projects

There are a total of 6 linear infrastructure projects being implemented by CPWD and BRO, for which this Comprehensive Biodiversity Conservation Plan has been prepared. All these roads are required for providing defence purpose connectivity for rapid movement of troops, transportation of commodities, armaments and other essential facilities to defence needs. These roads give connectivity to the Indo-China border and are hence, important from strategic point of view. The details of these diversions is placed below. The map of these roads is also provided in Annexure-II. The distribution of the total outlay of this plan amongst the 6 roads is in proportion to the length of the road and is also detailed in the last column with heading 'cost to be levied for BC plan'.

	Rs in Crores						
Sl no.	Diversion	User Agency	Declared Project Cost	Declared Road Length	Cost Ratio	Cost Levied for BC plan	
1	Diversion of 141.124 ha. forest land for non-forest use in Toong Partem Pt. 4865 Tamze Border Road Forest Proposal	BRO	1498.89	84.42	65%	32.15	
2	Diversion of 19.36 ha. of Forest land for Muguthang to 20r link road by ITBP	CPWD	278.08	10.70	12%	5.96	
3	Diversion of 11.1521 ha of forest land for widening of existing road (NH310A) to NHDL specification with Paved Shoulder from Toong KM)+00 to Chungthang of design KM 27+476 in Mangan Division, Sikkim by BRO	BRO	296.40	29.00	13%	3.36	

			2321.62	137.22	100%	49.80
6	18.82 Ha. Forest/WL land for construction of ITBP road from 20r Link point to Zanak	CPWD	209.00	10.40	9%	4.48
5	Diversion of 4.86 Ha. KNP/Wildlife land for construction of ITBP Ph-II road from 20r Link point to 20r (Goma)	CPWD	39.25	2.70	2%	0.84
4	Diversion of 10.6759 Ha of forest land for widening of existing road (NH310A) to NHDL specification with Paved Shoulder from Mangan KM)+00 to Toong of design KM 17+870 in Chungthang Division, Sikkim by BRO	BRO				3.00

The justification for preparing a Comprehensive Biodiversity Conservation Plan instead of six separate biodiversity conservation plans is as follows:

- Comprehensive projects with pooled resources enable perspective planning and adopt a more diagnostic approach with a futuristic outlook
- Economy of scale becomes a reality as many functions such as procurement, research, planning and evaluation can be integrated
- The cumulative impact of projects is often much more than the sum of the individual impacts as these projects have a cascading effect on biodiversity
- Implementing several projects with similar components in the same geographical area run the risk of overlap
- Review of this management plans by WII also highlights the need for adopting an integrated approach of a Comprehensive Biodiversity Conservation Plan

3. Process followed

Instead of piecemeal preparation of biodiversity conservation plan for the six roads separately, an integrated biodiversity conservation plan has been prepared to ensure that the cumulative impacts of these linear infrastructure intrusions are addressed in a comprehensive manner. The implementation of this comprehensive plan will also be efficient as the activities will all be integrated without the risk of duplicacy or overlap. A participatory process involving consultations and field visits by scientists and field managers was followed for the preparation of this biodiversity conservation plan. Field visits were undertaken by the Wildlife Institute of India during September 2022. Also, several rounds of consultations were organized by the department with other stakeholders such as Animal Husbandry and Veterinary Services Department (AHVS), Sikkim Anti Rabies and Animal Health Programme (SARAH), forest wildlife divisions, forest territorial divisions, FCA wing, WWF and others before finalizing this plan. A presentation of the draft plan was made on 21st Jan, 2023 followed by a finalization workshop on 30th Jan, 2023 in the Forest Department. This draft plan was shared with the Wildlife Institute of India (WII) and their comments obtained as well (Annexure III). The review of the plan by WII and the details of the cross drainage structures from the user agencies (CPWD and BRO) was obtained in Feb 2023, following which this plan was finalized.

4. Threats, gaps and proposed strategy

The nine main components of this plan are human wildlife conflict, participatory conservation, forest protection, strengthening forest protection infrastructure, wildlife predation by feral dogs, ex-situ conservation, building capacity and knowledge management.

4.1 Human-wildlife conflict management

Rising instances of human-wildlife conflict specially crop damage and livestock kills are being reported from the state. Crop damage by wild boar and Assamese macaque, and livestock kills by Himalayan Black Bear are reported frequently from this area. Also, at times cases of grievous human injury by Himalayan Black Bear sometimes even leading to death are reported from the forest fringe villages. Other than these animals, there are also stray incidences involving the common leopard, leopard cat, martens, civets, barking deer, snakes and squirrels as well. The scale of damage caused due to conflict is considerable and the resentment of the local populace towards wildlife and the Forest department is an understatement. There are several cases of local agriculturalists completely abandoning farming and animal husbandry due to the losses incurred because of conflict. This is a very serious threat, since livelihood options in the mountains are limited and for most farming is the only source of sustenance.

Figure 2: Grievous injury to humans caused by Himalayan Black Bear are rising

4.1.1 Anticipated impacts

Linear infrastructure intrusions into natural ecosystems such as roads and highways create disturbance to the wildlife habitats and to wildlife as well. The actual area impacted by linear projects is far more compared to area diverted. There is a direct loss of habitat during establishment and maintenance of linear project. This may happen due to clearing of vegetation, dumping of excavated earth and material movement of heavy vehicles and earth movers, creation of labour camps etc. The effect of these disturbances may persist in the landscape for years to decades. This results in higher instances of human-wildlife conflict as wildlife corridors and habitats get disturbed. Hence, there is a need to strengthen the preparedness of the forest department to deal with more instances of crop damage, livestock kills and human injury. The

cost of the tranquilizing drugs is very high and they have a limited shelf life. Also due to the challenging mountainous terrain of the state, immobilization, capture and translocation of wildlife involves cages to be transported manually to set traps for capture. Carrying the cage with trapped animal inside is a big task. Also, there is wastage of tranquilizers and darts due to obstructions from heavy undergrowth. Hence, there is a need to be equipped with the most updated practical and effective tools to aid in immediate and future planning for managing conflict. Also, recently the ex-gratia rates for livestock kills have been rationalized to ensure adequate compensation in alignment with the market value.

4.1.2 Mitigation strategy

Hence, the proposed strategy is four-pronged namely: 1) Ex-gratia payments for livestock kill and human injury 2) Procurement of tranquilizing guns, cages, equipment and supplies 3) Mobilization of team and rescue and release operations 4) Procurement and deployment of wildlife deterrent devices. The total cost of this human wildlife conflict management component comes to Rs 6.60 crore as detailed in Section 5.

Figure 3: Transportation of cages with the animal is a herculean task in hilly terrain

Figure 4: Livestock kills by Himalayan Black Bear in winter are rising

4.2 Participatory biodiversity conservation

About 59% of Sikkim (4187 sq. km) lies above 3000 meters and most of this is classified as Reserve Forests. This sub-alpine and alpine landscape of the Sikkim Himalayas locally referred to as Himal, has a unique ecosystem and cultural and wildlife values associated with it. Though most of lower and middle hill forests have been brought under the Joint Forest Management (JFMC/EDC) network, the upper hill forests of the Himalayas, inspite of determined efforts, still continue to be under inadequate management, beset with threats and need urgent interventions. The main threats being unplanned trekking tourism, hunting and trapping of wild animals, smuggling of medicinal and aromatic plants, wildlife predation by feral dogs and lack of awareness amongst the security forces. Effective conservation of the Himal by forest staff alone is very difficult due to its high altitude, remoteness, tough terrain, harsh climate and limited resources available. Further lack of adequate infrastructure and facilities make every patrolling visit more like an expedition, with a large contingent of support staff and resultant high attendant costs. Hence, the Himal Rakshak or Mountain Guardian policy was launched by Sikkim Forest Department in 2006 to strengthen community-based conservation in the high-altitudes where typical JFMCs/EDCs do not have outreach. Community resource persons were recognized as "the honorary guardians of mountains" and were given stewardship of the alpine areas. This initiative is unique, due to its aspiration of capacity-building among local community members to help conserve the alpine areas including the high reaches of the Khangchendzonga National Park (KNP).

Figure 5: Himal Rakshak initiative needs to be extended to the northern part of the state

For other parts of Northern and Eastern Sikkim which are forested, the JFMC/EDC are not as vibrant as they were during the 2000-2010 period. Hence, there is a need to revitalize these community-based institutions.

Figure 6: Participatory conservation institutions such as JFMC/EDC need to be revitalized

4.2.1 Anticipated impacts

Linear infrastructure projects open up biodiversity rich areas to the outside world by making the access and exploitation easy. Biodiversity resources that were earlier not easily accessible now become a commodity to be traded in the market. Regulatory and enforcement agencies are not able to move fast enough due to which pristine areas get depleted of biological resources. The trans-Himalayan region of Sikkim which was earlier inaccessible, will now get opened up for easy access to the outside world and subsequently also for tourism. Due to the high-altitude and harsh climate, conventional conservation needs to be supplemented with innovative means to strengthen the intelligence and surveillance network. Hence, while the *Himal Rakshak* policy has been implemented in the southern part of the KNP, it now needs to be extended to the eastern and northern part. With growing defence establishments, rising population of feral dogs, threat of trapping and hunting wildlife, accelerating impacts of climate change and other threats, the alpine areas in the northern part of Sikkim too need to be brought under the participatory conservation framework. The existing JFMC/EDC are too weak to tackle this new threat and hence they need to be revived.

4.2.2 Mitigation Strategy

It is proposed for constitution of *Himal Rakshaks* (HRs) for northern part of KNP for participatory management of trans-Himalayan unique ecosystem as the traditional knowledge and the experience of local community plays a crucial role. A total of 20 *Himal Rakshaks* are planned for the Northern part of KNP comprising members of the local Lachen Tourism Development Committee, local Eco-development Committee and the local herders (Dokpas). Subsequently, capacity building of HRs will be taken up in partnership with organizations such as World Wildlife Fund (WWF) in basic biodiversity monitoring techniques and reporting wildlife crimes. Identity cards will be provided to all the HRs. Provision of field equipment such as high-altitude trekking gears, field jackets, shoes etc. will also be provided along with one-time financial incentive. Participatory conservation will be given a further boost by constituting 'green volunteers' to strengthen the conservation of forests, environment and wildlife and supported in a similar

manner as the Himal Rakshaks. These 'green volunteers' will be enlisted and their capacity building carried to support the conservation of forests, environment and biodiversity. Similarly, 40 JFMC/EDC will be strengthened in the northern and eastern part in the forested regions. This will be done by reconstituting, institution building, capacity building and exposure visits. These institutions need be broad-based, follow democratic decision making and eventually contribute in biodiversity monitoring and surveillance. They will be trained in record keeping, accounting, forest monitoring and supported with exposure visits both within and outside the state. They will also be provided with field equipment such as high-altitude trekking gears, field jackets, shoes etc. Entry-point activities will also be carried out as a confidence-building measure. Veterinary health camps will be organized which will benefit both the livestock husbandry as well as reduce the spread of contagious diseases to wild herbivores. Also, the cultural assets will be identified especially those that help in strengthening the conservation ethos and belief systems of the sacred landscape and renovated.

The total cost of this participatory biodiversity conservation component comes to Rs 5.45 crore as detailed in Section 5.

4.3 Strengthening Forest protection infrastructure

The forest areas comprise mostly of temperate oak forests and subalpine conifer forests. Also due to natural calamities, landslides are very common impacting forests and nearby human habitations. The geology of the eastern Himalayas is weak as the mountains are young-fold. The situation is further aggravated due to the steep terrain and heavy annual precipitation of more than 250 cm. The forests specially in the 1000-2000 m zone are susceptible to forest fire. Though hunting of wildlife has come down over the last few decades, sporadic events from armed transborder hunters, local bush meat hunting and tree felling does get reported once in a while.

4.3.1 Anticipated impacts

The wildlife predation by feral dogs, increased instances of hunting and poaching, laying traps and snares, deepening human wildlife conflict, high probability of smuggling of medicinal plants, more frequent road kills, greater probability of forest fire etc. which will need better preparedness of the forest staff. Thus, the regular monitoring of these areas, which were earlier not easily accessible, will become an absolute necessity due to the presence of heavy earth moving machineries, people and labour camps. Business as usual will result in irreversible biodiversity loss. Also, natural calamities such as landslides and forest fires will increase due to road building activity for which mitigation measures will need to be put in place. Threats from trans-border hunting and local bush meat hunting need to be also countered. The forest staff too need to be better equipped in terms of equipment, mobility, communication and infrastructure.

Figure 7: Illegal felling of trees in the reserve forests

4.3.2 Mitigation strategy

The mitigation strategy will involve equipping forest staff with gears, wireless communication and vehicles so that they can respond to crisis in a timely manner. Natural calamities such as forest fire will need to be addressed. Fencing at the vulnerable points will also be needed to secure forests. Special high-altitude gears, transportation facilities, clothing etc must be provided to the frontline staff posted in difficult areas so as to strengthen and support them. Physical presence of forest and wildlife staff in these remote high-altitude locations needs to be incentivized so that it will act as a deterrent against forest and wildlife offences. Incentive needs to be provided to the frontline staff posted and functioning in the trans-Himalaya (above 4000 m). These staff have to endure hardships such as thin mountain air, cold sub-zero temperature, limited access to medical facilities, poor infrastructure etc. Thus, providing special incentive will serve as a motivation for them.

Hence, the total investment planned in the forest protection component is Rs 6.65 crore as detailed in Section 5.

Figure 8: Patrolling by forest staff takes on the shape of an expedition in this landscape

4.4 Strengthening forest protection infrastructure

The valleys of Lhonak chu, Tso Lhamo, Lhasar and Chopta valley that constitute the Sikkim trans-Himalaya do not have a physical presence of the forest department. The trans-Himalayas of Sikkim is characterized by sporadic presence of forest personnel due to a lack of infrastructure and severe winter and snow storms. The main reason being the high altitude and harsh climate with temperatures dipping to minus 35 degrees during winter accompanied with fierce snow storms. Forest infrastructure in the high altitudes is non-existent as there is not a single forest office or residence for forest personnel. As a result, forest protection and enforcement is sporadic and uneven. Due to heavy snow storms and harsh weather, camping in alpine tents is also not feasible. This lack of infrastructure also impacts the operationalization of research studies, biodiversity monitoring and sterilization programs. Other than this high-altitude infrastructure, even the existing infrastructure comprising of the range office complex in Lachen and Tshungthang is in a dilapidated condition and needs upgradation.

4.4.1 Anticipated impacts

Lack of infrastructure directly results in uneven monitoring, delayed response, high transportation costs as there are no 'boots on the ground'. The biodiversity in this landscape was till date protected due to lack of easy access and transportation. Accessing Muguthang from Thangu involved a back breaking trek in the high altitude with the Lunak la pass at 5900 metres posing a formidable barrier. Linear infrastructure projects open up biodiversity rich areas to the outside world by making the access and exploitation easy. Regulatory and enforcement agencies are typically not able to move fast enough due to which pristine areas get depleted of biological resources. Now with the entire stretch from Thangu to Muguthang becoming motorable it is anticipated that the entire length of the Lhonak valley will get opened up for visitors and tourists. Biodiversity resources that were earlier not easily accessible now become a commodity to be traded in the market. The trans-Himalayan region of Sikkim which was earlier inaccessible, will now get opened up for easy access to the outside world and subsequently also for tourism.

Figure 9: Passive solar housing structures in Ladakh

4.4.2 Mitigation Strategy

Hence, the imperative for biodiversity conservation in the trans-Himalayas is to establish permanent infrastructure and man it to ensure regular surveillance, monitoring and enforcement. In this regard it is proposed to establish the Trans-Himalaya Biodiversity Monitoring Station using Passive Solar Building Technology in partnership with HIAL <u>https://www.hial.edu.in/</u> Ladakh, founded by the renowned innovator Sonam Wangchuk. When the ambient temperature outside is minus 20 degrees, this technology ensures that the inside temperature is at 10 degrees without heating <u>https://www.youtube.com/watch?v=oBtSoWh1hJg</u>. HIAL has also partnered with the Indian Army and other government departments in Ladakh to scale up this technology in the high altitude areas. It is proposed to construct and furnish one such station structure using this technology in the Sikkim trans-Himalayas. The existing forest staff infrastructure at Lachen and Tshungthang will be upgraded. Also, the existing forest rest houses in the vicinity will be renovated and a transit accommodation created at Tshungthang to enable more frequent monitoring along with three new forest checkposts on these new roads wherever needed.

The total cost of this forest protection infrastructure component comes to Rs 8.30 crore as detailed in Section 5.

4.5 Reducing wildlife predation by feral dogs

The rising populations of feral dogs in forest areas in the state of Sikkim specially in the north and eastern part is of great concern. In areas that are of high biodiversity significance, reports of wildlife depredation by these dogs have become frequent. These dogs are known to hunt in packs and have been reported to prey upon wildlife such as blue sheep, Tibetan gazelle, Himalayan marmot, musk deer, Himalayan goral, serow, red panda, etc. The population of these dogs is closely linked to the camps of military and paramilitary forces, as these dogs are known to feed on the improperly disposed food waste.

Figure 10: Feral dogs in the same niche occupied by the endangered snow leopard

Figure 11: Feral dogs in the same niche occupied by the endangered musk deer

4.5.1 Anticipated impacts

Due east of the Lhonak valley lies the Chhombo chu valley which has an established road network with defence establishments for several decades now. This valley provides an interesting insight regarding the impacts of roads and highways on biodiversity. There are close to 600 feral dogs in this valley who hunt in packs and prey upon wildlife. Now that the Lhonak valley is being opened up and provided easy access with motorable road, the future scenario in the absence of mitigation measures will be similar. Source dog populations from the nearby towns and villages will now be able to easily disperse and occupy this new territory. The Tibetan marmots, black-necked cranes, pikas and other small mammals and birds will be easy game for these ferocious predators. Participatory research by ATREE found that in this landscape the feral dogs cause severe fatalities to yak calves. This has led to high economic losses to pastoralists, with an estimated 40% of yak calves being lost every year.

Figure 12: Ghoral killed by feral dogs in the upper reaches of Gangtok district in Nov, 2022

4.5.2 Mitigation strategy

The Animal Birth Control (ABC) programme is the suggested measure for controlling dog populations. It is a long-term intervention that will start showing results after continuous efforts of sterilizing atleast 70 percent of the dog population. While sterilization is underway, there is a need to scale it up. Also, sensitization of the armed forces and reducing their food waste is also needed to control the dog population. The strategy proposed is three-fold: i) Firstly it aims to ensure proper disposal of food waste from the security establishments by ensuring their collection by the nearby local body and by piloting of the Organic Waste Composter (OWC) ii) Secondly, it aims to scale up the ongoing ABC programme in partnership with the Animal Husbandry Department, Govt. of Sikkim to achieve higher coverage iii) Providing garbage collection vans to local bodies to support solid waste management of defence establishments The total cost of this reducing wildlife predation by feral dogs component comes to Rs 1.90 crore as detailed in Section 5. The expected outcomes of this component is a reduction in the forest areas of north and east Sikkim.

4.6 Ex-situ biodiversity conservation

The Himalayan Zoological Park (HZP) is the only ex-situ conservation facility in the state situated at Bulbuley in the vicinity of Gangtok. It was established in 1997 and spreads across 230 ha. It is an ideal location for ex-situ conservation of globally threatened and endangered wildlife. Also, it has ample scope for expansion, adding new enclosures and wild animals. The zoo now has a collection of 78 specimens belonging to 18 species. The animals of interest under captivity are the Red Panda, the State animal of Sikkim, the Common Leopard, the Himalayan Black Bear, the Large Indian Civet, the Palm Civet, the Leopard Cat, the Yak, the Goral, The Himalayan Thar, Blue Sheep etc. Birds consist of the Kalij Pheasant Schedule-I species and the rest are exotic species such as Golden, Silver and Lady Amherst's Pheasants. There is a need to strengthen the ex-situ conservation infrastructure for conservation and education purposes. The HZP falls under the category of Mini Zoo as per the Central Zoo Authority's classification but it has tremendous scope

for expansion. The HZP has an approved master layout plan and the developments are proposed accordingly.

4.6.1 Anticipated impacts

Sikkim is a haven for birds with nearly 550 species constituting nearly half of the national avifaunal wealth. Growing linear infrastructure in the form roads and highways will result in fragmentation of habitat. There are several rare, endangered and threatened avifauna such as black necked crane, pheasants, partridges, owls, birds of prey, vultures etc. that need special conservation attention. This linear infrastructure poses a real threat to ground nesting birds such as partridges and pheasants due to the anticipated spread of feral dogs in their habitat. The wellknown direct effects of roads on birds include habitat loss and fragmentation, vehicle-caused mortality, pollution, and poisoning. Nevertheless, indirect effects may exert a greater influence on bird populations. These effects include noise, artificial light, barriers to movement and edges associated with roads. Hence, there is a need to strengthen the avifaunal infrastructure in the zoo. The zoo has been facing the menace of feral dogs as well as wild animals posing a threat to the rescued and exhibit animals. Due to lack of fencing, there was an outbreak of canine distemper virus and the zoo lost 18 Red Pandas which effectively halted the conservation breeding programme. Also, a Himalayan Black Bear from the wild entered into the zoo premises and resulted in casualty of herbivores (Musk Deer, Barking Deer, Ghoral, Himalayan Tahr and Blue Sheep) in the exhibit areas. Also, due to the road construction activities it is anticipated that floral elements will be damaged and there is a possibility of weeds proliferating in the areas where the dense forest canopy is opened.

4.6.2 Mitigation strategy

The mitigation strategy comprises of two approaches namely strengthening the zoo infrastructure and predator proof fencing of the zoo. There is a need of an aviary which will serve the dual purpose of conservation and education. This will help to increase the foot fall in the zoo and as well further strengthen and extend the zoo. The aviary is proposed with raised platform walk way. It will have RCC fencing with predator proof design with chain link mesh above with enrichment suiting the birds and visitors experience. This intervention will bring in added revenue resulting in self-sufficiency and sustainability of the park. The aviary will be designed in consultancy with experts who have designed such walk-in aviary in the country. The total investment proposed is Rs 2.00 crore.

Chain-link (predator proof) fencing of the entire zoo (230 ha) is a priority which comes to around 12.8 Km, to safeguard the animals as well as prevent the spread of zoonotic diseases from feral dogs, cattle etc. Also, the HZP is located on prime land just 3 km from Gangtok city, and is susceptible to encroachments, hence this fencing will also safeguard the zoo from this threat. As the zoo spreads over 230 ha, it serves both as in-situ as well as ex-situ biodiversity conservation. Hence, once the external fencing is completed, subsequently, internal partitions (soft release facility) can be created as per the approved master layout plan for soft release in future. Hence, we would like to propose for half of the total perimeter amounting to Rs 3.00 crore from this plan in Phase-I.

Strengthening rescue and rehabilitation of impacted floral species due to road construction activities and weed eradication will also be carried out with an outlay of Rs 4.00 crore.

Hence, the total investment planned in the ex-situ biodiversity conservation component is Rs 9.00 crore as detailed in Section 5.

4.7 Mitigation of biodiversity loss due to project driven landslides and erosion

This component will protect the valley side damage due to hill road construction comprising of managing surface runoff, treating minor landslides and slope stabilization. Due to the steep terrain of the site, often road cutting spoils roll down the valley side causing damage to the valley side slope. Also, the improper siting of cross drainage structures results in aggregation of surface runoff and its discharge along unnatural sites causing damage to the slope. The total investment planned in this component is Rs 6.00 crore as detailed in Section 5.

4.8 Building awareness and capacity building

Various stakeholders have an impact on this landscape such as the defence establishment, tourism personnel, nomadic pastoralists and the local community. Sensitizing these stakeholders and building capacity can play an important role in the implementation of this biodiversity plan as well as future conservation. The forest department personnel also have expertise and experience in managing forested habitats, but managing a cold desert will need a new set of skills.

Figure 13: Awareness programs for the forest fringe local communities

4.8.1 Anticipated impacts

Development of roads and highways in this landscape will result in new types of threats such as wildlife predation by feral dogs, increased instances of hunting and poaching, deepening human wildlife conflict, high probability of smuggling of medicinal plants, more frequent road kills etc., which will need better awareness and capacity amongst the stakeholders. Business as usual will

result in irreversible biodiversity loss. Improper food waste management will result in a proliferation of feral dogs and their predation of native wildilfe.

4.8.2 Mitigation strategy

The mitigation strategy will need sensitization of the defence forces and training of forest frontline staff on biodiversity conservation in this unique landscape. The defence forces establishment keep on getting transferred every few years, hence this has to be an ongoing exercise. The defence forces need to manage their food waste responsibly, stop feeding the feral dogs, respect the endangered biodiversity, protect the wetlands and ensure that there is no sporadic hunting of wildlife. The native herders need to be partnered with for making participatory conservation work as they have continuous on-ground presence in this landscape. The local community-based institutions such as JFMC/EDC and others too needs to be sensitized and their capacity built. The frontline staff need to be trained to take up higher responsibilities by building capacity. The staff can be sponsored to attend various trainings and workshops including the WII Certificate course, Induction trainings, wildlife immobilization trainings and various other trainings and workshops. Exposure visits of students from the fringe villages will also help in creating awareness and local stewardship for the natural heritage.

Hence, the total investment planned in the awareness and capacity building component is Rs 1.40 crore as detailed in Section 5.

Figure 14: Exposure visit of students to forest areas help in creating local stewardship

4.9 Research and knowledge management

There is limited knowledge and data on the high altitudes and trans-Himalayan ecosystems. The population, distribution and threats faced by flora and fauna is yet to be scientifically assessed.

Action research that provides knowledge for decision making is needed to plan conservation action as well as assess the impact of biodiversity conservation interventions.

Figure 15: WWF Research team installing camera traps jointly with forest staff

4.9.1 Anticipated impacts

There is a significant gap in the knowledge about the presence, distribution, population size, habitat preference and movement patterns of many mammal species along with the prevalence of illegal activities like poaching, medicinal plant collection, etc. Long term, year-round monitoring stations can fill these knowledge gaps, providing useful data for relevant conservation actions and interventions. Also, habitat preference and movement patterns of snow leopards at a fine scale is not known. The lack of this information affects the quality of the species-specific conservation actions. There is limited baseline data available for wild ungulates and feral dogs. Hence, we are unable to quantify changes in population over time, and also aid in framing conservation objectives, assess their feasibility, concentrate efforts, and define a time-period within which progress can be evaluated. The lack of this information restricts the understanding of the population trends for wild ungulates and the effectiveness of the birth-control efforts for the feral dogs.

4.9.2 Mitigation strategy

The action research proposed jointly with WWF-India and others comprises of three studies which will be taken up jointly with forest department namely 1) Long term biological monitoring: The long-term biological monitoring will be carried out by identifying permanent to set up around 200 camera traps that will be kept functional all year round. These will be used to estimate the population size, distribution, habitat preference and movement patterns of snow leopards, other co-predators (Tibetan wolf, free-ranging dog, Pallas's cat, etc.) and prey species (blue sheep, Tibetan argali, musk deer, etc.). These will also be used to know the degree of human presence in some remote areas and the detection of poaching instances. 2) Radio collaring of snow leopards: by fitting 5 snow leopards with radio collars to study their movement patterns and

behaviour 3) Population estimation surveys for wild ungulates and free-ranging dogs: by using the 'double observer' method for wild ungulates and free-ranging dogs. Double-observer surveys will be conducted on previously identified and fixed routes once every year to estimate the population size of the wild ungulates and free-ranging dogs. These studies will help monitor the impact of the proposed interventions and create a credible baseline for evidence-based policy making an annual population estimation exercise is proposed in partnership with WWF India.

Studies planned with Wildlife Institute of India and others will cover the 1) Population, breeding ecology and ranging patterns of the black-necked crane, 2) Ecological and genetic assessment of the Southern Kiang, Tibetan Gazelle, Tibetan Argali, Himalayan Marmot etc. 3) Population assessment, monitoring and disease prevalence among mountain ungulates 4) Assessing highaltitude lakes and rivers for their biodiversity values 5) Effect of increasing border infrastructure an defence camp practices on biodiversity 6) Development of integrated conservation plan for cold desert region of Sikkim and 7) Development of Management Plan for the Pangolakha Wildlife Sanctuary.

The department also plans to take up habitat monitoring of important floral species and recovery programs. Also, procurement of equipment for field kits, camera traps, surveillance cams etc. for inhouse biodiversity monitoring and research is also included. Hence, the total investment planned in the research and knowledge management component is Rs 3.50 crore as detailed in Section 5.

Figure 16: WWF Research team conducting the snow leopard population census in Sikkim

5. Budgetary plan

The plan is prepared for a duration of 5 years keeping in mind the time taken for projects to take off after a preparatory phase.

	R	s in lakhs
No.	Component	Budget
Α	Human Wildlife Conflict Management	660
В	Participatory Biodiversity Conservation	545
С	Strengthening Forest Protection	665
D	Strengthening Forest Protection Infrastructure	830
Ε	Reducing Wildlife Predation by Feral dogs	190
F	Strengthening Ex-situ Biodiversity Conservation	900
G	Mitigation of biodiversity loss due to project driven landslides and erosion	600
Н	Building Awareness and Capacity building	140
I	Research and Knowledge Management	350
	Subtotal	4880
	Administrative costs	50
	Monitoring and evaluation	50
	TotaL	4980

Table 2: Summary table of the components with budget

Table 3: Detailed table of the plan components with budget

		-	•		Rs in	lakhs
No.	Activity	Unit cost		Units		Budget
Α	Human Wildlife Conflict Management					
1	Ex-gratia for livestock kill and human injury, death and medical expenses	40	Per year	5	Years	200
2	Procurement of tranquilising guns, cages, equipment and supplies	60	Per year	5	Years	300
3	Mobilization of rescue team and release operations	20	Per year	5	Years	100
4	Procurement and deployment of wildlife deterrent devices	20	Per year	3	Years	60
В	Participatory Biodiversity Conservation					

1	Strengthening of JFMC/EDCs for biodiversity conservation and EPA of the committees affected by the roads	5	per JFMC/EDC	40	JFMC/EDC	200
2	Strengthening and supporting Himal Rakshaks / Green Volunteers for forest, environment and biodiversity monitoring	25	Per year	5	Years	125
3	Veterinary health camp in the fringe villages	5	per camp	20	camps	100
4	Preservation and conservation of outstanding universal values of KNP World Heritage Site - renovation, repair and preservation of tangible and intangible cultural values and sites	15	per site	8	sites	120
С	Strengthening Forest Protection					
1	Frontline staff: Arms, ammunition, equipment and gear	25	per year	4	years	100
2	Incentivization of frontline staff posted in cold desert (above 4000m)	10	per year	5	years	50
3	Forest fire protection	25	per year	4	years	100
4	Forest fencing for protection	100	per year	2	years	200
5	Strengthening of WT Communication system	50	Unit	1	unit	50
6	Procurement of vehicles	15	per vehicle	8	vehicles	120
7	Procurement of patrolling bikes	1.5	per vehicle	30	bikes	45
D	Strengthening Forest Protection Infrast	ructure				
1	Cold Desert Biodiversity Monitoring Station CDBMS - Passive Solar Heated Structures (Construction and Furnishing)	100	per station	1	stations	100
2	Construction of forest checkpost for the new roads	40	per checkpost	3	checkposts	120
3	Renovation of forest complex at Lachen and Chungthang including staff quarters	100	per complex	2	complexes	200
4	Construction of transit accommodation at Tshungthang for high altitude monitoring	80	per unit	1	unit	80

5	Renovation of forest rest house(s) for forest monitoring	40	per year	2	years	80
6	Improving patrolling tracks and ecotrails	50	per year	5	years	250
Е	Reducing Wildlife Predation by Feral do	gs				
1	Sterilization of feral dogs ABC in partnership with SARAH	20	per year	5	years	100
2	Piloting Organic Waste Composters (OWC) for defence establishments	12	per composte r	5	composters	60
3	Providing garbage collection vans to local bodies to support solid waste management of defence establishments	15	per vehicle	2	vehicles	30
F	Strengthening Ex-situ Biodiversity Cons	ervation	1		_	
1	Predator proof fencing for the zoo	150	Per year	2	years	300
2	Avian rescue, rehabilitation, education and awareness facility	100	Per year	2	years	200
3	Strengthening rescue and rehabilitation of impacted floral species due to road construction activities	80	Per year	5	years	400
G	Mitigation of biodiversity loss due to pr	oject dr	iven landslid	es and e	erosion	
1	Surface runoff management through catchwater drains	20	per year	5	years	100
2	Moisture management through soil moisture conservation	20	per year	5	years	100
3	Checking vegetation loss through slope stabilization	100	per year	4	years	400
Н	Building Awareness and Capacity buildi	ng				
1	Sensitization of defence establishments and other stake holders	2	per workshop	10	workshops	20
2	Sensitization, awareness and exposure visits on biodiversity of Sikkim to students	4	per program	5	programs	20

3	Training of frontline staff on biodiversity assessment, conservation, enforcement, rescue and release, human wildlife conflict, participatory conservation, immobilization etc.	5	per training	20	trainings	100
I	Research and Knowledge Management		-			
1	Annual population estimation studies of feral dogs, ungulates and snow leopard by WWF and others	10	per year	5	years	50
2	Procurement of field kits, camera traps and equipment for biodiversity monitoring and research	25	per year	2	years	50
3	Biodiversity studies and preparation of biodiversity conservation plans by Wildlife Institute of India and others	50	per year	4	years	200
4	Habitat mapping of important floral species and species recovery of key floral species	25	per year	2	years	50
	Subtotal					4880
	Administrative costs	10	per year	5	years	50
	Monitoring and evaluation	10	per year	5	years	50
	Total					4980

The justification of the budget is provided below:

- Special biogeographic status of the area: The area impacted by the roads is a special Biogeographic Province 1D as classified by the Wildlife Institute of India whose extent is limited to only about 1000 km². It is the only significant expanse of the unique cold desert ecosystem in the eastern Himalayas.
- **Globally significant biodiversity:** This area is a repository of significant populations of several endangered species and houses two third of the country's Tibetan gazelle, one third of the Tibetan argali, the only population of southern Kiang, the only breeding population of the black-necked crane in the eastern Himalaya along with several other rare, endangered and threatened species. This region also forms the corridor of the Royal Bengal Tiger and there is evidence of it migrating from the neighbouring Neora Valley National Park in West Bengal.
- Area impacted versus area diverted: While the compensatory conservation budgets are
 assessed in proportion of the forest area diverted or as a ratio of the project costs, what we
 need to assess is the area impacted and the biodiversity value of the region at stake. In this
 case, globally significant biodiversity values are at stake and also the area impacted is much
 more than the area diverted. The hill cutting, slope destabilization, rock blasting, muck
 disposal, establishing labour camps, increased human presence, unsuitable waste disposal
 and others will result in a long-term disturbance and damage to biodiversity.

6. Monitoring mechanism

The operational mechanism proposed to implement this plan is by having a committee at state level comprising of the heads of Forest, Environment, Wildlife, FCA, research NGOs and others. The committee will be headed by the Secretary with CEO CAMPA as the member secretary. The terms of reference of this committee will be to plan the implementation modalities, partitioning of the programme components across different geographies, circles and divisions, preparation of the APO and overall planning, monitoring, evaluation and other related matters. Items requiring centralized purchase for the purpose of economy of scale and standardization will also be done by this committee. The studies by WII, WWF and others will provide a good indication of the key performance indicators namely the population of snow leopard, ungulates, feral dogs and other threats on a yearly basis. Also, since these studies will be taken up independently, it will also function as an independent evaluation of the project impact.

Figure 17: Mountain road construction is a challenging task and conventional wildlife over passes are not feasible

7. Wildlife Passage Plan

The landscape impacted in Sikkim by these six roads comprises of two ecosystems the Greater Himalaya and the Trans-Himalaya. Road construction in this mountain terrain is a challenging task and will involve hill cutting on steep slopes. This wildlife passage plan has been prepared keeping in mind the topographic constraints of this landscape.

- In the Greater Himalayan part, the terrain is amongst the highest, steepest and most rugged in the country. It is also characterized by young-fold mountains with weak geology and a dense drainage network. In this mountainous landscape, as there will be steep cuts along the hill side during road construction, the larger animals are expected to move along the drainage areas such as *jhoras* and streams. On the Trans-Himalayan portion which is a cold desert, the roads will pass through the southern portion of the Tibetan plateau which is a vast, arid upland with rolling hillocks and devoid of forests or trees. The visibility on this landscape is unobstructed and the alignment will run across a relatively less dense drainage network. In this relatively flat terrain, there is less hindrance perceived to animal movement in the proposed alignment.
- Therefore, the bridges across these drainages should be of adequate width and height in order to act as underpasses for wildlife. Considering the topographic constraints, the locations may be decided jointly by the User Agency and the DFO-Mangan. The height of the underpass/minor bridge may be up to 3-5 m and the span of the underpass/minor bridge may be kept up to 20-30 m for such underpass. The guidelines for animal passage have been provided in the publication "Eco-friendly measures to mitigate impacts of linear infrastructure on wildlife" prepared by WII under technical advice of MoEF&CC, NTCA and NHAI. Wildlife passage plan for linear

infrastructure has been made mandatory by NBWL which has prescribed these guidelines in several instances while according clearances to linear infrastructure projects. Ministry of Road Transport & Highways vide letter No. RW-NH-11013/02/2019-S&R (P&B) dated 29th May 2019 has also advocated the prescriptions to all implementing agencies to implement mitigation strategies as per said guidelines. On smaller drainage lines, the box culverts will need to be constructed of adequate width and vertical clearance to provide safe passage for smaller mammals, amphibians, reptiles etc. These bridges and culverts will have sufficient space between the abutments and the watercourse to enable animals to pass safely during high water levels. Also, ledges will be incorporated in the bridge and culvert design as appropriate. These bridges and culvers will assist in safe passage of animals including large animals in the region.

- Also, the roads under construction do not connect any heavily populated habitations and are primarily for use for defence purposes. Hence, the traffic on these roads is going to be naturally regulated.
- The siting and design of these bridges and culverts for both these ecosystems is provided for in Annexure-IV.

8. Non-structural mitigation and management measures

The following non-structural mitigation and management measures are also recommended:

- Typically, road construction in the mountains involves extensive damage to the valley side as the
 excavated material is thrown on the downhill side. This adverse impact of the road construction
 should be taken care by cut and fill method. The muck excavated should be used for filling
 embankments, retaining walls and should be used for other construction structures and the
 remaining muck generated should be disposed in proposed dumping sites only.
- To avoid frequent repairs and disturbances, carriageway pavement inside forest area should be rigid, having well planned road side drainage and utility ducts.
- User agency will make provision of vegetative or mechanical canopy closure option for movement of arboreal wildlife.
- User agency will install overhead signboard at every 500 meter in the forest area about animal crossing, restriction on feeding animal, garbage dumping, parking, honking, etc. specifically keeping in mind the tourists who may visit the area. These signages need to specify the code of conduct and important biodiversity of the areas, speed limit etc.
- Enough speed breakers/rumble strips should be constructed at regular intervals to prevent road accidents and wildlife collisions.
- Post completion of the road, the monitoring and maintenance of mitigation structure will be done jointly on advice of forest department and at cost of user agency.
- Traffic should not be allowed on this road for civilians between sunset to sunrise as animal movements are high during these hours and will result in collisions and mortality.
- No labour shall trespass in forest area apart from the designated construction site.
- No damage to any wildlife including habitat shall be done in the neighbouring area.
- The user agency will report all road kills or accident of any wild animals and deposit the carcasses to the office of the concerned DFO wildlife to be dealt according to the prevailing laws.
- Dumping of solid and liquid waste shall be scientifically dealt with by the User Agency in order to avoid feral/free ranging dogs to gather in the area.

- There should be no defacing of rocks and other natural formations.
- The local names of the places should not be distorted. No unusual naming of the natural area like lakes and peaks and mountains etc., which is not in the interest of local community, should be done.
- Construction of religious structures shall not be allowed.
- The Army/paramilitary personnel at all levels should be sensitised regarding the protection and conservation of the natural habitat of the area.
- The user agency shall ensure that the labourers do not indulge in illegal collection of rare and valuable medicinal plants or floral species.
- A monitoring committee shall be constituted under chairmanship of the DFO Mangan (Territorial) with the DFO Wildlife (North), DFO KNP and representatives of the User Agency as members. This Committee shall submit monthly report to the CF Wildlife/Director KNP on progress of work and compliance of the conditions laid out under this report as well as other if any.
- The User Agency shall abide by all the directions of the Hon'ble Supreme Court, provisions of the Wild Life (Protection) Act, 1972, directions of the Ministry of Environment Forest and Climate Change and conditions imposed by the monitoring committee headed by the DFO Mangan (Territorial) from time to time.
- The activities shall be liable to periodic check by officers of the Forest Department. The officers may order stoppage of work if it is found that any of the above provisions have not been complied with.
- An annual compliance certificate on the stipulated conditions shall be submitted by the project proponent to the Chief Wildlife Warden.
- Completion certificate will be issued only after written certification from chairman of monitoring committee countersigned by Chief Wildlife Warden that all the conditions are satisfactorily complied with.

9. Key references

- ATREE (2020). Designing a comprehensive human-wildlife conflict (HWC) management strategy in select districts/landscapes of Sikkim.
- Snow Leopard Population Estimation of India (SPAI) (2022). Forest and Environment Department and WWF India, Gangtok, Sikkim.

Ref. No: CWLW/2023

Date: 04-3-2023

To,

The APCCF -cum- Nodal Officer FCA, Forest and Environment Department Government of Sikkim, Gangtok

Subject: Approval and Forwarding of the Comprehensive Biodiversity Conservation Plan

Sir,

This is with reference to the Comprehensive Biodiversity Conservation Plan prepared in response to the six roads being constructed by CPWD and BRO in the Mangan district of Sikkim having a total declared length of 137.22 km and a declared financial outlay of Rs 2321.62 crores. The strategy to have one Comprehensive Biodiversity Conservation Plan instead of six separate plans is commendable as it will result in a perspective approach, economy of scale and avoidance of risk of overlap. The nine main components of this plan namely reducing human wildlife conflict, strengthening forest protection, strengthening participatory conservation, strengthening forest protection infrastructure, reducing wildlife predation by feral dogs, strengthening ex-situ conservation, mitigation of biodiversity loss due to project-driven landslides and erosion, building capacity and knowledge management are very relevant to this landscape to mitigate the anticipated impacts due to these six linear infrastructure projects. It is recommended that the user agencies take all due diligence measures to contain the impact of the construction activities to the Right of Way diverted. The wildlife passage plan as well as the non-structural mitigation measures are also detailed in this plan.

This plan has been prepared in consultation with the Wildlife Institute of India and their suggestions have been incorporated (enclosed in Annexure III). This area in biodiversity rich but understudied, and hence the research component is been prioritized. Other than the regular conditions imposed, an undertaking must be taken from the user agencies regarding the future installation and construction of all suggested mitigation measures derived from the results and recommendations of these biodiversity studies notwithstanding the cost or engineering modifications involved.

This Comprehensive Biodiversity Conservation Plan (CBCP) having an outlay of Rs 49.80 crore is approved and recommended for onward submission to Integrated Regional Office of the Ministry of Environment, Forest and Climate Change, Government of India.

Yours faithfully,

Setombe

(Dr. Sandeep Tambe, IFS) Chief Wildlife Warden cwlwsikkim@gmail.com

Annexure-I: Biodiversity checklist of North Sikkim

North Sikkim is a remote border area and not intensively explored as yet. Hence, the available scientific information is provided below as compiled largely from secondary sources by the Wildlife Institute of India. More studies are needed, to ground-truth this information.

A. List of avifauna

S.No.	ORDER	FAMILY	COMMON NAME	SCIENTIFIC NAME	REFERENCE
1	ANSERIFORMES	Anatidae	Bar-headed Goose	Anser indicus	Avibase, ebird
2	ANSERIFORMES	Anatidae	Greylag Goose	Anser anser	Avibase
3	ANSERIFORMES	Anatidae	Goosander	Mergus merganser	Avibase, ebird
4	ANSERIFORMES	Anatidae	Common Shelduck	Tadorna tadorna	Avibase, ebird
5	ANSERIFORMES	Anatidae	Ruddy Shelduck	Tadorna ferruginea	Avibase, ebird
6	ANSERIFORMES	Anatidae	Common Pochard	Aythya farina	Avibase, ebird
7	ANSERIFORMES	Anatidae	Baer's Pochard	Aythya baeri	Avibase
8	ANSERIFORMES	Anatidae	Ferruginous Duck	Aythya nyroca	Avibase
9	ANSERIFORMES	Anatidae	Tufted Duck	Aythya fuligula	Avibase, ebird
10	ANSERIFORMES	Anatidae	Northern Shoveler	Spatula clypeata	Avibase
11	ANSERIFORMES	Anatidae	Gadwall	Mareca strepera	Avibase
12	ANSERIFORMES	Anatidae	Eurasian Wigeon	Mareca Penelope	Avibase, ebird
13	ANSERIFORMES	Anatidae	Mallard	Anas platyrhynchos	Avibase, ebird
14	ANSERIFORMES	Anatidae	Northern Pintail	Anas acuta	Avibase,ebird
15	ANSERIFORMES	Anatidae	Common Teal	Anas crecca	Avibase
16	GALLIFORMES	Phasianidae	Common Hill Partridge	Arborophila torqueola	Avibase,ebird
17	GALLIFORMES	Phasianidae	Rufous-throated Hill Partridge	Arborophila rufogularis	Avibase
18	GALLIFORMES	Phasianidae	Common Quail	Coturnix coturnix	Avibase
19	GALLIFORMES	Phasianidae	Tibetan Snowcock	Tetraogallus tibetanus	Avibase,ebird
20	GALLIFORMES	Phasianidae	Snow Partridge	Lerwa lerwa	Avibase, ebird
21	GALLIFORMES	Phasianidae	Red Junglefowl	Gallus gallus	Avibase, ebird
22	GALLIFORMES	Phasianidae	Himalayan Monal	Lophophorus impejanus	Avibase,ebird
23	GALLIFORMES	Phasianidae	Satyr Tragopan	Tragopan satyra	Avibase,ebird
24	GALLIFORMES	Phasianidae	Kalij Pheasant	Lophura leucomelanos	Avibase,ebird
25	GALLIFORMES	Phasianidae	Tibetan Partridge	Perdix hodgsoniae	Avibase
26	GALLIFORMES	Phasianidae	Blood Pheasant	Ithaginis cruentus	Avibase,ebird
27	PHOENICOPTERIFORMES	Podicipedidae	Great Crested Grebe	Podiceps cristatus	Avibase,ebird
28	COLUMBIFORMES	Columbidae	Rock Dove	Columba livia	Avibase,ebird
29	COLUMBIFORMES	Columbidae	Hill Pigeon	Columba rupestris	Avibase,ebird
30	COLUMBIFORMES	Columbidae	Snow Pigeon	Columba leuconota	Avibase,ebird
31	COLUMBIFORMES	Columbidae	Freckled Pigeon	Columba hodgsonii	Avibase,ebird
32	COLUMBIFORMES	Columbidae	Ashy Pigeon	Columba pulchricollis	Avibase,ebird
33	COLUMBIFORMES	Columbidae	Oriental Turtle Dove	Streptopelia orientalis	Avibase, ebird
34	COLUMBIFORMES	Columbidae	Spotted-necked Dove	Streptopelia chinensis	Avibase, ebird

35	COLUMBIFORMES	Columbidae	Laughing Dove	Streptopelia senegalensis	Avibase,ebird
36	COLUMBIFORMES	Columbidae	Barred Cuckoo Dove	Macropygia unchall	Avibase,ebird
37	COLUMBIFORMES	Columbidae	Pin-tailed Green Pigeon	Treron apicauda	Avibase,ebird
38	COLUMBIFORMES	Columbidae	Wedge-tailed Green Pigeon	Treron sphenurus	Avibase,ebird
39	COLUMBIFORMES	Columbidae	Emerald Dove	Chalcophaps indica	Avibase,ebird
40	COLUMBIFORMES	Columbidae	Mountain Imperial Pigeon	Ducula badia	Avibase,ebird
41	PTEROCLIFORMES	Pteroclidae	Tibetan Sandgrouse	Syrrhaptes tibetanus	Avibase,ebird
42	CAPRIMULGIFORMES	Podargidae	Hodgson's Frogmouth	Batrachostomus hodgsoni	Avibase
43	CAPRIMULGIFORMES	Caprimulgidae	Grey Nightjar	Caprimulgus indicus	Avibase,ebird
44	CAPRIMULGIFORMES	Apodidae	Crested Treeswift	Hemiprocne coronata	Avibase
45	CAPRIMULGIFORMES	Apodidae	White-throated Needletail	Hirundapus caudacutus	Avibase,ebird
46	CAPRIMULGIFORMES	Apodidae	Silver-backed Needletail	Hirundapus cochinchinensis	Avibase
47	CAPRIMULGIFORMES	Apodidae	Himalayan Swiftlet	Aerodramus brevirostris	Avibase,ebird
48	CAPRIMULGIFORMES	Apodidae	Alpine Swift	Tachymarptis melba	Avibase
49	CAPRIMULGIFORMES	Apodidae	Fork-tailed Swift	Apus pacificus	Avibase
50	CAPRIMULGIFORMES	Apodidae	House Swift	Apus nipalensis	Avibase,ebird
51	CAPRIMULGIFORMES	Apodidae	Little Swift	Apus affinis	Avibase
52	CAPRIMULGIFORMES	Apodidae	Blyth's Swift	Apus leuconyx	ebird
53	CUCULIFORMES	Cuculidae	Greater Coucal	Centropus sinensis	Avibase
54	CUCULIFORMES	Cuculidae	Green-billed Malkoha	Phaenicophaeus tristis	Avibase,ebird
55	CUCULIFORMES	Cuculidae	Jacobin Cuckoo	Clamator jacobinus	Avibase,ebird
56	CUCULIFORMES	Cuculidae	Common Koel	Eudynamys scolopaceus	Avibase
57	CUCULIFORMES	Cuculidae	Asian Emerald Cuckoo	Chrysococcyx maculatus	Avibase,ebird
58	CUCULIFORMES	Cuculidae	Banded Bay Cuckoo	Cacomantis sonneratii	Avibase,ebird
59	CUCULIFORMES	Cuculidae	Plaintive Cuckoo	Cacomantis merulinus	Avibase,ebird
60	CUCULIFORMES	Cuculidae	Grey-bellied Cuckoo	Cacomantis passerinus	Avibase,ebird
61	CUCULIFORMES	Cuculidae	Drongo Cuckoo	Surniculus lugubris	Avibase,ebird
62	CUCULIFORMES	Cuculidae	Large Hawk Cuckoo	Hierococcyx sparverioides	Avibase,ebird
63	CUCULIFORMES	Cuculidae	Common Hawk Cuckoo	Hierococcyx varius	Avibase,ebird
64	CUCULIFORMES	Cuculidae	Whistling Hawk Cuckoo	Hierococcyx nisicolor	Avibase,ebird
65	CUCULIFORMES	Cuculidae	Indian Cuckoo	Cuculus micropterus	Avibase,ebird
66	CUCULIFORMES	Cuculidae	Common Cuckoo	Cuculus canorus	Avibase,ebird
67	CUCULIFORMES	Cuculidae	Himalayan Cuckoo	Cuculus saturatus	Avibase,ebird
68	CUCULIFORMES	Cuculidae	Lesser Cuckoo	Cuculus poliocephalus	Avibase,ebird
69	GRUIFORMES	Rallidae	Slaty-legged Crake	Rallina eurizonoides	Avibase
70	GRUIFORMES	Rallidae	Ruddy-breasted Crake	Zapornia fusca	Avibase
71	GRUIFORMES	Rallidae	Black-tailed Crake	Zapornia bicolor	Avibase
72	GRUIFORMES	Rallidae	Common Moorhen	Gallinula chloropus	Avibase
73	GRUIFORMES	Rallidae	Common Coot	Fulica atra	Avibase,ebird

74	GRUIFORMES	Gruidae	Black-necked Crane	Grus nigricollis	Avibase, ebird
75	PELECANIFORMES	Ardeidae	Cinnamon Bittern	Ixobrychus cinnamomeus	Avibase,ebird
76	PELECANIFORMES	Ardeidae	Indian Pond Heron	Ardeola grayii	Avibase
77	PELECANIFORMES	Ardeidae	Great Egret	Ardea alba	Avibase
78	PELECANIFORMES	Ardeidae	Little Egret	Egretta garzetta	Avibase
79	PELECANIFORMES	Phalacrocoracidae	Great Cormorant	Phalacrocorax carbo	Avibase,ebird
80	PELECANIFORMES	Phalacrocoracidae	Indian Cormorant	Phalacrocorax fuscicollis	Avibase
81	CHARADRIIFORMES	Haematopodidae	lbisbill	Ibidorhyncha struthersii	Avibase,ebird
82	CHARADRIIFORMES	Recurvirostridae	Pied Avocet	Recurvirostra avosetta	Avibase,ebird
83	CHARADRIIFORMES	Charadriidae	Kentish Plover	Charadrius alexandrinus	Avibase
84	CHARADRIIFORMES	Charadriidae	Lesser Sand Plover	Charadrius mongolus	Avibase,ebird
85	CHARADRIIFORMES	Charadriidae	River Lapwing	Vanellus duvaucelii	Avibase
86	CHARADRIIFORMES	Charadriidae	Red-wattled Lapwing	Vanellus indicus	Avibase,ebird
87	CHARADRIIFORMES	Jacanidae	Pheasant-tailed Jacana	Hydrophasianus chirurgus	Avibase
88	CHARADRIIFORMES	Scolopacidae	Eurasian Curlew	Numenius arquata	Avibase
89	CHARADRIIFORMES	Scolopacidae	Eurasian Woodcock	Scolopax rusticola	Avibase,ebird
90	CHARADRIIFORMES	Scolopacidae	Solitary Snipe	Gallinago solitaria	Avibase,ebird
91	CHARADRIIFORMES	Scolopacidae	Wood Snipe	Gallinago nemoricola	Avibase
92	CHARADRIIFORMES	Scolopacidae	Jack Snipe	Lymnocryptes minimus	Avibase,ebird
93	CHARADRIIFORMES	Scolopacidae	Terek Sandpiper	Xenus cinereus	Avibase,ebird
94	CHARADRIIFORMES	Scolopacidae	Common Redshank	Tringa totanus	Avibase,ebird
95	CHARADRIIFORMES	Glareolidae	Oriental Pratincole	Glareola maldivarum	Avibase
96	CHARADRIIFORMES	Laridae	Brown-headed Gull	Avibase,ebird	
97	CHARADRIIFORMES	Laridae	Black-headed Gull	Chroicocephalus ridibundus	Avibase,ebird
98	CHARADRIIFORMES	Laridae	Pallas's Gull	Ichthyaetus ichthyaetus	Avibase,ebird
99	CHARADRIIFORMES	Laridae	River Tern	Sterna aurantia	Avibase
100	ACCIPITRIFORMES	Accipitridae	Oriental Honey Buzzard	Pernis ptilorhynchus	Avibase,ebird
101	ACCIPITRIFORMES	Accipitridae	Jerdon's Baza	Aviceda jerdoni	Avibase,ebird
102	ACCIPITRIFORMES	Accipitridae	Bearded Vulture	Gypaetus barbatus	Avibase,ebird
103	ACCIPITRIFORMES	Accipitridae	Crested Serpent Eagle	Spilornis cheela	Avibase,ebird
104	ACCIPITRIFORMES	Accipitridae	Short-toed Eagle	Circaetus gallicus	Avibase
105	ACCIPITRIFORMES	Accipitridae	Red-headed Vulture	Sarcogyps calvus	Avibase
106	ACCIPITRIFORMES	Accipitridae	Himalayan Vulture	Gyps himalayensis	Avibase,ebird
107	ACCIPITRIFORMES	Accipitridae	White-rumped Vulture	Gyps bengalensis	Avibase
108	ACCIPITRIFORMES	Accipitridae	Griffon Vulture	Gyps fulvus	Avibase
109	ACCIPITRIFORMES	Accipitridae	Cinereous Vulture	Aegypius monachus	Avibase
110	ACCIPITRIFORMES	Accipitridae	Mountain Hawk Eagle	Nisaetus nipalensis	Avibase,ebird
111	ACCIPITRIFORMES	Accipitridae	Rufous-bellied Eagle	Lophotriorchis kienerii	Avibase,ebird
112	ACCIPITRIFORMES	Accipitridae	Black Eagle	Ictinaetus malaiensis	Avibase,ebird

113 ACCIPITRIFORMES	Accipitridae	Steppe Eagle	Aquila nipalensis	Avibase, ebird
114 ACCIPITRIFORMES	Accipitridae	Eastern Imperial Eagle	Aquila heliaca	Avibase
115 ACCIPITRIFORMES	Accipitridae	Golden Eagle	Aquila chrysaetos	Avibase, ebird
116 ACCIPITRIFORMES	Accipitridae	Bonelli's Eagle	Aquila fasciata	Avibase
117 ACCIPITRIFORMES	Accipitridae	Booted Eagle	Hieraaetus pennatus	Avibase
118 ACCIPITRIFORMES	Accipitridae	Hen Harrier	Circus cyaneus	Avibase,ebird
119 ACCIPITRIFORMES	Accipitridae	Pied Harrier	Circus melanoleucos	Avibase
120 ACCIPITRIFORMES	Accipitridae	Crested Goshawk	Accipiter trivirgatus	Avibase,ebird
121 ACCIPITRIFORMES	Accipitridae	Shikra	Accipiter badius	Avibase
122 ACCIPITRIFORMES	Accipitridae	Besra	Accipiter virgatus	Avibase,ebird
123 ACCIPITRIFORMES	Accipitridae	Eurasian Sparrowhawk	Accipiter nisus	Avibase,ebird
124 ACCIPITRIFORMES	Accipitridae	Northern Goshawk	Accipiter gentilis	Avibase,ebird
125 ACCIPITRIFORMES	Accipitridae	Pallas's Fish Eagle	Haliaeetus leucoryphus	Avibase
126 ACCIPITRIFORMES	Accipitridae	White-tailed Sea Eagle	Haliaeetus albicilla	Avibase
127 ACCIPITRIFORMES	Accipitridae	Black Kite	Milvus migrans	Avibase,ebird
128 ACCIPITRIFORMES	Accipitridae	Eurasian Buzzard	Buteo buteo	Avibase, ebird
129 ACCIPITRIFORMES	Accipitridae	Himalayan Buzzard	Buteo refectus	Avibase, ebird
130 ACCIPITRIFORMES	Accipitridae	Long-legged Buzzard	Buteo rufinus	Avibase
131 ACCIPITRIFORMES	Accipitridae	Upland Buzzard	Buteo hemilasius	Avibase, ebird
132 STRIGIFORMES	Strigidae	Collared Owlet	Glaucidium brodiei	Avibase, ebird
133 STRIGIFORMES	Strigidae	Asian Barred Owlet	Glaucidium cuculoides	Avibase,ebird
134 STRIGIFORMES	Strigidae	Little Owl	Athene noctua	Avibase,ebird
135 STRIGIFORMES	Strigidae	Mountain Scops Owl	Otus spilocephalus	Avibase,ebird
136 STRIGIFORMES	Strigidae	Collared Scops Owl	Otus bakkamoena	Avibase,ebird
137 STRIGIFORMES	Strigidae	Northern Long-eared Owl	Asio otus	Avibase
138 STRIGIFORMES	Strigidae	Brown Wood Owl	Strix leptogrammica	Avibase,ebird
139 STRIGIFORMES	Strigidae	Tawny Owl	Strix aluco	Avibase
140 STRIGIFORMES	Strigidae	Himalayan Owl	Strix nivicolum	ebird
141 STRIGIFORMES	Strigidae	Rock Eagle Owl	Bubo bengalensis	Avibase
142 STRIGIFORMES	Strigidae	Spot-bellied Eagle Owl	Bubo nipalensis	Avibase,ebird
143 TROGONIFORMES	Trogonidae	Red-headed Trogon	Harpactes erythrocephalus	Avibase,ebird
144 BUCEROTIFORMES	Upupidae	Common Hoopoe	Upupa epops	Avibase,ebird
145 PICIFORMES	Indicatoridae	Yellow-rumped Honeyguide	Indicator xanthonotus	Avibase,ebird
146 PICIFORMES	Picidae	White-browed Piculet	Sasia ochracea	Avibase,ebird
147 PICIFORMES	Picidae	Speckled Piculet	Picumnus innominatus	Avibase, ebird
148 PICIFORMES	Picidae	Rufous Woodpecker	Micropternus brachyurus	Avibase,ebird
149 PICIFORMES	Picidae	Greater Yellow-naped Woodpecker	Chrysophlegma flavinucha	Avibase,ebird
150 PICIFORMES	Picidae	Lesser Yellow-naped Woodpecker	Picus chlorolophus	Avibase,ebird
151 PICIFORMES	Picidae	Grey-headed Woodpecker	Picus canus	Avibase, ebird

152	PICIFORMES	Picidae	Great Slaty Woodpecker	Mulleripicus pulverulentus	Avibase
153	PICIFORMES	Picidae	Bay Woodpecker	Blythipicus pyrrhotis	Avibase,ebird
154	PICIFORMES	Picidae	Greater Flame-backed Woodpecker	Chrysocolaptes guttacristatus	Avibase,ebird
155	PICIFORMES	Picidae	Grey-capped Pygmy Woodpecker	Dendrocopos canicapillus	Avibase,ebird
156	PICIFORMES	Picidae	Fulvous-breasted Woodpecker	Dendrocopos macei	Avibase,ebird
157	PICIFORMES	Picidae	Crimson-breasted Woodpecker	Dendrocopos cathpharius	Avibase,ebird
158	PICIFORMES	Picidae	Darjeeling Woodpecker	Dendrocopos darjellensis	Avibase,ebird
159	PICIFORMES	Picidae	Rufous-bellied Woodpecker	Dendrocopos hyperythrus	Avibase,ebird
160	PICIFORMES	Ramphastidae	Great Barbet	Psilopogon virens	Avibase,ebird
161	PICIFORMES	Ramphastidae	Lineated Barbet	Psilopogon lineatus	Avibase
162	PICIFORMES	Ramphastidae	Golden-throated Barbet	Psilopogon franklinii	Avibase,ebird
163	PICIFORMES	Ramphastidae	Blue-throated Barbet	Psilopogon asiaticus	Avibase,ebird
164	PICIFORMES	Ramphastidae	Blue-eared Barbet	Psilopogon australis	Avibase
165	CORACIIFORMES	Meropidae	Chestnut-headed Bee-eater	Merops leschenaulti	Avibase
166	CORACIIFORMES	Meropidae	Blue-tailed Bee-eater	Merops philippinus	Avibase,ebird
167	CORACIIFORMES	Coraciidae	Indian Roller	Coracias benghalensis	Avibase
168	CORACIIFORMES	Coraciidae	Dollarbird	Eurystomus orientalis	Avibase
169	CORACIIFORMES	Alcedinidae	Common Kingfisher	Alcedo atthis	Avibase
170	CORACIIFORMES	Alcedinidae	Crested Kingfisher	Megaceryle lugubris	Avibase,ebird
171	CORACIIFORMES	Alcedinidae	Ruddy Kingfisher	Halcyon coromanda	Avibase
172	CORACIIFORMES	Alcedinidae	White-throated Kingfisher	Halcyon smyrnensis	Avibase,ebird
173	FALCONIFORMES	Falconidae	Collared Falconet	Microhierax caerulescens	Avibase,ebird
174	FALCONIFORMES	Falconidae	Common Kestrel	Falco tinnunculus	Avibase,ebird
175	FALCONIFORMES	Falconidae	Amur Falcon	Falco amurensis	Avibase
176	FALCONIFORMES	Falconidae	Merlin	Falco columbarius	Avibase
177	FALCONIFORMES	Falconidae	Eurasian Hobby	Falco subbuteo	Avibase
178	FALCONIFORMES	Falconidae	Oriental Hobby	Falco severus	Avibase
179	FALCONIFORMES	Falconidae	Laggar Falcon	Falco jugger	Avibase
180	FALCONIFORMES	Falconidae	Saker Falcon	Falco cherrug	Avibase,ebird
181	FALCONIFORMES	Falconidae	Peregrine Falcon	Falco peregrinus	Avibase,ebird
182	PSITTACIFORMES	Psittaculidae	Slaty-headed Parakeet	Psittacula himalayana	Avibase,ebird
183	PSITTACIFORMES	Psittaculidae	Red-breasted Parakeet	Psittacula alexandri	Avibase
184	PSITTACIFORMES	Psittaculidae	Alexandrine Parakeet	Psittacula eupatria	Avibase
185	PSITTACIFORMES	Psittaculidae	Vernal Hanging Parrot	Loriculus vernalis	Avibase
186	PASSERIFORMES	Pittidae	Blue-naped Pitta	Pitta nipalensis	Avibase
187	PASSERIFORMES	Pittidae	Indian Pitta	Pitta brachyura	Avibase
188	PASSERIFORMES	Pittidae	Hooded Pitta	Pitta sordida	Avibase
189	PASSERIFORMES	Eurylaimidae	Long-tailed Broadbill	Psarisomus dalhousiae	Avibase,ebird
190	PASSERIFORMES	Campephagidae	Grey-chinned Minivet	Pericrocotus solaris	Avibase,ebird

191	PASSERIFORMES	Campephagidae	Short-billed Minivet	Pericrocotus brevirostris	Avibase,ebird
192	PASSERIFORMES	Campephagidae	Long-tailed Minivet	Pericrocotus ethologus	Avibase,ebird
193	PASSERIFORMES	Campephagidae	Scarlet Minivet	Pericrocotus flammeus	Avibase,ebird
194	PASSERIFORMES	Campephagidae	Rosy Minivet	Pericrocotus roseus	Avibase
195	PASSERIFORMES	Campephagidae	Black-winged Cuckooshrike	Lalage melaschistos	Avibase,ebird
196	PASSERIFORMES	Vireonidae	Black-headed Shrike-babbler	Pteruthius rufiventer	Avibase, ebird
197	PASSERIFORMES	Vireonidae	Himalayan Shrike-babbler	Pteruthius ripleyi	Avibase
198	PASSERIFORMES	Vireonidae	Blyth's Shrike-babbler	Pteruthius aeralatus	Avibase, ebird
199	PASSERIFORMES	Vireonidae	Green Shrike-babbler	Pteruthius xanthochlorus	Avibase,ebird
200	PASSERIFORMES	Vireonidae	Black-eared Shrike-babbler	Pteruthius melanotis	Avibase, ebird
201	PASSERIFORMES	Vireonidae	Erpornis	Erpornis zantholeuca	Avibase,ebird
202	PASSERIFORMES	Oriolidae	Maroon Oriole	Oriolus traillii	Avibase, ebird
203	PASSERIFORMES	Oriolidae	Slender-billed Oriole	Oriolus tenuirostris	Avibase,ebird
204	PASSERIFORMES	Vangidae	Bar-winged Flycatcher-shrike	Hemipus picatus	Avibase, ebird
205	PASSERIFORMES	Aegithinidae	Common lora	Aegithina tiphia	Avibase, ebird
206	PASSERIFORMES	Dicruridae	Black Drongo	Dicrurus macrocercus	Avibase,ebird
207	PASSERIFORMES	Dicruridae	Ashy Drongo	Dicrurus leucophaeus	Avibase,ebird
208	PASSERIFORMES	Dicruridae	Crow-billed Drongo	Dicrurus annectens	Avibase
209	PASSERIFORMES	Dicruridae	Bronzed Drongo	Dicrurus aeneus	Avibase,ebird
210	PASSERIFORMES	Dicruridae	Lesser Racket-tailed Drongo	Dicrurus remifer	Avibase, ebird
211	PASSERIFORMES	Dicruridae	Hair-crested Drongo	Dicrurus hottentottus	Avibase,ebird
212	PASSERIFORMES	Rhipiduridae	White-throated Fantail	Rhipidura albicollis	Avibase,ebird
213	PASSERIFORMES	Laniidae	Brown Shrike	Lanius cristatus	Avibase,ebird
214	PASSERIFORMES	Laniidae	Long-tailed Shrike	Lanius schach	Avibase,ebird
215	PASSERIFORMES	Laniidae	Grey-backed Shrike	Lanius tephronotus	Avibase,ebird
216	PASSERIFORMES	Corvidae	Rufous Treepie	Dendrocitta vagabunda	Avibase,ebird
217	PASSERIFORMES	Corvidae	Grey Treepie	Dendrocitta formosae	Avibase,ebird
218	PASSERIFORMES	Corvidae	Collared Treepie	Dendrocitta frontalis	Avibase,ebird
219	PASSERIFORMES	Corvidae	Red-billed Chough	Pyrrhocorax pyrrhocorax	Avibase,ebird
220	PASSERIFORMES	Corvidae	Alpine Chough	Pyrrhocorax graculus	Avibase,ebird
221	PASSERIFORMES	Corvidae	Yellow-billed Blue Magpie	Urocissa flavirostris	Avibase,ebird
222	PASSERIFORMES	Corvidae	Red-billed Blue Magpie	Urocissa erythroryncha	Avibase, ebird
223	PASSERIFORMES	Corvidae	Common Green Magpie	Cissa chinensis	Avibase,ebird
224	PASSERIFORMES	Corvidae	Eurasian Jay	Garrulus glandarius	Avibase,ebird
225	PASSERIFORMES	Corvidae	Eurasian Magpie	Pica pica	Avibase
226	PASSERIFORMES	Corvidae	Eurasian Nutcracker	Nucifraga caryocatactes	Avibase,ebird
227	PASSERIFORMES	Corvidae	Common Raven	Corvus corax	Avibase,ebird
228	PASSERIFORMES	Corvidae	House Crow	Corvus splendens	Avibase,ebird
229	PASSERIFORMES	Corvidae	Large-billed Crow	Corvus macrorhynchos	Avibase,ebird

230	PASSERIFORMES	Monarchidae	Black-naped Monarch	Hypothymis azurea	Avibase
231	PASSERIFORMES	Dicaeidae	Yellow-bellied Flowerpecker	Dicaeum melanozanthum	Avibase,ebird
232	PASSERIFORMES	Dicaeidae	Yellow-vented Flowerpecker	Dicaeum chrysorrheum	Avibase
233	PASSERIFORMES	Dicaeidae	Pale-billed Flowerpecker	Dicaeum erythrorhynchos	Avibase
234	PASSERIFORMES	Dicaeidae	Plain Flowerpecker	Dicaeum minullum	Avibase
235	PASSERIFORMES	Dicaeidae	Scarlet-backed Flowerpecker	Dicaeum cruentatum	Avibase
236	PASSERIFORMES	Dicaeidae	Fire-breasted Flowerpecker	Dicaeum ignipectus	Avibase,ebird
237	PASSERIFORMES	Nectariniidae	Little Spiderhunter	Arachnothera longirostra	Avibase
238	PASSERIFORMES	Nectariniidae	Streaked Spiderhunter	Arachnothera magna	Avibase,ebird
239	PASSERIFORMES	Nectariniidae	Fire-tailed Sunbird	Aethopyga ignicauda	Avibase,ebird
240	PASSERIFORMES	Nectariniidae	Black-throated Sunbird	Aethopyga saturata	Avibase,ebird
241	PASSERIFORMES	Nectariniidae	Green-tailed Sunbird	Aethopyga nipalensis	Avibase,ebird
242	PASSERIFORMES	Nectariniidae	Mrs. Gould's Sunbird	Aethopyga gouldiae	Avibase,ebird
243	PASSERIFORMES	Nectariniidae	Crimson Sunbird	Aethopyga siparaja	Avibase,ebird
244	PASSERIFORMES	Irenidae	Orange-bellied Leafbird	Chloropsis hardwickii	Avibase,ebird
245	PASSERIFORMES	Prunellidae	Altai Accentor	Prunella himalayana	Avibase,ebird
246	PASSERIFORMES	Prunellidae	Alpine Accentor	Prunella collaris	Avibase,ebird
247	PASSERIFORMES	Prunellidae	Maroon-backed Accentor	Prunella immaculata	Avibase,ebird
248	PASSERIFORMES	Prunellidae	Robin Accentor	Prunella rubeculoides	Avibase,ebird
249	PASSERIFORMES	Prunellidae	Rufous-breasted Accentor	Prunella strophiata	Avibase,ebird
250	PASSERIFORMES	Prunellidae	Brown Accentor	Prunella fulvescens	Avibase,ebird
251	PASSERIFORMES	Estrildidae	White-rumped Munia	Lonchura striata	Avibase,ebird
252	PASSERIFORMES	Estrildidae	Scaly-breasted Munia	Lonchura punctulata	Avibase,ebird
253	PASSERIFORMES	Passeridae	House Sparrow	Passer domesticus	Avibase,ebird
254	PASSERIFORMES	Passeridae	Russet Sparrow	Passer cinnamomeus	Avibase,ebird
255	PASSERIFORMES	Passeridae	Eurasian Tree Sparrow	Passer montanus	Avibase,ebird
256	PASSERIFORMES	Passeridae	Chestnut-shouldered Bush Sparrow	Gymnoris xanthocollis	Avibase
257	PASSERIFORMES	Passeridae	Black-winged Snowfinch	Montifringilla adamsi	Avibase,ebird
258	PASSERIFORMES	Passeridae	White-rumped Snowfinch	Onychostruthus taczanowskii	Avibase,ebird
259	PASSERIFORMES	Passeridae	Rufous-necked Snowfinch	Pyrgilauda ruficollis	Avibase,ebird
260	PASSERIFORMES	Passeridae	Blanford's Snowfinch	Pyrgilauda blanfordi	Avibase,ebird
261	PASSERIFORMES	Motacillidae	Olive-backed Pipit	Anthus hodgsoni	Avibase,ebird
262	PASSERIFORMES	Motacillidae	Rosy Pipit	Anthus roseatus	Avibase,ebird
263	PASSERIFORMES	Motacillidae	Upland Pipit	Anthus sylvanus	Avibase,ebird
264	PASSERIFORMES	Motacillidae	Richard's Pipit	Anthus richardi	Avibase
265	PASSERIFORMES	Motacillidae	Paddyfield Pipit	Anthus rufulus	Avibase
266	PASSERIFORMES	Motacillidae	Blyth's Pipit	Anthus godlewskii	Avibase,ebird
267	PASSERIFORMES	Motacillidae	Long-billed Pipit	Anthus similis	Avibase
268	PASSERIFORMES	Motacillidae	Western Yellow Wagtail	Motacilla flava	Avibase

269	PASSERIFORMES	Motacillidae	Eastern Yellow Wagtail	Motacilla tschutschensis	ebird
	PASSERIFORMES	Motacillidae	Grey Wagtail	Motacilla cinerea	Avibase,ebird
	PASSERIFORMES	Motacillidae	Citrine Wagtail	Motacilla citreola	Avibase,ebird
272	PASSERIFORMES	Motacillidae	White-browed Wagtail	Motacilla maderaspatensis	Avibase,ebird
	PASSERIFORMES	Motacillidae	White Wagtail	Motacilla alba	Avibase,ebird
	PASSERIFORMES		Collared Grosbeak		
		Fringillidae		Mycerobas affinis	Avibase, ebird
	PASSERIFORMES	Fringillidae	Spot-winged Grosbeak	Mycerobas melanozanthos	Avibase, ebird
	PASSERIFORMES	Fringillidae	White-winged Grosbeak	Mycerobas carnipes	Avibase,ebird
	PASSERIFORMES	Fringillidae	Common Rosefinch	Erythrina erythrina	Avibase, ebird
	PASSERIFORMES	Fringillidae	Scarlet Finch	Haematospiza sipahi	Avibase,ebird
279	PASSERIFORMES	Fringillidae	Streaked Rosefinch	Carpodacus rubicilloides	Avibase,ebird
280	PASSERIFORMES	Fringillidae	Great Rosefinch	Carpodacus rubicilla	Avibase,ebird
281	PASSERIFORMES	Fringillidae	Red-fronted Rosefinch	Carpodacus puniceus	Avibase
282	PASSERIFORMES	Fringillidae	Crimson-browed Finch	Carpodacus subhimachalus	Avibase,ebird
283	PASSERIFORMES	Fringillidae	Himalayan White-browed Rosefinch	Carpodacus thura	Avibase,ebird
284	PASSERIFORMES	Fringillidae	Beautiful Rosefinch	Carpodacus pulcherrimus	Avibase
285	PASSERIFORMES	Fringillidae	Dark-rumped Rosefinch	Carpodacus edwardsii	Avibase,ebird
286	PASSERIFORMES	Fringillidae	Pink-browed Rosefinch	Carpodacus rodochroa	Avibase,ebird
287	PASSERIFORMES	Fringillidae	Spot-winged Rosefinch	Carpodacus rodopeplus	Avibase
288	PASSERIFORMES	Fringillidae	Brown Bullfinch	Pyrrhula nipalensis	Avibase,ebird
289	PASSERIFORMES	Fringillidae	Red-headed Bullfinch	Pyrrhula erythrocephala	Avibase,ebird
290	PASSERIFORMES	Fringillidae	Grey-headed Bullfinch	Pyrrhula erythaca	Avibase
291	PASSERIFORMES	Fringillidae	Blanford's Rosefinch	Agraphospiza rubescens	Avibase
292	PASSERIFORMES	Fringillidae	Golden-naped Finch	Pyrrhoplectes epauletta	Avibase,ebird
293	PASSERIFORMES	Fringillidae	Dark-breasted Rosefinch	Procarduelis nipalensis	Avibase,ebird
294	PASSERIFORMES	Fringillidae	Plain Mountain Finch	Leucosticte nemoricola	Avibase,ebird
295	PASSERIFORMES	Fringillidae	Brandt's Mountain Finch	Leucosticte brandti	Avibase,ebird
296	PASSERIFORMES	Fringillidae	Yellow-breasted Greenfinch	Chloris spinoides	Avibase,ebird
297	PASSERIFORMES	Fringillidae	Twite	Linaria flavirostris	Avibase
298	PASSERIFORMES	Fringillidae	Red Crossbill	Loxia curvirostra	Avibase,ebird
299	PASSERIFORMES	Fringillidae	Red-fronted Serin	Serinus pusillus	Avibase
300	PASSERIFORMES	Fringillidae	Tibetan Siskin	Spinus thibetanus	Avibase,ebird
301	PASSERIFORMES	Emberizidae	Crested Bunting	Melophus lathami	Avibase
302	PASSERIFORMES	Emberizidae	Little Bunting	Schoeniclus pusillus	Avibase,ebird
303	PASSERIFORMES	Emberizidae	Yellow-breasted Bunting	Schoeniclus aureolus	Avibase
304	PASSERIFORMES	Stenostiridae	Fairy-fantail	Chelidorhynx hypoxanthus	Avibase,ebird
305	PASSERIFORMES	Stenostiridae	Grey-headed Canary-flycatcher	Culicicapa ceylonensis	Avibase,ebird
306	PASSERIFORMES	Paridae	Fire-capped Tit	Cephalopyrus flammiceps	Avibase
307	PASSERIFORMES	Paridae	Yellow-browed Tit	Sylviparus modestus	Avibase,ebird

	1		1	1	
308	PASSERIFORMES	Paridae	Sultan Tit	Melanochlora sultanea	Avibase, ebird
309	PASSERIFORMES	Paridae	Coal Tit	Periparus ater	Avibase,ebird
310	PASSERIFORMES	Paridae	Rufous-vented Tit	Periparus rubidiventris	Avibase,ebird
311	PASSERIFORMES	Paridae	Fulvous Tit	Lophophanes dichrous	Avibase,ebird
312	PASSERIFORMES	Paridae	Groundpecker	Pseudopodoces humilis	Avibase,ebird
313	PASSERIFORMES	Paridae	Green-backed Tit	Parus monticolus	Avibase,ebird
314	PASSERIFORMES	Paridae	Cinereous Tit	Parus cinereus	Avibase
315	PASSERIFORMES	Paridae	Black-lored Tit	Machlolophus xanthogenys	Avibase
316	PASSERIFORMES	Paridae	Yellow-cheeked Tit	Machlolophus spilonotus	Avibase,ebird
317	PASSERIFORMES	Alaudidae	Tibetan Lark	Melanocorypha maxima	Avibase
318	PASSERIFORMES	Alaudidae	Hume's Short-toed Lark	Calandrella acutirostris	Avibase,ebird
319	PASSERIFORMES	Alaudidae	Greater Short-toed Lark	Calandrella brachydactyla	Avibase,ebird
320	PASSERIFORMES	Alaudidae	Mongolian Short-toed Lark	Calandrella dukhunensis	ebird
321	PASSERIFORMES	Alaudidae	Horned Lark	Eremophila alpestris	Avibase,ebird
322	PASSERIFORMES	Alaudidae	Oriental Sky Lark	Alauda gulgula	Avibase,ebird
323	PASSERIFORMES	Cisticolidae	Striated Prinia	Prinia crinigera	Avibase
324	PASSERIFORMES	Cisticolidae	Hill Prinia	Prinia atrogularis	Avibase,ebird
325	PASSERIFORMES	Cisticolidae	Rufescent Prinia	Prinia rufescens	Avibase
326	PASSERIFORMES	Cisticolidae	Ashy Prinia	Prinia socialis	Avibase
327	PASSERIFORMES	Cisticolidae	Common Tailorbird	Orthotomus sutorius	Avibase,ebird
328	PASSERIFORMES	Locustellidae	Lanceolated Warbler	Locustella lanceolata	Avibase
329	PASSERIFORMES	Locustellidae	Brown Bush Warbler	Locustella luteoventris	Avibase
330	PASSERIFORMES	Locustellidae	Spotted Bush Warbler	Locustella thoracica	Avibase
331	PASSERIFORMES	Locustellidae	Russet Bush Warbler	Locustella mandelli	Avibase
332	PASSERIFORMES	Locustellidae	Striated Grassbird	Megalurus palustris	Avibase
333	PASSERIFORMES	Acrocephalidae	Thick-billed Warbler	Arundinax aedon	Avibase
334	PASSERIFORMES	Acrocephalidae	Booted Warbler	Iduna caligata	Avibase
335	PASSERIFORMES	Acrocephalidae	Sykes's Warbler	Iduna rama	Avibase,ebird
336	PASSERIFORMES	Acrocephalidae	Blyth's Reed Warbler	Acrocephalus dumetorum	Avibase
337	PASSERIFORMES	Pnoepygidae	Pygmy Wren Babbler	Pnoepyga pusilla	Avibase,ebird
338	PASSERIFORMES	Pnoepygidae	Scaly-breasted Wren Babbler	Pnoepyga albiventer	Avibase,ebird
339	PASSERIFORMES	Hirundinidae	Northern House Martin	Delichon urbicum	Avibase
340	PASSERIFORMES	Hirundinidae	Asian House Martin	Delichon dasypus	Avibase,ebird
341	PASSERIFORMES	Hirundinidae	Nepal House Martin	Delichon nipalense	Avibase,ebird
342	PASSERIFORMES	Hirundinidae	Red-rumped Swallow	Cecropis daurica	Avibase,ebird
343	PASSERIFORMES	Hirundinidae	Barn Swallow	Hirundo rustica	Avibase,ebird
344	PASSERIFORMES	Hirundinidae	Eurasian Crag Martin	Ptyonoprogne rupestris	Avibase,ebird
345	PASSERIFORMES	Hirundinidae	Plain Martin	Riparia chinensis	Avibase
346	PASSERIFORMES	Hirundinidae	Pale Martin	Riparia diluta	Avibase

347	PASSERIFORMES	Pycnonotidae	White-throated Bulbul	Alophoixus flaveolus	Avibase
348	PASSERIFORMES	Pycnonotidae	Ashy Bulbul	Hemixos flavala	Avibase,ebird
349	PASSERIFORMES	Pycnonotidae	Mountain Bulbul	Ixos mcclellandii	Avibase,ebird
350	PASSERIFORMES	Pycnonotidae	Black Bulbul	Hypsipetes leucocephalus	Avibase,ebird
351	PASSERIFORMES	Pycnonotidae	Striated Bulbul	Pycnonotus striatus	Avibase,ebird
352	PASSERIFORMES	Pycnonotidae	Black-crested Bulbul	Rubigula flaviventris	Avibase,ebird
353	PASSERIFORMES	Pycnonotidae	Red-whiskered Bulbul	Pycnonotus jocosus	Avibase
354	PASSERIFORMES	Pycnonotidae	Himalayan Bulbul	Pycnonotus leucogenys	Avibase,ebird
355	PASSERIFORMES	Pycnonotidae	White-eared Bulbul	Pycnonotus leucotis	Avibase
356	PASSERIFORMES	Pycnonotidae	Red-vented Bulbul	Pycnonotus cafer	Avibase,ebird
357	PASSERIFORMES	Phylloscopidae	Yellow-browed Warbler	Abrornis inornatus	Avibase,ebird
358	PASSERIFORMES	Phylloscopidae	Hume's Leaf Warbler	Abrornis humei	Avibase,ebird
359	PASSERIFORMES	Phylloscopidae	Lemon-rumped Warbler	Abrornis chloronotus	Avibase,ebird
360	PASSERIFORMES	Phylloscopidae	Buff-barred Warbler	Abrornis pulcher	Avibase,ebird
361	PASSERIFORMES	Phylloscopidae	Ashy-throated Warbler	Abrornis maculipennis	Avibase,ebird
362	PASSERIFORMES	Phylloscopidae	Dusky Warbler	Phylloscopus fuscatus	Avibase
363	PASSERIFORMES	Phylloscopidae	Smoky Warbler	Phylloscopus fuligiventer	Avibase,ebird
364	PASSERIFORMES	Phylloscopidae	Sulphur-bellied Warbler	Phylloscopus griseolus	Avibase
365	PASSERIFORMES	Phylloscopidae	Tickell's Leaf Warbler	Phylloscopus affinis	Avibase, ebird
366	PASSERIFORMES	Phylloscopidae	White-spectacled Leaf Warbler	Seicercus affinis	Avibase,ebird
367	PASSERIFORMES	Phylloscopidae	Grey-cheeked Leaf Warbler	Seicercus poliogenys	Avibase,ebird
368	PASSERIFORMES	Phylloscopidae	Golden-spectacled Leaf Warbler	Seicercus burkii	Avibase,ebird
369	PASSERIFORMES	Phylloscopidae	Whistler's Leaf Warbler	Seicercus whistleri	Avibase,ebird
370	PASSERIFORMES	Phylloscopidae	Chestnut-crowned Leaf Warbler	Seicercus castaniceps	Avibase,ebird
371	PASSERIFORMES	Phylloscopidae	Greenish Leaf Warbler	Seicercus trochiloides	Avibase, ebird
372	PASSERIFORMES	Phylloscopidae	Large-billed Leaf Warbler	Seicercus magnirostris	Avibase, ebird
373	PASSERIFORMES	Phylloscopidae	Yellow-vented Leaf Warbler	Seicercus cantator	Avibase, ebird
374	PASSERIFORMES	Phylloscopidae	Blyth's Leaf Warbler	Seicercus reguloides	Avibase, ebird
375	PASSERIFORMES	Phylloscopidae	Western Crowned Leaf Warbler	Seicercus occipitalis	Avibase
376	PASSERIFORMES	Phylloscopidae	Grey-hooded Leaf Warbler	Seicercus xanthoschistos	Avibase,ebird
377	PASSERIFORMES	Scotocercidae	Slaty-bellied Tesia	Tesia olivea	Avibase,ebird
378	PASSERIFORMES	Scotocercidae	Grey-bellied Tesia	Tesia cyaniventer	Avibase,ebird
379	PASSERIFORMES	Scotocercidae	Chestnut-crowned Bush Warbler	Cettia major	Avibase
380	PASSERIFORMES	Scotocercidae	Grey-sided Bush Warbler	Cettia brunnifrons	Avibase, ebird
381	PASSERIFORMES	Scotocercidae	Chestnut-headed Tesia	Cettia castaneocoronata	Avibase, ebird
382	PASSERIFORMES	Scotocercidae	Pale-footed Bush Warbler	Hemitesia pallidipes	Avibase
383	PASSERIFORMES	Scotocercidae	Yellow-bellied Warbler	Abroscopus superciliaris	Avibase,ebird
384	PASSERIFORMES	Scotocercidae	Rufous-faced Warbler	Abroscopus albogularis	Avibase
385	PASSERIFORMES	Scotocercidae	Black-faced Warbler	Abroscopus schisticeps	Avibase,ebird

386	PASSERIFORMES	Scotocercidae	Leafworker	Phyllergates cucullatus	Avibase, ebird
387	PASSERIFORMES	Scotocercidae	Broad-billed Warbler	Tickellia hodgsoni	Avibase,ebird
388	PASSERIFORMES	Scotocercidae	Brown-flanked Bush Warbler	Horornis fortipes	Avibase,ebird
389	PASSERIFORMES	Scotocercidae	Hume's Bush Warbler	Horornis brunnescens	Avibase,ebird
390	PASSERIFORMES	Scotocercidae	Aberrant Bush Warbler	Horornis flavolivaceus	Avibase,ebird
391	PASSERIFORMES	Aegithalidae	White-browed Tit Warbler	Leptopoecile sophiae	Avibase
392	PASSERIFORMES	Aegithalidae	Black-throated Tit	Aegithalos concinnus	Avibase,ebird
393	PASSERIFORMES	Aegithalidae	Black-browed Tit	Aegithalos iouschistos	Avibase,ebird
394	PASSERIFORMES	Sylviidae	Fire-tailed Myzornis	Myzornis pyrrhoura	Avibase,ebird
395	PASSERIFORMES	Sylviidae	Golden-breasted Fulvetta	Lioparus chrysotis	Avibase,ebird
396	PASSERIFORMES	Sylviidae	White-browed Fulvetta	Fulvetta vinipectus	Avibase,ebird
397	PASSERIFORMES	Sylviidae	Greater Rufous-headed Parrotbill	Psittiparus ruficeps	Avibase
398	PASSERIFORMES	Sylviidae	Grey-headed Parrotbill	Psittiparus gularis	Avibase
399	PASSERIFORMES	Sylviidae	Great Parrotbill	Conostoma aemodium	Avibase,ebird
400	PASSERIFORMES	Sylviidae	Brown Parrotbill	Cholornis unicolor	Avibase,ebird
401	PASSERIFORMES	Sylviidae	Fulvous-fronted Parrotbill	Suthora fulvifrons	Avibase
402	PASSERIFORMES	Sylviidae	Black-throated Parrotbill	Suthora nipalensis	Avibase,ebird
403	PASSERIFORMES	Sylviidae	Lesser Rufous-headed Parrotbill	Chleuasicus atrosuperciliaris	Avibase,ebird
404	PASSERIFORMES	Zosteropidae	Striated Yuhina	Yuhina castaniceps	Avibase
405	PASSERIFORMES	Zosteropidae	Black-chinned Yuhina	Yuhina nigrimenta	Avibase,ebird
406	PASSERIFORMES	Zosteropidae	Stripe-throated Yuhina	Yuhina gularis	Avibase,ebird
407	PASSERIFORMES	Zosteropidae	Whiskered Yuhina	Yuhina flavicollis	Avibase,ebird
408	PASSERIFORMES	Zosteropidae	Rufous-vented Yuhina	Yuhina occipitalis	Avibase,ebird
409	PASSERIFORMES	Zosteropidae	White-naped Yuhina	Yuhina bakeri	Avibase,ebird
410	PASSERIFORMES	Zosteropidae	Oriental White-eye	Zosterops palpebrosus	Avibase,ebird
411	PASSERIFORMES	Timaliidae	Rufous-throated Wren Babbler	Spelaeornis caudatus	Avibase,ebird
412	PASSERIFORMES	Timaliidae	Elachura	Elachura formosa	Avibase,ebird
413	PASSERIFORMES	Timaliidae	Coral-billed Scimitar Babbler	Pomatorhinus ferruginosus	Avibase,ebird
414	PASSERIFORMES	Timaliidae	Slender-billed Scimitar Babbler	Pomatorhinus superciliaris	Avibase,ebird
415	PASSERIFORMES	Timaliidae	White-browed Scimitar Babbler	Pomatorhinus schisticeps	Avibase,ebird
416	PASSERIFORMES	Timaliidae	Streak-breasted Scimitar Babbler	Pomatorhinus ruficollis	Avibase,ebird
417	PASSERIFORMES	Timaliidae	Rusty-cheeked Scimitar Babbler	Erythrogenys erythrogenys	Avibase,ebird
418	PASSERIFORMES	Timaliidae	Grey-throated Babbler	Stachyris nigriceps	Avibase,ebird
419	PASSERIFORMES	Timaliidae	Wedge-billed Babbler	Stachyris humei	Avibase
420	PASSERIFORMES	Timaliidae	Chestnut-capped Babbler	Timalia pileata	Avibase
421	PASSERIFORMES	Timaliidae	Golden Babbler	Cyanoderma chrysaeum	Avibase,ebird
422	PASSERIFORMES	Timaliidae	Rufous-capped Babbler	Cyanoderma ruficeps	Avibase,ebird
423	PASSERIFORMES	Timaliidae	Buff-chested Babbler	Cyanoderma rufifrons	Avibase
424	PASSERIFORMES	Pellorneidae	White-hooded Babbler	Gampsorhynchus rufulus	Avibase

425	PASSERIFORMES	Pellorneidae	Yellow-throated Fulvetta	Schoeniparus cinereus	Avibase,ebird
	PASSERIFORMES	Pellorneidae	Rufous-winged Fulvetta	Schoeniparus castaneceps	Avibase,ebird
	PASSERIFORMES	Pellorneidae	Puff-throated Babbler	Pellorneum ruficeps	Avibase,ebird
428	PASSERIFORMES	Pellorneidae	Long-billed Wren Babbler	Rimator malacoptilus	Avibase,ebird
429	PASSERIFORMES	Leiothrichidae	Brown-cheeked Nun Babbler	Alcippe poioicephala	Avibase
430	PASSERIFORMES	Leiothrichidae	Nepal Nun Babbler	Alcippe nipalensis	Avibase,ebird
431	PASSERIFORMES	Leiothrichidae	Striated Laughing-thrush	Grammatoptila striata	Avibase,ebird
432	PASSERIFORMES	Leiothrichidae	Cutia	Cutia nipalensis	Avibase,ebird
433	PASSERIFORMES	Leiothrichidae	Lesser Necklaced Laughing-thrush	Garrulax monileger	Avibase,ebird
434	PASSERIFORMES	Leiothrichidae	White-crested Laughing-thrush	Garrulax leucolophus	Avibase,ebird
435	PASSERIFORMES	Leiothrichidae	Spotted Laughing-thrush	Garrulax ocellatus	Avibase,ebird
436	PASSERIFORMES	Leiothrichidae	Rufous-chinned Laughing-thrush	Garrulax rufogularis	Avibase
437	PASSERIFORMES	Leiothrichidae	Greater Necklaced Laughing-thrush	Garrulax pectoralis	Avibase,ebird
438	PASSERIFORMES	Leiothrichidae	White-throated Laughing-thrush	Garrulax albogularis	Avibase,ebird
439	PASSERIFORMES	Leiothrichidae	Grey-sided Laughing-thrush	Garrulax caerulatus	Avibase,ebird
440	PASSERIFORMES	Leiothrichidae	Rufous-necked Laughing-thrush	Garrulax ruficollis	Avibase,ebird
441	PASSERIFORMES	Leiothrichidae	Scaly Laughing-thrush	Trochalopteron subunicolor	Avibase,ebird
442	PASSERIFORMES	Leiothrichidae	Blue-winged Laughing-thrush	Trochalopteron squamatum	Avibase,ebird
443	PASSERIFORMES	Leiothrichidae	Streaked Laughing-thrush	Trochalopteron lineatum	Avibase,ebird
444	PASSERIFORMES	Leiothrichidae	Striped Laughing-thrush	Trochalopteron virgatum	Avibase
445	PASSERIFORMES	Leiothrichidae	Variegated Laughing-thrush	Trochalopteron variegatum	Avibase
446	PASSERIFORMES	Leiothrichidae	Black-faced Laughing-thrush	Trochalopteron affine	Avibase,ebird
447	PASSERIFORMES	Leiothrichidae	Chestnut-crowned Laughing-thrush	Avibase,ebird	
448	PASSERIFORMES	Leiothrichidae	Long-tailed Sibia	Heterophasia picaoides	Avibase
449	PASSERIFORMES	Leiothrichidae	Rufous Sibia	Heterophasia capistrata	Avibase,ebird
450	PASSERIFORMES	Leiothrichidae	Grey Sibia	Heterophasia gracilis	Avibase
451	PASSERIFORMES	Leiothrichidae	Silver-eared Mesia	Leiothrix argentauris	Avibase,ebird
452	PASSERIFORMES	Leiothrichidae	Red-billed Leiothrix	Leiothrix lutea	Avibase,ebird
453	PASSERIFORMES	Leiothrichidae	Rufous-backed Sibia	Leioptila annectens	Avibase
454	PASSERIFORMES	Leiothrichidae	Red-tailed Minla	Minla ignotincta	Avibase,ebird
455	PASSERIFORMES	Leiothrichidae	Red-faced Liocichla	Liocichla phoenicea	Avibase,ebird
456	PASSERIFORMES	Leiothrichidae	Hoary-throated Barwing	Sibia nipalensis	Avibase,ebird
457	PASSERIFORMES	Leiothrichidae	Blue-winged Minla	Siva cyanouroptera	Avibase,ebird
458	PASSERIFORMES	Leiothrichidae	Chestnut-tailed Minla	Chrysominla strigula	Avibase,ebird
459	PASSERIFORMES	Leiothrichidae	Rusty-fronted Barwing	Actinodura egertoni	Avibase,ebird
460	PASSERIFORMES	Regulidae	Goldcrest	Regulus regulus	Avibase,ebird
461	PASSERIFORMES	Certhiidae	Rusty-flanked Treecreeper	Certhia nipalensis	Avibase,ebird
462	PASSERIFORMES	Certhiidae	Sikkim Treecreeper	Certhia discolor	Avibase,ebird
463	PASSERIFORMES	Certhiidae	Hodgson's Treecreeper	Certhia hodgsoni	Avibase,ebird

464 PASSERIFORMES	Sittidae	Chestnut-bellied Nuthatch	Sitta castanea	Avibase, ebird
465 PASSERIFORMES	Sittidae	White-tailed Nuthatch	Sitta himalayensis	Avibase, ebird
466 PASSERIFORMES	Sittidae	Velvet-fronted Nuthatch	Sitta frontalis	Avibase,ebird
467 PASSERIFORMES	Sittidae	Beautiful Nuthatch	Sitta formosa	Avibase
468 PASSERIFORMES	Sittidae	Wallcreeper	Tichodroma muraria	Avibase, ebird
469 PASSERIFORMES	Troglodytidae	Eurasian Wren	Troglodytes troglodytes	Avibase,ebird
470 PASSERIFORMES	Sturnidae	Brahminy Starling	Sturnia pagodarum	Avibase
471 PASSERIFORMES	Sturnidae	Chestnut-tailed Starling	Sturnia malabarica	Avibase
472 PASSERIFORMES	Sturnidae	Common Myna	Acridotheres tristis	Avibase, ebird
473 PASSERIFORMES	Sturnidae	Spot-winged Starling	Saroglossa spilopterus	Avibase,ebird
474 PASSERIFORMES	Sturnidae	Hill Myna	Gracula religiosa	Avibase,ebird
475 PASSERIFORMES	Cinclidae	White-throated Dipper	Cinclus cinclus	Avibase,ebird
476 PASSERIFORMES	Cinclidae	Brown Dipper	Cinclus pallasii	Avibase, ebird
477 PASSERIFORMES	Muscicapidae	Oriental Magpie Robin	Copsychus saularis	Avibase,ebird
478 PASSERIFORMES	Muscicapidae	Dark-sided Flycatcher	Muscicapa sibirica	Avibase,ebird
479 PASSERIFORMES	Muscicapidae	Asian Brown Flycatcher	Muscicapa dauurica	Avibase
480 PASSERIFORMES	Muscicapidae	Rusty-tailed Flycatcher	Muscicapa ruficauda	Avibase
481 PASSERIFORMES	Muscicapidae	Ferruginous Flycatcher	Muscicapa ferruginea	Avibase,ebird
482 PASSERIFORMES	Muscicapidae	Pale Blue Flycatcher	Cyornis unicolor	Avibase,ebird
483 PASSERIFORMES	Muscicapidae	Large Blue Flycatcher	Cyornis magnirostris	Avibase
484 PASSERIFORMES	Muscicapidae	Blue-throated Blue Flycatcher	Cyornis rubeculoides	Avibase,ebird
485 PASSERIFORMES	Muscicapidae	White-gorgetted Flycatcher	Anthipes monileger	Avibase,ebird
486 PASSERIFORMES	Muscicapidae	Rufous-bellied Niltava	Niltava sundara	Avibase,ebird
487 PASSERIFORMES	Muscicapidae	Vivid Niltava	Niltava oatesi	Avibase
488 PASSERIFORMES	Muscicapidae	Large Niltava	Niltava grandis	Avibase,ebird
489 PASSERIFORMES	Muscicapidae	Small Niltava	Niltava macgrigoriae	Avibase,ebird
490 PASSERIFORMES	Muscicapidae	Asian Verditer Flycatcher	Eumyias thalassinus	Avibase,ebird
491 PASSERIFORMES	Muscicapidae	Lesser Shortwing	Brachypteryx leucophris	Avibase,ebird
492 PASSERIFORMES	Muscicapidae	Himalayan Shortwing	Brachypteryx cruralis	ebird
493 PASSERIFORMES	Muscicapidae	Gould's Shortwing	Heteroxenicus stellatus	Avibase,ebird
494 PASSERIFORMES	Muscicapidae	Indian Blue Robin	Larvivora brunnea	Avibase,ebird
495 PASSERIFORMES	Muscicapidae	White-bellied Redstart	Luscinia phaenicuroides	Avibase,ebird
496 PASSERIFORMES	Muscicapidae	Little Forktail	Enicurus scouleri	Avibase,ebird
497 PASSERIFORMES	Muscicapidae	Black-backed Forktail	Enicurus immaculatus	Avibase
498 PASSERIFORMES	Muscicapidae	Slaty-backed Forktail	Enicurus schistaceus	Avibase,ebird
499 PASSERIFORMES	Muscicapidae	White-crowned Forktail	Enicurus leschenaulti	Avibase
500 PASSERIFORMES	Muscicapidae	Spotted Forktail	Enicurus maculatus	Avibase,ebird
501 PASSERIFORMES	Muscicapidae	Blue-fronted Robin	Cinclidium frontale	Avibase,ebird
502 PASSERIFORMES	Muscicapidae	Blue Whistling Thrush	Myophonus caeruleus	Avibase,ebird

503	PASSERIFORMES	Muscicapidae	White-tailed Rubythroat	Calliope pectoralis	Avibase
504	PASSERIFORMES	Muscicapidae	Siberian Rubythroat	Calliope calliope	Avibase
505	PASSERIFORMES	Muscicapidae	White-tailed Robin	Myiomela leucura	Avibase,ebird
506	PASSERIFORMES	Muscicapidae	White-browed Bush Robin	Tarsiger indicus	Avibase,ebird
507	PASSERIFORMES	Muscicapidae	Golden Bush Robin	Tarsiger chrysaeus	Avibase,ebird
508	PASSERIFORMES	Muscicapidae	Himalayan Bluetail	Tarsiger rufilatus	Avibase,ebird
509	PASSERIFORMES	Muscicapidae	Rufous-breasted Bush Robin	Tarsiger hyperythrus	Avibase,ebird
510	PASSERIFORMES	Muscicapidae	Taiga Flycatcher	Ficedula albicilla	Avibase,ebird
511	PASSERIFORMES	Muscicapidae	Snowy-browed Flycatcher	Ficedula hyperythra	Avibase,ebird
512	PASSERIFORMES	Muscicapidae	Rufous-gorgetted Flycatcher	Ficedula strophiata	Avibase,ebird
513	PASSERIFORMES	Muscicapidae	Ultramarine Flycatcher	Ficedula superciliaris	Avibase,ebird
514	PASSERIFORMES	Muscicapidae	Little Pied Flycatcher	Ficedula westermanni	Avibase,ebird
515	PASSERIFORMES	Muscicapidae	Slaty-blue Flycatcher	Ficedula tricolor	Avibase,ebird
516	PASSERIFORMES	Muscicapidae	Pygmy Blue Flycatcher	Ficedula hodgsoni	Avibase,ebird
517	PASSERIFORMES	Muscicapidae	Slaty-backed Flycatcher	Ficedula sordida	Avibase
518	PASSERIFORMES	Muscicapidae	Sapphire Flycatcher	Ficedula sapphira	Avibase,ebird
519	PASSERIFORMES	Muscicapidae	Blue-fronted Redstart	Phoenicurus frontalis	Avibase,ebird
520	PASSERIFORMES	Muscicapidae	White-throated Redstart	Phoenicurus schisticeps	Avibase,ebird
521	PASSERIFORMES	Muscicapidae	Plumbeous Water Redstart	Rhyacornis fuliginosa	Avibase,ebird
522	PASSERIFORMES	Muscicapidae	White-capped Water Redstart	Chaimarrornis leucocephalus	Avibase,ebird
523	PASSERIFORMES	Muscicapidae	Hodgson's Redstart	Phoenicurus hodgsoni	Avibase,ebird
524	PASSERIFORMES	Muscicapidae	Black Redstart	Phoenicurus ochruros	Avibase,ebird
525	PASSERIFORMES	Muscicapidae	Daurian Redstart	Phoenicurus auroreus	Avibase
526	PASSERIFORMES	Muscicapidae	Güldenstädt's Redstart	Phoenicurus erythrogastrus	Avibase,ebird
527	PASSERIFORMES	Muscicapidae	Blue-capped Rock Thrush	Monticola cinclorhyncha	Avibase,ebird
528	PASSERIFORMES	Muscicapidae	Chestnut-bellied Rock Thrush	Monticola rufiventris	Avibase,ebird
529	PASSERIFORMES	Muscicapidae	Blue Rock Thrush	Monticola solitarius	Avibase,ebird
530	PASSERIFORMES	Muscicapidae	Eastern Stonechat	Saxicola maurus	Avibase,ebird
531	PASSERIFORMES	Muscicapidae	Pied Bush Chat	Saxicola caprata	Avibase
532	PASSERIFORMES	Muscicapidae	Grey Bush Chat	Saxicola ferreus	Avibase,ebird
533	PASSERIFORMES	Muscicapidae	Northern Wheatear	Oenanthe oenanthe	Avibase,ebird
534	PASSERIFORMES	Muscicapidae	Isabelline Wheatear	Oenanthe isabellina	Avibase,ebird
535	PASSERIFORMES	Muscicapidae	Desert Wheatear	Oenanthe deserti	Avibase,ebird
536	PASSERIFORMES	Turdidae	Grandala	Grandala coelicolor	Avibase,ebird
537	PASSERIFORMES	Turdidae	Long-tailed Thrush	Zoothera dixoni	Avibase,ebird
538	PASSERIFORMES	Turdidae	Plain-backed Thrush	Zoothera mollissima	Avibase,ebird
539	PASSERIFORMES	Turdidae	Dark-sided Thrush	Zoothera marginata	Avibase,ebird
540	PASSERIFORMES	Turdidae	Long-billed Thrush	Zoothera monticola	Avibase,ebird
541	PASSERIFORMES	Turdidae	Scaly Thrush	Zoothera dauma	Avibase,ebird

542	PASSERIFORMES	Turdidae	Purple Cochoa	Cochoa purpurea	Avibase, ebird
543	PASSERIFORMES	Turdidae	Green Cochoa	Cochoa viridis	Avibase
544	PASSERIFORMES	Turdidae	Orange-headed Thrush	Geokichla citrina	Avibase, ebird
545	PASSERIFORMES	Turdidae	Grey-winged Blackbird	Turdus boulboul	Avibase, ebird
546	PASSERIFORMES	Turdidae	Tickell's Thrush	Turdus unicolor	Avibase, ebird
547	PASSERIFORMES	Turdidae	Eyebrowed Thrush	Turdus obscurus	Avibase, ebird
548	PASSERIFORMES	Turdidae	Kessler's Thrush	Turdus kessleri	Avibase, ebird
549	PASSERIFORMES	Turdidae	Tibetan Blackbird	Turdus maximus	Avibase, ebird
550	PASSERIFORMES	Turdidae	White-collared Blackbird	Turdus albocinctus	Avibase, ebird
551	PASSERIFORMES	Turdidae	Chestnut Thrush	Turdus rubrocanus	Avibase, ebird
552	PASSERIFORMES	Turdidae	Dusky Thrush	Turdus eunomus	Avibase, ebird
553	PASSERIFORMES	Turdidae	Black-throated Thrush	Turdus atrogularis	Avibase, ebird
554	PASSERIFORMES	Turdidae	Red-throated Thrush	Turdus ruficollis	Avibase, ebird

Taxonomy based on Avibase data

B. List of mammals

S.No.	ORDER	FAMILY	COMMON NAME	SCIENTIFIC NAME	IUCN STATUS
1	Cetartiodactyla	Bovidae	Tibetan argali	Ovis ammon hodgsonii	NT
2	Cetartiodactyla	Bovidae	Tibetan gazelle	Procapra picticaudata	NT
3	Cetartiodactyla	Bovidae	Chiru	Pantholops hodgsonii	NT (locally extinct)
4	Cetartiodactyla	Bovidae	Himalayan tahr	Hemitragus jemlahicus	NT
5	Cetartiodactyla	Bovidae	Mainland serow	Naemorhedus sumatraensis	VU
6	Cetartiodactyla	Bovidae	Himalayan Goral	Naemorhedus goral	NT
7	Cetartiodactyla	Bovidae	Gaur	Bos gaurus	VU
8	Cetartiodactyla	Bovidae	Takin	Budorcas taxicolor	VU
9	Cetartiodactyla	Cervidae	Indian muntjac	Muntiacus muntjak	LC
10	Cetartiodactyla	Moschidae	Himalayan musk deer	Moschus chrysogaster	EN
11	Cetartiodactyla	Moschidae	Black musk deer	Moschus fuscus	EN
12	Cetartiodactyla	Suidae	Wild pig	Sus scrofa	LC
13	Cetartiodactyla	Equidae	Kiang	Equus kiang polygodon	LC
14	Primates	Cercopithecidae	Assamese macaque	Macaca assamensis	NT
15	Primates	Cercopithecidae	Rhesus Monkey	Macaca mulatta	LC
16	Primates	Cercopithecidae	Tarai Gray Langur	Semnopithecus hector	NT
17	Primates	Cercopithecidae	Central Himalayan langur	Semnopithecus schistaceus	LC
18	Rodentia	Sciuridae	Particoloured Flying Squirrel	Hylopetes alboniger	LC
19	Rodentia	Sciuridae	Spotted Giant Flying Squirrel	Petaurista elegans	LC
20	Rodentia	Sciuridae	Woolly Flying Squirrel	Eupetaurus cinereus	EN
21	Rodentia	Sciuridae	Black Giant Squirrel	Ratufa bicolor	NT
22	Rodentia	Sciuridae	Bhutan Giant Flying Squirrel	Petaurista nobilis	NT

23	Rodentia	Sciuridae	Red Giant Flying Squirrel	Petaurista petaurista	LC
23	Rodentia	Sciuridae	Pallas's Squirrel	Callosciurus erythraeus	LC
24	Rodentia	Sciuridae	Orange-bellied Himalayan squirrel	Dremomys lokriah	LC
26	Rodentia	Sciuridae	Hoary-bellied Himalayan squirrel	Callosciurus pygerythrus	LC
27	Rodentia	Sciuridae	Five-striped palm squirrel	Funambulus pennantii	LC
28	Rodentia	Sciuridae	Himalayan Striped Squirrel	Tamiops mcclellandii	LC
29	Rodentia	Sciuridae	Himalayan marmot	Marmota himalayana	LC
30	Rodentia	Hystricidae	Malayan Porcupine	Hystrix brachyura	LC
31	Rodentia	Hystricidae	Himalayan crestless porcupine	Hystrix brachyura	LC
32	Rodentia	Muridae	Sikkim rat	Rattus sikkimensis	LC
33	Pholidota	Manidae	Chinese pangolin	Manis pentadactyla	CR
34	Lagomorpha	Ochotonidae	Large-eared pika	Ochotona macrotis	LC
35	Lagomorpha	Ochotonidae	Moupin's pika	Ochotona thibetana	LC
36	Lagomorpha	Ochotonidae	Forrest's pika	Ochotona forresti	LC
37	Lagomorpha	Ochotonidae	Plateau pika	Ochotona curzoniae	LC
38	Lagomorpha	Ochotonidae	Indian Hare	Lepus nigricollis	LC
39	Lagomorpha	Ochotonidae	Woolly Hare	Lepus oiostolus	LC
40	Chiroptera	Rhinolophidae	Pearson's Horseshoe Bat	Rhinolophus pearsonii	LC
41	Carnivora	Felidae	Tiger	Panthera tigris	EN
42	Carnivora	Felidae	Snow leopard	Panthera uncia	VU
43	Carnivora	Felidae	Common leopard	Panthera pardus	VU
44	Carnivora	Felidae	Jungle cat	Felis chaus	LC
45	Carnivora	Felidae	Leopard cat	Prionailurus bengalensis	LC
46	Carnivora	Felidae	Marbled Cat	Pardofelis marmorata	NT
47	Carnivora	Felidae	Eurasian Lynx	Lynx lynx	LC
48	Carnivora	Felidae	Fishing Cat	Prionailurus viverrinus	VU
49	Carnivora	Ursidae	Asiatic black bear	Ursus thibetanus	VU
50	Carnivora	Ailuridae	Red panda	Ailurus fulgens	EN
51	Carnivora	Canidae	Wild dog	Cuon alpinus	EN
52	Carnivora	Canidae	Tibetan wolf	Canis lupus chanco	LC
53	Carnivora	Canidae	Tibetan fox	Vulpes ferrilata	LC
54	Carnivora	Canidae	Red fox	Vulpes vulpes	LC
55	Carnivora	Canidae	Golden jackal	Canis aureus	LC
56	Carnivora	Viverridae	Himalayan palm civet	Paguma larvata	LC
57	Carnivora	Viverridae	Large Indian civet	Viverra zibetha	LC
58	Carnivora	Viverridae	Small Indian civet	Viverricula indica	LC
59	Carnivora	Viverridae	Common Palm Civet	Paradoxurus hermaphroditus	LC
60	Carnivora	Viverridae	Binturong	Arctictis binturong	VU

	Carnivora		Himalayan yellow throated		
61	Carnivora	Mustelidae	marten	Martes flavigula	LC
62	Carnivora	Mustelidae	Greater hog-badger	Arctonyx collaris	VU
63	Carnivora	Mustelidae	Stone marten	Martes foina	LC
64	Carnivora	Mustelidae	Large-toothed Ferret Badger	Melogale personata	LC
65	Carnivora	Mustelidae	Eurasian otter	Lutra lutra	NT
66	Carnivora	Mustelidae	Oriental small-clawed Otter	Aonyx cinereus	VU
67	Carnivora	Mustelidae	Siberian weasel	Mustela sibirica	LC
68	Carnivora	Mustelidae	Mountain Weasel	Mustela altaica	NT
69	Carnivora	Mustelidae	Short-tailed Weasel	Mustela ermine	LC
70	Carnivora	Mustelidae	Yellow-bellied Weasel	Mustela kathiah	LC
71	Carnivora	Mustelidae	Black-striped Weasel	Mustela strigidorsa	LC
72	Carnivora	Prionodontidae	Spotted linsang	Prionodon pardicolor	LC
73	Carnivora	Herpestidae	Small indian mongoose	Herpestes auropunctatus	LC
74	Carnivora	Herpestidae	Crab eating mongoose	Herpestes urva	LC
75	Carnivora	Herpestidae	Indian grey mongoose	Herpestes edwardsii	LC

C. List of reptiles

S. No.	Family	Common Name	Species	IUCN
1	Gekkonidae	Common House Gecko	Hemidactylus frenatus	LC
2	Gekkonidae	Bowring's Smooth Gecko	Hemidactylus bowringii	LC
3	Gekkonidae	Fox Gecko	Hemidactylus garnotii	LC
4	Gekkonidae	Flat-tailed house gecko	Cosymbotus platyurus	LC
5	Gekkonidae	Khasi Hills bent-toed Gecko	Cyrtodactylus khasiensis	DD
6	Gekkonidae	Sikkimese Bent-toed Gecko	Cyrtodactylus gubernatoris	DD
7	Agamidae	Changeable Lizard	Calotes versicolor	LC
8	Agamidae	Jerdon's Forest Lizard	Calotes jerdoni	LC
9	Agamidae	Three Keeled Mountain Lizard	Oriotaris tricarinata	LC
10	Agamidae	Variegated Mountain Lizard	Japalura variegate	LC
11	Scincidae	Indian Forest Skink	Sphenomorphus indicus	LC
12	Scincidae	Spotted Forest Skink	Sphenomorphus maculatus	LC
13	Scincidae	Keeled Indian Mabuya	Mabuya carinata	LC
14	Scincidae	Sikkim Ground Skink	Asymblepharus sikimmensis	LC
15	Lacertidae	Sikkim Grass Lizard	Takydromus sikkimensis	EN
16	Anguidae	Burmese Glass Lizard	Ophisaurus gracilis	LC
17	Varanidae	Bengal Monitor Lizard	Varanus bengalensis	NT
18	Typhlopidae	Wall's Worm Snake	Typhlops oligolepis	DD
19	Typhlopidae	Jerdon's Blind Snake	Typhlops jerdoni	LC
20	Typhlopidae	Brahminy Blindsnake	Ramphotyphlops braminus	LC
21	Boidae	Indian Rock Python	Python molurus	NT
22	Boidae	Rough-tailed Sand Boa	Eryx conicus	NT
23	Colubridae	Green Trinket Snake	Elaphe prasina	LC

24	Colubridas	Conner haad Trinket Stake	Coolognathus radiatus	
24	Colubridae	Copper-head Trinket Snake	Coelognathus radiatus	LC
25	Colubridae	Elaphe hodgsonii	Orthriophis hodgsonii	LC
26	Colubridae	Eastern Trinket Snake	Orthriophis cantoris	LC
27	Colubridae	Black-banded Trinket Snake	Oreocryptophis porphyraceus	LC
28	Colubridae	Cave Racer	Orthriophis taeniurus	VU
29	Colubridae	Trinket Snake	Coelognathus helena	LC
30	Colubridae	Montane Slug-eating Snake	Pareas monticola	LC
31	Colubridae	Mountain Slug Snake	Pareas macularius	LC
32	Colubridae	Indian Egg-eater	Elachistodon westermanni	LC
33	Colubridae	Oriental Ratsnake	Ptyas mucosa	LC
34	Colubridae	Javan Rat Snake	Ptyas korros	NT
35	Colubridae	Green Rat Snake	Ptyas nigromarginata	LC
36	Colubridae	Banded Racer	Argyrogena fasciolata	LC
37	Colubridae	Stolickza's Ringneck	Liopeltis stoliczkae	LC
38	Colubridae	Himalayan Stripe-necked Snake	Liopeltis rappi	LC
39	Colubridae	White-barred Kukri Snake	Oligodon albocinctus	LC
40	Colubridae	Nagarkot Kukri Snake	Oligodon erythrogaster	NT
41	Colubridae	Bluebelly Kukri Snake	Oligodon melaneus	DD
42	Colubridae	Walnut Kukri Snake	Oligodon juglandifer	VU
43	Colubridae	Daudin's Bronzeback	Dendrelaphis tristis	LC
44	Colubridae	Common Bronzeback	Dendrelaphis pictus	LC
45	Colubridae	Wall's Bronzeback	Dendrelaphis cyanochloris	LC
46	Colubridae	Gore's Bronzeback	Dendrelaphis gorei	LC
47	Colubridae	Ornate Flying Snake	Chrysopelea ornata	LC
48	Colubridae	Twin-spotted Wolf Snake	Lycodon jara	LC
49	Colubridae	Common Wolf Snake	Lycodon aulicus	LC
50	Colubridae	Banded Wolf Snake	Lycodon fasciatus	LC
51	Colubridae	Gammie's Wolf Snake	Dinodon gammiei	NT
52	Colubridae	Northern Large-toothed Snake	Dinodon septentrionalis	LC
53	Colubridae	Chequered Keelback	Xenochrophis piscator	LC
54	Colubridae	St John's Keelback Water Snake	Xenochrophis sanctijohannis	LC
55	Colubridae	Collared Black-headed Snake	Sibynophis collaris	LC
56	Colubridae	Striped Keelback	Amphiesma parallelum	DD
57	Colubridae	Buff Striped Keelback	Amphiesma stolatum	LC
58	Colubridae	Himalayan Keelback	Amphiesma platyceps	LC
59	Colubridae	Red-necked Keelback	Rhabdophis subminiatus	LC
60	Colubridae	Himalayan Keelback	Rhabdophis himalayanus	LC
61	Colubridae	Large-eyed False Cobra	Pseudoxenodon macrops	LC
62	Colubridae	Blackbelly Worm-eating Snake	Trachischium fuscum	LC

63	Colubridae	Rosebelly Worm-eating Snake	Trachischium guentheri	VU
64	Colubridae	Yellowbelly Worm-eating Snake	Trachischium tenuiceps	DD
65	Colubridae	Indian Gamma Snake	Boiga trigonata	LC
66	Colubridae	Tawny Cat Snake	Boiga ochraceus	LC
67	Colubridae	Eastern Cat Snake	Boiga gokool	LC
68	Colubridae	Many-banded Tree Snake	Boiga multifasciata	LC
69	Colubridae	Gray Cat Snake	Boiga ocellata	LC
70	Colubridae	Forsten's Cat Snake	Boiga forsteni	LC
71	Colubridae	Common Mock Viper	Psammodynastes pulverulentus	LC
72	Colubridae	Gunther's Whip Snake	Ahaetulla prasina	LC
73	Colubridae	River Vine Snake	Ahaetulla fronticincta	LC
74	Elapidae	King Cobra	Ophiophagus hannah	VU
75	Elapidae	Monocled Cobra	Naja kaouthia	LC
76	Elapidae	Banded Krait	Bungarus fasciatus	LC
77	Elapidae	Himalayan Krait	Bungarus bungaroides	LC
78	Elapidae	Lesser Black Krait	Bungarus lividus	LC
79	Elapidae	Greater Black Krait	Bungarus niger	LC
80	Elapidae	Common Krait	Bungarus caeruleus	LC
81	Elapidae	MacLelland's Coral Snake	Sinomicrurus macclellandi	LC
82	Viperidae	Russell's Viper	Daboia russelii	LC
83	Viperidae	Himalayan Pit-viper	Gloydius himalayanus	LC
84	Viperidae	Common Bamboo Viper	Trimeresurus gramineus	LC
85	Viperidae	Chinese Mountain Pit Viper	Ovophis monticola	LC
86	Viperidae	Jerdon's pitviper	Protobothrops jerdonii	LC
87	Viperidae	Pope's Pit Viper	Trimeresurus popeiorum	LC
88	Viperidae	Redtail (Bamboo) Pit Viper	Trimeresurus erythrurus	LC
89	Viperidae	White-lipped Tree Viper	Trimeresurus albolabris	LC
90	Viperidae	Gumprecht's Pit Viper	Trimeresurus gumprechti	LC
91	Viperidae	Trimeresurus sp		

Source:

1. Chettri, B., Bhupathy, S., & Acharya, B. K. (2011). An overview of the herpetofauna of Sikkim with emphasis on the elevational distribution pattern and threats and conservation issues. *Biodiversity of Sikkim: exploring and conserving a global hotspot. Gangtok: Information and Public Relations Department, Government of Sikkim*, 233-254.

D. List of amphibians

S. No.	Order	FAMILY	SCIENTIFIC NAME	IUCN
1	Anura	Bufonidae	Duttaphrynus himalayanus	LC
2	Anura	Bufonidae	Duttaphrynus melanostictus	LC
3	Anura	Bufonidae	Duttaphrynus stuarti	DD
4	Anura	Bufonidae	Bufo stomaticus	LC
5	Anura	Bufonidae	Scutiger sikimmensis	LC

		1	1	1
6	Anura	Dicroglossidae	Euphlyctis cyanophlyctis	LC
7	Anura	Dicroglossidae	Fejervarya limnocharis	LC
8	Anura	Dicroglossidae	Fejervarya nepalensis	LC
9	Anura	Dicroglossidae	Fejervarya teraiensis	LC
10	Anura	Dicroglossidae	Hoplobatrachus tigerinus	LC
11	Anura	Dicroglossidae	Nanorana annandalii	NT
12	Anura	Dicroglossidae	Nanorana blanfordii	LC
13	Anura	Dicroglossidae	Nanorana ercepeae	NT
14	Anura	Dicroglossidae	Nanorana gammii	NT
15	Anura	Dicroglossidae	Nanorana liebigii	LC
16	Anura	Dicroglossidae	Nanorana minica	VU
17	Anura	Dicroglossidae	Nanorana polunini	LC
18	Anura	Dicroglossidae	Ingerana borealis	VU
19	Anura	Dicroglossidae	Ombrana sikimensis	LC
20	Anura	Dicroglossidae	Sphaerotheca breviceps	LC
21	Anura	Microhylidae	Microhyla ornata	LC
22	Anura	Megophryidae	Megophrys boettgeri	LC
23	Anura	Megophryidae	Megophrys major	LC
24	Anura	Megophryidae	Megophrys parva	LC
25	Anura	Megophryidae	Megophrys robusta	DD
26	Anura	Megophryidae	Scutiger sikimensis	LC
27	Anura	Megophryidae	Scutiger boulengeri	LC
28	Anura	Ranidae	Amolops afghanus	LC
29	Anura	Ranidae	Amolops formosus	NE
30	Anura	Ranidae	Amolops gerbillus	LC
31	Anura	Ranidae	Amolops himalayanus	LC
32	Anura	Ranidae	Amolops marmoratus	LC
				LC
33	Anura	Ranidae	Amolops monticola	
34	Anura	Ranidae	Clinotarsus alticola	LC
35	Anura	Ranidae	Amolops assamensis	DD
36	Anura	Ranidae	Hylarana taipehensis	LC
37	Anura	Rhacophoridae	Philautus annandalii	LC
38	Anura	Rhacophoridae	Philautus argus	DD
39	Anura	Rhacophoridae	Philautus dubius	DD
40	Anura	Rhacophoridae	Philautus microdiscus	DD
41	Anura	Rhacophoridae	Philautus jerdonii	DD
42	Anura	Rhacophoridae	Chiromantis simus	LC
43	Anura	Rhacophoridae	Polypedates leucomystax	LC
44	Anura	Rhacophoridae	Polypedates maculatus	LC
45	Anura	Rhacophoridae	Polypedates himalayanus	
46	Anura	Rhacophoridae	Polypedates megacephalus	LC

47	Anura	Rhacophoridae	Polypedates taeniatus	LC
48	Anura	Rhacophoridae	Frankixalus jerdonii	DD
49	Anura	Rhacophoridae	Raorchestes annandalii	LC
50	Anura	Rhacophoridae	Rhacophorus bipunctatus	LC
51	Anura	Rhacophoridae	Rhacophorus tuberculatus	DD
52	Anura	Rhacophoridae	Rhacophorus reinwardtii	NT
53	Anura	Rhacophoridae	Rhacophorus maximus	LC
54	Gymnophiona	Salamandridae	Tylototriton verrucosus	NT
55	Urodela	Ichthyophiidae	Ichthyophis sikkimensis	DD
56	Urodela	Ichthyophiidae	Ichthyophis glutinosus	VU
57	Urodela	Ichthyophiidae	Ichthyophis monochrous	DD

Source:

1. Chettri, B., Bhupathy, S., & Acharya, B. K. (2011). An overview of the herpetofauna of Sikkim with emphasis on the elevational distribution pattern and threats and conservation issues. *Biodiversity of Sikkim: exploring and conserving a global hotspot. Gangtok: Information and Public Relations Department, Government of Sikkim*, 233-254.

2. Subba, B., Aravind, N. A., & Ravikanth, G. (2017). Amphibians of the Sikkim Himalaya, India: an annotated checklist. Check List, 13(1), 2033-2033.

3. Acharya, B. K., & Chettri, B. (2012). Effect of climate change on birds, herpetofauna and butterflies in Sikkim Himalaya: a preliminary investigation. Climate change in Sikkim: patterns, impacts and initiatives. Gangtok: Information and Public Relations Department, 141-60.

4. ENVIS CENTRE SIKKIM. http://sikenvis.nic.in/WriteReadData/UserFiles/file/List%20of%20Amphibians%20of%20Sikkim.pdf

S.No.	Plant Group	Family	Species & Authority
1	Dicots	DILLENIACEAE	Dillenia indica L.
2		DILLENIACEAE	Dillenia pentagyna Roxb.
3		MAGNOLIACEAE	Magnolia campbelli Hook. f. & Thomson
4		MAGNOLIACEAE	Magnolia globosa Hook. f. & Thomson
5		MAGNOLIACEAE	Magnolia hodgsonii (Hook. f. & Thomson) H. Keng
6		MAGNOLIACEAE	Magnolia insignis Wall.
7		MAGNOLIACEAE	Magnolia pterocarpa Roxb.
8		MAGNOLIACEAE	Michelia cathcartii Hook. f. & Thomson
9		MAGNOLIACEAE	Michelia champaca L.
10		MAGNOLIACEAE	Michelia doltsopa Buch Ham. ex DC.
11		MAGNOLIACEAE	Michelia glabra P.Pann.
12		MAGNOLIACEAE	Michelia kisopa BuchHam. ex DC.
13		MAGNOLIACEAE	Michelia punduana Hook. f. & Thomson
14		MAGNOLIACEAE	Michelia velutina DC.
15		TETRACENTRACEAE	Tetracentron sinense Oliver
16		ANNONACEAE	Miliusa globosa (DCJPani gr. & S.C.Mishra
17		ANNONACEAE	Miliusa longiflora (Hook. f. & Thomson)
18		ANNONACEAE	Miliusa macrocarpa Hook. f. & Thomson
19		BERBERIDACEAE	Mahonia acanthifolia G.Don
20		BERBERIDACEAE	Mahonia sikkimensis Takeda
21		LARDIZABALACEAE	Decaisnea insignis (Griffith) Hook. f. & Thomson

D. List of plants

22 CAPPARACEAE Capparis multifiera Hook. f. & Thomson 23 CAPPARACEAE Capparis dicifilar Hook. f. & Thomson 24 CAPPARACEAE Capparis dicifilar Hook. f. & Thomson 25 CAPPARACEAE Crateva enligiosa Forster f. 26 CAPPARACEAE Crateva enligiosa Forster f. 27 VIOLACEAE Rinorea bengalensis (Wall.) 0. Kuntze 28 BIXACEAE Bixa orellana L. 29 FLACOURTIACEAE Casearia graveolens Daiz. 30 FLACOURTIACEAE Casearia graveolens Daiz. 31 FLACOURTIACEAE Casearia tomentosa Roxb. 32 FLACOURTIACEAE Casearia tomentosa Roxb. 33 POLYGALACEAE Polygala arillata D.Don 34 CLUSIACEAE Garcinia anomala Planch. & Triana 35 CLUSIACEAE Garcinia anomala Planch. & Triana 36 CLUSIACEAE Garcinia strubuktar. 37 CLUSIACEAE Garcinia strubuktar. 38 CLUSIACEAE Garcinia strubuktar. 39 CLUSIACEAE Garcinia strubuktar. 30 CLUSIACEAE Garcinia strubuktar. 40 CLUSIACEAE Mesua floribaut. 41 THEACEAE Carue anomala Planch. & f. 42			
24 CAPPARACEAE Capparis olacifalia Hook: f. & Thomson 25 CAPPARACEAE Crateva religiosa Forster f. 26 CAPPARACEAE Crateva religiosa Forster f. 27 VIOLACEAE Rinorea bengalensis (Wall.) D. Kuntze 28 BIXACEAE Bisa orellana L. 29 FLACOURTIACEAE Casearia glomerata Roxb. ex DC. 30 FLACOURTIACEAE Casearia glomerata Roxb. ex DC. 31 FLACOURTIACEAE Casearia glomerata Roxb. 32 FLACOURTIACEAE Casearia turzii C.B. Clarke 33 POLYGALACEAE Polygala arillata D. Don 34 CLUSIACEAE Garcinia anomala Planch. & Triana 35 CLUSIACEAE Garcinia anomala Planch. & Triana 36 CLUSIACEAE Garcinia stipulata T. Anderson 37 CLUSIACEAE Garcinia anthochymus Hook f. 38 CLUSIACEAE Garcinia convinitata DC. 39 CLUSIACEAE Camelia kitsi Wall. 40 CLUSIACEAE Eurya carvinerkis Vesque 41 THEACEAE Eurya carvinerkis Vesque 42 THEACEAE Eurya carvinerkis Vesque 44 THEACEAE Eurya carvinerkis Vesque 45 THEACEAE Eurya carvinerkis Vesque <td< td=""><td>22</td><td>CAPPARACEAE</td><td>Capparis cantoniensis Lour.</td></td<>	22	CAPPARACEAE	Capparis cantoniensis Lour.
25 CAPPARACEAE Crateva religiosa Forster f. 26 CAPPARACEAE Crateva unilocularis Buch-Ham. 27 VIOLACEAE Rinorea bengalensis (Wall.) 0. Kuntze 28 BIXACEAE Bixa orellana L. 29 FLACOURTIACEAE Casearia graveolens Dalz. 30 FLACOURTIACEAE Casearia graveolens Dalz. 31 FLACOURTIACEAE Casearia tomentosa Rob. 32 FLACOURTIACEAE Casearia tomentosa Rob. 33 POLVGALACEAE Polygala arillata D. Don 34 CLUSIACEAE Garcinia anomala Planch. & Triana 35 CLUSIACEAE Garcinia anomala Planch. & Triana 36 CLUSIACEAE Garcinia stipulata T. Anderson 38 CLUSIACEAE Garcinia stipulata T. Anderson 38 CLUSIACEAE Camelia kissi Wali. 41 THEACEAE Camelia kissi Wali. 42 THEACEAE Camelia kissi Wali. 43 THEACEAE Eurya acwinerkis Vesque 44 THEACEAE Eurya acwinerkis Vesque 44 THEACEAE Eurya cavinerkis Vesque 44 THEACEAE Eurya acwinerkis Vesque 45 THEACEAE Eurya cavinerkis Vesque 46 THEACEAE Eurya cavi	23	CAPPARACEAE	Capparis multiflora Hook. f. & Thomson
26 CAPPARACEAE Crateva unilocularis BuchHam. 27 VIOLACEAE Rinorea bengalensis (Wall.) 0. Kuntze 28 BIXACEAE Bixa orellana L. 29 FLACOURTIACEAE Casearia graveolens Dalz. 30 FLACOURTIACEAE Casearia graveolens Dalz. 31 FLACOURTIACEAE Casearia tomentosa Roxb. 32 FLACOURTIACEAE Casearia tomentosa Roxb. 33 POLYGALACEAE Calophyllum polyanthum Wall. 34 CLUSIACEAE Garcinia anomala P1anch. & Triana 36 CLUSIACEAE Garcinia stomentosa Roxb. 37 CLUSIACEAE Garcinia stomentosa Roxb. 38 CLUSIACEAE Garcinia stomentosa Roxb. 39 CLUSIACEAE Garcinia stomentosa Roxb. 40 CLUSIACEAE Mesua forribunda (Wall.) Kosterm. 41 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cariafiolia (D. Don) Kobuski 45 THEACEAE Eurya acuminata DC. 48 THEACEAE Eurya acuminata DC. 49 ACTINIDIACEAE Schima wallichii (DC.) Korth. 45 THEACEAE Eurya ipapoica Thunb. 46 THEACEAE Schima wallensi Eurel. 47 THEACEAE	24	CAPPARACEAE	Capparis olacifalia Hook. f. & Thomson
27 VIOLACEAE Rinorea bengalensis (Wall.) 0. Kuntze 28 BIXACEAE Bixa orellana L 29 FLACOURTIACEAE Casearia glomerata Roxb. ex DC. 30 FLACOURTIACEAE Casearia glomerata Roxb. ex DC. 31 FLACOURTIACEAE Casearia glomerata Roxb. ex DC. 32 FLACOURTIACEAE Casearia tomentosa Roxb. 33 POLYGALACEAE Casearia tomentosa Roxb. 34 CLUSIACEAE Garcinia anomala Planch. & Triana 35 CLUSIACEAE Garcinia anomala Planch. & Triana 36 CLUSIACEAE Garcinia cowa Roxb. ex DC. 37 CLUSIACEAE Garcinia cowa Roxb. ex DC. 38 CLUSIACEAE Garcinia cowa Roxb. ex DC. 39 CLUSIACEAE Mesua foribunda (Wall.) Kosterm. 41 THEACEAE Large acuminata DC. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya acuminata DC. 44 THEACEAE Eurya japonica Thunb. 45 THEACEAE Eurya japonica Thunb. 46 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Saurauia fasciculata Wall. 49 ACTINIDIACEAE Saurauia angalensis DC. 51 ACTINIDIACEAE<	25	CAPPARACEAE	Crateva religiosa Forster f.
28 BIXACEAE Bixa orellana L. 29 FLACOURTIACEAE Casearia glomerata Roxb. ex DC. 30 FLACOURTIACEAE Casearia graveolens Dalz. 31 FLACOURTIACEAE Casearia graveolens Dalz. 32 FLACOURTIACEAE Casearia tomentosa Roxb. 33 POLYGALACEAE Casearia tomentosa Roxb. 34 CLUSIACEAE Calophyllum polyanthum Wall. 35 CLUSIACEAE Garcinia anomala P1anch. & Triana 36 CLUSIACEAE Garcinia anomala P1anch. & Triana 37 CLUSIACEAE Garcinia cowa Roxb. ex OC. 37 CLUSIACEAE Garcinia xanthochymus Hook f. 38 CLUSIACEAE Mesua forrea L. 40 CLUSIACEAE Mesua foribunda (Wall.) Kosterm. 41 THEACEAE Eurya acuminata DC. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya acuminata DC. 44 THEACEAE Eurya acuminata DC. 45 THEACEAE Eurya acuminata DC. 46 THEACEAE Eurya	26	CAPPARACEAE	Crateva unilocuiaris BuchHam.
29 FLACOURTIACEAE Casearia graveolens Dalz. 30 FLACOURTIACEAE Casearia graveolens Dalz. 31 FLACOURTIACEAE Casearia kurzii C.B. Clarke 32 FLACOURTIACEAE Casearia tomentosa Roxb. 33 POLYGALACEAE Polygala arillata D.Don 34 CLUSIACEAE Calophyllum polyanthum Wall. 35 CLUSIACEAE Garcinia anomala P1anch. & Triana 36 CLUSIACEAE Garcinia anomala P1anch. & Triana 36 CLUSIACEAE Garcinia atipulata T. Anderson 38 CLUSIACEAE Mesua forria L 40 CLUSIACEAE Mesua forria L 41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya acuminata DC. 44 THEACEAE Eurya acuminata DC. 45 THEACEAE Eurya acuminata DC. 46 THEACEAE Eurya acuminata DC. 47 THEACEAE Eurya aipaonica Thunb. 46 THEACEAE Eurya aipaonica Thunb. 47 THEACEAE Saurauia fasciculata Wall.	27	VIOLACEAE	Rinorea bengalensis (Wall.) 0. Kuntze
30 FLACOURTIACEAE Casearia graveolens Dalz. 31 FLACOURTIACEAE Casearia kurzii C.B.Clarke 32 FLACOURTIACEAE Casearia tomentosa Roxb. 33 POLYGALACEAE Polygala arillata D.Don 34 CLUSIACEAE Calophyllum polyanthum Wall. 35 CLUSIACEAE Garcinia anomala Planch. & Triana 36 CLUSIACEAE Garcinia cowa Roxb. ex DC. 37 CLUSIACEAE Garcinia stipulata T. Anderson 38 CLUSIACEAE Garcinia xanthochymus Hook f. 39 CLUSIACEAE Mesua forea L. 40 CLUSIACEAE Camellia kisi Wall. 41 THEACEAE Camellia kisi Wall. 42 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya apapoinca Thunb. 45 THEACEAE Eurya iaponica Thunb. 46 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Schima wallichii dus ex Lf. 49 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 53 ACTINIDIACEAE </td <td>28</td> <td>BIXACEAE</td> <td>Bixa orellana L.</td>	28	BIXACEAE	Bixa orellana L.
31 FLACOURTIACEAE Casearia kurzii C.B.Clarke 32 FLACOURTIACEAE Casearia tomentosa Roxb. 33 POLYGALACEAE Polygala arillata D.Don 34 CLUSIACEAE Calophylium polyanthum Wall. 35 CLUSIACEAE Garcinia anomala P1anch. & Triana 36 CLUSIACEAE Garcinia cowa Roxb. ex DC. 37 CLUSIACEAE Garcinia stipulata T. Anderson 38 CLUSIACEAE Garcinia xanthochymus Hook f. 39 CLUSIACEAE Mesua foribunda (Wall.) Kosterm. 41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya acavinervis Vesque 44 THEACEAE Eurya acavinervis Vesque 44 THEACEAE Eurya acavinervis Vesque 45 THEACEAE Eurya cavinervis Vesque 46 THEACEAE Eurya iaponica Thunb. 46 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Saurauía fasciculata Wall. 50 ACTINIDIACEAE	29	FLACOURTIACEAE	Casearia glomerata Roxb. ex DC.
32 FLACOURTIACEAE Casearia tomentosa Roxb. 33 POLYGALACEAE Polygala arillata D.Don 34 CLUSIACEAE Calophyllum polyanthum Wall. 35 CLUSIACEAE Garcinia anomala P1anch. & Triana 36 CLUSIACEAE Garcinia atomala P1anch. & Triana 37 CLUSIACEAE Garcinia stipulata T. Anderson 38 CLUSIACEAE Garcinia xanthochymus Hook f. 39 CLUSIACEAE Mesua ferrea L. 40 CLUSIACEAE Mesua fioribunda (Wall.) Kosterm. 41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya japonica Thunb. 46 THEACEAE Gordonia excelsa Blume 47 THEACEAE Saurauia fasciculata Wall. 48 THEACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia fasciculata Wall. 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTIN	30	FLACOURTIACEAE	Casearia graveolens Dalz.
33 POLYGALACEAE Polygala arillata D.Don 34 CLUSIACEAE Calophyllum polyanthum Wall. 35 CLUSIACEAE Garcinia anomala P1anch. & Triana 36 CLUSIACEAE Garcinia anomala P1anch. & Triana 37 CLUSIACEAE Garcinia stipulata T. Anderson 38 CLUSIACEAE Garcinia anthochymus Hook f. 39 CLUSIACEAE Mesua floribunda (Wall.) Kosterm. 40 CLUSIACEAE Mesua floribunda (Wall.) Kosterm. 41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya japonica Thunb. 45 THEACEAE Gordonia excelsa Blume 47 THEACEAE Saurauia fasciculata Wall. 48 THEACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia paulensis DC. 53 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 54 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 55 STACHYURACEAE Saurauia roburghii Wall. 54	31	FLACOURTIACEAE	Casearia kurzii C.B.Clarke
34 CLUSIACEAE Calophyllum polyanthum Wall. 35 CLUSIACEAE Garcinia anomala P1anch. & Triana 36 CLUSIACEAE Garcinia cowa Roxb. ex DC. 37 CLUSIACEAE Garcinia stipulata T. Anderson 38 CLUSIACEAE Garcinia xanthochymus Hook f. 39 CLUSIACEAE Mesua ferrea L. 40 CLUSIACEAE Mesua foribunda (Wall.) Kosterm. 41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya japonica Thunb. 45 THEACEAE Eurya japonica Thunb. 46 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Ternstroemia Mutis ex Lf. 49 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia arcotricha Kurz ex Dyer 51 ACTINIDIACEAE Saurauia in anothork Kurz ex Dyer 52 ACTINIDIACEAE Saurauia rostoricha Kurz ex Dyer 53 ACTINIDIACEAE Saurauia in anoutoricha Kurz ex Dyer 54 ACTINIDIACEAE Saurauia rostoricha Kurz ex Dyer 55 STACHYURACEAE Saurauia rostoricha Kurz ex Dyer <td< td=""><td>32</td><td>FLACOURTIACEAE</td><td>Casearia tomentosa Roxb.</td></td<>	32	FLACOURTIACEAE	Casearia tomentosa Roxb.
35 CLUSIACEAE Garcinia anomala Planch. & Triana 36 CLUSIACEAE Garcinia cowa Roxb. ex DC. 37 CLUSIACEAE Garcinia stipulata T. Anderson 38 CLUSIACEAE Garcinia xanthochymus Hook f. 39 CLUSIACEAE Mesua ferrea L. 40 CLUSIACEAE Mesua floribunda (Wall.) Kosterm. 41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya cavinervis Vesque 45 THEACEAE Eurya paponica Thunb. 46 THEACEAE Eurya japonica Thunb. 47 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia fasciculata Wall. 51 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia napaulansis DC. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Saura	33	POLYGALACEAE	Polygala arillata D.Don
36 CLUSIACEAE Garcinia cowa Roxb. ex DC. 37 CLUSIACEAE Garcinia stipulata T. Anderson 38 CLUSIACEAE Garcinia xanthochymus Hook f. 39 CLUSIACEAE Mesua ferrea L. 40 CLUSIACEAE Mesua floribunda (Wall.) Kosterm. 41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya cavinervis Vesque 45 THEACEAE Eurya igponica Thunb. 46 THEACEAE Gordonia excelsa Blume 47 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 51 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia punduana Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	34	CLUSIACEAE	Calophyllum polyanthum Wall.
37 CLUSIACEAE Garcinia stipulata T. Anderson 38 CLUSIACEAE Garcinia xanthochymus Hook f. 39 CLUSIACEAE Mesua ferrea L. 40 CLUSIACEAE Mesua foribunda (Wall.) Kosterm. 41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya igaponica Thunb. 45 THEACEAE Gordonia excelsa Blume 47 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Ternstroemia Mutis ex L.f. 49 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 51 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia roxburghii Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Saurauia roxburghii Wall. 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	35	CLUSIACEAE	Garcinia anomala P1anch. & Triana
38 CLUSIACEAE Garcinia xanthochymus Hook f. 39 CLUSIACEAE Mesua ferrea L. 40 CLUSIACEAE Mesua foribunda (Wall.) Kosterm. 41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya japonica Thunb. 46 THEACEAE Eurya japonica Thunb. 48 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia roxburghii Wall. 54 ACTINIDIACEAE Saurauia punduana Wall. 55 STACHYURACEAE Shorea robusta Gaertn. 56 DIPTEROCARPACEAE	36	CLUSIACEAE	Garcinia cowa Roxb. ex DC.
39 CLUSIACEAE Mesua ferrea L. 40 CLUSIACEAE Mesua floribunda (Wall.) Kosterm. 41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya paponica Thunb. 46 THEACEAE Eurya japonica Thunb. 47 THEACEAE Gordonia excelsa Blume 47 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia roxburghii Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	37	CLUSIACEAE	Garcinia stipulata T. Anderson
40 CLUSIACEAE Mesua floribunda (Wall.) Kosterm. 41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya carasifolia (D. Don) Kobuski 45 THEACEAE Eurya cerasifolia (D. Don) Kobuski 46 THEACEAE Eurya japonica Thunb. 47 THEACEAE Gordonia excelsa Blume 47 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Ternstroemia Mutis ex L.f. 49 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 51 ACTINIDIACEAE Saurauia napaulensis DC. 52 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	38	CLUSIACEAE	Garcinia xanthochymus Hook f.
41 THEACEAE Camellia kissi Wall. 42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya carasifolia (D. Don) Kobuski 45 THEACEAE Eurya japonica Thunb. 46 THEACEAE Gordonia excelsa Blume 47 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Ternstroemia Mutis ex L.f. 49 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia napaulensis DC. 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia nopaulensis DC. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller </td <td>39</td> <td>CLUSIACEAE</td> <td>Mesua ferrea L.</td>	39	CLUSIACEAE	Mesua ferrea L.
42 THEACEAE Eurya acuminata DC. 43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya cerasifolia (D. Don) Kobuski 45 THEACEAE Eurya japonica Thunb. 46 THEACEAE Eurya acuminata DC. (D. Don) Kobuski 47 THEACEAE Eurya japonica Thunb. 48 THEACEAE Gordonia excelsa Blume 47 THEACEAE Ternstroemia Mutis ex L.f. 48 THEACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 51 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia roxburghii Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	40	CLUSIACEAE	Mesua floribunda (Wall.) Kosterm.
43 THEACEAE Eurya cavinervis Vesque 44 THEACEAE Eurya cerasifolia (D. Don) Kobuski 45 THEACEAE Eurya japonica Thunb. 46 THEACEAE Gordonia excelsa Blume 47 THEACEAE Gordonia excelsa Blume 48 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Ternstroemia Mutis ex L.f. 49 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	41	THEACEAE	Camellia kissi Wall.
44 THEACEAE Eurya cerasifolia (D. Don) Kobuski 45 THEACEAE Eurya japonica Thunb. 46 THEACEAE Gordonia excelsa Blume 47 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Ternstroemia Mutis ex L.f. 49 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia roxburghii Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	42	THEACEAE	Eurya acuminata DC.
45 THEACEAE Eurya japonica Thunb. 46 THEACEAE Gordonia excelsa Blume 47 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Ternstroemia Mutis ex L.f. 49 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia roxburghii Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Shorea robusta Gaertn. 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	43	THEACEAE	Eurya cavinervis Vesque
46 THEACEAE Gordonia excelsa Blume 47 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Ternstroemia Mutis ex L.f. 49 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	44	THEACEAE	Eurya cerasifolia (D. Don) Kobuski
47 THEACEAE Schima wallichii (DC.) Korth. 48 THEACEAE Ternstroemia Mutis ex L.f. 49 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	45	THEACEAE	Eurya japonica Thunb.
48 THEACEAE Ternstroemia Mutis ex L.f. 49 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	46	THEACEAE	Gordonia excelsa Blume
49 ACTINIDIACEAE Saurauia fasciculata Wall. 50 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	47	THEACEAE	Schima wallichii (DC.) Korth.
50 ACTINIDIACEAE Saurauia griffithi Dyer 51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	48	THEACEAE	Ternstroemia Mutis ex L.f.
51 ACTINIDIACEAE Saurauia macrotricha Kurz ex Dyer 52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	49	ACTINIDIACEAE	Saurauia fasciculata Wall.
52 ACTINIDIACEAE Saurauia napaulensis DC. 53 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	50	ACTINIDIACEAE	Saurauia griffithi Dyer
53 ACTINIDIACEAE Saurauia punduana Wall. 54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	51	ACTINIDIACEAE	Saurauia macrotricha Kurz ex Dyer
54 ACTINIDIACEAE Saurauia roxburghii Wall. 55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	52	ACTINIDIACEAE	Saurauia napaulensis DC.
55 STACHYURACEAE Stachyurus himalaicus Hook. f. & Thomson 56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	53	ACTINIDIACEAE	Saurauia punduana Wall.
56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	54	ACTINIDIACEAE	Saurauia roxburghii Wall.
56 DIPTEROCARPACEAE Shorea robusta Gaertn. 57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	55	STACHYURACEAE	Stachyurus himalaicus Hook. f. & Thomson
57 MALVACEAE Kydia calycina Roxb. 58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller	56		
58 MALVACEAE Nayariophyton ziziphifolium (Griff.) D.G. Long & A.G Miller			Kydia calycina Roxb.
60 BOMBACACEAE Bombax ceiba L.			

91 ELAEOCARPACEAE Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa		
63 STERCULIACEAE Eriolaena hookeriana Wright & Am. 64 STERCULIACEAE Eriolaena wallichii DC. 65 STERCULIACEAE Firmiana colorata (Roxb.) R. Br. 66 STERCULIACEAE Firmiana fulgens (Wall. ex Master) Comer 67 STERCULIACEAE Pterospermum acerifolium (L.) Willd. 68 STERCULIACEAE Pterospermum acerifolium (L.) Willd. 68 STERCULIACEAE Pterospermum acerifolium (L.) Willd. 69 STERCULIACEAE Reevesia pubescens Master 70 STERCULIACEAE Reevesia wallchii R. Br. 71 STERCULIACEAE Sterculia kingi Prain 73 STERCULIACEAE Sterculia roxburghi Wall. 74 STERCULIACEAE Grewia abutilfolia Vent. 75 TILIACEAE Grewia abutilfolia Vent. 76 TILIACEAE Grewia sepiraia G.Don 78 TILIACEAE Grewia serulata DC. 80 TILIACEAE Grewia sepiraia G.Don 81 TILIACEAE Elaeocarpus alsace Moxb. 82 ELAEOCARPACEAE Elaeocarpus serulata DC.	 BOMBACACEAE	Ceiba pentandra (L.) Gaertn.
64 STERCULACEAE Eriolaena wallichii DC. 65 STERCULACEAE Firmiana colorata (Roxb.) R. Br. 66 STERCULACEAE Firmiana fulgens (Wall. ex. Master) Comer 67 STERCULACEAE Pterospermum acerifolium (L.) Willd. 68 STERCULACEAE Pterospermum acerifolium (L.) Willd. 69 STERCULACEAE Revesia pubescens Master 70 STERCULACEAE Revesia wallichii R. Br. 71 STERCULACEAE Stercula kingii Prain 72 STERCULACEAE Stercula kingii Prain 73 STERCULACEAE Stercula rokburghi Wall. 74 STERCULACEAE Stercula vilosa Roxb. ex W.W.Smith 75 TILACEAE Grewia abutifofial Vent. 76 TILACEAE Grewia sepiaria G.Don 77 TILACEAE Grewia segiaria G.Don 80 TILACEAE Grewia segiaria G.Don 81 TILACEAE Elaeocarpus aristatus Roxb. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus aristatus Roxb.	 STERCULIACEAE	Abroma augusta (L.) L.f.
65 STERCULIACEAE Firmiana colorata (Roxb.) R. Br. 66 STERCULIACEAE Firmiana fulgens (Wall. ex. Master) Comer 67 STERCULIACEAE Pterospermum acerifolium (L.) Willd. 68 STERCULIACEAE Pterygota alata (Roxb.) R. Br. 69 STERCULIACEAE Reevesia pubescens Master 70 STERCULIACEAE Reevesia walichii R. Br. 71 STERCULIACEAE Sterculia hamiltonii (Kuntze) Adelbert 72 STERCULIACEAE Sterculia hamiltonii (Kuntze) Adelbert 73 STERCULIACEAE Sterculia villosa Roxb. ex WW.Smith 74 STERCULIACEAE Sterculia villosa Roxb. ex WW.Smith 75 TILIACEAE Grewia abritifolia Vent. 76 TILIACEAE Grewia abritifolia Vent. 77 TILIACEAE Grewia apticarpa A. Juss. 77 TILIACEAE Grewia apticarpa A. Juss. 79 TILIACEAE Grewia apticarpa A. Juss. 80 TILIACEAE Grewia apticarpa A. Juss. 81 TILIACEAE Grewia protoaps arrutata DC. 83 ELAEOCARPACEAE Elaeocarpus arrutata DC. 84 ELAEOCARPACEAE	 STERCULIACEAE	Eriolaena hookeriana Wright & Am.
66 STERCULIACEAE Firmiana fulgens (Wall. ex. Master) Comer 67 STERCULIACEAE Pterospermum acerifolium (L.) Willd. 68 STERCULIACEAE Pterygota alata (Roxb.) R.Br. 69 STERCULIACEAE Reevesia pubescens Master 70 STERCULIACEAE Reevesia wallichii R. Br. 71 STERCULIACEAE Sterculia hamiltonii (Kuntze) Adelbert 72 STERCULIACEAE Sterculia roxburghii Wall. 74 STERCULIACEAE Sterculia roxburghii Wall. 75 TILIACEAE Sterculia villosa Roxb. ex W.W.Smith 76 TILIACEAE Grewia abutilifolia Vent. 76 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia rolozano 79 TILIACEAE Grewia servulata DC. 81 TILIACEAE Microcos paniculata L. 82 ELAEOCARPACEAE Elaeocarpus aristaus Roxb. 83 ELAEOCARPACEAE Elaeocarpus siftatus Roxb. 84 ELAEOCARPACEAE Elaeocarpus siftatus Roxb. 85 ELAEOCARPACEAE Elaeocarpus siftatus Roxb.	STERCULIACEAE	Eriolaena wallichii DC.
67 STERCULIACEAE Pterospermum acerifolium (L.) Willd. 68 STERCULIACEAE Pterygota alata (Roxb.) R.Br. 69 STERCULIACEAE Reevesia pubescens Master 70 STERCULIACEAE Reevesia pubescens Master 71 STERCULIACEAE Reevesia pubescens Master 72 STERCULIACEAE Sterculia hamiltonii (Kuntze) Adelbert 72 STERCULIACEAE Sterculia villosa Roxb. ex W.W.Smith 73 STERCULIACEAE Sterculia villosa Roxb. ex W.W.Smith 74 STERCULIACEAE Grewia abutilifolia Vent. 76 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia serulata DC. 80 TILIACEAE Grewia serulata DC. 81 TILIACEAE Grewia serulata DC. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus seratus L. 86 ELAEOCARPACEAE Elaeocarpus seratus L. 87 ELAEOCARPACEAE Elaeocarpus systaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus systaericus (Gaertn.) K.Schum. 89 ELAEOCARPACEAE Elaeocarpus seratus L. 80 ELAEOCARPACEAE Elaeocarp	STERCULIACEAE	Firmiana colorata (Roxb.) R. Br.
68 STERCULIACEAE Pterygota alata (Roxb.) R.Br. 69 STERCULIACEAE Reevesia pubescens Master 70 STERCULIACEAE Reevesia wallichii R. Br. 71 STERCULIACEAE Sterculia hamiltonii (Kuntze) Adelbert 72 STERCULIACEAE Sterculia roburghii Wall. 73 STERCULIACEAE Sterculia roburghii Wall. 74 STERCULIACEAE Grewia abutilifolia Vent. 76 TILIACEAE Grewia abutilifolia Vent. 77 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia serrulata DC. 81 TILIACEAE Microcos paniculata L. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus serratus L. 84 ELAEOCARPACEAE Elaeocarpus serratus L. 85 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus setectorius (Gaert) K.Schum. <td< td=""><td>STERCULIACEAE</td><td>Firmiana fulgens (Wall. ex Master) Comer</td></td<>	STERCULIACEAE	Firmiana fulgens (Wall. ex Master) Comer
69 STERCULIACEAE Reevesia pubescens Master 70 STERCULIACEAE Reevesia wallichii R. Br. 71 STERCULIACEAE Sterculia kingii Prain 73 STERCULIACEAE Sterculia kingii Prain 74 STERCULIACEAE Sterculia kingii Prain 75 STERCULIACEAE Sterculia villosa Roxb. ex W.W.Smith 76 TILIACEAE Grewia abutilifolia Vent. 77 TILIACEAE Grewia abutilifolia Vent. 78 TILIACEAE Grewia rothi DC. 79 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia serulata DC. 81 TILIACEAE Microcos paniculata L. 82 ELAEOCARPACEAE Elaeocarpus afistatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus silonibundus Blume 84 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 85 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 86 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 87 ELAEOCARPACEAE Elaeocarpus vanuus BuchHam. Ex Master	STERCULIACEAE	Pterospermum acerifolium (L.) Willd.
70 STERCULIACEAE Reevesia wallichii R. Br. 71 STERCULIACEAE Sterculia hamiltonii (Kuntze) Adelbert 72 STERCULIACEAE Sterculia kingii Prain 73 STERCULIACEAE Sterculia roxburghii Wall. 74 STERCULIACEAE Sterculia villosa Roxb. ex W.W.Smith 75 TILIACEAE Grewia abutilfolia Vent. 76 TILIACEAE Grewia eriocarpa A. Juss. 77 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia sepiaria G.Don 79 TILIACEAE Grewia serrulata DC. 81 TILIACEAE Grewia serrulata DC. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 84 ELAEOCARPACEAE Elaeocarpus serratus L. 85 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus serratus L. 87 ELAEOCARPACEAE Elaeocarpus serratus L. 88 ELAEOCARPACEAE Elaeocarpus serratus L. 89 ELAEOCARPACEAE Elaeocarpus sertus L. 81 ELAEOCARPACEAE Elaeocarpus sertus L. 82 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90	STERCULIACEAE	Pterygota alata (Roxb.) R.Br.
71 STERCULIACEAE Sterculia hamiltonii (Kuntze) Adelbert 72 STERCULIACEAE Sterculia kingii Prain 73 STERCULIACEAE Sterculia roxburghii Wall. 74 STERCULIACEAE Sterculia villosa Roxb, ex W.W.Smith 75 TILIACEAE Grewia abutilifolia Vent. 76 TILIACEAE Grewia eriocarpa A. Juss. 77 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia sepiaria G.Don 81 TILIACEAE Grewia sepiaria G.Don 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 84 ELAEOCARPACEAE Elaeocarpus serratus L. 85 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus serratus L. 88 ELAEOCARPACEAE Elaeocarpus serratus L. 89 ELAEOCARPACEAE Elaeocarpus serratus L. 89 ELAEOCARPACEAE Elaeocarpus serratus L. 89	STERCULIACEAE	Reevesia pubescens Master
72 STERCULIACEAE Sterculia kingii Prain 73 STERCULIACEAE Sterculia roxburghii Wall. 74 STERCULIACEAE Sterculia vilosa Roxb. ex W.W.Smith 75 TILIACEAE Grewia abutilifolia Vent. 76 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia serulata DC. 81 TILIACEAE Grewia serulata DC. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 84 ELAEOCARPACEAE Elaeocarpus serratus L. 85 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus serratus L. 88 ELAEOCARPACEAE Elaeocarpus serratus L. 89 ELAEOCARPACEAE Elaeocarpus serratus L. 90 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Rehder & Wilson var. assamalca (E Coode	STERCULIACEAE	Reevesia wallichii R. Br.
73 STERCULIACEAE Sterculia roxburghii Wall. 74 STERCULIACEAE Sterculia villosa Roxb. ex W.W. Smith 75 TILIACEAE Grewia abutilifolia Vent. 76 TILIACEAE Grewia eriocarpa A. Juss. 77 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia sepiaria G.Don 79 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia serulata DC. 81 TILIACEAE Grewia serulata DC. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus serratus L. 85 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 87 ELAEOCARPACEAE Elaeocarpus serratus L. 88 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaerth.) K.Schum. 89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Rehder & Wilson var. assamaica (E 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E 92	STERCULIACEAE	Sterculia hamiltonii (Kuntze) Adelbert
74 STERCULIACEAE Sterculia villosa Roxb. ex W.W.Smith 75 TILIACEAE Grewia abutilifolia Vent. 76 TILIACEAE Grewia eriocarpa A. Juss. 77 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia rothii DC. 79 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia sepiaria G.Don 81 TILIACEAE Grewia serrulata DC. 81 TILIACEAE Microcos paniculata L. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus siktimensis Masters 85 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea	STERCULIACEAE	Sterculia kingii Prain
75 TILIACEAE Grewia abutilifolia Vent. 76 TILIACEAE Grewia eriocarpa A. Juss. 77 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia rothil DC. 79 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia sepiaria G.Don 81 TILIACEAE Grewia serrulata DC. 81 TILIACEAE Microcos paniculata L. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 85 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Rehder & Wilson var. assamaica (E 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Reh	STERCULIACEAE	Sterculia roxburghii Wall.
76 TILIACEAE Grewia eriocarpa A, Juss. 77 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia rothii DC. 79 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia serulata DC. 81 TILIACEAE Microcos paniculata L. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 84 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus serratus L. 88 ELAEOCARPACEAE Elaeocarpus serratus L. 89 ELAEOCARPACEAE Elaeocarpus serratus L. 90 ELAEOCARPACEAE Elaeocarpus serratus L. 91 ELAEOCARPACEAE Elaeocarpus serratus L. 91 ELAEOCARPACEAE Elaeocarpus serratus L. 92 ELAEOCARPACEAE Elaeocarpus serratus L. 93 ELAEOCARPACEAE	STERCULIACEAE	Sterculia villosa Roxb. ex W.W.Smith
77 TILIACEAE Grewia optiva Burret 78 TILIACEAE Grewia rothii DC. 79 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia serrulata DC. 81 TILIACEAE Grewia serrulata DC. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus serratus L. 87 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus subaericus (Gaertn.) K.Schum. 89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Rehder & Wilson var. assamaica (E 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Be	 TILIACEAE	Grewia abutilifolia Vent.
78 TILIACEAE Grewia rothii DC. 79 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia serrulata DC. 81 TILIACEAE Grewia serrulata DC. 81 TILIACEAE Microcos paniculata L. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus serratus L. 85 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 87 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus subaericus (Gaertn.) K.Schum. 89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 91 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Rehder & Wilson var. assamaica (E 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea torculiacea (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Cor	 TILIACEAE	Grewia eriocarpa A. Juss.
79 TILIACEAE Grewia sepiaria G.Don 80 TILIACEAE Grewia serrulata DC. 81 TILIACEAE Microcos paniculata L. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 84 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus lanceifolius Roxb. 85 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus sybaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus tectorius (Lour.) Poiret 89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	TILIACEAE	Grewia optiva Burret
80 TILIACEAE Grewia serrulata DC. 81 TILIACEAE Microcos paniculata L. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus floribundus Blume 85 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 87 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 88 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea torenculiacea (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	 TILIACEAE	Grewia rothii DC.
81 TILIACEAE Microcos paniculata L. 82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus floribundus Roxb. 85 ELAEOCARPACEAE Elaeocarpus sloreifolius Roxb. 86 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 87 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus tectorius (Lour.) Poiret 89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea torculiacea (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	 TILIACEAE	Grewia sepiaria G.Don
82 ELAEOCARPACEAE Elaeocarpus aristatus Roxb. 83 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus lanceifolius Roxb. 85 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus serratus L. 87 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 88 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 91 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson var. sterculiacea 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	 TILIACEAE	Grewia serrulata DC.
83 ELAEOCARPACEAE Elaeocarpus floribundus Blume 84 ELAEOCARPACEAE Elaeocarpus lanceifolius Roxb. 85 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus serratus L. 87 ELAEOCARPACEAE Elaeocarpus synaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus tectorius (Lour.) Poiret 89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson var. sterculiacea 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	 TILIACEAE	Microcos paniculata L.
84 ELAEOCARPACEAE Elaeocarpus lanceifolius Roxb. 85 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 87 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus tectorius (Lour.) Poiret 89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	 ELAEOCARPACEAE	Elaeocarpus aristatus Roxb.
85 ELAEOCARPACEAE Elaeocarpus serratus L. 86 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 87 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus tectorius (Lour.) Poiret 89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	 ELAEOCARPACEAE	Elaeocarpus floribundus Blume
86 ELAEOCARPACEAE Elaeocarpus sikkimensis Masters 87 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus tectorius (Lour.) Poiret 89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson var. sterculiacea 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	 ELAEOCARPACEAE	Elaeocarpus lanceifolius Roxb.
87 ELAEOCARPACEAE Elaeocarpus sphaericus (Gaertn.) K.Schum. 88 ELAEOCARPACEAE Elaeocarpus tectorius (Lour.) Poiret 89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 94 RUTACEAE Sloanea tomentosa (Benth.) Mig. 95 RUTACEAE Aegle marmelos (L) Correa	 ELAEOCARPACEAE	Elaeocarpus serratus L.
88 ELAEOCARPACEAE Elaeocarpus tectorius (Lour.) Poiret 89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 94 RUTACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 95 RUTACEAE Aegle marmelos (L) Correa	ELAEOCARPACEAE	Elaeocarpus sikkimensis Masters
89 ELAEOCARPACEAE Elaeocarpus varunus BuchHam. Ex Master 90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E 91 ELAEOCARPACEAE Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	 ELAEOCARPACEAE	Elaeocarpus sphaericus (Gaertn.) K.Schum.
90 ELAEOCARPACEAE Sloanea dasycarpa (Benth.) Hemsl. 91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 94 RUTACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 95 RUTACEAE Aegle marmelos (L) Correa	 ELAEOCARPACEAE	Elaeocarpus tectorius (Lour.) Poiret
91 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (E Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	 ELAEOCARPACEAE	Elaeocarpus varunus BuchHam. Ex Master
91 ELAEOCARPACEAE Coode 92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	 ELAEOCARPACEAE	
92 ELAEOCARPACEAE Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea 93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa	ELAEOCARPACEAE	Sloanea sterculiacea (Benth.) Rehder & Wilson var. assamaica (Benth.) Coode
93 ELAEOCARPACEAE Sloanea tomentosa (Benth.) Rehder & Wilson 94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa		Sloanea sterculiacea (Benth.) Rehder & Wilson var. sterculiacea
94 RUTACEAE Acronychia pedunculata (L.) Miq. 95 RUTACEAE Aegle marmelos (L) Correa		
95 RUTACEAE Aegle marmelos (L) Correa		
96 RUTACEAE Citrus reticulate Blanco		
97 RUTACEAE Micromelum integerrimum (Co1ebr.)		
98 RUTACEAE Melicope lunu-ankenda (Gaertn.) Hartley		
99 RUTACEAE Murraya koenigii (L.) Spreng.		

100	RUTACEAE	Murraya paniculata (L.)Jack
101	RUTACEAE	Skimmia arborescens Gamble
101	RUTACEAE	Skimmia aureola (DC.) Walp. subsp. multinervia (Huang) Taylor & Airy Shaw
103	RUTACEAE	Tetradium fraxinifolium (Hook.) Hartley
104	RUTACEAE	Tetradium glabrifolium (Benth.) Hartley
105	RUTACEAE	Tetradium ruticarpum (Juss.) Hartley
106	RUTACEAE	Zanthoxylum acanthopodium DC.
107	RUTACEAE	Zanthoxylum armatum DC.
108	RUTACEAE	Zanthoxylum myriacanthum Hook. f.
109	RUTACEAE	Zanthoxylum ovalifolium Wight
110	RUTACEAE	Zanthoxylum rhesta (Roxb.) DC.
111	SIMAROUDACEAE	Ailanthus integrifolia Lam.
112	SIMAROUDACEAE	Brucea mollis Wall. ex Kurz.
113	SIMAROUDACEAE	Picrasmajavanica Blume
114	BURSERACEAE	Canarium strictum Roxb.
115	BURSERACEAE	Garugafloribunda Decne.
116	BURSERACEAE	Garuga pinnata Roxb.
117	MELIACEAE	Aglaia perviridis Hiern
118	MELIACEAE	Aglaia spectabilis (Miq.) Jain & Bennet
119	MELIACEAE	Aphanamixis polystachya (Wall.)
120	MELIACEAE	Azadirachta indica Juss.
121	MELIACEAE	Chisocheton cumingianus (C.DC.)Hanns
122	MELIACEAE	Chukrasia tabularis Juss.
123	MELIACEAE	Cipadessa baccifera (Roth) Miq.
124	MELIACEAE	Dysoxylum binectariferum (Roxb.) Beddome
125	MELIACEAE	Dysoxylum excelsum Blume
126	MELIACEAE	Dysoxylum mollissimum Blume
127	MELIACEAE	Dysoxylum reticulatum King
128	MELIACEAE	Heynea trijuga Roxb.
129	MELIACEAE	Melia azedarach L.
130	MELIACEAE	Sphaerosacme decandra (Wall.) Penn.
131	MELIACEAE	Toona ciliata Roem.
132	MELIACEAE	Toona microcarpa (C. DC) Harms
133	MELIACEAE	Toona sureni (Blume) Merr.
134	MELIACEAE	Walsura tubulata Hiem
135	MELIACEAE	Walsura robusta Roxb.
136	OLACEAE	Olax acuminata Wall. ex Benth.
137	ICACINACEAE	Platea latifolia Blume
138	ICACINACEAE	Nothapodytes foetida (Wright) Sleumer

139	OPILIACEAE	Lepionurus sylvestris Blume
140	AQUIFOLIACEAE	Ilex dipyrena Wall. Ilex fragilis Hook. f.
142	AQUIFOLIACEAE	Ilex godajam (Colebr.) Hook.f.
143	AQUIFOLIACEAE	Ilex hookeri King
144	AQUIFOLIACEAE	Ilex kingiana Cockerell
145	AQUIFOLIACEAE	Ilex sikkimensis Kurz
146	CELASTRACEAE	Bhesha robusta (Roxb.) Ding
147	CELASTRACEAE	Cassine glauca (Rottb.) Kuntze
148	CELASTRACEAE	Euonymus hamiltonianus Wall.
149	CELASTRACEAE	Lophopetalum wightianum Am.
150	CELASTRACEAE	Maytenus hookeri Loes.
151	CELASTRACEAE	Maytenus kurzii Bennet & Sahni
152	CELASTRACEAE	Maytenus rufa (Wall.) Kara
153	CELASTRACEAE	Maytenus sikkimensis (Prain) Raju & Babu
154	CELASTRACEAE	Microtropis discolor (Wall.) Wall.
155	CELASTRACEAE	Siphonodon celastrineus Griff.
156	RHAMNACEAE	Hovenia acerba Lindley
157	RHAMNACEAE	Ziziphus incurva Roxb.
158	RHAMNACEAE	Ziziphus mauritiana Lam.
159	SAPINDACEAE	Lepisanthes rubiginosa (Roxb.) Leenb.
160	SAPINDACEAE	Sapindus detergens Wall.
161	HIPPOCASTANACEAE	Aesculus assamica Wall.
162	HIPPOCASTANACEAE	Aesculus indica (Carnbess.) Hook.f.
163	ACERACEAE	Acer cappadocicum Gled.
164	ACERACEAE	Acer campbellii Hook. f. & Thomson ex Hiern
165	ACERACEAE	Acer caudatum Wall.
166	ACERACEAE	Acer oblongum Wall. ex DC.
167	ACERACEAE	Acer osmastonii Gamble
168	ACERACEAE	Acer hookeri Miq.
169	ACERACEAE	Acer laevigatum Wall.
170	ACERACEAE	Acer pectinatum Wall. ex Pax
171	ACERACEAE	Acer sikkimense Miq.
172	ACERACEAE	Acer stachyophyllum Hiern
173	ACERACEAE	Acer sterculiaceum Wall.
174	ACERACEAE	Acer thomsonii Miq.
175	STAPHYLEACEAE	Turpinia nepalensis Wight & Am.
176	STAPHYLEACEAE	Turpinia pomifera (Roxb.) DC.
177	SABIACEAE	Meliosma dilleniifolia (Wight & Am.) Walp.

178	SABIACEAE	Meliosma pinnata (Roxb.) Maxim.
179	SABIACEAE	Meliosma simplicifolia (Roxb.) Walp. var. thomsonii (Brandis) Beuseicon
180	ANACARDIACEAE	Choerospondias axillaris (Roxb.) Burtt & Hill
181	ANACARDIACEAE	Drimycarpus racemosus (Roxb.) Hook. f.
182	ANACARDIACEAE	Lannea coromandelica (Houtt.) Merr.
183	ANACARDIACEAE	Mangifera indica L.
184	ANACARDIACEAE	Mangifera sylvatica Roxb.
185	ANACARDIACEAE	Rhus griffithii Hook. f.
186	ANACARDIACEAE	Rhus hookeri Sahni & Bahadur
187	ANACARDIACEAE	Rhus chinensis Mill.
188	ANACARDIACEAE	Rhus succedanea L.
189	ANACARDIACEAE	Semecarpus anacardium L.f.
190	ANACARDIACEAE	Spondias pinnata (L.f.) Kurz
191	MORINGACEAE	Moringa oleifera L am.
192	FABACEAE (s.l.)	Acacia auriculiformis A. Cunn. & Benth.
193	FABACEAE (s.l.)	Acacia catechu (L.f.) Willd.
194	FABACEAE (s.l.)	Acacia decurrens Willd.
195	FABACEAE (s.l.)	Acacia famesiana (L.) Willd.
196	FABACEAE (s.l.)	Acacia lenticularis Benth.
197	FABACEAE (s.l.)	Acacia melanoxylum R.Br.
198	FABACEAE (s.l.)	Acrocarpus fraxinifolius Am.
199	FABACEAE (s.l.)	Adenanthera pavonina L.
200	FABACEAE (s.l.)	Albizia chinensis (Osbeck.) Merr.
201	FABACEAE (s.l.)	Albizia gamblei Prain
202	FABACEAE (s.l.)	Albizia julibrissin Durazz.
203	FABACEAE (s.l.)	Albizia lebbeck (L.) Benth.
204	FABACEAE (s.l.)	Albizia lucidior (Steud.) Hara
205	FABACEAE (s.l.)	Albizia odoratissima (L.f.) Benth.
206	FABACEAE (s.l.)	Albizia procera (Roxb.) Benth.
207	FABACEAE (s.l.)	Archidendron monadelphum (Roxb.) I.C. Nielson
208	FABACEAE (s.l.)	Archidendron clypearia (Jack) I.C.Neilsen
209	FABACEAE (s.l.)	Bauhinia malabarica Roxb.
210	FABACEAE (s.l.)	Bauhinia purpurea L.
211	FABACEAE (s.l.)	Bauhinia variegata L.
212	FABACEAE (s.l.)	Butea monosperma (Lam.) Kuntze
213	FABACEAE (s.l.)	Cassia fistula L.
214	FABACEAE (s.l.)	Dalbergia assamica Benth.
215	FABACEAE (s.l.)	Dalbergia latifolia Roxb.
216	FABACEAE (s.l.)	Dalbergia rimosa Roxb.

217	FABACEAE (s.l.)	Dalbergia sericea G. Don
218	FABACEAE (s.l.)	Dalbergia sissoo DC.
219	FABACEAE (s.l.)	Delonix regia (Hook.) Raf.
220	FABACEAE (s.l.)	Erythrina stricta Roxb.
221	FABACEAE (s.l.)	Erythrina arborescens Roxb.
222	FABACEAE (s.l.)	Erythrina variegata L.
223	FABACEAE (s.l.)	Leucaena leucocephala (Lam.) de Wit
224	FABACEAE (s.l.)	Ormosia glauca Wall.
225	FABACEAE (s.l.)	Pongamia pinnata (L.) Pierre
226	FABACEAE (s.l.)	Ougeinia oojeinensis Hochr.
227	FABACEAE (s.l.)	Samanea saman (Jacq.) Merr.
228	FABACEAE (s.l.)	Tamarindus indicus L.
229	ROSACEAE	Cotoneaster bacillaris Lindl.
230	ROSACEAE	Cotoneaster frigidus Lindl.
231	ROSACEAE	Docynia indica (Wall.) Decne.
232	ROSACEAE	Eriobotrya hookeriana Decne.
233	ROSACEAE	Eriobotrya dubia (Lindley) Decne.
234	ROSACEAE	Eriobotrya petiolata Hook. f.
235	ROSACEAE	Malus pumila Mill.
236	ROSACEAE	Malus sikkimensis (Wenz.) Koehne
237	ROSACEAE	Photinia integrifolia Lindl.
238	ROSACEAE	Prunus arborea (Blume) Kalkman
239	ROSACEAE	Prunus armeniaca L.
240	ROSACEAE	Prunus carmesina Hara
241	ROSACEAE	Prunus cerasoides D. Don
242	ROSACEAE	Prunus cerasus L.
243	ROSACEAE	Prunus ceylanica (Wight) Miq.
244	ROSACEAE	Prunus cornuta (Royle) Steud.
245	ROSACEAE	Prunus domestica L.
246	ROSACEAE	Prunus napaulensis (Ser.) Steud.
247	ROSACEAE	Prunus persica (L.) Batsch
248	ROSACEAE	Prunus rufa Hook. f.
249	ROSACEAE	Prunus undulata D. Don
250	ROSACEAE	Prunus venosa Koehne
251	ROSACEAE	Pyrus pashia D.Don
252	ROSACEAE	Pyrus communis L.
253	ROSACEAE	Sorbus arachnoidea Koehne
254	ROSACEAE	Sorbus ferruginea (Wenz.) Rehder
255	ROSACEAE	Sorbus foliolosa (Wall.) Spach

256	ROSACEAE	Sorbus griffithii (Decne.) Rehder
257	ROSACEAE	Sorbus hedlundi A.Schneid.
258	ROSACEAE	Sorbus insignis (Hook, f.) HedL
259	ROSACEAE	Sorbus kurzii (Prain) A.Schneid.
260	ROSACEAE	Sorbus microphylla Wenz.
261	ROSACEAE	Sorbus pratti Koehne
262	ROSACEAE	Sorbus rhamnoides (Decne.) Rehder
263	ROSACEAE	Sorbus rufopilosa A.Schneid.
264	ROSACEAE	Sorbus thibetica (Cardot) Hand-Mazz.
265	ROSACEAE	Sorbus thomsonii (Hook, f.) Rehder
266	ROSACEAE	Sorbus vestita (G.Don) Lodd.
267	ROSACEAE	Sorbus wallichii (Hook, f.)Yu
268	HYDRANGEACEAE	Hydrangea heteromala D.Don
269	HYDRANGEACEAE	Hydrangea robusta Hook. f. & Thomson
270	ITEACEAE	Itea macrophylla Roxb.
271	HAMAMELIDACEAE	Exbucklandia populnea (R. Br. ex. Griff.) R.Br.
272	RHIZOPHORACEAE	Carallia brachiata (Lour.) Merr.
272	COMBRETACEAE	Anogeissus acuminata (DC.) Guill. & Perr.
273	COMBRETACEAE	Terminalia alata Roth
275	COMBRETACEAE	Terminalia bellirica (Gaertn.) Roxb.
276	COMBRETACEAE	Terminalia catappa L.
277	COMBRETACEAE	Terminalia chebula Retz.
278	COMBRETACEAE	Terminalia crinata (Gaertn.) Roxb.
279	COMBRETACEAE	Terminalia myriocarpa Van Heurck & A. Muell.
280	MYRTACEAE	Callistemon citrinus (Curtis) Skeel
281	MYRTACEAE	Eucalyptus tereticornis W.W.Smith
282	MYRTACEAE	Eugenia bracteata (Willd.) Roxb.
283	MYRTACEAE	Psidium guajava L.
284	MYRTACEAE	Syzygium balsameum (Wight)Cowan & Cowan
285	MYRTACEAE	Syzygium claviflorum (Roxb.) Cowan & Cowan
286	MYRTACEAE	Syzygium cumini (L.) Skeel
287	MYRTACEAE	Syzygium formosum (WalL) Masam.
288	MYRTACEAE	Syzygium jambos (L.) Alston
289	MYRTACEAE	Syzygium kurzii (Duthie) N.P. Balakr.
290	MYRTACEAE	Syzygium leptantha Benth.
291	MYRTACEAE	Syzygium operculatum (Roxb.) Neidenzu
292	MYRTACEAE	Syzygium praecox (Roxb.) Rathakr. & Nair
293	MYRTACEAE	Syzygium ramosissimum (Blume) N.P. Balakr.
294	MYRTACEAE	Syzygium tetragonum (Wight) Walp.

295	MYRTACEAE	Syzygium venosum DC.
295		
296	LECYTHIDACEAE	Careya arborea Roxb. Careya herbacea Roxb.
298	LYTHRACEAE	Lagerstroemia minuticarpa Debb. ex P.C. Kanjilal
299	LYTHRACEAE	Lagerstroemia parviflora Roxb.
300	LYTHRACEAE	Lagerstroemia reginae Roxb.
301	SONNERATIACEAE	Duabanga grandiflora (DC.) Walp.
302	DATISCACEAE	Tetrameles nudiflora R. Br.
303	ARALIACEAE	Aralia foliosa Seem.
304	ARALIACEAE	Brassaiopsis glomerulata (Blume) Regel
305	ARALIACEAE	Brassaiopsis hainla (D. Don) Seem.
306	ARALIACEAE	Brassaiopsis hispida Seem.
307	ARALIACEAE	Brassaiopsis mitis C.B.Clarke
308	ARALIACEAE	Gamblea ciliata C.B.Ciarke
309	ARALIACEAE	Heteropanax fragrans Seem.
310	ARALIACEAE	Macropanax dispermus (Blume) Kuntze
311	ARALIACEAE	Macropanax undulatus (G.Don) Seem.
312	ARALIACEAE	Merrilliopanax alpinus (C.B.Clarke) Shang
313	ARALIACEAE	Pentapanax fragrans (D. Don) Ha
314	ARALIACEAE	Pentapanax leschenaultia Seem.
315	ARALIACEAE	Pentapanax racemosus Seem.
316	ARALIACEAE	Schefflera eleta (D. Don) Harms
317	ARALIACEAE	Schefflera impressa (C.B.Clarke) Harms
318	ARALIACEAE	Trevesia palmata (Roxb.)Vis.
319	CORNACEAE	Benthamidia capitata (Wall.) Kara
320	CORNACEAE	Mastixia arborea C.B. Clarke
321	CORNACEAE	Mastixia pentandra Blume subsp. chinensis (Merr.) Mathews
322	CORNACEAE	Swida controversa (Hemsl.) Sojak
323	CORNACEAE	Swida macrophylla (Wall.) Sojak
324	TORICELLIACEAE	Toricellia tillifolia DC.
325	ALANGIACEAE	Alangium alpinium (C.B.Clarke) W.W. Smith & Cave
326	ALANGIACEAE	Alangium chinense (Lour.) Harms
327	ALANGIACEAE	Alangium salviifolium (L.f.) Wangerin
328	NYSSACEAE	Nyssa javanica Wengerin
329	CAPRIFOLIACEAE	Viburnum coriaceum Blume
330	CAPRIFOLIACEAE	Viburnum erubescens DC.
331	CAPRIFOLIACEAE	Viburnum grandiflorum DC.
332	CAPRIFOLIACEAE	Viburnum mullaha D.Don
333	SAMBUCACEAE	Sambucus javanica Reinw. ex Blume

334	RUBIACEAE	Canthium glabrnm Blume
335	RUBIACEAE	Catunaregam longispina (Link) Tirveng.
336	RUBIACEAE	Cephalanthus tetrandra (Roxb.)Ridsdale exBakh. f.
337	RUBIACEAE	Gardenia turgida Roxb.
338	RUBIACEAE	Haldinia flaccidum Wall.
339	RUBIACEAE	Haldinia cordifolia (Roxb.)Ridsdale
340	RUBIACEAE	Hymenodictyon orixense (Roxb.) Mabberlev
341	RUBIACEAE	Hyptianthera stricta (W.W.Smith) Wight & Arn.
342	RUBIACEAE	Khasiaclunea oligocephala (Havil.) Ridsdale
343	RUBIACEAE	Meyna spinosa Roxb. ex Link
344	RUBIACEAE	Mitragyna rotundifolia (Roxb.) Kuntze
345	RUBIACEAE	Morinda angustifolia Roxb.
346	RUBIACEAE	Neolamarckia cadamba (Roxb.) Bosser
347	RUBIACEAE	Neonauclea grijfithii Hook. f.
348	RUBIACEAE	Pavetta tomentosa Roxb. ex Sm.
349	RUBIACEAE	Psydrax kingii (Hook.f.) D.M. Bridson & L.S.Springate
350	RUBIACEAE	Tamilnadia uliginosa (Retz.) Tirveng. & Sastre
351	RUBIACEAE	Tarrenoidea wallichii (Hook. f.) Tirveng. & Sastre
352	RUBIACEAE	Wendlandia grandis (Hook, f.) Cowan
353	RUBIACEAE	Wendlandia heynei (A.Roem. & Schultes) Santapau & Merchant
354	RUBIACEAE	Wendlandia pendula (Roxb.) DC.
355	RUBIACEAE	Wendlandia puberula DC.
356	RUBIACEAE	Wendlandia sikkimensis Cowan
357	RUBIACEAE	Wendlandia tinctoria (Roxb.) DC.
358	RUBIACEAE	Wendlandia wallichii Wight & Arn.
359	RUBIACEAE	Wendlandia coriacea (Wall.) DC.
360	ASTERACEAE (COMPOSITAE)	Vernonia talaumifolia Hook. f. & Thomson
361	ASTERACEAE (COMPOSITAE)	Vernonia volkameriifolia DC.
362	ERICACEAE	Enkianthus deflexus (Griff.) C.K.Schneid
363	ERICACEAE	Lyonia ovalifolia (Wall.) Drude
364	ERICACEAE	Lyonia villosa (Hook, f. ex C.B. Clarke) Hand-Mazz.
365	ERICACEAE	Pieris formosa (Wall.) D.Don
366	ERICACEAE	Rhododendron arboreum Sm.
367	ERICACEAE	Rhododendron arboretum Sm. subsp. cinnamomeum (G. Don) Tagg
368	ERICACEAE	Rhododendron arboretum Sm. subsp. cinnamomeum (G. Don) Tagg var. roseum Lindl.
369	ERICACEAE	Rhododendron arboreum Sm.subsp. delavayi (Franch.) D.F.Chamber1ain
370	ERICACEAE	Rhododendron barbatum Wall. ex G.Don
371	ERICACEAE	Rhododendron argipeplum Balfour f. & Cooper

372	ERICACEAE	Rhododendron campanulatum D.Don
373	ERICACEAE	Rhododendron falconeri Hook. f.
374	ERICACEAE	Rhododendron cinnabarinum Hook. f. subsp. cinnabarinum
375	ERICACEAE	Rhododendron grande Wight
376	ERICACEAE	Rhododendron griffithianum Wight
377	ERICACEAE	Rhododendron hodgsonii Hook. F.
378	ERICACEAE	Rhokdodendron kendrikii Nuttal
379	ERICACEAE	Rhododendron niveum Hook.f
380	ERICACEAE	Rhododendron thomsonii Hook.f.
381	MYRSINACEAE	Embelia tsjeriam-cottam A. DC.
382	MYRSINACEAE	Maesa argentea (Wall.) A. DC.
383	MYRSINACEAE	Maesa chisia D.Don
384	MYRSINACEAE	Maesa macrophylla (Wall.) A. DC.
385	MYRSINACEAE	Maesa montana A. DC.
386	MYRSINACEAE	Myrsine semiserrata Wall.
387	MYRSINACEAE	Rapanea capitellata (Wall.) Mez.
388	SAPOTACEAE	Diploknema butyracea (Roxb.) H.J.Lam
389	SAPOTACEAE	Mimusops elengi L.
390	SAPOTACEAE	Sacrosperma arboreum Hook. f.
391	SAPOTACEAE	Xantolis hookeri (C.B.Clarke) Royen
392	EBENACEAE	Diospyros lanceifolia Roxb.
393	EBENACEAE	Diospyros lotus L.
394	EBENACEAE	Diospyros malabarica (Desr.) Kostel.
395	EBENACEAE	Diospyros montana Roxb.
396	STYRACACEAE	Styrax grandiflorus Griff.
397	STYRACACEAE	Styrax serrulatus Roxb.
398	SYMPLOCACEAE	Symplocos caudata Wall.
399	SYMPLOCACEAE	Symplocos cochinchinensis (Lour.) S. Moore
400	SYMPLOCACEAE	Symplocos dryophila C.B.Clarke
401	SYMPLOCACEAE	Symplocos glomerata King ex C.B.Ciarke
402	SYMPLOCACEAE	Symplocos lucida (Thunb.) Siebold & Zucc.
403	SYMPLOCACEAE	Symplocos paniculata (Thunb.) Miq.
404	SYMPLOCACEAE	Symplocos pyrifolia Wall. ex G.Don
405	SYMPLOCACEAE	Symplocos racemosa Roxb.
406	SYMPLOCACEAE	Symplocos ramosissiima Wall. ex. G.Don
407	SYMPLOCACEAE	Symplocos spicata Roxb.
408	SYMPLOCACEAE	Symplocos sumuntia BuchHam. ex D.Don
h		
409	SYMPLOCACEAE	Symplocos theifolia D.Don

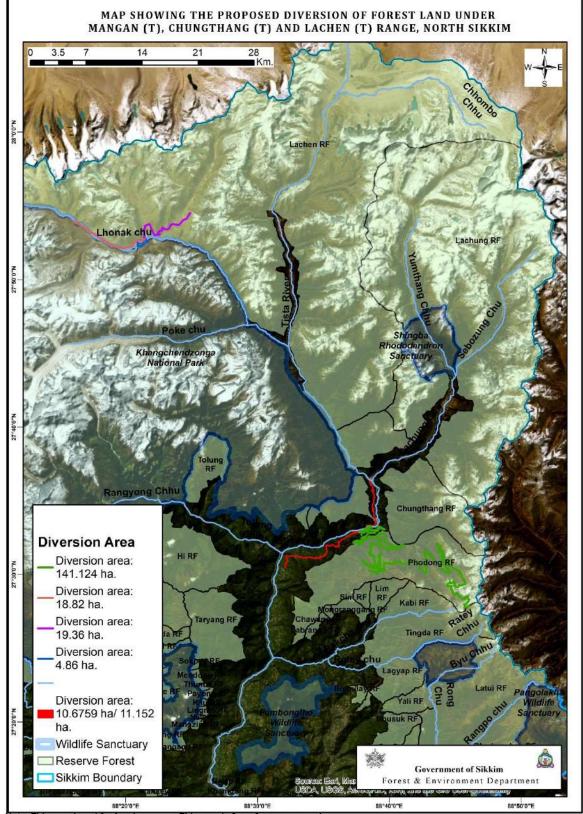
411	OLEACEAE	Fraxinus floribunda Wall.
412	OLEACEAE	Fraxinus paxiana Lingelsh. var. sikkimense Lingelsh.
413	OLEACEAE	Ligustrum compactum (Wall. ex DC.) Hook.f. & Thorn ex Brandis
414	OLEACEAE	Ligustrum confusum Decne.
415	OLEACEAE	Ligustrum robustum (Roxb.) Blume
416	OLEACEAE	Nyctanthes arbor-tristis L.
417	OLEACEAE	Olea dioica Roxb.
418	OLEACEAE	Olea gamblei C.B. Clarke
419	OLEACEAE	Osmanthus fragrans Lour. var. longifolius DC. Hara
420	OLEACEAE	Osmanthus suavis King ex C.B.Clarke
421	APOCYNACEAE	Alstonia neriifolia D.Don
422	APOCYNACEAE	Alstonia scholaris (L.) R.Br.
423	APOCYNACEAE	Cerbera manghas L.
424	APOCYNACEAE	Holarrhena pubescens (BuchHam.) Wall, ex G.Don
425	APOCYNACEAE	Nerium oleander L.
426	APOCYNACEAE	Plumeria rubra L.
427	APOCYNACEAE	Thevetia peruviana (Pers.) Schum.
428	APOCYNACEAE	Wrightia arborea (Dennst.) Mabberly
429	APOCYNACEAE	Wrightia coccinea (Roxb.) Sims
430	APOCYNACEAE	Wrightia sikkimensis Gamble
431	BUDDLEJACEAE	Buddleja colvilei Hook. f. & Thomson
432	BUDDLEJACEAE	Buddleja paniculata Wall.
433	BUDDLEJACEAE	Buddleja macrostachya Benth.
434	GENTIANACEAE	Fagrea obovata Wall.
435	EHRETIACEAE	Cordia grandis Roxb.
436	EHRETIACEAE	Cordia obliqua Willd.
437	EHRETIACEAE	Ehretia serrata Roxb.
438	EHRETIACEAE	Ehretia laevis Roxb.
439	EHRETIACEAE	Ehretia macrophylla Wall.
440	EHRETIACEAE	Ehretia psilosiphon Mill.
441	EHRETIACEAE	Ehretia wallichiana Hook. f. & Thomson
442	SOLANACEAE	Solanum erianthum D.Don
443	SCROPHULARIACEAE	Wightia speciosissima (D.Don) Merr.
444	GESNERIACEAE	Rhynchotechum ellipticum (Wall. ex. D. Dietr.) A.DC.
445	BIGNONIACEAE	Jacaranda mimosifolia D.Don
446	BIGNONIACEAE	Oroxylum indicum (L.) Vent.
447	BIGNONIACEAE	Radermachera sinica (Hance) Hemsley
448	BIGNONIACEAE	Stereospermum colais (Dillwyn) Mabberley
449	BIGNONIACEAE	Stereospermum chelonoides (L.f.) DC.

450	ACANTHACEAE	Phlogacanthus thyrsiflorus (Roxb.) Nees
451	VERBENACEAE	Callicarpa lobata C.B.Clarke
452	VERBENACEAE	Callicarpa longifolia Lam.
453	VERBENACEAE	Callicarpa macrophylla Vahl
454	VERBENACEAE	Callicarpa vestita Wall. ex C.B. Clarke
455	VERBENACEAE	Callicarpa arborea Roxb.
456	VERBENACEAE	Clerodendrum bracteatum Walp.
457	VERBENACEAE	Clerodendrum serratum (L.) Moon
458	VERBENACEAE	Clerodendrum colebrookeanum Walp.
459	VERBENACEAE	Gmelina arborea Roxb.
460	VERBENACEAE	Premna coriacea C.B. Clarke var. oblonga C.B. Clarke
461	VERBENACEAE	Premna flavescens BuchHam. ex C.B.Clarke
462	VERBENACEAE	Premna interrupta Wall. ex Schauer
463	VERBENACEAE	Premna latifolia Roxb.
464	VERBENACEAE	Premna lucidula Miq.
465	VERBENACEAE	Premna barbata Schauer
466	VERBENACEAE	Premna benghalensis C. B.Clarke
467	VERBENACEAE	Premna bracteata Wall. ex C.B. Clarke
468	VERBENACEAE	Tectona grandis L.f.
469	VERBENACEAE	Vitex negundo L.
470	VERBENACEAE	Vitex pinnata L.
471	VERBENACEAE	Vitex quinata (Lour.) Williams
472	VERBENACEAE	Vitex heterophylla Roxb.
473	VERBENACEAE	Vitex peduncularis Schauer
474	LAMIACEAE (LABIATAE)	Leucosceptrum canum Sm.
475	MYRISTICACEAE	Horsfieldia kingii (Hook. f.) Warb.
476	MYRISTICACEAE	Knema tenuinervia W.J.J.O. de Willd.
477	MYRISTICACEAE	Knema erratica (Hook. f. & Thomson) Sinclair
478	MYRISTICACEAE	Knema linifolia Warb.
479	LAURACEAE	Actinodaphne angustifolia (Blume) Nees
480	LAURACEAE	Actinodaphne longipes Kosterm.
481	LAURACEAE	Actinodaphne obovata (Nees) Blume
482	LAURACEAE	Actinodaphne sikkimensis Meisn.
483	LAURACEAE	Alseodaphne owdenii Parker
484	LAURACEAE	Beilschmiedia assamica Meisn.
485	LAURACEAE	Beilschmiedia clarkei Hook. f.
486	LAURACEAE	Beilschmiedia dalzellii (Meisn.) Kosterm.
487	LAURACEAE	Beilschmiedia gammieana Hook. f.
488	LAURACEAE	Beilschmiedia roxburghiana Nees

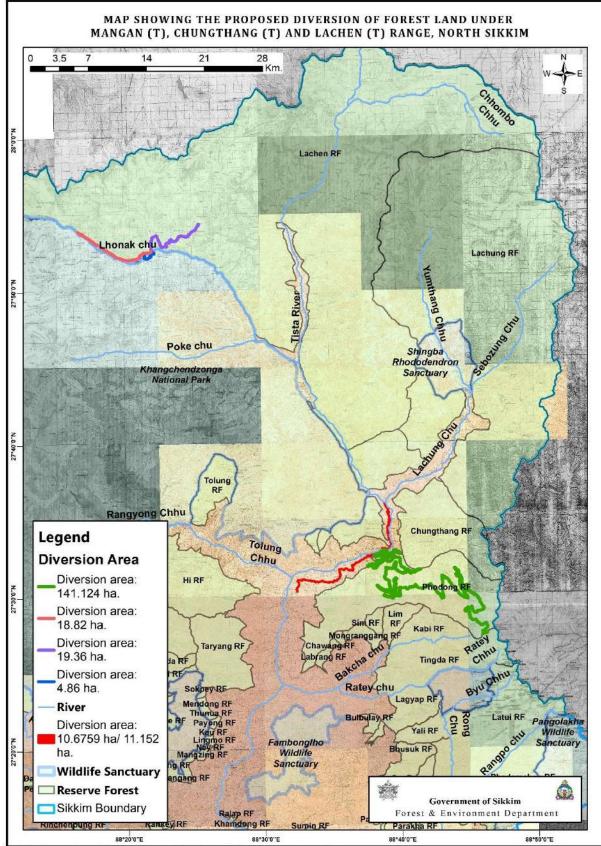
489 LAURACEAE Beilschmiedia sikkimensis Hook. f. 490 LAURACEAE Cinnadenia paniculata (Hook. f.) Kosterm. 491 LAURACEAE Cinnamomum bejolghota (Ham.) Sweet 492 LAURACEAE Cinnamomum cecidodaphne Meisn. 493 LAURACEAE Cinnamomum glanduliferum (Wall.) Meisn. 494 LAURACEAE Cinnamomum glaucescens (Nees.) Hand-Mazz	
491 LAURACEAE Cinnamomum bejolghota (Ham.) Sweet 492 LAURACEAE Cinnamomum cecidodaphne Meisn. 493 LAURACEAE Cinnamomum glanduliferum (Wall.) Meisn.	
492 LAURACEAE Cinnamomum cecidodaphne Meisn. 493 LAURACEAE Cinnamomum glanduliferum (Wall.) Meisn.	
493 LAURACEAE Cinnamomum glanduliferum (Wall.) Meisn.	
494 LAONACEAL Chinamonium gradescens (Nees.) Hand-Wazz	
495 LAURACEAE Cinnamomum impressinervium Meisn.	
496 LAURACEAE Cinnamomum tamala (BuchHam.) Nees & Eberm.	
497 LAURACEAE Cinnamomum tenuipilis Kosterm.	
498 LAURACEAE Cryptocarya amygdalina Nees	
499 LAURACEAE Dodecadenia grandiflora Nees	
500 LAURACEAE Lindera assamica (Meisn.) Kurz	
501 LAURACEAE Lindera hamiltonii Kosterm.	
502 LAURACEAE Lindera heterophylla Meisn.	
503 LAURACEAE Lindera latifolia Hook.f	
504 LAURACEAE Lindera neesiana (Wall. ex Nees) Kurz	
505 LAURACEAE Lindera pulcherrima (Nees) Hook. f.	
506 LAURACEAE Litsea albescens (Hook. f.) D.G.Long	
507 LAURACEAE Litsea chartacea (Nees) Hook. f.	
508 LAURACEAE Litsea citrata Blume	
509 LAURACEAE Litsea cubeba (Lour.) Pers.	
510 LAURACEAE Litsea elongata (Nees) Hook.f.	
511 LAURACEAE Litsea glutinosa (Lour.) Robins.	
512 LAURACEAE Litsea hookeri (Meisn.) D.G.Long	
513 LAURACEAE Litsea kingii Hook.f.	
514 LAURACEAE Litsea laeta (Nees) Hook	
515 LAURACEAE Litsea monopetala (Roxb.) Pers.	
516 LAURACEAE Litsea panananja (Nees) Hook.f.	
517 LAURACEAE Litsea polyantha Juss.	
518 LAURACEAE Litsea salicifolia (Nees) Hook. f.	
519 LAURACEAE Litsea sikkimensis (Meisn.) D.G.Long	
520 LAURACEAE Machilus edulis King	
521 LAURACEAE Neocinnamomum caudatum (Nees) Merr.	
522 LAURACEAE Neolitsea cuipala (D.Don) Kosterm.	
523 LAURACEAE Neolitsea foliosa (Nees) Gamble	
524 LAURACEAE Persea americana Mill.	
525 LAURACEAE Persea clarkeana (Hook, f.) Kostenn.	
526 LAURACEAE Persea duthiei (Hook, f.) Kosterm.	
520 Extension Fersee during (rissigning for the fermionic sector) 527 LAURACEAE Persea fructifera Kosterm.	

228 LAURACEAE Persea ganuercens (Nees) D.G.Long 529 LAURACEAE Persea ganuercens (Nees) D.G.Long 530 LAURACEAE Persea minutifiora Kosterm. 531 LAURACEAE Persea odoratissima (Nees) Kosterm. 532 LAURACEAE Persea odoratissima (Nees) Kosterm. 533 LAURACEAE Persea odoratissima (Nees) Nees 534 LAURACEAE Phobe hatenesian Brandis 535 LAURACEAE Phobe lanceolata (Nees) Nees 536 LAURACEAE Phobe lanceolata (Nees) Nees 537 PROTEACEAE Helicia nilagirica Beldome 538 SANTALACEAE Prularia edulls (Null.) A.D.C. 539 EUPHORBIACEAE Alchomea nullifolia (Benth.) Muell. 540 EUPHORBIACEAE Antidesma acdum Retz. 541 EUPHORBIACEAE Antidesma acuminatum Wight 542 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 544 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 545 EUPHORBIACEAE Bischofia javanica Blume 546 EUPHORBIACEAE <td< th=""><th>520</th><th></th><th></th></td<>	520		
530 LAURACEAE Persea kurzii (Hook, f.) Kostenn. 531 LAURACEAE Persea minutiflora Kosterm. 532 LAURACEAE Persea odoratissima (Nees) Kosterm. 533 LAURACEAE Persea robusta (Km) Kosterm. 534 LAURACEAE Phobe attenuata (Nees) Nees 535 LAURACEAE Phobe hanceolata (Nees) Nees 536 LAURACEAE Phobe hanceolata (Nees) Nees 537 PROTEACEAE Helicia nilagirica Beddome 538 SANTALACEAE Pyrularia edulis (Wall.) A.DC. 539 EUPHORBIACEAE Antidesma acuminatum Wight 540 EUPHORBIACEAE Antidesma acuminatum Wight 541 EUPHORBIACEAE Antidesma gaueniarum Wight 542 EUPHORBIACEAE Antidesma gaueniarum Wight 543 EUPHORBIACEAE Antidesma gaueniarum Wight 544 EUPHORBIACEAE Bischofia javanica Blume 545 EUPHORBIACEAE Bischofia javanica Blume 546 EUPHORBIACEAE Brideila netusa (L) Spreng. 547 EUPHORBIACEAE Brideila netusa (L) Spreng. 548 EUPHORBIACEAE Brideila netusa (L) Spreng. 550 EUPHORBIACEAE Croton nadutus Geiseler 551 EUPHORBIACEAE Croton roburgh			
531 LAURACEAE Persea minutifiora Kosterm. 532 LAURACEAE Persea odoratissima (Nees) Kosterm. 533 LAURACEAE Persea robusta (Sm.) Kosterm. 534 LAURACEAE Phobe hatesuata (Nees) Nees 535 LAURACEAE Phobe hatesuata (Nees) Nees 536 LAURACEAE Phobe hatesuata (Nees) Nees 537 PROTEACEAE Heidia nilagirka Beddome 538 SANTALACEAE Pyrularia edulis (Wall.) A.DC. 539 EUPHORBIACEAE Alchomea mollis Muell. 541 EUPHORBIACEAE Antidesma acuminatum Wight 542 EUPHORBIACEAE Antidesma acuminatum Wight 543 EUPHORBIACEAE Antidesma glasembils Gaertn. 544 EUPHORBIACEAE Antidesma glasembils Gaertn. 545 EUPHORBIACEAE Bichofia javanica Blume 546 EUPHORBIACEAE Bichofia javanica Blume 547 EUPHORBIACEAE Bidelia rotusa (L) Spreng. 548 EUPHORBIACEAE Bidelia rotusa (L) Spreng. 549 EUPHORBIACEAE Bidelia rotusa (L) Spreng. 550 EUPHORBIACEAE Bidelia rotusa (L) Spreng. 551 EUPHORBIACEAE Croton roburghi N.P. Balakr. 552 EUPHORBIACEAE Croton roburghi N.P.			
532 LAURACEAE Persea odoratissima (Nees) Kosterm. 533 LAURACEAE Persea robusta (Sm.) Kosterm. 534 LAURACEAE Phobe Attenuata (Nees) Nees 535 LAURACEAE Phobe halnesiana Brandis 536 LAURACEAE Phobe halnesiana Brandis 537 PROTEACEAE Helica nilagirica Beddome 538 SANTALACEAE Pyrularia edulis (Wall.) A.DC. 539 EUPHORBIACEAE Alchomea mollis Muell. 540 EUPHORBIACEAE Antidesma acidum Retz. 541 EUPHORBIACEAE Antidesma acidum Retz. 542 EUPHORBIACEAE Antidesma bulus (L.) Spreng. 544 EUPHORBIACEAE Antidesma ghasembila Gaertn. 545 EUPHORBIACEAE Biscaurea ramifora Lour. 546 EUPHORBIACEAE Biscaurea ramifora Lour. 547 EUPHORBIACEAE Bridelia tomentosa Blume 548 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Bridelia tomentosa Blume 552 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 553 EUPHORBIACEAE Croton roburghti N.P. Balakr. 554 EUPHORBIACEAE Bridelia tomentosa Blume<	530	LAURACEAE	
533 LAURACEAE Persea robusta (Sm.) Kosterm. 534 LAURACEAE Phobe attenuata (Nees) Nees 535 LAURACEAE Phobe halnesiana Brandis 536 LAURACEAE Phobe lanceolata (Nees) Nees 537 PROTEACEAE Helicia nilagirica Beddome 538 SANTALACEAE Pyrularia edulis (Wall.) A. DC. 539 EUPHORBIACEAE Alchomea mollis Muell. 540 EUPHORBIACEAE Alchomea mollis Muell. 541 EUPHORBIACEAE Antidesma acidum Retz. 542 EUPHORBIACEAE Antidesma acuminatum Wight 543 EUPHORBIACEAE Antidesma acuminatum Wight 544 EUPHORBIACEAE Antidesma acuminatum Wight 545 EUPHORBIACEAE Antidesma acuminatum Wight 546 EUPHORBIACEAE Antidesma acuminatum Wight 547 EUPHORBIACEAE Baccaurea ramiflora Lour. 548 EUPHORBIACEAE Bitchofa javanica Blume 549 EUPHORBIACEAE Bridelia rotus Glusons 550 EUPHORBIACEAE Bridelia rotus Glusons 551 EUPHORBIACEAE Croton raudatus Geiseler 552 EUPHORBIACEAE Croton raudatus Geiseler 553 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman <td>531</td> <td>LAURACEAE</td> <td>Persea minutiflora Kostcrm.</td>	531	LAURACEAE	Persea minutiflora Kostcrm.
534 LAURACEAE Phobe attenuata (Nees) Nees 535 LAURACEAE Phobe halnesiana Brandis 536 LAURACEAE Phobe halnesiana Brandis 537 PROTEACEAE Helicia nilagirica Beddome 538 SANTALACEAE Pyrularia edulis (Wall.) A. DC. 539 EUPHORBIACEAE Alchomea mollis Muell. 540 EUPHORBIACEAE Alchomea mollis Muell. 541 EUPHORBIACEAE Antidesma acuminatum Wight 542 EUPHORBIACEAE Antidesma acuminatum Wight 543 EUPHORBIACEAE Antidesma acuminatum Wight 544 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 545 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 546 EUPHORBIACEAE Bicchofia javanica Blume 547 EUPHORBIACEAE Bridelia tomentosa Blume 548 EUPHORBIACEAE Bridelia pubescens Kurz 550 EUPHORBIACEAE Bridelia pubescens Kurz 551 EUPHORBIACEAE Croton raudatus Geiseler 552 EUPHORBIACEAE Croton raudatus Geiseler 553 EUPHORBIACEAE Croton roburghi N.P. Balakr. 554 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 555 EUPHORBIACEAE Drypetes subassi	532	LAURACEAE	Persea odoratissima (Nees) Kosterm.
535 LAURACEAE Phobe halnesiana Brandis 536 LAURACEAE Phobe lanceolata (Nees) Nees 537 PROTEACEAE Helicia nilagirica Beddome 538 SANTALACEAE Pyrularia edulis (Wall.) A. DC. 539 EUPHORBIACEAE Alchomea mollis Muell. 540 EUPHORBIACEAE Alchomea mollis Muell. 541 EUPHORBIACEAE Antidesma acidum Retz. 542 EUPHORBIACEAE Antidesma acidum Retz. 543 EUPHORBIACEAE Antidesma acidum Retz. 544 EUPHORBIACEAE Antidesma bunius (L) Spreng. 544 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 545 EUPHORBIACEAE Baccaurea ramifiora Lour. 546 EUPHORBIACEAE Bischofia javanica Blume 547 EUPHORBIACEAE Bridelia tomentosa Blume 548 EUPHORBIACEAE Bridelia pubescens Kurz 550 EUPHORBIACEAE Bridelia pubescens Kurz 551 EUPHORBIACEAE Croton raudatus Geiseler 552 EUPHORBIACEAE Croton nudatus Geiseler 553 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 554 EUPHORBIACEAE Drypetes subassilis (kurz) Pax & Hoffman 555 EUPHORBIACEAE Drypetes subass	533	LAURACEAE	Persea robusta (Sm.) Kosterm.
536 LAURACEAE Phobe lanceolata (Nees) Nees 537 PROTEACEAE Helicia nilagirica Beddome 538 SANTALACEAE Pyrularia eduis (Wall.) A. DC. 539 EUPHORBIACEAE Alchomea mollis Muell. 540 EUPHORBIACEAE Alchomea tiliifolia (Benth.) Muell. 541 EUPHORBIACEAE Antidesma acidum Retz. 542 EUPHORBIACEAE Antidesma acuminatum Wight 543 EUPHORBIACEAE Antidesma acuminatum Wight 544 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 545 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 546 EUPHORBIACEAE Bischofia javanica Blume 547 EUPHORBIACEAE Bischofia javanica Blume 548 EUPHORBIACEAE Bridelia oubescens Kurz 550 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Croton caudatus Geiseler 552 EUPHORBIACEAE Croton caudatus D.G.Long 554 EUPHORBIACEAE Drypetes subressilia (Hook.f.) Pax & Hoffman 555 EUPHORBIACEAE Drypetes subressilia (Hook.f.) Pax & Hoffman 556 EUPHORBIACEAE Drypetes subressilia (Muell.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes subressilia (Muell.) Pax & Hoffman </td <td>534</td> <td>LAURACEAE</td> <td>Phobe attenuata (Nees) Nees</td>	534	LAURACEAE	Phobe attenuata (Nees) Nees
537 PROTEACEAE Helicia nilagirica Beddome 538 SANTALACEAE Pyrularia edulis (Wall.) A. DC. 539 EUPHORBIACEAE Alchomea mollis Muell. 540 EUPHORBIACEAE Alchomea mollis Muell. 541 EUPHORBIACEAE Antidesma acidum Retz. 542 EUPHORBIACEAE Antidesma acuminatum Wight 543 EUPHORBIACEAE Antidesma acuminatum Wight 544 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 545 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 546 EUPHORBIACEAE Baccaurea ramiflora Lour. 547 EUPHORBIACEAE Bischoffa javanica Blume 548 EUPHORBIACEAE Bridelia pubescens Kurz 549 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Croton caudatus Geiseler 552 EUPHORBIACEAE Croton roburghi IN-, Balakr. 555 EUPHORBIACEAE Croton roburghi N-, Balakr. 555 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 556 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 557 EUPHORBIACEAE Protees subsessilis (Kurz) Pax & Hoffman 558 EUPHORBIACEAE Propetes subsessilis (Kurz) Pax & Hoffman <td< td=""><td>535</td><td>LAURACEAE</td><td>Phobe halnesiana Brandis</td></td<>	535	LAURACEAE	Phobe halnesiana Brandis
538 SANTALACEAE Pyrularia eduits (Wall.) A. DC. 539 EUPHORBIACEAE Alchomea mollis Muell. 540 EUPHORBIACEAE Alchomea tiliifolia (Benth.) Muell. 541 EUPHORBIACEAE Antidesma acidum Retz. 542 EUPHORBIACEAE Antidesma acuminatum Wight 543 EUPHORBIACEAE Antidesma acuminatum Wight 544 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 545 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 546 EUPHORBIACEAE Baccaurea ramiflora Lour. 547 EUPHORBIACEAE Bischofia javanica Blume 548 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia tomentosa Blume 550 EUPHORBIACEAE Croton caudatus Geiseler 551 EUPHORBIACEAE Croton raudatus Geiseler 553 EUPHORBIACEAE Croton roburghil N.P. Balakr. 555 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 556 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 551 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman	536	LAURACEAE	Phobe lanceolata (Nees) Nees
539 EUPHORBIACEAE Alchomea mollis Muell. 540 EUPHORBIACEAE Alchomea tiliifolia (Benth.) Muell. 541 EUPHORBIACEAE Antidesma acidum Retz. 542 EUPHORBIACEAE Antidesma acuminatum Wight 543 EUPHORBIACEAE Antidesma bunius (L.) Spreng. 544 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 545 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 546 EUPHORBIACEAE Baccaurea ramiflora Lour. 547 EUPHORBIACEAE Bischofia javanica Blume 548 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia pubescens Kurz 550 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Croton caudatus Geiseler 552 EUPHORBIACEAE Croton nadutus Geiseler 553 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 554 EUPHORBIACEAE Drypetes subsesilis (Kurz) Pax & Hoffman 555 EUPHORBIACEAE Drypetes subsesilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Flueggea acuminatum Muell. 550	537	PROTEACEAE	Helicia nilagirica Beddome
540 EUPHORBIACEAE Alchomea tiliifolia (Benth.) Muell. 541 EUPHORBIACEAE Antidesma acuminatum Wight 542 EUPHORBIACEAE Antidesma acuminatum Wight 543 EUPHORBIACEAE Antidesma bunius (L.) Spreng. 544 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 545 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 546 EUPHORBIACEAE Baccaurea ramiflora Lour. 547 EUPHORBIACEAE Bischofia javanica Blume 548 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 550 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Cleidion spiciflorum (Burm. f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton roxburghi N.P.Balakr. 554 EUPHORBIACEAE Drypetes sasamica (Hook.f.) Pax & Hoffman 555 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 556 EUPHORBIACEAE Flueggea virosa Willd 551 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 552 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 554 EUPHORBIACEAE Flueggea assamicum (Muell.)	538	SANTALACEAE	Pyrularia edulis (Wall.) A. DC.
541 EUPHORBIACEAE Antidesma acidum Retz. 542 EUPHORBIACEAE Antidesma acuminatum Wight 543 EUPHORBIACEAE Antidesma acuminatum Wight 544 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 545 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 546 EUPHORBIACEAE Baccaurea ramiflora Lour. 547 EUPHORBIACEAE Bischofia javanica Blume 548 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia pubescens Kurz 550 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Cleidion spiciflorum (Burm, f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 555 EUPHORBIACEAE Drypetes assamica (Hook, f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes subsessils (Kurz) Pax & Hoffman 558 EUPHORBIACEAE Prypetes subsessils (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Prypetes subsessils (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Flueggea aurinatum Muell.	539	EUPHORBIACEAE	Alchomea mollis Muell.
542 EUPHORBIACEAE Antidesma acuminatum Wight 543 EUPHORBIACEAE Antidesma bunius (L.) Spreng. 544 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 545 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 546 EUPHORBIACEAE Baccaurea ramiflora Lour. 547 EUPHORBIACEAE Bischofia javanica Blume 548 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia tomentosa Blume 550 EUPHORBIACEAE Bridelia tomentosa Blume 551 EUPHORBIACEAE Bridelia tomentosa Blume 552 EUPHORBIACEAE Bridelia tomentosa 553 EUPHORBIACEAE Cleidion spiciflorum (Burm. f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton roxburghi N.P.Balakr. 555 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 558 EUPHORBIACEAE Endospermum chinense Benth. 559 EUPHORBIACEAE Flueggea aurinatum Muell. 561 EUPHORBIACEAE Flueggea aurinatum Muell. 552 EUPHORBIACEAE Flueggea aurinsatum Muell. 553 <td< td=""><td>540</td><td>EUPHORBIACEAE</td><td>Alchomea tiliifolia (Benth.) Muell.</td></td<>	540	EUPHORBIACEAE	Alchomea tiliifolia (Benth.) Muell.
543 EUPHORBIACEAE Antidesma bunius (L.) Spreng. 544 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 545 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 546 EUPHORBIACEAE Baccaurea ramiflora Lour. 547 EUPHORBIACEAE Bischofia javanica Blume 548 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia tomentosa Blume 541 EUPHORBIACEAE Bridelia tomentosa Blume 552 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 553 EUPHORBIACEAE Cleidion spiciflorum (Burm. f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 554 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 555 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 556 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Flueggea virosa Wild 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea acuminatum Muell. 563 EUPHORBIACEAE Flueggea acuminatum Muell. 564 EUPHORBIACEAE Flueggea acuminatum Muell. 563 </td <td>541</td> <td>EUPHORBIACEAE</td> <td>Antidesma acidum Retz.</td>	541	EUPHORBIACEAE	Antidesma acidum Retz.
544 EUPHORBIACEAE Antidesma ghaesembila Gaertn. 545 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 546 EUPHORBIACEAE Baccaurea ramiflora Lour. 547 EUPHORBIACEAE Bischofia javanica Blume 548 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia tomentosa Blume 550 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Cleidion spiciflorum (Burm. f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 555 EUPHORBIACEAE Croton tiglium L 556 EUPHORBIACEAE Drypetes sasamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Flueggea virosa Willd 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicu (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. <tr< td=""><td>542</td><td>EUPHORBIACEAE</td><td>Antidesma acuminatum Wight</td></tr<>	542	EUPHORBIACEAE	Antidesma acuminatum Wight
545 EUPHORBIACEAE Aporosa octandra (D.Don) Vickery 546 EUPHORBIACEAE Baccaurea ramiflora Lour. 547 EUPHORBIACEAE Bischofia javanica Blume 548 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia tomentosa Blume 550 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Cleidion spiciflorum (Burm. f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton naudatus Geiseler 554 EUPHORBIACEAE Croton noxburghii N.P.Balakr. 555 EUPHORBIACEAE Croton tiglium L. 556 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Endospermum chinense Benth. 560 EUPHORBIACEAE Flueggea aurinatum Muell. 561 EUPHORBIACEAE Flueggea adatonii (Muell.) Hook, f. 562 EUPHORBIACEAE Flueggea daltonii (Muell.) Hook, f. <tr< td=""><td>543</td><td>EUPHORBIACEAE</td><td>Antidesma bunius (L.) Spreng.</td></tr<>	543	EUPHORBIACEAE	Antidesma bunius (L.) Spreng.
546 EUPHORBIACEAE Baccaurea ramifiora Lour. 547 EUPHORBIACEAE Bischofia javanica Blume 548 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia tomentosa Blume 550 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Cleidion spiciflorum (Burm. f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 554 EUPHORBIACEAE Croton tiglium L. 555 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Endospermum chinense Benth. 560 EUPHORBIACEAE Flueggea aurinatum Muell. 561 EUPHORBIACEAE Flueggea aurinatum Muell. 562 EUPHORBIACEAE Flueggea aurinatum Muell. 563 EUPHORBIACEAE Flueggea aurinatum Muell. 564 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 565	544	EUPHORBIACEAE	Antidesma ghaesembila Gaertn.
547 EUPHORBIACEAE Bischofia javanica Blume 548 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia pubescens Kurz 550 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Cleidion spiciflorum (Burm. f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton himalaicus D.G.Long 554 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 555 EUPHORBIACEAE Croton tiglium L. 556 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Endospermum chinense Benth. 560 EUPHORBIACEAE Flueggea aurinatum Muell. 561 EUPHORBIACEAE Flueggea aurinatum Muell. 562 EUPHORBIACEAE Flueggea daltonii (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hinsutum (Roxb.) Voigt <td>545</td> <td>EUPHORBIACEAE</td> <td>Aporosa octandra (D.Don) Vickery</td>	545	EUPHORBIACEAE	Aporosa octandra (D.Don) Vickery
548 EUPHORBIACEAE Bridelia tomentosa Blume 549 EUPHORBIACEAE Bridelia pubescens Kurz 550 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Cleidion spiciflorum (Burm. f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 554 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 555 EUPHORBIACEAE Croton tiglium L. 556 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Flueggea virosa Willd 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt	546	EUPHORBIACEAE	Baccaurea ramiflora Lour.
549 EUPHORBIACEAE Bridelia pubescens Kurz 550 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Cleidion spiciflorum (Burm. f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton himalaicus D.G.Long 554 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 555 EUPHORBIACEAE Croton tiglium L. 556 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Endospermum chinense Benth. 560 EUPHORBIACEAE Flueggea aurinatum Muell. 561 EUPHORBIACEAE Flueggea aurinatum Muell. 562 EUPHORBIACEAE Flueggea daltonii (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.)	547	EUPHORBIACEAE	Bischofia javanica Blume
550 EUPHORBIACEAE Bridelia retusa (L.) Spreng. 551 EUPHORBIACEAE Cleidion spiciflorum (Burm. f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton himalaicus D.G.Long 554 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 555 EUPHORBIACEAE Croton tiglium L. 556 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes indica (Muell.) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Endospermum chinense Benth. 560 EUPHORBIACEAE Flueggea virosa Willd 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Hook, f. 564 EUPHORBIACEAE Flueggea daltonii (Muell.) Voigt 565 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt	548	EUPHORBIACEAE	Bridelia tomentosa Blume
551 EUPHORBIACEAE Cleidion spiciflorum (Burm. f.) Merr. 552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton himalaicus D.G.Long 554 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 555 EUPHORBIACEAE Croton tiglium L. 556 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes indica (Muell.) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Endospermum chinense Benth. 560 EUPHORBIACEAE Flueggea acuminatum Muell. 561 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea assamicum (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	549	EUPHORBIACEAE	Bridelia pubescens Kurz
552 EUPHORBIACEAE Croton caudatus Geiseler 553 EUPHORBIACEAE Croton himalaicus D.G.Long 554 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 555 EUPHORBIACEAE Croton tiglium L. 556 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes indica (Muell.) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 560 EUPHORBIACEAE Flueggea virosa Willd 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt	550	EUPHORBIACEAE	Bridelia retusa (L.) Spreng.
553 EUPHORBIACEAE Croton himalaicus D.G.Long 554 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 555 EUPHORBIACEAE Croton tiglium L. 556 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes indica (Muell.) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 560 EUPHORBIACEAE Endospermum chinense Benth. 561 EUPHORBIACEAE Flueggea virosa Willd 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	551	EUPHORBIACEAE	Cleidion spiciflorum (Burm. f.) Merr.
554 EUPHORBIACEAE Croton roxburghii N.P.Balakr. 555 EUPHORBIACEAE Croton tiglium L. 556 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes indica (Muell.) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Endospermum chinense Benth. 560 EUPHORBIACEAE Flueggea virosa Willd 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	552	EUPHORBIACEAE	Croton caudatus Geiseler
555 EUPHORBIACEAE Croton tiglium L. 556 EUPHORBIACEAE Drypetes assamica (Hook.f.) Pax & Hoffman 557 EUPHORBIACEAE Drypetes indica (Muell.) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Endospermum chinense Benth. 560 EUPHORBIACEAE Flueggea virosa Willd 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	553	EUPHORBIACEAE	Croton himalaicus D.G.Long
556EUPHORBIACEAEDrypetes assamica (Hook.f.) Pax & Hoffman557EUPHORBIACEAEDrypetes indica (Muell.) Pax & Hoffman558EUPHORBIACEAEDrypetes subsessilis (Kurz) Pax & Hoffman559EUPHORBIACEAEEndospermum chinense Benth.560EUPHORBIACEAEFlueggea virosa Willd561EUPHORBIACEAEFlueggea acuminatum Muell.562EUPHORBIACEAEFlueggea assamicum (Muell.) Hook, f.563EUPHORBIACEAEFlueggea daltonii (Muell.) Kurz564EUPHORBIACEAEGlochidion hirsutum (Roxb.) Voigt565EUPHORBIACEAEGlochidion lanceolarium (Roxb.) Voigt	554	EUPHORBIACEAE	Croton roxburghii N.P.Balakr.
557 EUPHORBIACEAE Drypetes indica (Muell.) Pax & Hoffman 558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Endospermum chinense Benth. 560 EUPHORBIACEAE Flueggea virosa Willd 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	555	EUPHORBIACEAE	Croton tiglium L.
558 EUPHORBIACEAE Drypetes subsessilis (Kurz) Pax & Hoffman 559 EUPHORBIACEAE Endospermum chinense Benth. 560 EUPHORBIACEAE Flueggea virosa Willd 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	556	EUPHORBIACEAE	Drypetes assamica (Hook.f.) Pax & Hoffman
559 EUPHORBIACEAE Endospermum chinense Benth. 560 EUPHORBIACEAE Flueggea virosa Willd 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	557	EUPHORBIACEAE	Drypetes indica (Muell.) Pax & Hoffman
560 EUPHORBIACEAE Flueggea virosa Willd 561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	558	EUPHORBIACEAE	Drypetes subsessilis (Kurz) Pax & Hoffman
561 EUPHORBIACEAE Flueggea acuminatum Muell. 562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	559	EUPHORBIACEAE	Endospermum chinense Benth.
562 EUPHORBIACEAE Flueggea assamicum (Muell.) Hook, f. 563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	560	EUPHORBIACEAE	Flueggea virosa Willd
563 EUPHORBIACEAE Flueggea daltonii (Muell.) Kurz 564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	561	EUPHORBIACEAE	Flueggea acuminatum Muell.
564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	562	EUPHORBIACEAE	Flueggea assamicum (Muell.) Hook, f.
564 EUPHORBIACEAE Glochidion hirsutum (Roxb.) Voigt 565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt	563	EUPHORBIACEAE	Flueggea daltonii (Muell.) Kurz
565 EUPHORBIACEAE Glochidion lanceolarium (Roxb.) Voigt			

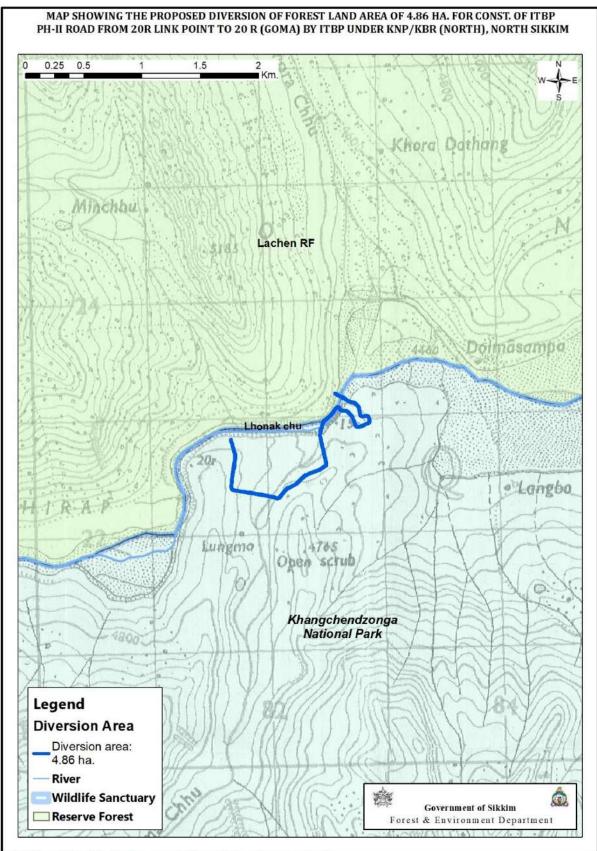
567	EUPHORBIACEAE	Glochidion sphaerogynum (Muell.) Kurz
568	EUPHORBIACEAE	Glochidion thomsoni Hook. f.
569	EUPHORBIACEAE	Glochidion velutinum Voight
570	EUPHORBIACEAE	Lasiococca symphylliifolia (Gamble) Hook.f.
571	EUPHORBIACEAE	Macaranga denticulata (Blume) Muell.
572	EUPHORBIACEAE	Macaranga gamblei Hook. f.
573	EUPHORBIACEAE	Macaranga indica Wight
574	EUPHORBIACEAE	Macaranga pustulata Hook. f.
575	EUPHORBIACEAE	Mallotus nepalensis Muell.
576	EUPHORBIACEAE	Mallotus oreophilus Muell.
577	EUPHORBIACEAE	Mallotus philippensis (Lam.) Muell.
578	EUPHORBIACEAE	Mallotus repandus (Willd.) Muell.
579	EUPHORBIACEAE	Mallotus roxburghianus Muell.
580	EUPHORBIACEAE	Mallotus tetracoccus (Roxb.) Kurz
581	EUPHORBIACEAE	Ostodes paniculata Blume
582	EUPHORBIACEAE	Phyllanthus acidus (L.) Skeel
583	EUPHORBIACEAE	Phyllanthus emblica L.
584	EUPHORBIACEAE	Sapium baccatum Roxb.
585	EUPHORBIACEAE	Sapium eugeniaefolium BuchHam. ex Hook.f.
586	EUPHORBIACEAE	Sapium insigne (Royle) Benth. ex Hook.f.
587	EUPHORBIACEAE	Suregada multiflora (Juss.) Baillon
588	EUPHORBIACEAE	Trewia nudiflora L.
589	EUPHORBIACEAE	Vernicia cordata (Thunb.) Airy Shaw
590	DAPHNIYLLACEAE	Daphniphyllum himalense (Benth.) MullArg. var. chartaceum (Rosenthal) Huang
591	DAPHNIYLLACEAE	Boehmeria rugulosa Wedd.
592	DAPHNIYLLACEAE	Boehmeria longifolia (Burm. f.) Wedd.
593	DAPHNIYLLACEAE	Debregeasia wallichiana Wedd.
594	DAPHNIYLLACEAE	Oreocnida frutescens (Thunb.) Miq.
595	DAPHNIYLLACEAE	Dendrocnide sinuata (Blume) Chew.
596	DAPHNIYLLACEAE	Oreocnida rubescens (Blume) Miq.
597	ULMACEAE	Celtis tetrandra Roxb.
598	ULMACEAE	Celtis timorensis Span.
599	ULMACEAE	Gironniera cupsidata (Blume) Kurz
600	ULMACEAE	Gironniera reticulata Thw.
601	ULMACEAE	Gironniera thomsoni King
602	ULMACEAE	Trema orientalis (L.) Blume
603	ULMACEAE	Trema politoria (Planch.) Blume
604	ULMACEAE	Ulmus lanceifolia Roxb. ex WalL
605	MORACEAE	Artocarpus chama Ham.

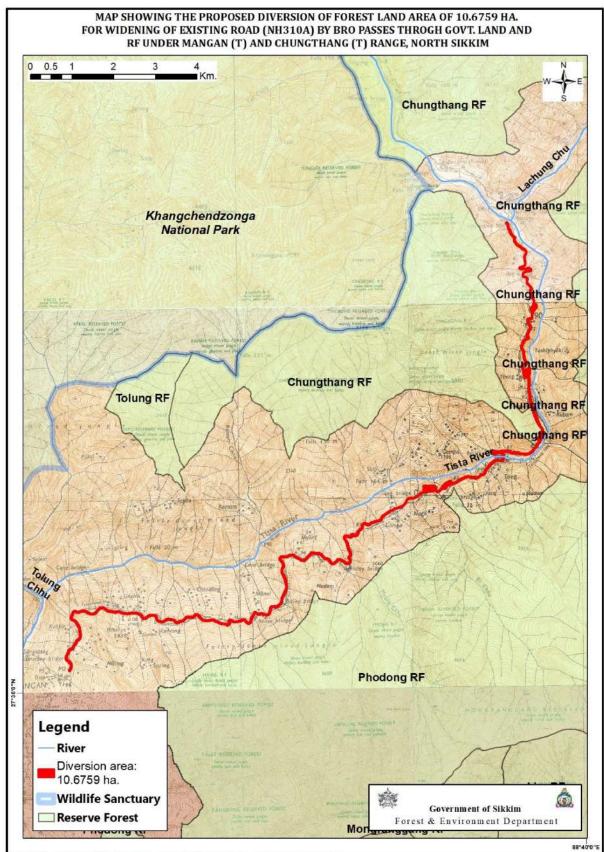

606	MORACEAE	Artocarpus heterophyllum Lam.
607	MORACEAE	Artocarpus lacucha Ham.
608	MORACEAE	Broussonetia papyrifera Vent.
609	MORACEAE	Ficus altisima Blume
610	MORACEAE	Ficus auriculata Lour.
611	MORACEAE	Ficus benghalensis L.
612	MORACEAE	Ficus benjamina L.
613	MORACEAE	Ficus concinna Miq.
614	MORACEAE	Ficus conglobata King
615	MORACEAE	Ficus curtipes Corner
616	MORACEAE	Ficus cyrtophylla Miq.
617	MORACEAE	Ficus drupacea Thunb.
618	MORACEAE	Ficus elastica Hornem.
619	MORACEAE	Ficus geniculata Kurz
620	MORACEAE	Ficus glaberrima Blume
621	MORACEAE	Ficus glabrata H.B. & K.
622	MORACEAE	Ficus hirta Vahl
623	MORACEAE	Ficus hookeriana Corner
624	MORACEAE	Ficus laevis Blume
625	MORACEAE	Ficus maclellandii King var. rhododendrifolia (Miq.) Corner.
626	MORACEAE	Ficus microcarpa L.f.
627	MORACEAE	Ficus neriifolia J.E. Smith
628	MORACEAE	Ficus oligodon Miq.
629	MORACEAE	Ficus prostrata Miq.
630	MORACEAE	Ficus racemosa L.
631	MORACEAE	Ficus religiosa L.
632	MORACEAE	Ficus rumphii Blume
633	MORACEAE	Ficus semicordata J.E. Smith
634	MORACEAE	Ficus subincisa J.E. Smith
635	MORACEAE	Ficus subulata Blume
636	MORACEAE	Ficus tinctoria A.Forst. subsp. parasitica (Willd) Corner
637	MORACEAE	Ficus virensAiton var. sublanceolata (Miq.) Corner
638	MORACEAE	Morus australis Poir.
639	MORACEAE	Morus macroura Miq.
640	MORACEAE	Streblus asper Lour.
641	JUGLANDACEAE	Engelhardia spicata Blume
642	JUGLANDACEAE	Juglans regia L.
643	BETULACEAE	Alnus nepalensis D.Don
644	BETULACEAE	Betula alnoides D.Don

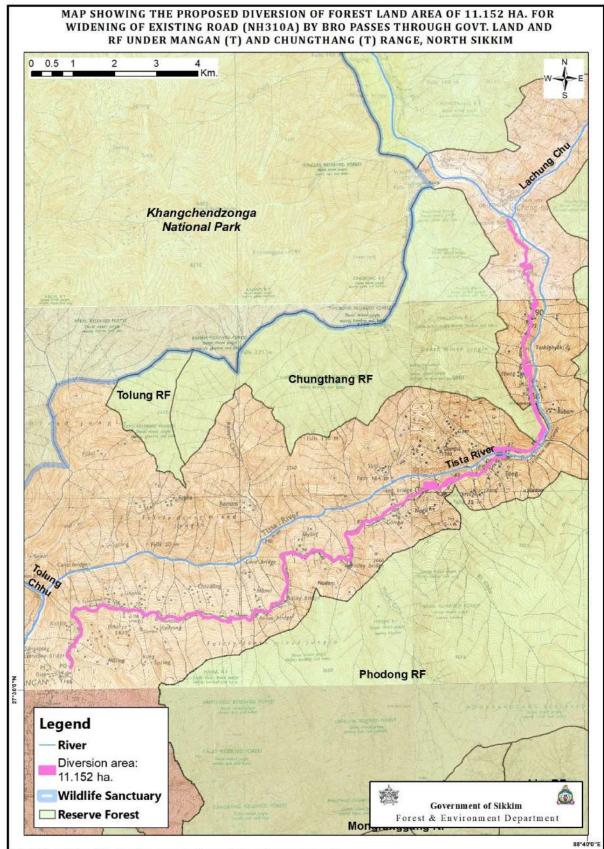
645	BETULACEAE	Betula utilis D.Don
646	BETULACEAE	Carpinus viminea Lindl.
647	BETULACEAE	Corylus ferox Wall.
648	FAGACEAE	Castanea sativa Mill.
649	FAGACEAE	Castanonpsis clarkei King
650	FAGACEAE	Castanopsis armata Spach
651	FAGACEAE	Castanopsis indica Roxb. ex A.DC.
652	FAGACEAE	Castanopsis hystrix A. DC.
653	FAGACEAE	Castanopsis lanceifolia (Roxb.) Hickel et A. Camus
654	FAGACEAE	Castanopsis tribuloides (Sm.) A.DC.
655	FAGACEAE	Lithocarpus elegans (Blume) Hatus ex Soepadmo
656	FAGACEAE	Lithocarpus fenestratus (Roxb.) Rehder.
657	FAGACEAE	Lithocarpus pachyphyllus (Kurz) Rehder
658	FAGACEAE	Quercus glauca Thunb.
659	FAGACEAE	Quercus griffithii Miq.
660	FAGACEAE	Quercus lamellosa Sm.
661	FAGACEAE	Quercus leucotrichophora Camus
662	FAGACEAE	Quercus semiserrata Roxb.
663	FAGACEAE	Quercus thomsoniana A.DC.
664	SALICACEAE	Populus ciliata Royle
665	SALICACEAE	Populus gamblei Dode
666	SALICACEAE	Populus glauca Haines
667	SALICACEAE	Salix babylonica L.
668	SALICACEAE	Salix longifolia Anderson
669	SALICACEAE	Salix myrtillacea Anderson
670	SALICACEAE	Salix obscura Anderson
671	SALICACEAE	Salix tetrasperma Roxb.
672	SALICACEAE	Salix wallichiana Anderson
673	PINACEAE	Abies densa Griff.
674	PINACEAE	Cunninghamia lanceolata (Lamb.) Hook.f.
675	PINACEAE	Cedrus deodara
676	PINACEAE	Larix griffithiana Carriere
677	PINACEAE	Picea spinulosa (Griff.) Henry
678	PINACEAE	Pinus kesiya Gorton
679	PINACEAE	Pinus roxburghii Sarg.
680	PINACEAE	Pinus wallichiana A.B. Jacks.
681	PINACEAE	Tsuga dumosa (D.Don) Eichler
682	TAXODIACEAE	Cryptomeria japonica (L.) D.Don
683	TAXODIACEAE	Taxodium distichum (L.) Rich

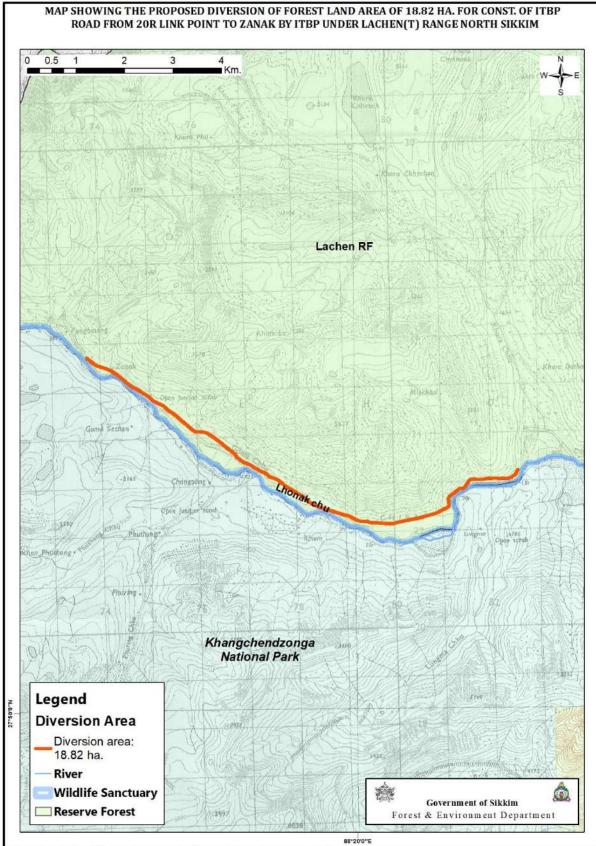

684	CUPRESSACEAE	Juniperus pseudosabina Fischer & Meyer.
685	CUPRESSACEAE	Juniperus recurva D.Don
686	CUPRESSACEAE	Juniperus squamata D. Don
687	CUPRESSACEAE	Thuja orientalis L.
688	PODOCARPACEAE	Podocarpus neriifolius D.Don
689	ТАХАСЕАЕ	Taxus wallichiana (Zucc.) Pilger
	MONOCOTYLEDONS	
690	ARECACEAE	Areca catechu L.
691	ARECACEAE	Caryota urens L.
692	ARECACEAE	Cocos nucifera L.
693	ARECACEAE	Livistona chinensis (Jacquin) Mart.
694	ARECACEAE	Livistona jenkinsiana Griff.
695	ARECACEAE	Phoenix sylvestris (L.) Roxb.
696	ARECACEAE	Trachycarpus fortunei (Hook.) H. Wendland
697	PANDANACEAE	Pandanus furcatus Roxb.
698	POACEAE (GRAMINAE)	Bambusa bambos (L.) Voss
699	POACEAE (GRAMINAE)	Bambusa balcooa Roxb.
700	POACEAE (GRAMINAE)	Bambusa nutans Wall. ex Munro subsp. cupulata Stapleton
701	POACEAE (GRAMINAE)	Bambusa pallida Munro
702	POACEAE (GRAMINAE)	Bambusa tulda Roxb.
703	POACEAE (GRAMINAE)	Himalayacalamus hookerianus (Munro) Stapleton
704	POACEAE (GRAMINAE)	Cephalostachyum capitatum Monro
705	POACEAE (GRAMINAE)	Cephalostachyum latifolium Monro
706	POACEAE (GRAMINAE)	Dendrocalamus hamitonii Monro
707	POACEAE (GRAMINAE)	Dendrocalamus hookeri Munro
708	POACEAE (GRAMINAE)	Dendrocalamus patellaris Gamble
709	POACEAE (GRAMINAE)	Dendrocalamus sikkimensis Gamble
710	POACEAE (GRAMINAE)	Melocanna baccifera (Roxb) Kurz
711	POACEAE (GRAMINAE)	Phyllostachys assamica Gamble ex Brandis
712	POACEAE (GRAMINAE)	Yushania pantlingii (Gamble) R.B. Majumdar

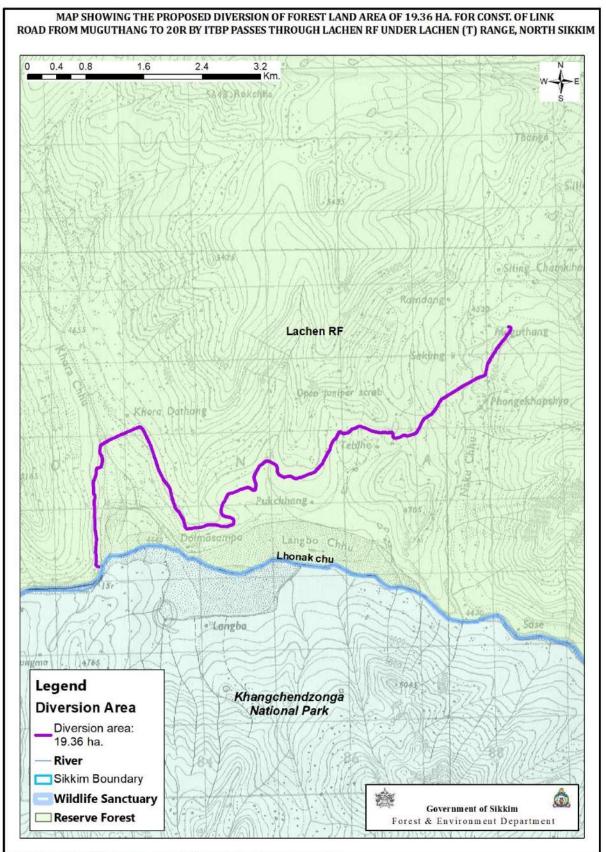
Source: ENVIS Sikkim

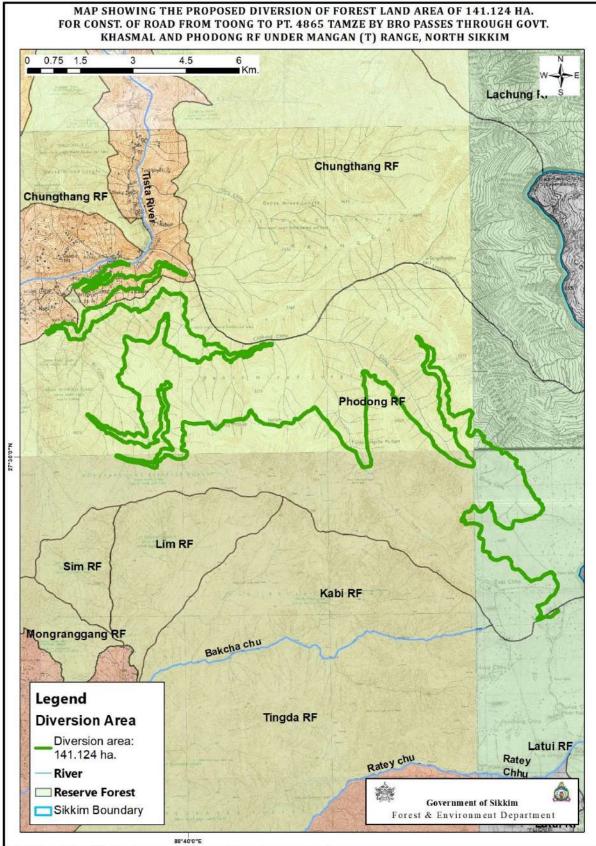

Annexure-II: Map of the proposed roads


Note: This map is not for legal purpose. This map is for reference use only.


Note: This map is not for legal purpose. This map is for reference use only.


Note: This map is not for legal purpose. This map is for reference use only.


Note: This map is not for legal purpose. This map is for reference use only.

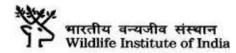

Note: This map is not for legal purpose. This map is for reference use only.

Note: This map is not for legal purpose. This map is for reference use only.

Note: This map is not for legal purpose. This map is for reference use only.

Note: This map is not for legal purpose. This map is for reference use only.

Annexure-III: Comments of the Wildlife Institute of India on the Comprehensive Biodiversity Conservation Plan (CBCP) and the response of the state forest department


Biodiversity Conservation and Management Plans of BRO and ITBP Roads in Sikkim – Review by WII

SUBMITTED TO

FOREST AND ENVIRONMENT DEPARTMENT | GOVERNMENT OF SIKKIM

Review Team:

Dr. G.V.Gopi, Scientist F & Head, Department of Endangered Species Management and Nodal Officer, EIA Cell Mr. Rohit Jha, Senior Project Associate

2023

PREFACE

Roads are crucial for human civilisation and are a prominent part of modern society enabling movement of people and goods. In conservation biology, roads, railways, canals, etc. through biodiversity-rich areas are considered as "linear intrusions" that may affect flora and fauna in several deleterious ways. Construction of linear intrusions, both directly and indirectly, leads to loss and degradation of wildlife habitats. Linear intrusions can also act as movement barriers, thereby contributing to animal population declines and restricting gene flow between populations over the long term. The most direct and visible effect of roads and railways through biodiverse areas is seen through habitat destruction (including loss of forest canopy) and animal injuries/fatalities due to direct vehicular collision. The effect of linear intrusions may extend few hundreds of meters beyond the edge of the intrusion itself through the edge effect, particularly on vegetation composition.

Hence, a well-drafted Biodiversity Conservation & Management (BC&M) Plan must first define and delineate a 'Road Effect Zone' (REZ) based on the local environmental/biodiversity context, within which most mitigating measures may be implemented. Additionally, since disproportionately large areas get affected due to habitat fragmentation through new or expansion of existing linear intrusions, it is extremely essential to provide for non-structural wildlife/forest conservation measures in the larger landscape impact zone (LIZ) as well towards habitat improvement measures, strengthening infrastructure, research and monitoring activities etc. An indicative list of such activities is being provided as Appendix 1 to this report. A site-specific 'Wildlife Passage Plan' with suggested dimensions and locations of structures such as underpasses, overpasses, culverts, viaducts etc. incorporating all available wildlife occurrence, movement and behaviour data, and following all national laws, regulations, guidelines incorporating best practices is a critical part of all BC&M Plans. These interventions, alongside any infrastructure strengthening capital cost/expenditure are to be directly executed by the user agency (UA), a sample/indicative list of activities is provided as Appendix 2.

A chapter describing the existing situation within the REZ and the larger LIZ describing inhabiting biodiversity (with flora and fauna check lists), wildlife corridors, forest types, forest cover, LULC etc. with several maps and figures is important to have a detailed overview of the impact zones. Such BC&M Plans must also list and describe all possible project impacts at various stages (preconstruction, construction and post-construction) on wildlife and corresponding mitigation measures suggested. All suggested mitigation/compensating measures must follow general wildlife conservation principles and borrow from available scientific evidence and researches carried out within the country and around the world. BC&M Plans must also establish clear post-project monitoring protocols so that compliance is ensured with clear roles and responsibilities for the monitoring authority, so that timely course-corrections, whenever necessary, can be suggested and implemented with an overarching objective to benefit native flora, fauna and wildlife habitats while ameliorating negative impacts from linear infrastructures.

A suggested outline of BC&M Plans that could be adopted for such linear intrusion projects (or in general for forest diversion proposals) is supplied as Appendix 3.

I. INTRODUCTION & BACKGROUND

In July 2022, WII was approached by the Forest & Environment Department (FED), Govt. of Sikkim to review four (04) Biodiversity & Conservation Management Plans prepared for four forest diversion proposals with respect to road construction projects in North Sikkim district. Brief details of the proposals are as follows.

Forest Clearance Proposal no.	Name	Forestland diversion	Road length	Division	Current Status (as per PARIVESH portal)
124229/2021	Muguthang to 20R Link Point (UA – CPWD)	19.36 ha (greenfield)	10.70 km	North (T) (277 m from KNP)	Pending with DFO, FC Stage-I not accorded
148024/2021	Toong bridge to Chungthang (UA – BRO)	11.15 ha (widening as per NHDL specification)	9.60 km	North (T)	Pending with DFO, FC Stage-I not accorded
36928/2018	Toong-Partem-Tamze (UA – BRO)	141.124 ha (greenfield)	84.42 km	North (T)	FC Stage-I with working permission accorded
146764/2021	Rafom Khola (Mangan) to Toong bridge (UA – BRO)	10.67 ha (widening as per NHDL specification)	~ 18 km	North (T)	Pending with DFO, FC Stage-I not accorded

The BC&M Plans are well-drafted, however certain shortcomings and inconsistencies were noted by the MoEF&CC's Integrated Regional Office, Kolkata in April 2022. Thereafter, WII made a rapid field visit to the areas and habitats where the above projects were to be implemented, interacted with various stakeholders and provided various comments in the field during these interactions. Overall, we felt the need for more site-specific conservation and mitigation measures following biodiversity studies, and the adoption of an integrated approach for the whole of North Sikkim since several strategic road construction and other defence infrastructure strengthening projects are in the pipeline for the district. Such an integrated approach was later adopted by the FED, and an Integrated 'Comprehensive Biodiversity Conservation Plan' (CBCP) for six (06) road constructions proposals (four mentioned above and an additional two submitted for clearance) was drafted in February 2023. The CBCP is a thoroughly revised document and contains all relevant forest and wildlife conservation measures with a suggested financial proposal as well.

We have gone through the four sets of individual BC&M Plans prepared earlier and submitted for WII's review/comments, and the CBCP as well. Our comments and suggestions provided herein – both general and specific to the landscape derived from our field learnings and interactions in Sikkim – are meant to further strengthen the Plans in any manner deemed feasible and appropriate by the FED, and provide certain general guidelines for future reference.

II. WII general comments and suggestions on four (04) 'Draft Biodiversity Conservation and Management Plan' prepared by the North Territorial Division of Forest & Environment Department, Government of Sikkim in lieu of road construction (greenfield/expansion) forest diversion proposals

The BC&M Plans are overall well drafted, they may only lack a more comprehensive and a more uniform structure and certain finer-scale details to enable easy comprehension and analyses. A suggested outline for BC&M Plans is provided as Appendix 3. Additionally, the following general comments and suggestions are provided to further improve the drafted Plans. It must be noted though that any such Plan must follow a detailed biodiversity/environment impact assessment study or at least a thorough analyses of available relevant data.

1. For all road construction/widening projects, two kinds of impact zones – Road Effect Zone (REZ) & Landscape Impact Zone (LIZ) or Infrastructure Effects Zone – need to be defined and delineated, so that biodiversity and other impact assessment studies could be conducted within these areas, and suitable structural and non-structural mitigating and compensating measures be targeted within such identified zones.

Response: These four Biodiversity Conservation and Management Plans prepared by the North Territorial Division have been now replaced with a Comprehensive Biodiversity Conservation Plan (CBCP) which has been prepared in consultation with WII, WWF and other stakeholders. This plan has been prepared in response to the six new roads of CPWD and BRO planned in the Mangan district of Sikkim. The maps provided for in Annexure-II delineate the road diversion zone, while the landscape impacted includes the two districts of Mangan and Gangtok. The detailed delineation of the zones will be done while taking up the studies.

2. Site-specific 'Wildlife Passage Plan' with appropriate suggested structures (such as overpasses, underpasses, viaducts, culverts etc.) and their respective dimensions (following national and international guidelines, and according to inhabiting biodiversity) needs to be supplied as part of the BC&M Plans. So that the planned structures are appropriately sited, data regarding wildlife occurrence, movement, wildlife mortality/injury/rescue locations, human-wildlife conflict hotspots need to be generated following at least a year-long study covering multiple seasons. It is recommended that all Beat Offices maintain a register of significant wildlife sightings (including of indirect evidence such as spoor, dung/pellets, antlers/horns etc.) observed during each of their routine forest patrols. Each wildlife rescue event must also be scrupulously recorded. Details such as species, their numbers, location geocordinates, date, animal activity and any such relevant data must be logged.

Response: The site-specific wildlife passage plan has been prepared and is detailed in Section 7 and Annexure-III. The record keeping of wildlife sightings as well as rescue events will be strengthened as suggested.

3. Wherever several linear infrastructure project proposals are received situated close to each other, a cumulative impact assessment study describing cumulative impacts with suggested mitigation strategies might be more useful as part of a combined BC&M Plan.

Response: This has been done now and instead of a piecemeal approach, a comprehensive proposal has been prepared to account for the cumulative impacts and to also ensure transparency and efficiency during execution.

4. Lists of taxonomically accurately organised flora (tree, herb, shrub, climber, orchid) and fauna (butterflies, moths, odonates, amphibians, reptiles, birds and mammals) species occurring within the delineated impact zones must be necessarily supplied with their conservation status (both local/national and worldwide) and WLPA schedule as part of the BC&M Plans. We have provided such an updated list of flora and fauna for the region/impact zone as Appendix 4. Information on whether the listed species are endemic, migratory (breeding or winter visitor), locally threatened/rare etc. must also be provided along with any ethnobotanical information (for flora). For rare, endangered, threatened and endemic species, specific conservation plans with dedicated budget must be formulated and provided for as part of the BC&M Plans.

Response: The biodiversity check list has been provided for in Annexure-I. Specific budgets for conservation of faunal and floral species is provided for in Section 5 of the plan.

5. A list of important wildlife-rich habitats and sites of cultural and religious importance within the impact zones must be supplied, and all measures to protect them from the negative impacts of the planned linear infrastructure be proposed as part of the BC&M Plans.

Response: The biodiversity and cultural values of the landscapes are detailed in Section 1, and measures to protect have been budgeted for in Section 5.

6. Detailed socio-economic information of people living in the vicinity of and within the delineated impact zones of the planned infrastructure must also be provided as part of the BC&M Plans. This is important since, in a densely populated country such as India, human communities often co-occur with wildlife and may be partly/wholly dependent and competing for resources from wildlife habitats. Hence, appropriate measures to reduce dependency on forest resources as much as is feasible and permissible (according to local laws, regulations and socio-religious practices) may be provided for in the BC&M Plans.

Response: The Mangan district is sparsely populated with only 10 persons per square km. However, this district borders with China and consequently has a strong deployment of defence forces. Also, the tourism footprint is also growing over the years. In order to improve the protection status of these high-altitude areas a comprehensive strategy comprising of 8 components namely reducing human wildlife conflict, strengthening forest protection, strengthening participatory conservation, strengthening forest protection infrastructure, reducing wildlife predation by feral dogs, strengthening ex-situ conservation, building capacity and knowledge management has been detailed in Section 5.

7. The various ecological and environmental impacts of the concerned road construction projects need to be listed phase-wise (pre-construction, during construction and post-construction) and their various mitigation and management measures proposed accordingly with scientific justification and rationale.

Response: The main threats perceived are increased predation of wildlife by feral dogs and rising human wildlife conflict. While the main gaps are limited infrastructure, human capacity and research inputs. The project aims to address these threats and gaps by developing a comprehensive biodiversity conservation plan. Also, the non-structural mitigation and management measures are detailed in Section 8.

8. Establishment of a 'Compliance Monitoring' team/protocol with specified roles and responsibilities is critical to ensure that suggested mitigation and management measures are complied with, and necessary inspection, audit and improvements are regularly carried out. This must be clearly described in the BC&M Plan itself. A third-party audit by reputed government/non-government organisations with experience in the biodiversity sector is recommended, and sufficient budget for such a team's field inspection and members' honorarium be provided for in the BC&M Plan's budget.

Response: Monitoring mechanism is provided for in Section 6 and includes partnerships with third party organizations such as WWF, WII and others.

9. Since linear infrastructure through a densely forested region such as in North Sikkim will involve large-scale tree-felling and opening of the canopy, such ecological conditions might encourage colonisation and spread of certain exotic invasive vegetation. Hence, a chapter on invasive weed management and eradication must be a part of any BC&M Plan.

Response: Rescue and rehabilitation of floral species and weed eradication has been included in Section 4.6 of the plan.

10. Linear infrastructure also increases the probability of incidences of direct wildlife mortality and/or injury through vehicular collision, thereby necessitating requisite infrastructure for wildlife rescue and rehabilitation (including personnel safety and animal handling equipment). Hence, the BC&M plans must provide for the establishment of a veterinary hospital (if not already available in the Division/impact area) with a full-time veterinarian doctor, requisite drugs in enough quantities and any such requirement.

Response: This aspect has been covered in detail in Section 8 - Non-structural mitigation and management measures as well as in Section 4.1 and 4.5 of the plan.

11. Roads and railways may also cause a change in the movement patterns of native wildlife and an increase in the incidence of human-wildlife negative interactions. To ensure that such events are quickly responded to and mitigated, relevant Quick Response Teams (QRTs), as required, must be formed with required infrastructure and manpower support, budget for which must be provisioned for in the BC&M Plans.

Response: This aspect has been covered in detail in Sections 4.1, 4.2, 4.3 and 4.4 of the plan. In the context of these six roads, low vehicular movement for defence purposes only in daytime will help mitigate the incidences of human-wildlife negative interactions. In the cold desert ecosystem, the long sight distance available due to lack of tree vegetation will also help reduce any untoward incidences.

12. Linear infrastructure such as roads greatly improves access to hitherto inaccessible forested areas, thereby facilitating illegal activities such as tree-felling, hunting etc. Hence, improving and increasing patrolling infrastructure – both in terms of manpower and equipment – in the impact areas is a crucial activity in any BC&M Plan.

Response: This aspect has been covered in detail in Sections 4.1, 4.2, 4.3, 4.4 and 4.5 of the plan.

13. To ensure that all stakeholders agree to and ensure carrying out all activities prescribed in the BC&M Plans, several meetings with all stakeholders must be held regularly at all stages of the project's life-cycle, and a detailed log of such meetings and deliberations/decisions taken therein be maintained.

Response: This aspect has been covered in detail in Section 4.8 – Awareness and capacity building.

14. Since Sikkim is a frontier Indian state sharing an international border with the People's Republic of China, there is a large presence of uniformed security personnel almost everywhere. Sikkim is also a place of high tourism activity. Combined together, the region suffers from a lack of sufficient solid-waste management system and a general lack of awareness regarding the same, resulting in visitors and even uniformed personnel throwing away single-use plastic and other wastes in wildlife habitats. Since the planned roads are primarily meant to facilitate movement of armed personnel and possibly for civilian use as well, it is extremely important that all measures for solid-waste management and prevention of garbage disposal into wildlife habitats are to be included in the BC&M Plans.

Response: Solid waste management has been covered in Section 4.5 - Reducing predation of wildlife from feral/free ranging dogs in detail. Also, Section 4.8 delves into the activities proposed for building awareness amongst the stakeholders.

15. A comprehensive Biodiversity Research and Monitoring programme covering all aspects such as wild flora and fauna occurrence (distribution, diversity and density), human-wildlife interactions, conservation issues and challenges etc. to plug existing knowledge gaps and to generate wildlife-specific information for the region.

Response: This has been included in Section 4.9 – Strengthening Research and Knowledge Management in detail.

16. A chapter on fire management with identification of fire-prone zones within the impact landscape, and provisioning for adequate manpower and infrastructure as part of BC&M Plans may be added, as needed.

Response: This has been included in Section 4.3 – Strengthening Forest Protection in detail.

17. Wildlife signage at regular intervals (at least one every 500 m) all along the planned roads indicating right of way for wildlife must be put up, and especially at locations with observed frequent wildlife crossings and occurrence. At such locations, speed-breakers and rumble strips must be constructed to help reduce vehicle speed and minimise the probability of accidental wildlife collisions.

Response: This has been included in Section 4.3 – Strengthening Forest Protection in detail.

III. WII specific comments and suggestions considering conservation issues in the landscape

To understand the landscape-specific context and wildlife/biodiversity conservation issues, a rapid visit by a WII team was conducted during September 12-22, 2022. During the visit, the team met with relevant forest department officials and conducted joint rapid field inspections of areas where road-upgradation/construction is planned. To understand any technical difficulties and considerations of constructing high-altitude roads, the team also interacted with concerned user agencies – Border Roads Organisation (BRO) and Central Public Works Department (CPWD). The following comments are derived from learnings and interactions from the field visit.

1. The Toong-Partem-Tamze Road is a greenfield road of length 84.42 km proposed through a densely forested landscape in Toong RF (Mangan Range), within a large altitudinal range of 1300 m – 4600 m above mean sea level (msl) requiring the diversion of 141.124 hectares of forestland. Toong RF and adjoining areas in East and North Sikkim districts have recorded the confirmed presence and movement of tigers (camera-trapped images) as recently as in 2019. Hence, the construction of a greenfield road through such a dense landscape necessitates the UA scrupulously following and the Forest & Environment Department (FED), Govt. of Sikkim strictly enforcing all existing forest and wildlife rules, laws and guidelines, and the careful planning animal passage plans i.e structural mitigation measures such as overpasses, underpasses, culverts etc at suitable place in consultation with forest department officials.

Response: The site specific wildlife passage plan has been prepared and is detailed in Section 7 and Annexure-III.

- 2. Since almost all existing roads in the North Sikkim landscape are being either upgraded/widened to NHDL specification or being newly built, it is necessary that a Regional Transportation Plan jointly prepared by ministries overseeing road construction activities such as the Ministry of Defence, Ministry of Housing & Urban Affairs, Ministry of Road Transport & Highways and the Roads & Bridges Department, Govt. of Sikkim is submitted to the FED, Govt. of Sikkim. Such a Plan must clearly demonstrate and depict all road-building/widening activities that are planned for North Sikkim in the foreseeable future (at least 10 years). This will enable that a clear and comprehensive perspective on all linear infrastructure is available to the FED, Govt. of Sikkim, and a cumulative impact assessment study on wildlife and forests of this biodiversity-rich region due to such a massive road-building exercise be planned and executed. This will avoid a piecemeal approach where individual road-building/widening projects are appraised without any cumulative impact assessment, thereby endangering the long-term ecological security and biodiversity of the region. A thoroughly researched 'Integrated Wildlife Action Plan' (IWAP) for the region/district comprising of structural and non-structural impact mitigation and compensation measures geared towards wildlife, forest and natural/cultural heritage conservation in the region needs to be compiled through careful biodiversity and socio-economic studies. Some of the research programs that could be initiated are as follows.
 - i. Population Status, Breeding Ecology, Ranging Patterns of Black-necked Crane *Grus nigricollis* with particular emphasis on their conservation aspects in North Sikkim.
 - Ecological and genetic assessment of the Southern Kiang *Equus kiang polyodon*, Tibetan gazelle *Procapra picticaudata*, Tibetan argali *Ovis ammon* and Himalayan marmot *Marmota himalayana* and their conservation in the high-altitude areas of North Sikkim.
 - iii. Population assessment/monitoring and disease prevalence among mountain ungulates in North Sikkim.
 - iv. Assessing high-altitude lakes and rivers of North Sikkim for their biodiversity values with particular reference to breeding avifauna.
 - v. Effect of increasing border infrastructure and defence camp practices on wildlife with special emphasis on free-ranging dog population ecology, management and zoonosis.
 - vi. Cumulative Impact Study within the Landscape Impact Zone of planned/ongoing road infrastructure on wildlife and habitats in North Sikkim, emphasising conservation and mitigation measures.

Response: These studies has been included as a part of Section 4.9.2 where studies with WII and WWF are proposed. Development of a biodiversity conservation plan for the cold desert region of Sikkim has also been included so that a perspective approach can be adopted for the long term conservation of this landscape.

3. Almost all the planned road-construction activities in the region requiring the diversion of vast areas of forestland are being justified and their clearances prioritised on the basis of defence and national security needs. Hence, it is crucial that, as much as possible, the usage of roads be kept exclusively for defence purposes. Even when being used for defence purposes, movement of vehicles outside daylight hours must be discouraged during peacetime to enable unimpeded animal movement and avoid accidental road collisions of wildlife. An undertaking in this regard from the highest responsible officials must be obtained from the user agency and the end users.

Response: This is a policy issue, and the state government will be briefed about this for initiating appropriate policy measures.

4. During the field visit, it was observed that there is a general lack of awareness among defence personnel regarding solid waste management practices. It was also observed that significant amounts of cooked food/raw materials is wasted on a daily basis, which is then left for dogs to scavenge. Some armed personnel camps (ITBP/Army/BRO etc.) have huge packs of freeranging dogs that hang around and gain nutrition from such leftover and excess food. Freeranging 'ownerless' dogs incur huge costs on native wildlife through predation, competition, hybridisation and elevating disease transmission risks. Hence, certain best practices of solid waste and food management need to be compiled and strictly implemented within and around these camps as well as by the personnel themselves. Relevant rules and guidelines governing the issue of waste management need to be implemented and fully complied with by all agencies and their personnel operating in the region. Additionally, a 'Free-Ranging Dog Population Monitoring & Management' Plan needs to be formulated and implemented as part of either BC&M Plans or in an IWAP, in order to ameliorate threats to wildlife from an increasing freeranging dog population in the region. All necessary infrastructure and manpower required to manage the free-ranging dog issue needs to be budgeted for in the above Plans, in consultation with the FED and Department of Animal Husbandry & Veterinary Services, Govt. of Sikkim.

Response: Reducing predation of wildlife from feral/free ranging dogs has been included in Section 4.5 in detail. While Section 4.8 delves into the activities proposed for building awareness amongst the stakeholders.

5. Establishment of a full-fledged 'High Altitude Research Station' (HARS) with necessary infrastructure suitable to accommodate at least ten (10) researchers at either of Lachen or Thangu might encourage and support year-round and continuous wildlife research activities in Sikkim's biodiversity-rich high-altitude regions. The Research Station's architecture and design may be modelled on the main building of the Himalayan Institute of Alternatives, Ladakh (HIAL) with necessary modifications. The HARS may also serve as a hub to help better monitor high-altitude wildlife of the region.

Response: Establishing high altitude infrastructure has been included in Section 4.4 -Strengthening Protection Infrastructure, where a Cold Desert Biodiversity Monitoring Stations (CDBMS) is proposed jointly with HIAL.

6. Since the submitted road proposals are through mountainous terrain requiring regular and heavy blasting and drilling through rocks, it must be ensured that these activities are not conducted during the breeding period of birds such as the Black-necked Crane and other threatened wildlife in the region. Such non-construction period must be carefully prescribed by the FED and fully complied by the user agencies.

Response: This direction will be conveyed to the user agencies.

7. Since relevant wildlife distribution and movement data are not currently available, it is crucial that all suggested biodiversity research studies are immediately initiated. It is also recommended that an undertaking by the user agencies be taken regarding the future installation and construction of all suggested structural mitigation measures derived from the results and recommendations of the impact assessment/biodiversity studies notwithstanding the cost or engineering modifications involved.

Response: This undertaking from the user agencies will be taken.

Annexure-IV: Siting and design of the bridges and culverts

कार्यालयकार्यपालक अभियंता O/o Executive Engineer सीमासडकपरियोजना मंडल-। एस॰ टी॰लामा बिल्हिंग, तीसरी मंजिल S. T. Lama Building, 3rd Floor

MIRE HRONT Government of India केन्द्रीय लोक निर्माण विभाग Central Public Works Department **Border Road Project Division-I** चुंगचांग, उत्तरसिकिंग- 737120 Chungthang, North Sikkim - 737120. E-MAIL:chueeccd1.cpwd@nic.in

राखाः 23(7)/Forest/EE/BRPD-I/NS/2023/ 35 (н)

दिनांक: 17.02.2023

सेवा में.

APCCF -cum-Nodal Officer, FCA Forest and Environmental Department, Forest Secretariat, Deorali, Gangtok-737102. Email: fca.sikkim@gmail.com

- DNU. Diversion of 19.36 Ha of Forest land for c/o ITBP Ph-II road from Muguthang to 20r link pt. under Lachen(T) Range in Mangan District of Sikkim by CPWD. Reg- Review of Biodiversity Conservation and Management Plans in lieu of road-construction forest diversion proposal towards providing specific suggestions.
- संदर्भ: (i) आपके कार्यलय के पत्र स. 11/FCA/F&ED/2022/341 दिनांक: 02.11.2022 (ii) T.O. even letter no. 316(H) Dated: 06.12.2022

महोदय.

A review meeting was held on 09.02.2023 for preparation of Biodiversity Conservation and Management Plans in lieu of road-construction forest diversion. The following documents are further required to be submitted for preparation of Biodiversity Conservation and Management Plans as decided in the meeting:

Location of culverts along with GPS co-ordinates,

II) Design drawing of culvert,

III) Alignment map showing culvert location

IV) Undertaking for Animal Passage Plan.

It is mention that, the project of construction of road along Indo China Border for ITBP under Ph-II is important from strategic point of view. These roads provide passage to border guiding forces to reach up to end point. The forest clearance of these roads is closely monitored at highest level in PMO office.

It is therefore requested to issue In-principle approval and Demand note at the earliest.

सलामक: As above.

राकेश कुमार जेन) कार्यपालक अभियंता

प्रतिलिपि

 अधीक्षण अभियंता, सीमा सड़क परियोजना परिमंडल, केoलोoनिoविo, मंगन, उत्तर सिक्किम – 737116 सचनार्थ हेता

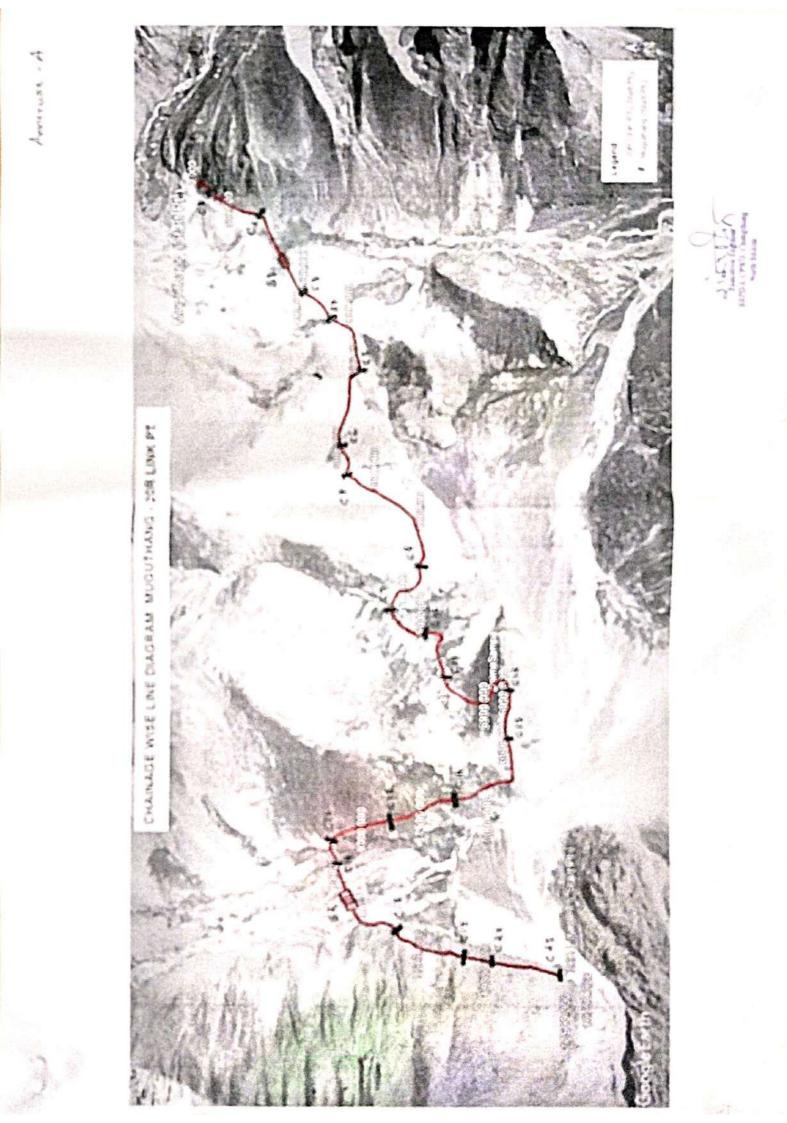
कार्यपालक अभियंता

ANNEXURE – 1 – DETAILS & PARTICULARS OF DATA REQUESTED FROM SIKKIM FED AND PROJECT PROPONENTS

Sub: Diversion of 19.36 Ha of Forest land for c/o ITBP Ph-II road from Muguthang to 20r link pt. under Lachen(T) Range in Mangan District of Sikkim by CPWD.

vehil bi crwo	On an average Culvert will be provided in every 500 meter interval of road and Chainage wise Line diagram is attached in Annexure-A	Location of culverts & bridges along with GPS co-ordinates are attached in Annexure-B	DPR is attached in Annexure-C
Source	CPWD	CPWD	CPWD
Alternative format			
Note	The diagram must preferably be for every one 901) or every few kilometers for easy interpretation, and mist contain locations of proposed culverts and /or other planned wildlife passages.	All planned culverts/water passage /wildlife crossing structures with their chainage-wise locations, latitude, longitude, type, design details, material to be used, specifications (length * width * height), along with all other important details must be mentioned in separate well-labelled columns.	If not for the entire project, all general and specific details of the proposals passing through forestland must be provided.
Preferred format	PDF/ any other	Excel spreadsheet	Word/PFD
Data particulars	High -res diagram file		
PA/ Division / RF/PF/Region	Chainage-wise line diagrams of the four (04) road construction proposals against terrain	Locations and other details of planned culverts and / or other wildlife passages.	Detailed Project Reports of the four (04) roads construction
Sr.	13.	14.	15.

ALA THA


ANNEXURE-2: SAMPLE LIST OF ACTIVITIES/INTERVENTIONS BY THE USER AGENCY/ PROJECT PROPONENTS

Sub: Diversion of 19.36 Ha of Forest land for c/o ITBP Ph-II road from Muguthang to 20r link pt. under Lachen(T) Range in Mangan District of Sikkim by CPWD.

I. No.	Activity	Remarks	EE/BRPD-1 reply
1.	2	3	4
A.	STRENGHTHING OF INFRASTRUCTURE FOR WILDLIFE CONSERVATION		
1.	Underpass/ overpass/ culverts /other structural mitigation structures along / near proposed alignment in accordance with WH and other national and international guidelines to facilitate elephant / wildlife movement.	Exact numbers, specifications and locations will be detailed in the final IWAP after a comprehensive biodiversity assessment.	Culverts = 20 no.s & Bridge= 02 no.s
2.	Sound proof fences on both sides of railway track all along the alignment	Specification etc. will be decided in consultation with DFO, Wildlife Division after a comprehensive biodiversity assessment as part of the IWAP.	Since the proposal is defense road project, The sound proof fences are not applicable.
3.	Provision for tunneling of underpass/ overpasses / other structural mitigation measures	Same as above.	Not Applicable.
4.	Turfing in high embankment and construction of guide bounds in all major streams and rivers, for soil moisture conservation and to prevent erosion of soil.		Since the road is constructed in hil area, so the provision of Turfing not applicable.
5.	Installation of Solar Street light in villages close to the railway alignment (either side) prone to human-wildlife negative interactions		There will be no traffic movement at night, only limited vehicles ITBP/Army will pass at day light, so the provision of solar street light not applicable.
13.	Installation of Speed limit monitoring devices & their annual maintenance at high animal use locations/ mitigation structures and other places, with a control unit at "Research & Wildlife Monitoring Cell"		The proposed road is of line project for Defense purpose, so the provision of speed limit monitoring device is not considered in the project. However Signage board Speed limit will be provided along the road in regular interval.
в.	WILDLIFE AWARENESS & TRAINING		
15.	Appropriate signages on both side o the alignment/track	f	
a)	Signages with speed limit at regula intervals	r.	Yes, The provision is considered the project.
b)	Signages / Hoardings related to conservation at DFCCIL, working place station, cabins etc. and at identified elephant habitats (if any)	5	Yes, The provision is considered the project.
c)	Signages with awareness and warmin for wildlife as per DFOs suggestions	g	Yes, The provision is considered the project.

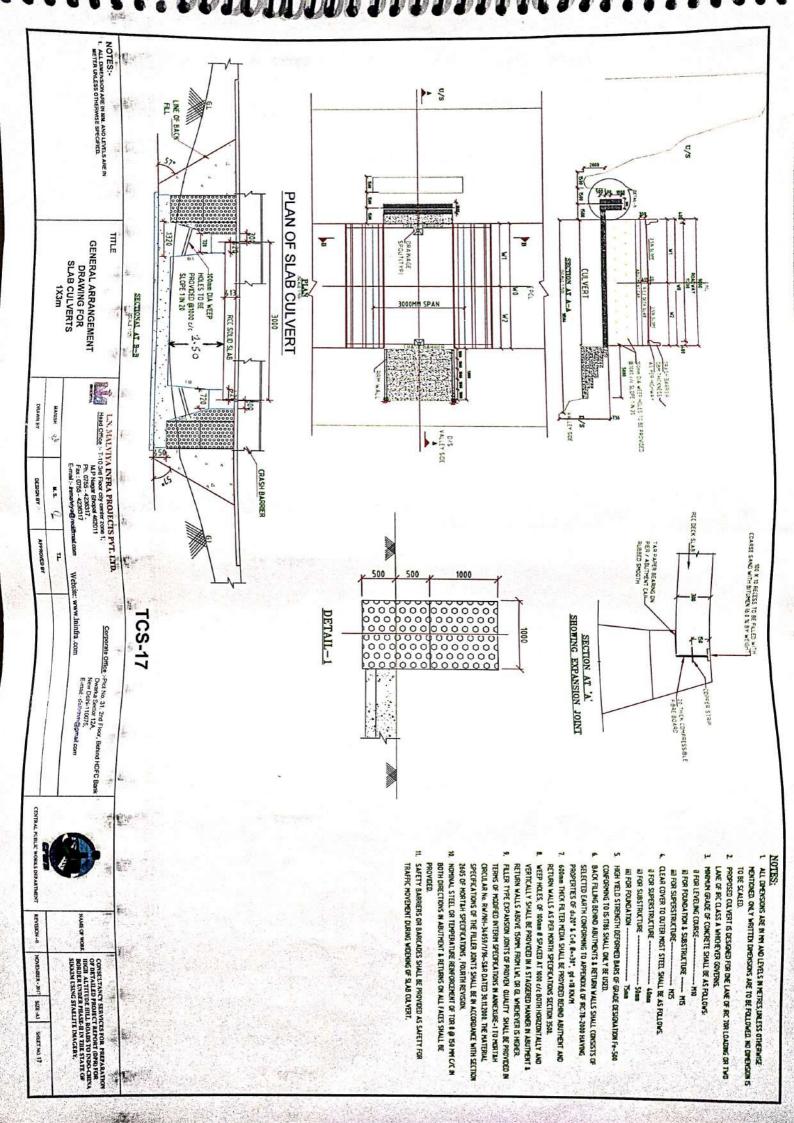
2

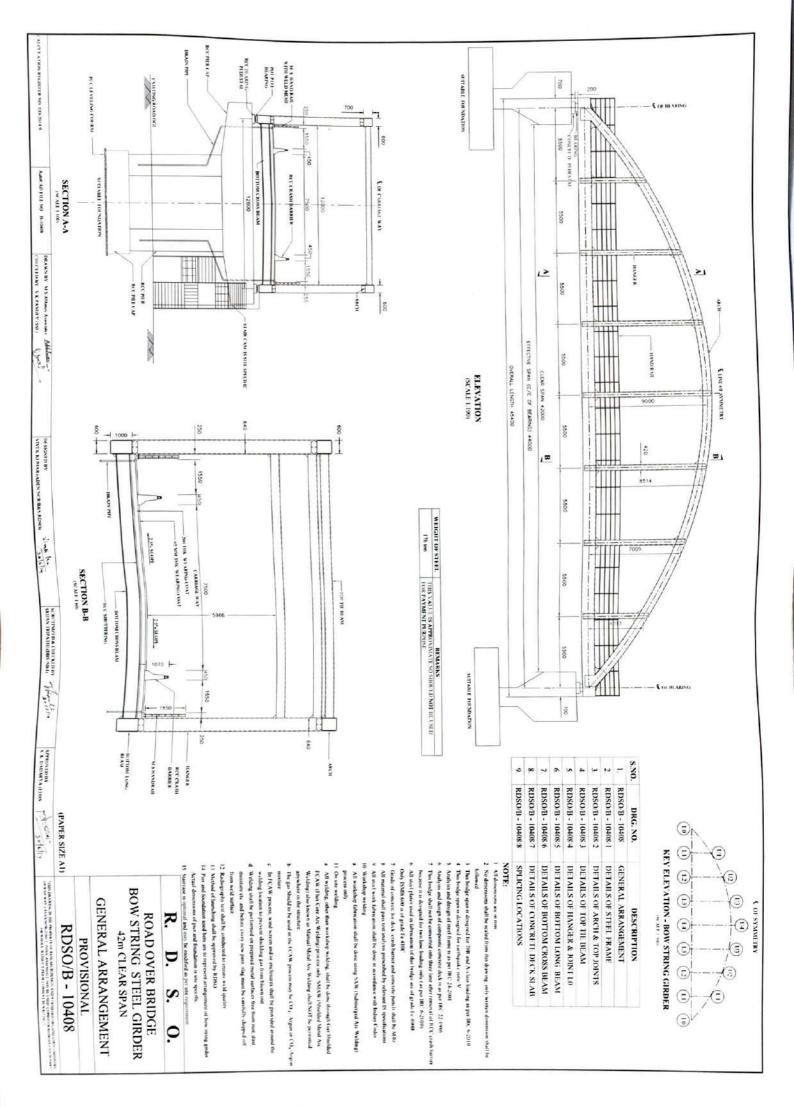
Executive Engineer BRPD-1, CPWD, Chungthang North Sikkim

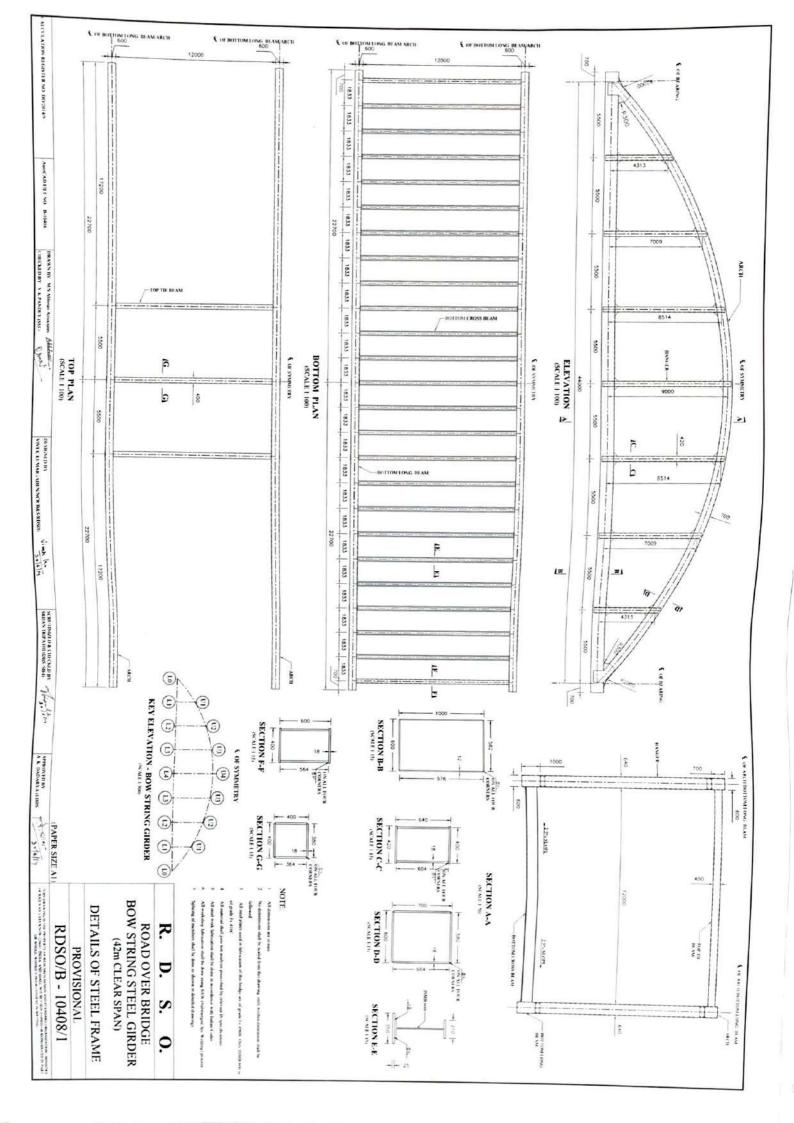
Annexure-B (Pg- 01)

Remarks	「戸田」	12224	1274.		NORTH -	10000	1222	ALL	United and	A MARY	東	the second	A STATE	E.	100	NUL .	N. C.	200	0			
dinates	Easting	88°25'18.68"E	88°25'10.08"E	88°24'47.10"E	88°24'40.13"E	88°24'21.68"E	88°24'4.12"E	88°23'56.12"E	88°23'31.70"E	88°23'17.96"E	88°23'13.00"E	88°23'2.80"E	88°22'59.29"E	88°22'48.97"E	88°22'31.72"E	88°22'24.30"E	88°22'18.01"E	88°22'10.70"E	88°21'56.13"E	88°21'52.70"E	88°21'52.74"E	88°21'52.98"E
GPS Coordinates	Northing	27°54'17.66"N	27°54'3.81"N	27°53'51.34"N	27°53'44.07"N	27°53'37.50"N	27°53'39.43"N	27°53'37.76"N	27°53'18.09"N	27°53'24.50"N	27°53'17.66"N	27°53'11.39"N	27°53'0.38"N	27°52'56.84"N	27°53'9.10"N	27°53'23.99"N	27°53'38.81"N	27°53'39.27"N	27°53'23.53"N	27°53'8.94"N	27°53'0.91"N	27°52'45.02"N
	Height (Meter)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Specification	Width (meter)	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50
	Length (meter)	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Posting Postilication GPS Coordin	וופופה וופופה	RRM/RCC Slab Culvert	RRM/RCC Slab Culvert	RRM/RCC Slab Culvert	RRM/RCC Slab Culvert	RRM/RCC Slab Culvert																
	Location	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang	Muguthang
1	Chainage	250	750	1500	1800	2450	3000	3250	4250	4750	5000	5500	6000	6500	7250	7750	8350	8500	9300	9750	10000	10500
:	SI. No.	-	2	æ	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	61	20	21

Details Location of Bridge for proposed road from Muguthang - 20r Link point Road (10.70 K.M.)


		and the second se	Access section of program of proposed tong training and the provide the point word (Aur o Aur)			1104 VIIIT 107 - 91	AI'V OVOT I DBOUL	3	
C NO	Christen	Inter	Dacian Datail		Specification		GPS Coordinates	dinates	Remarks
	Citalilage	FOCEFICIE		Length (meter)	Width (meter)	Length (meter) Width (meter) Height (Meter)	Northing	Easting	
1	1125	Muguthang	RCC Bridge	40.00	12000.00	6.00	27°53'57.62"N 88°24'58.59"E	88°24'58.59"E	
2	8850	Muguthang	RCC Bridge	40.00	12000.00	6.00	27°53'36.04"N 88°22'2.29"E	88°22'2.29"E	


RPD-1, CPWD, Chungthang Executive Engineer Executive Engineer BRPD-1, CPWD, Chungthang North Sikkim


UNDERTAKING FOR ANIMAL PASSAGE PLAN

This is to certify that for Diversion of forest land for construction of ITBP Phase-II road from Muguthang to 20r link point L=10.70 km, The Animal Passage Plan is submitted as per the site requirement in form of Box Culvert at a frequency of 2 nos. per km of length. We also undertake, if need be in future that any other requirements for safe passage of animal. Then design may be implemented as per the guidelines and requirements of Department of Forest & Environment, Govt. of Sikkim.

Executive Engineer BRPD-I, CPWD, Chungthang, N. Sikkim. Executive Engineer BRPD-I, CPWD, Chungthang North Sikkim

भारत रारकार Government of India कार्यालयकार्यपालक अभियंता O/o Executive Engineer सीमासड़कपरियोजना मंडल-I Border Road Project Division-1 एस॰ टी॰लामा बिल्डिंग, तीसरी मंजिल S. T. Lama Building, 3rd Floor

केन्द्रीय लोक निर्माण विभाग Central Public Works Department चुंगर्थांग, उत्तरसिविकम- 737120 Chungthang, North Sikkim - 737120. E-MAIL: dweecod1.gwd@nic.in

संख्या: 23(7)/Forest/EE/BRPD-I/NS/2023/36(ft)

दिनोक: 17.02.2023

सेवा में.

APCCF -cum-Nodal Officer, FCA Forest and Environmental Department, Forest Secretariat, Deorali, Gangtok-737102. Email: fca.sikkim@gmail.com

विषयः Diversion of 4.86 Ha of Forest land for c/o ITBP Ph-II road from 20r link pt. to 20r Goma along the Indo China Border passing through Kanchendzonga National Park (KNP) in Mangan District of Sikkim by CPWD. Reg-Review of Biodiversity Conservation and Management Plans In lieu of roadconstruction forest diversion proposal towards providing specific suggestions.

संदर्भ: आपके कार्यलय के पत्र स. 11/FCA/F&ED/2022/341 दिनांक: 02.11.2022

महोदय.

A review meeting was held on 09.02.2023 for preparation of Biodiversity Conservation and Management Plans in lieu of road-construction forest diversion. The following documents are further required to be submitted for preparation of Biodiversity Conservation and Management Plans as decided in the meeting:

I) Location of culverts along with GPS co-ordinates,

II) Design drawing of culvert,

III) Alignment map showing culvert location

IV) Undertaking for Animal Passage Plan.

It is mention that, the project of construction of road along Indo China Border for ITBP under Ph-II is important from strategic point of view. These roads provide passage to border guiding forces to reach up to end point. The forest clearance of these roads is closely monitored at highest level in PMO office.

It is therefore requested to issue In-principle approval and Demand note at the earliest.

सलग्रक: As above.

ाकेश कमार जेन) कार्यपालक अभियंता

प्रतिलिपि :

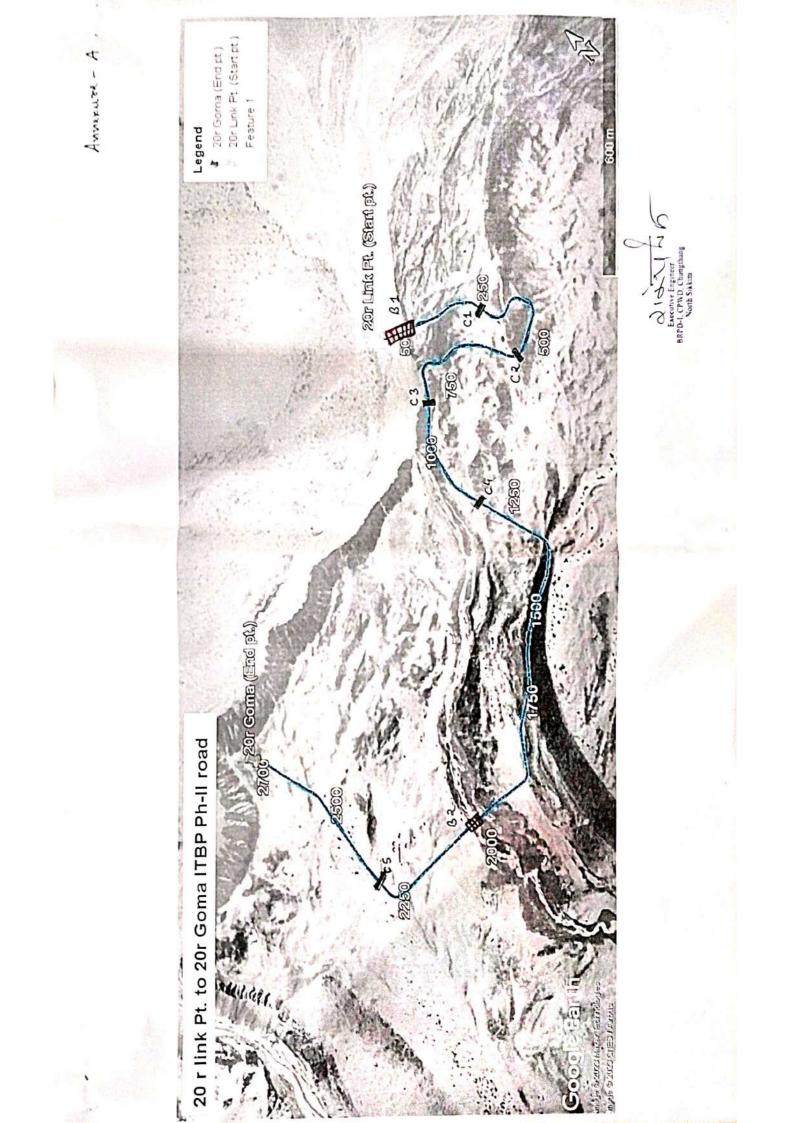
1. अधीक्षण अभियंता, सीमा सडक परियोजना परिमंडल, केoलोoनिoविo, मंगन, उत्तर सिक्किम -737116 सचनार्थ हेत्।

कार्यपालक अभियंता

ANNEXURE – 1 – DETAILS & PARTICULARS OF DATA REQUESTED FROM SIKKIM FED AND PROJECT PROPONENTS

Sub: Diversion of 4.86 Ha of Forest land for c/o ITBP Ph-II road from 20r link pt. to 20r Goma along the Indo China Border passing through Kanchendzonga National Park (KNP) in Mangan District of Sikkim by CPWD.

No.	PA/ Division / RF/PF/Region	Data particulars	Preferred format	Note	Alternative format	Source	Reply BY CPWD
13.	Chainage-wise line diagrams of the four (04) road construction proposals against terrain	High -res diagram file	PDF/ any other	The diagram must preferably be for every one 901) or every few kilometers for easy interpretation, and mist contain locations of proposed culverts and /or other planned wildlife passages.		CPWD	On an average Culvert will be provided in every 500 meter interval of road and Chainage wise Line diagram is attached in Annexure-A
14.	Locations and other details of planned culverts and / or other wildlife passages.		Excel spreadsheet	All planned culverts/water passage /wildlife crossing structures with their chainage-wise locations, latitude, longitude, type, design details, material to be used, specifications (length * width * height), along with all other important details must be mentioned in separate well-labelled columns.		CPWD	Location of culverst & bridges are attached in Annexure-B
15.	Detailed Project Reports of the four (04) roads construction	-	Word/PFD	If not for the entire project, all general and specific details of the proposals passing through forestland must be provided.		CPWD	DPR is attached in Annexure-C


Executive Engineer BRPD-I, CPWD, Chungthang North Sikking

ANNEXURE-2: SAMPLE LIST OF ACTIVITIES/INTERVENTIONS BY THE USER AGENCY/ PROJECT PROPONENTS

Sub: Diversion of 4.86 Ha of Forest land for c/o ITBP Ph-II road from 20r link pt. to 20r Goma along the Indo China Border passing through Kanchendzonga National Park (KNP) in Mangan District of Sikkim by CPWD.

SI. No.	Activity	Remarks	EE/BRPD-I reply
1.	2	3	4
Α.	STRENGHTHING OF INFRASTRUCTURE FOR WILDLIFE CONSERVATION		
1.	Underpass/ overpass/ culverts /other structural mitigation structures along / near proposed alignment in accordance with WH and other national and international guidelines to facilitate elephant / wildlife movement.	Exact numbers, specifications and locations will be detailed in the final IWAP after a comprehensive biodiversity assessment.	Culverts = 05 no.s & Bridge= 02 no.s
2.	Sound proof fences on both sides of railway track all along the alignment	Specification etc. will be decided in consultation with DFO, Wildlife Division after a comprehensive biodiversity assessment as part of the IWAP.	Since the proposal is defense road project, The sound proof fence are not applicable.
3.	Provision for tunneling of underpass/ overpasses / other structural mitigation measures	Same as above.	Not Applicable.
4.	Turfing in high embankment and construction of guide bounds in all major streams and rivers, for soil moisture conservation and to prevent erosion of soil.		Since the road is constructed in hilly area, so the provision o Turfing is not applicable.
5.	Installation of Solar Street light in villages close to the railway alignment (either side) prone to human-wildlife negative interactions	and sufficients	There will be no traffic movemen at night, only limited vehicles of ITBP/Army will pass at day light so the provision of solar stree light is not applicable.
13.	Installation of Speed limit monitoring devices & their annual maintenance at high animal use locations/ mitigation structures and other places, with a control unit at "Research & Wildlife Monitoring Cell"		The proposed road is of linear project for Defense purpose, s the provision of speed lim monitoring device is no considered in the project However Signage board of Spee limit will be provided along th road in regular interval.
В.	WILDLIFE AWARENESS & TRAINING		
15.	Appropriate signages on both side of the alignment/track		
a)	Signages with speed limit at regular intervals		Yes, The provision is considered i the project.
b)	Signages / Hoardings related to conservation at DFCCIL, working place, station, cabins etc. and at identified elephant habitats (if any)		Yes, The provision is considered i the project.
c)	Signages with awareness and warming for wildlife as per DFOs suggestions		Yes, The provision is considered in the project.

Executive Engineer BRPD-1, CPWD, Chungthang North Sikkim

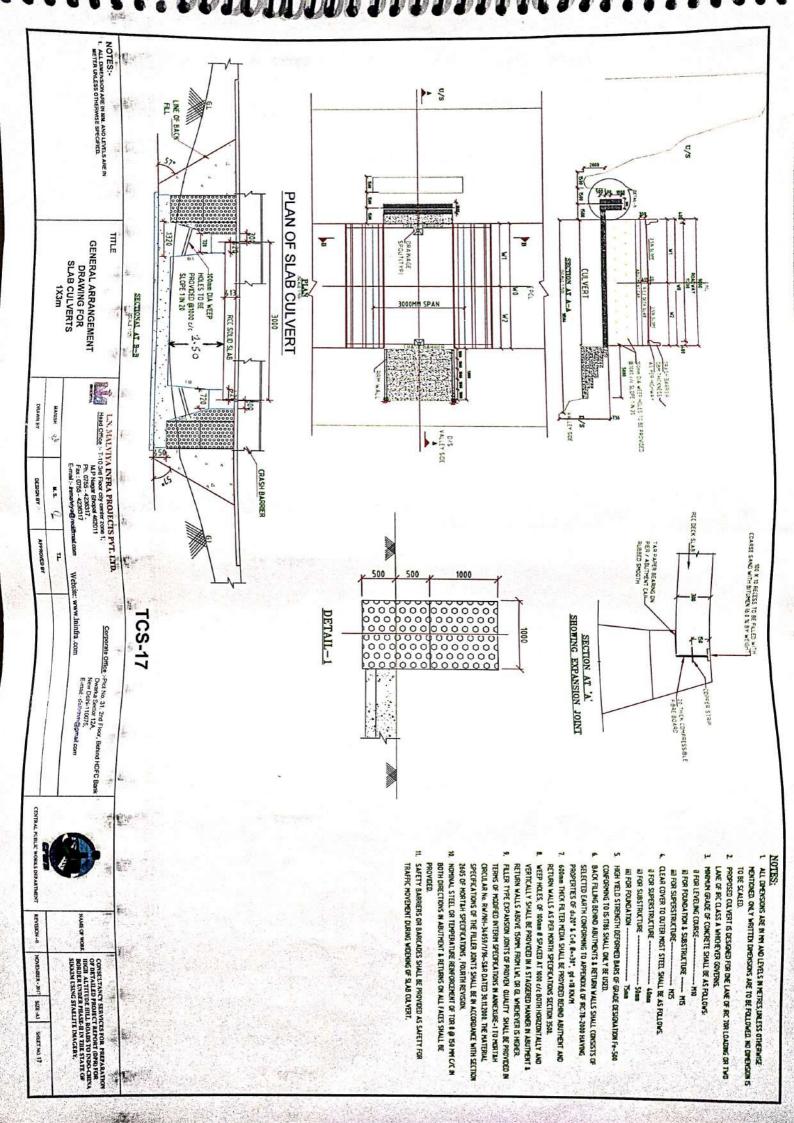
Annexure-8 (Pg-01)

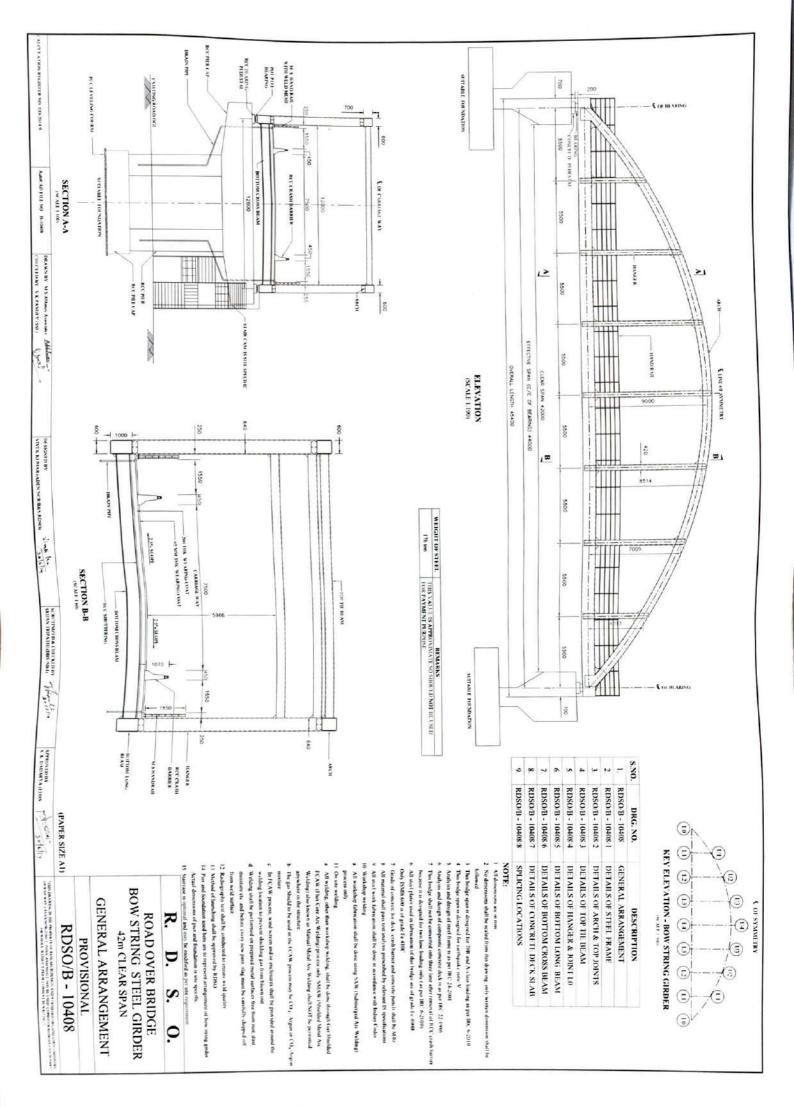
					Specification		GPS Coordinates	dinates	Remarks
SI. No.	SI. No. Chainage	Location	Design Detail	Length (meter)	Width (meter) Height (Meter)	Height (Meter)	Northing	Easting	
-	250	Goma	RRM/RCC Slab Culvert	3.00	7.50	2.50	27°52'35.58"N	88*22"1.02"E	
2	550	Goma	RRM/RCC Slab Culvert	3.00	7.50	2.50	27°52'29.31"N	88"22'1.49"E	
m	800	Goma	RRM/RCC Slab Culvert	3.00	7.50	2.50	27*52'34.20"N	88*21'55.92"E	
4	1150	Goma	RRM/RCC Slab Culvert	3.00	7.50	2.50	27°52'26.14"N	88*21'49.67"E	
2	2300	Goma	RRM/RCC Slab Culvert	3.00	7.50	2.50	27*52'12,48"N	27*52'12,48"N 88*21'21.53"E	

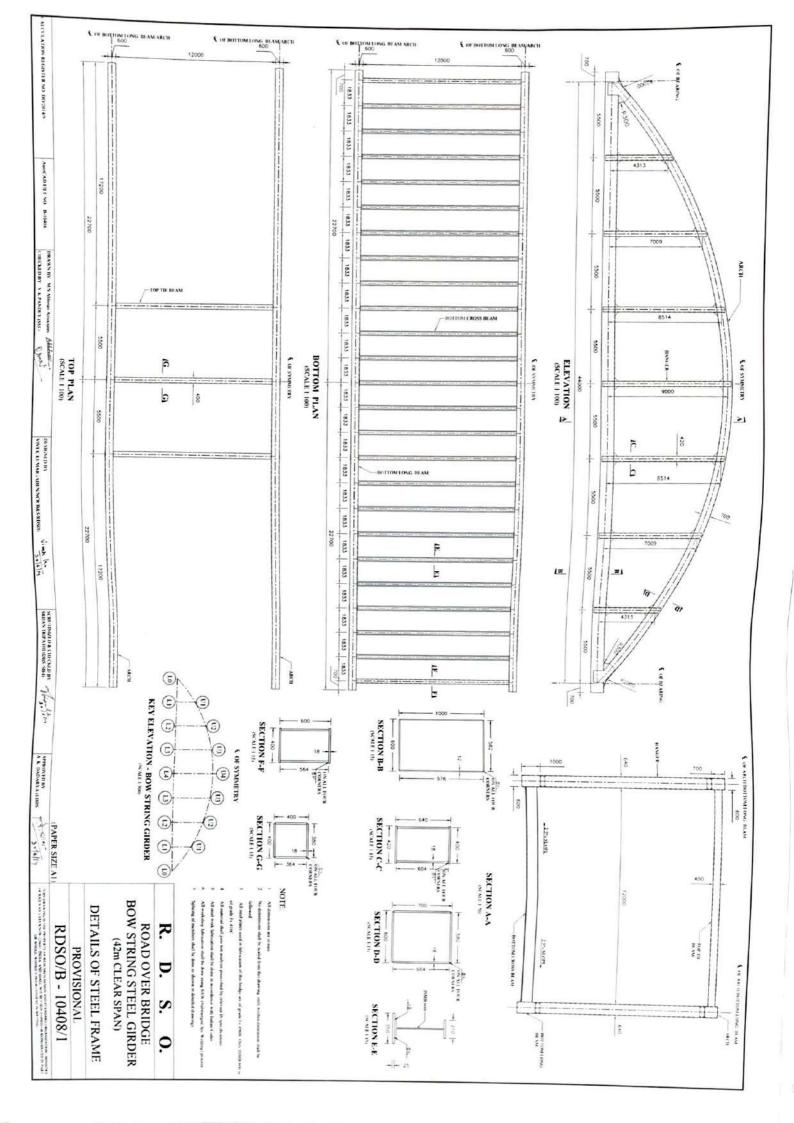
Details Location of Culvert for proposed road from 20r Link point to Goma point Road (2.70 K.M.)

na point Road	
oint to Gon	
20r Link p	
d road from	
for propose	
n of Bridge	
tails Location	

					Specification		GPS Coordinates	rdinates	Remarks
NO.	4. No. Chainage	Location	vesign vetail	Length (meter)	Length (meter) Width (meter) Height (Meter)	Height (Meter)	Northing	Easting	
-	50	Goma	RCC Bridge	40.00	12000.00	6.00	27*52'38.50"N	27*52'38.50"N 88*21'54.73*E	
2	2050	Goma	RCC Bridge	40.00	12000.00	6.00	27°52'10.76"N	27*52'10.76"N 88*21'30.65"E	


Executive Engineer BRPD-I, CPWD, Chungthang BRPD-I, CPWD, Chungthang North Sikkim


UNDERTAKING FOR ANIMAL PASSAGE PLAN


This is to certify that for Diversion of forest land for construction of ITBP Phase-II road from 20r link point to 20r (Goma) L=2.70 km, The Animal Passage Plan is submitted as per the site requirement in form of Box Culvert at a frequency of 2 nos. per km of length. We also undertake, if need be in future that any other requirements for safe passage of animal. Then design may be implemented as per the guidelines and requirements of Department of Forest & Environment, Govt. of Sikkim.

Executive Engineer

BRPD-I, CPWD, Chungthang, N. Sikkim. Executive Engineer BRPD-I, CPWD, Chungthang North Sikkim

कार्यालयकार्यपालक अभियंता O/o Executive Engineer एस° टी°लामा बिल्डिंग, तीसरी मंजिल S. T. Lama Building, 3rd Floor E-MAIL:chueeccd1.cpwd@nic.in

भारत सरकार Government of India केन्द्रीय लोक निर्माण विभाग Central Public Works Department सीमासडकपरियोजना मंडल-। Border Road Project Division-I चुंगयांग, उत्तरसिक्किम- 737120 Chungthang, North Sikkim - 737120.

संख्या: 23(7)/Forest/EE/BRPD-1/NS/2023/ 37(14)

दिनांक: 17.02.2023

सेवा में.

APCCF -cum-Nodal Officer, FCA Forest and Environmental Department, Forest Secretariat, Deorali, Gangtok-737102. Email: fca.sikkim@gmail.com

विषय:

Diversion of 18.82 Ha of Forest land for C/o High Altitude Hill roads to Indo China Border from 20r link pt. to Zanak (L=10.40 km) under Phase-II in the state of Sikkim by CPWD. Reg-Review of Biodiversity Conservation and Management Plans in lieu of road-construction forest diversion proposal towards providing specific suggestions.

महोदय.

A review meeting was held on 09.02.2023 for preparation of Biodiversity Conservation and Management Plans in lieu of road-construction forest diversion. The following documents are further required to be submitted for preparation of Biodiversity Conservation and Management Plans as decided in the meeting:

I) Location of culverts along with GPS co-ordinates,

II) Design drawing of culvert,

III) Alignment map showing culvert location

IV) Undertaking for Animal Passage Plan.

It is mention that, the project of construction of road along Indo China Border for ITBP under Ph-II is important from strategic point of view. These roads provide passage to border guiding forces to reach up to end point. The forest clearance of these roads is closely monitored at highest level in PMO office.

It is therefore requested that proposal may be processed for forest clearance on priority basis.

सलग्रक: As above.

त्र्श कुमार जै कार्यपालक अभियं

प्रतिलिपि :

 अधीक्षण अभियंता, सीमा सड़क परियोजना परिमंडल, केoलोoनिoविo, मंगन, उत्तर सिक्किम – 737116 सूचनार्थ हेत्।

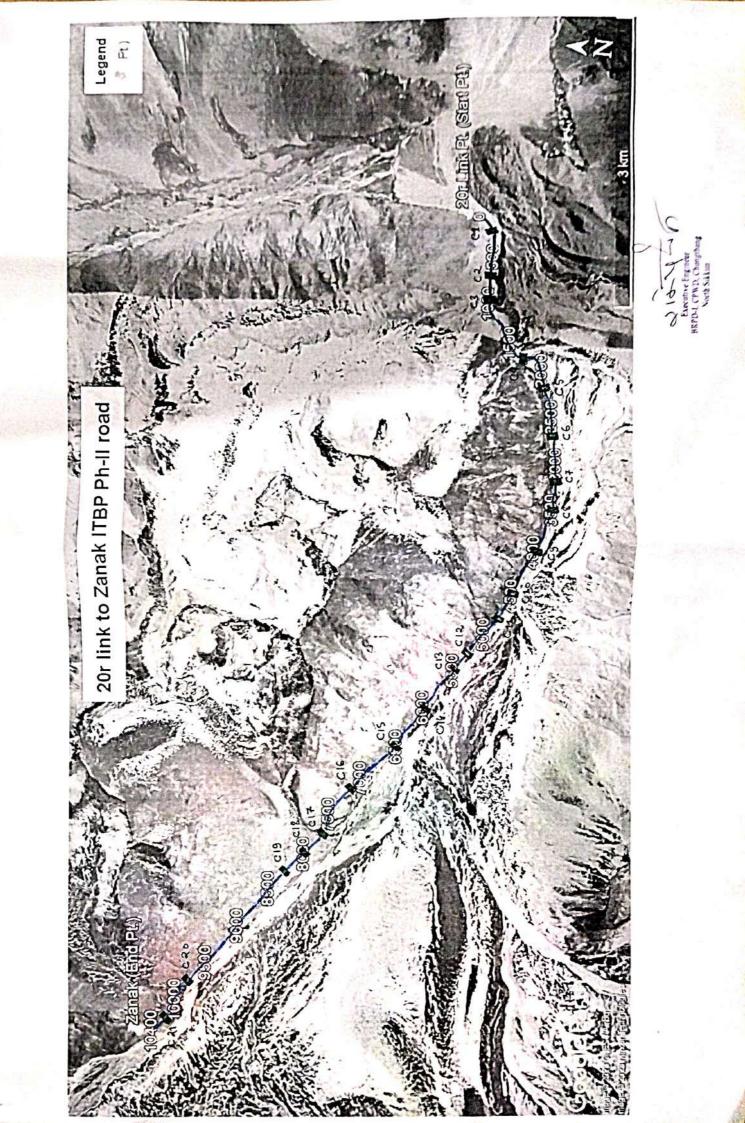
कार्यपालक अभियंता

ANNEXURE - 1 - DETAILS & PARTICULARS OF DATA REQUESTED FROM SIKKIM FED AND PROJECT PROPONENTS

Sub: Diversion of 18.82 Ha of Forest land for C/o High Altitude Hill roads to Indo China Border from 20r link pt. to Zanak (L=10.40 km) under Phase-II in the state of Sikkim by CPWD.

Reply BY CPWD	On an average Culvert will be provided in every 500 meter interval of road and Chainage-wise Line diagram is attached In Annexure-A	Location of culverts & bridges are attached In Annexure-B	DPR is attached in Annexure-C
Source	CPWD	CPWD	CPWD
Alternative format			
Note	The diagram must preferably be for every one 901) or every few kilometers for easy interpretation, and mist contain locations of proposed culverts and /or other planned wildlife passages.	All planned culverts/water passage /wildlife crossing structures with their chainage-wise locations, latitude, longitude, type, design details, material to be used, specifications (length * width * height), along with all other important details must be mentioned in separate well-labelled columns.	If not for the entire project, all general and specific details of the proposals passing through forestland must be provided.
Preferred format	PDF/ any other	Excel spreadsheet	Word/PFD
Data particulars	High -res diagram file		
PA/ Division / RF/PF/Region	Chainage-wise line diagrams of the four (04) road construction proposals against terrain	Locations and other details of planned culverts and / or other wildlife passages.	Detailed Project Reports of the four (04) roads construction
Sr. No.	Ë	14.	15.

V TANCA Executive Engineer BR?D-1. CPWD, Chungthang North Sikkim


ANNEXURE-2: SAMPLE LIST OF ACTIVITIES/INTERVENTIONS BY THE USER AGENCY/ PROJECT PROPONENTS

Sub: *Diversion of 18.82 Ha of Forest land for C/o High Altitude Hill roads to Indo China Border from 20r link pt. to Zanak (L=10.40 km) under Phase-II in the state of Sikkim by CPWD.

SI. No.	Activity	Remarks	EE/BRPD-I reply
1.	2	3	4
Α.	STRENGHTHING OF INFRASTRUCTURE FOR WILDLIFE CONSERVATION		
1.	Underpass/ overpass/ culverts /other structural mitigation structures along / near proposed alignment in accordance with WH and other national and international guidelines to facilitate elephant / wildlife movement.	Exact numbers, specifications and locations will be detailed in the final IWAP after a comprehensive biodiversity assessment.	Culverts = 21 no.s & Bridge= 0 no.s
2.	Sound proof fences on both sides of railway track all along the alignment	Specification etc. will be decided in consultation with DFO, Wildlife Division after a comprehensive biodiversity assessment as part of the IWAP.	Since the proposal is defense road project, The sound proof fence are not applicable.
3.	Provision for tunneling of underpass/ overpasses / other structural mitigation measures	Same as above.	Not Applicable.
4.	Turfing in high embankment and construction of guide bounds in all major streams and rivers, for soil moisture conservation and to prevent erosion of soil.		Since the road is constructed in hilly area, so the provision o Turfing is not applicable.
5.	Installation of Solar Street light in villages close to the railway alignment (either side) prone to human-wildlife negative interactions		There will be no traffic movement at night, only limited vehicles of ITBP/Army will pass at day light so the provision of solar street light is not applicable.
13.	Installation of Speed limit monitoring devices & their annual maintenance at high animal use locations/ mitigation structures and other places, with a control unit at "Research & Wildlife Monitoring Cell"		The proposed road is of linear project for Defense purpose, s the provision of speed lim monitoring device is no considered in the project However Signage board of Spee limit will be provided along the road in regular interval.
В.	WILDLIFE AWARENESS & TRAINING	and the second se	- 14
15.	Appropriate signages on both side of the alignment/track		
a)	Signages with speed limit at regular intervals		Yes, The provision is considered i the project.
b)	Signages / Hoardings related to conservation at DFCCIL, working place, station, cabins etc. and at identified elephant habitats (if any)		Yes, The provision is considered i the project.
c)	Signages with awareness and warming for wildlife as per DFOs suggestions		Yes, The provision is considered i the project.

Executive Engineer

BRPD-I, CPWD, Chungthang North Sikkim

Annepube - A

Annexure-B (Pg- 01)

	Remarks																							
	dinates	Easting	88°21'47.25"E	88°21'28.67"E	2"87 P1.1C.88	- 01.11 12 00	88°21'0.66°E	88°20'47.38"E	88°20'29.79"E	88°20'12.07"E	88°20'3.04"E	88°19'45.77"E	88°19'28.35"E	88°19'19.90"E	88°19'4.94"E	88°18'57.17"E	88°18'42.10"E	88°18'25.88"E	88°18'12.37"E	88°17'52.37"E	88°17'49.59"E	88°17'34.88"E	88°16'50.16"E	88°16'34.18"E
TANY ANYAT I DEO	GPS Coordinates	Northing	27°52'33.87"N	N"01 55'73 40"N	N"DE CEICOALE	N 07.66 76 17	27°52'18.66"N	27°52'9.82"N	27°52'6.23"N	27°52'4.29"N	27°52'4.83"N	27°52'9.32"N	27°52'14.20"N	27°52'17.04"N	27°52'26.05"N	27°52'30.45"N	27°52'39.04"N	27°52'46.57"N	27°52'57.29"N	27°53'7.00"N	27°53'7.26"N	27°53'18.64"N	27°53'46.64"N	27°53'53.16"N
A point to Lanak h		Height (Meter)	2.50	2 50	01.0	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
oad from 20r Link	Specification	Width (meter)	7 50	1 100	nc./	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50
ert for proposed r		Langth (meter)	3 00	00.0	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Details Location of Culvert for proposed road from 20r Link point to zanak hoad 1 10-40 hint.		Design Detail	PDAA/DCC Clab Culuert	KKINI/ KCC SIGD COINEL	RRM/RCC Slab Culvert	RRM/RCC Slab Culvert	RRM/RCC Slab Culvert	RRM/RCC Slab Culvert	RRM/RCC Slab Culvert															
		Location	-	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak	Zanak
		Chainage		250	750	950	1750	2250	2750	3250	3500	4000	4500	4750	5250	5500	6000	6500	7100	7650	7710	8250	9750	10250
		SI. No.		1	2	m	4		9	-	. «	a	10		12	13	14	15	16	17	18	19	20	21

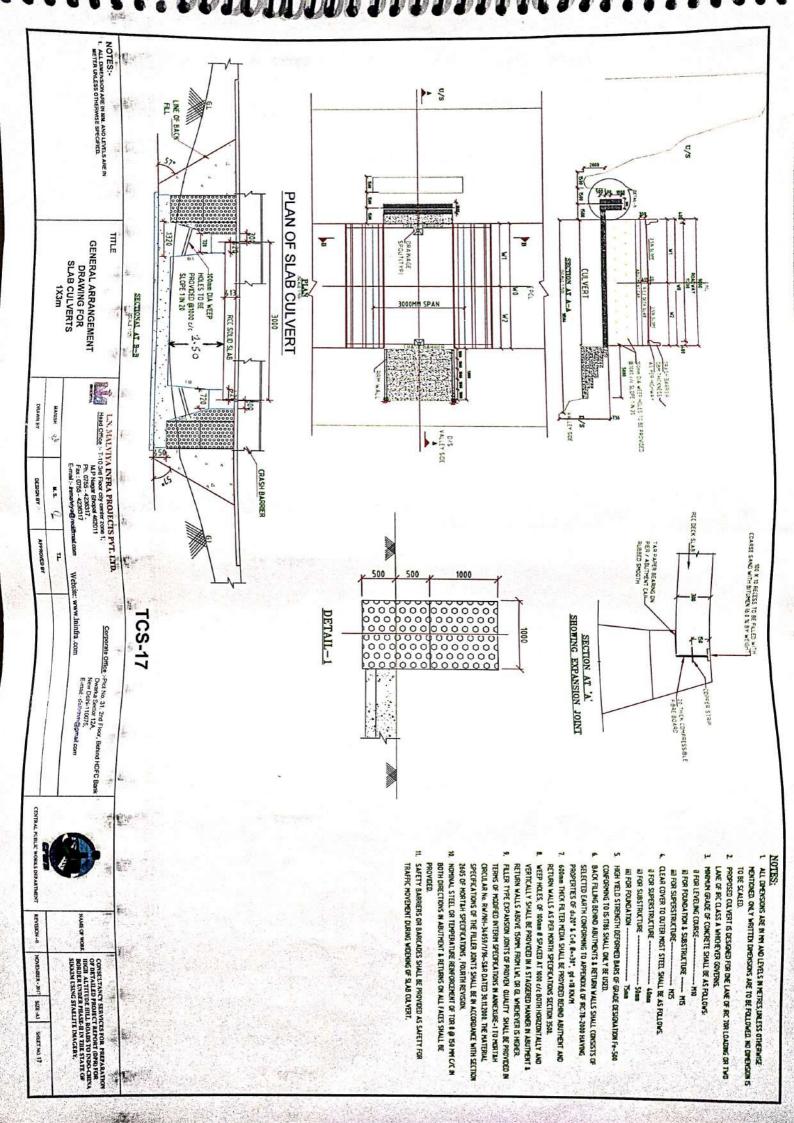
Incretion of Cuilvert for proposed road from 20r Link point to Zanak Road (10.40 K.M.)

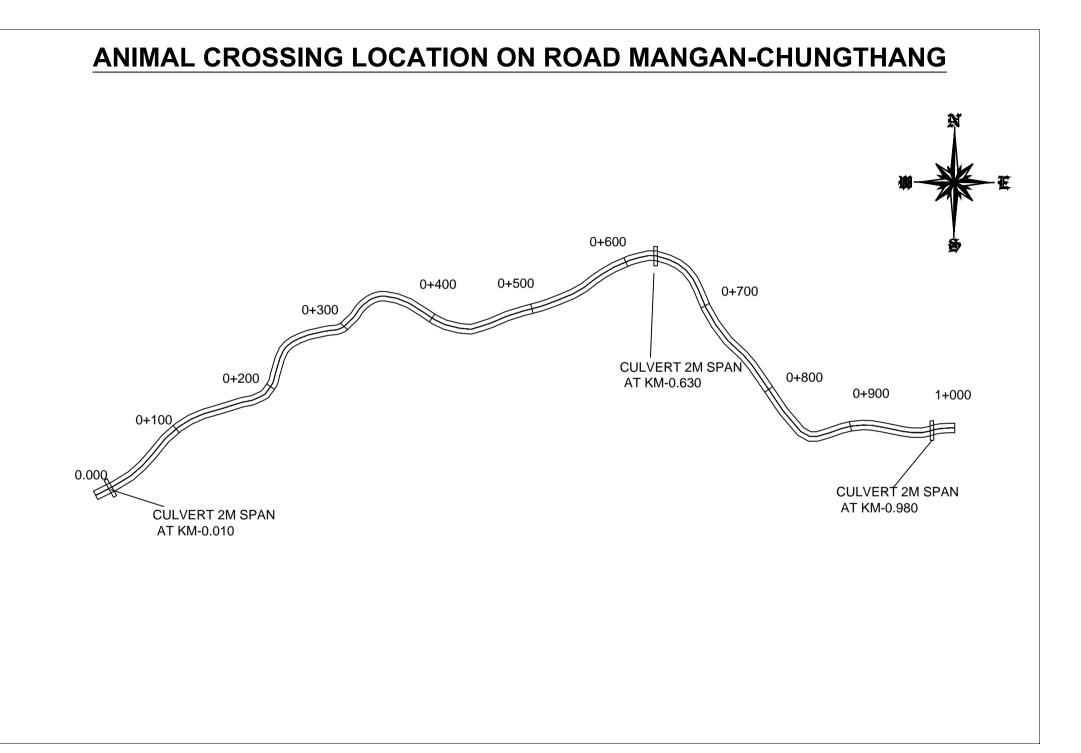
Details Location of Bridge for proposed road from 20r Link point to Zanak Road (10.40 K.M.)

ON D	G No Chalman		Davisor Dated		Specification		GPS Coordinates	dinates	Remarks
		LOCATION		Length (meter)	Width (meter)	ength (meter) Width (meter) Height (Meter)	Easting	Northing	
H	•	Zanak	RCC Bridge		Ŀ	,			No Bridges are required as per site
			3						CONTRACTOR .

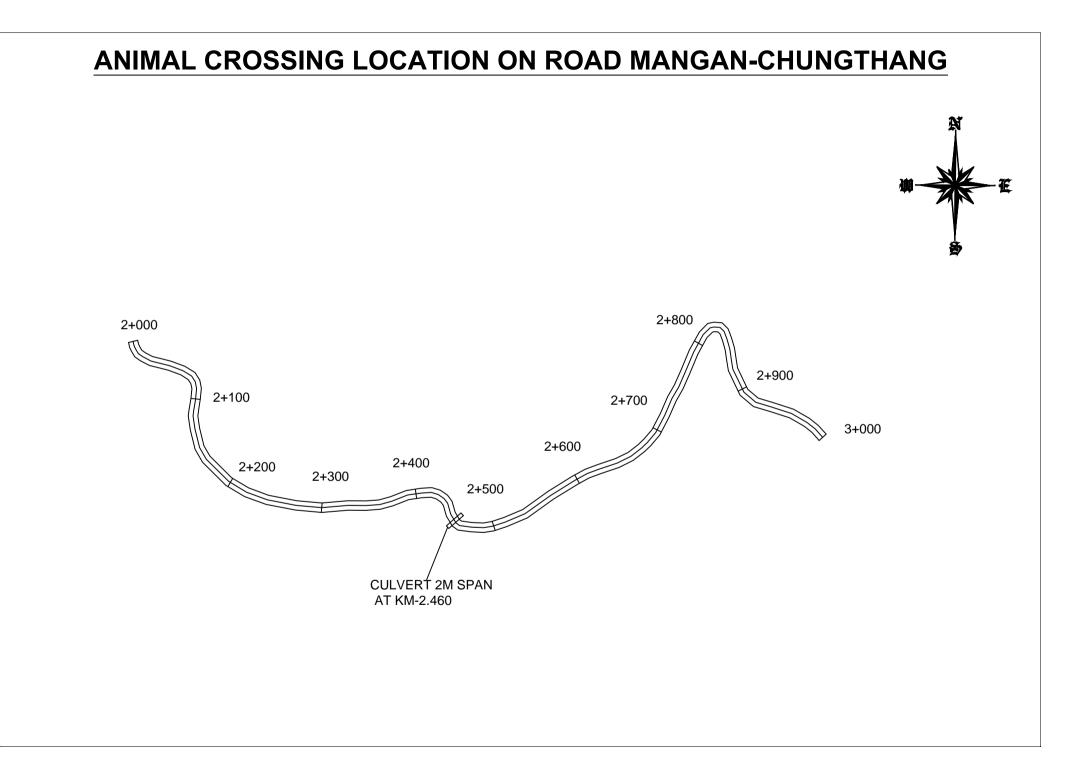
Executive Engineer BRPD-1, CPWD, Chungthang North Sikkim Executive Engineer BRPD-I, CPWD, Chungthang

0


6

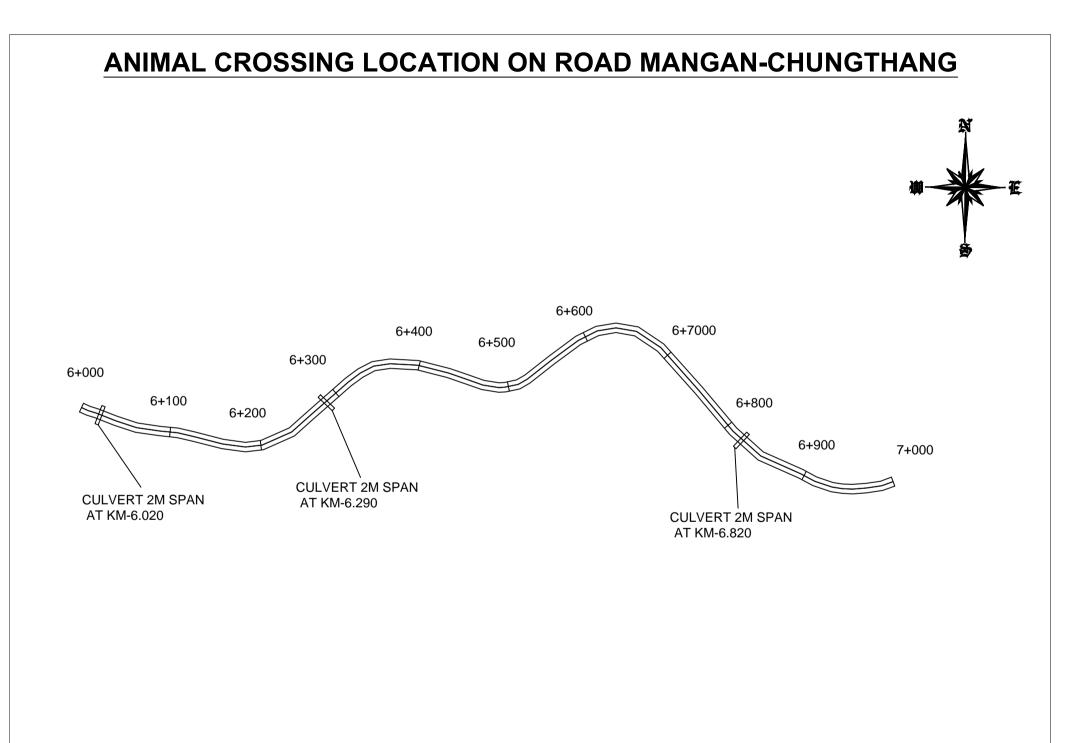

10

UNDERTAKING FOR ANIMAL PASSAGE PLAN

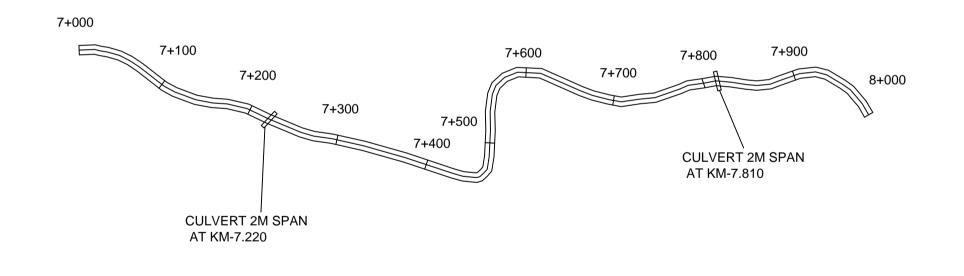

This is to certify that for Diversion of forest land for construction of ITBP Phase-II road from 20r link point to Zanak L=10.40 km, The Animal Passage Plan is submitted as per the site requirement in form of Box Culvert at a frequency of 2 nos. per km of length. We also undertake, if need be in future that any other requirements for safe passage of animal. Then design may be implemented as per the guidelines and requirements of Department of Forest & Environment, Govt. of Sikkim.

Executive Engineer BRPD-I, CPWD, Chungthang, N. Sikkim. Executive Engineer BRPD-I, CPWD, Chungthang North Sikkim

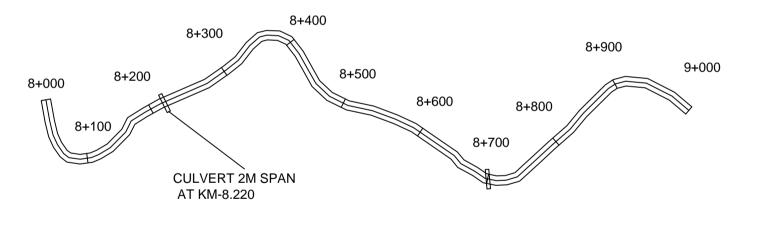
ANIMAL CROSSING LOCATION ON ROAD MANGAN-CHUNGTHANG 1+400 1+600 1+500 1+700 1+800 1+900 1+300 CULVERT 2M SPAN 2+000 AT KM-1.430 1+200 CULVERT 2M SPAN AT KM-1.920 1+100 1+000

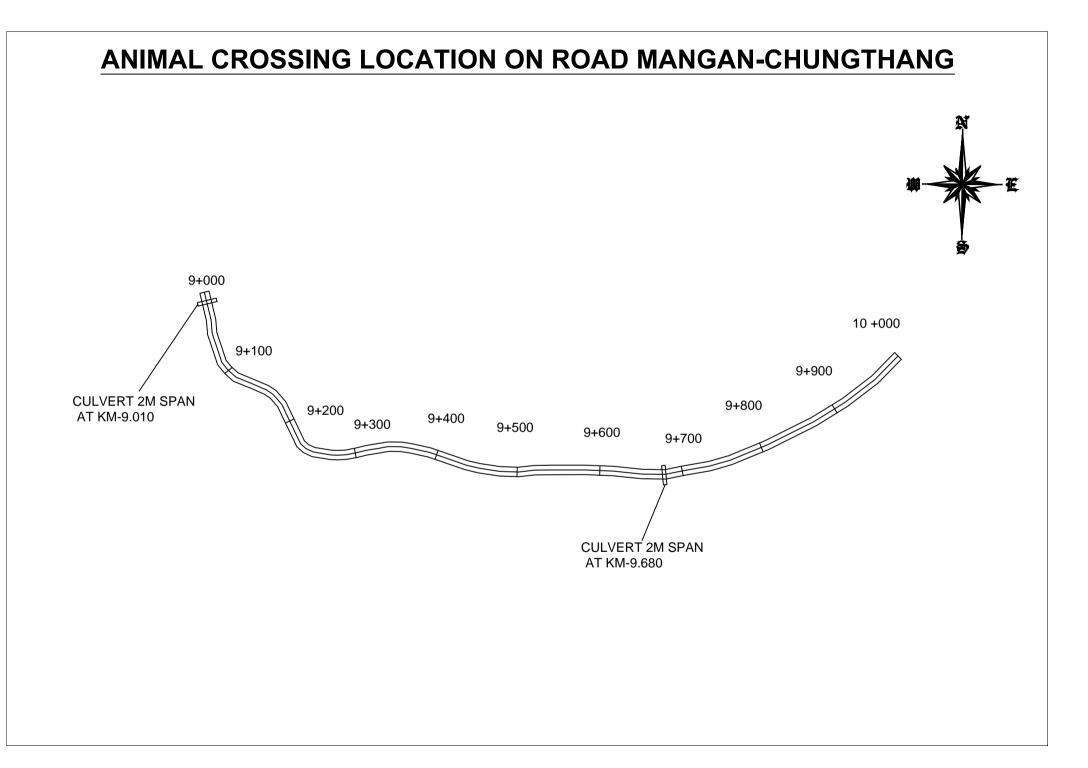


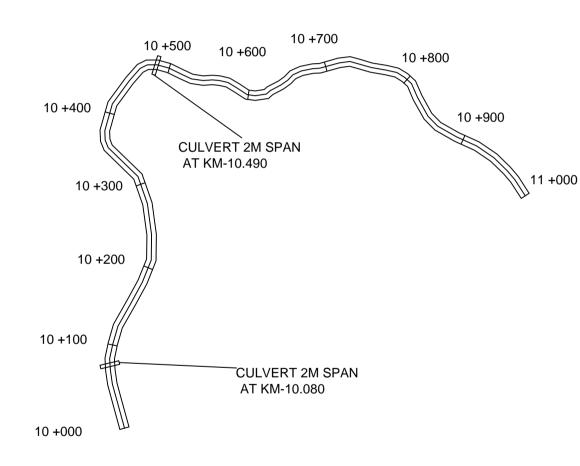
ANIMAL CROSSING LOCATION ON ROAD MANGAN-CHUNGTHANG 4+000 3+400 3+500 3+700 3+800 3+600 3+903+300 3+200 3+000 3+100 CULVERT 2M SPAN AT KM-3.560 CULVERT 2M SPAN AT KM-3.010

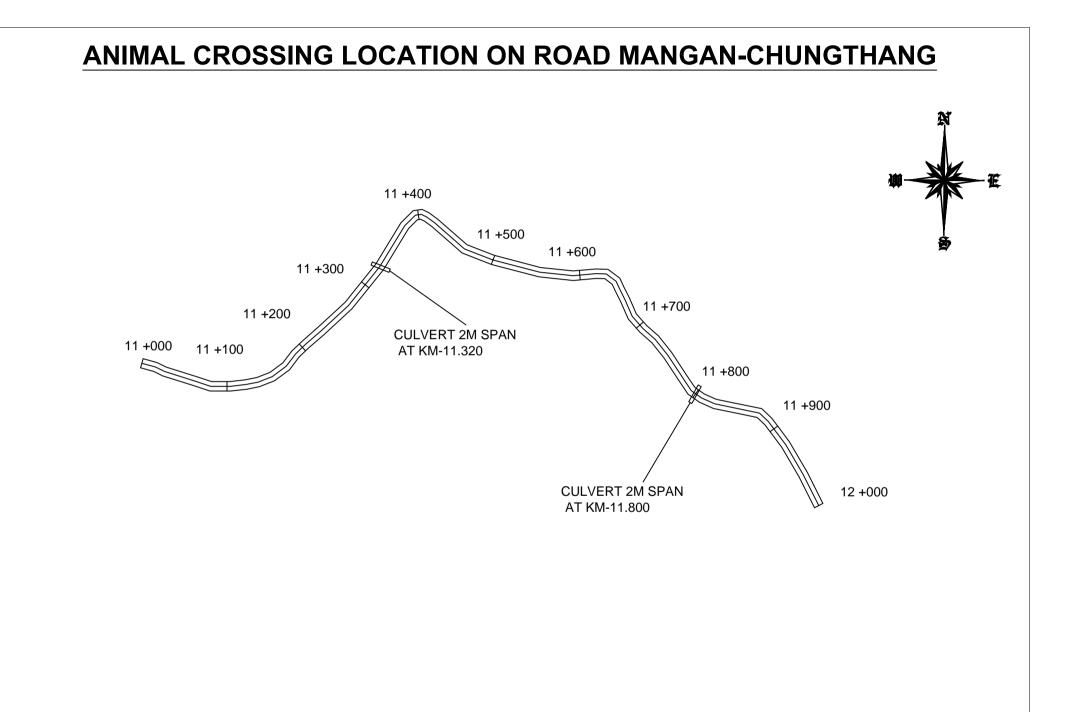

| CULVERT 2M SPAN AT KM-4.680

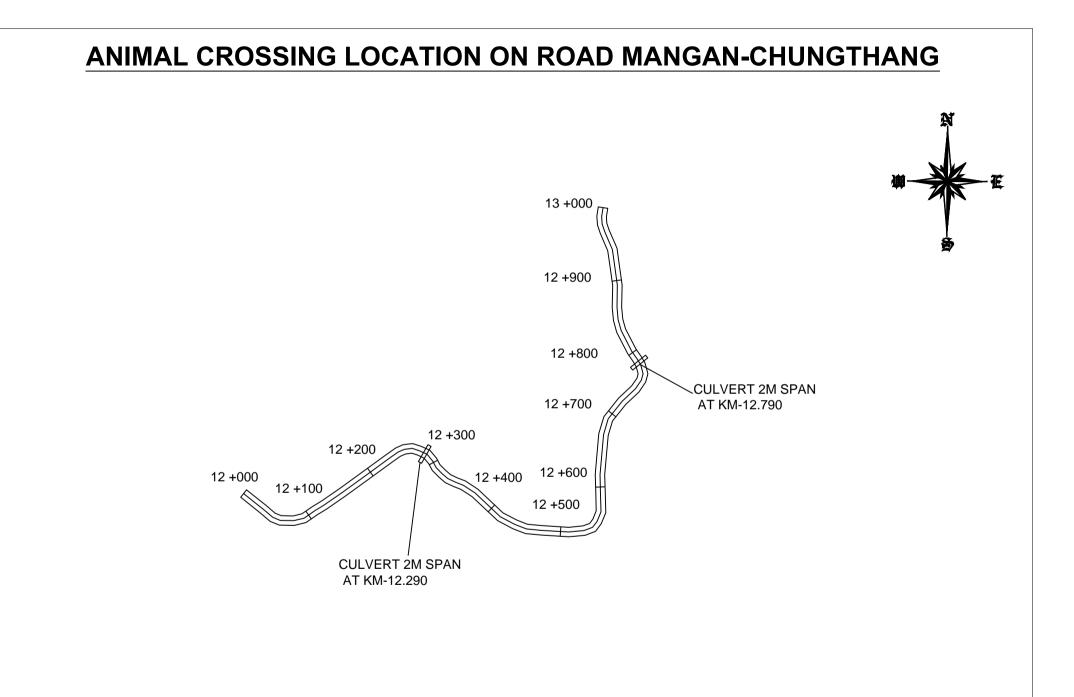
CULVERT 2M SPAN AT KM-4.170

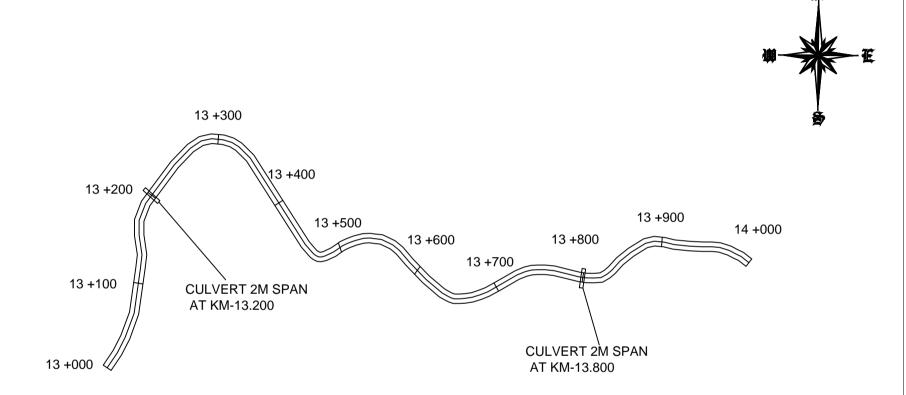

ANIMAL CROSSING LOCATION ON ROAD MANGAN-CHUNGTHANG 5+300 5+200 5+400 5+100 5+000 5+800 6+000 5+900 5+700 5+500 CULVERT 2M SPAN AT KM-5.290 5+600 CULVERT 2M SPAN AT KM-5.800

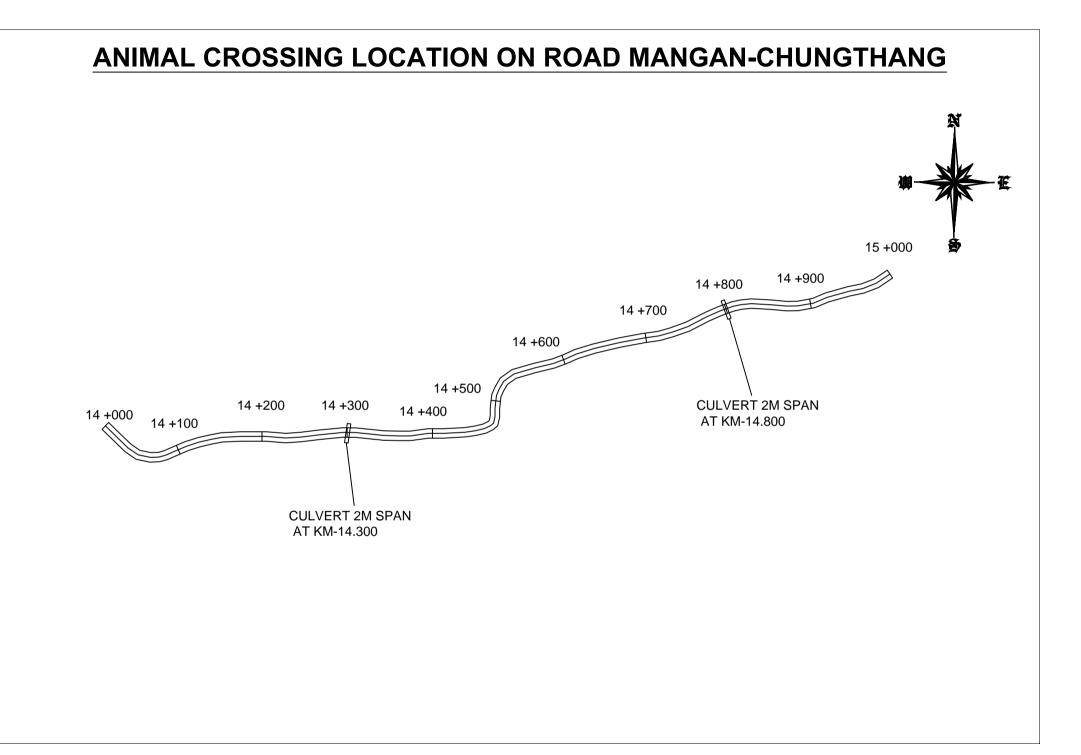

W E

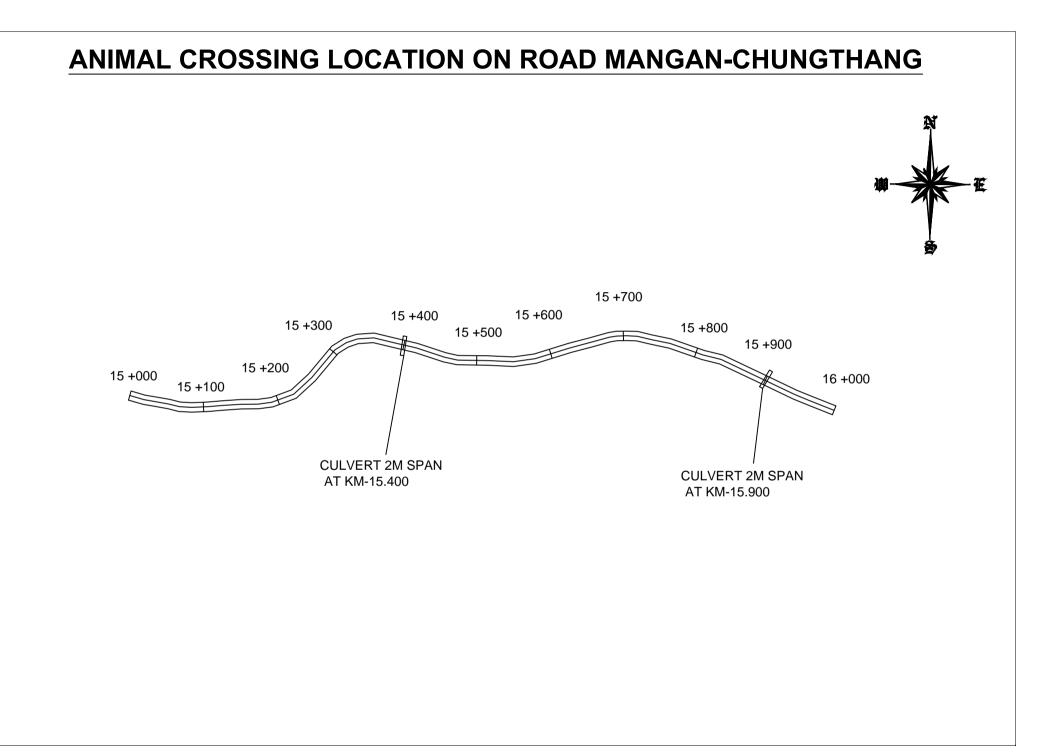

M TE

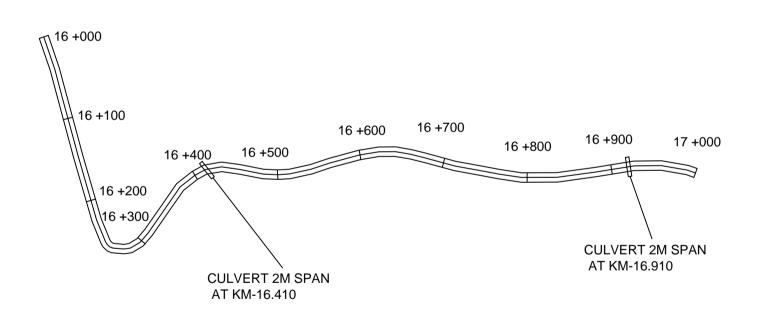


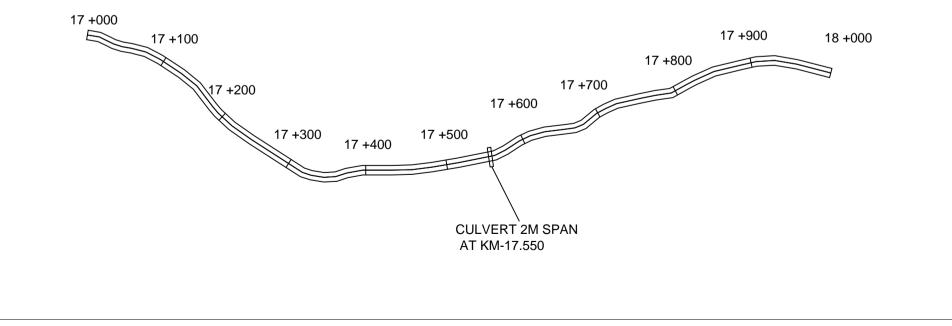

CULVERT 2M SPAN AT KM-8.700

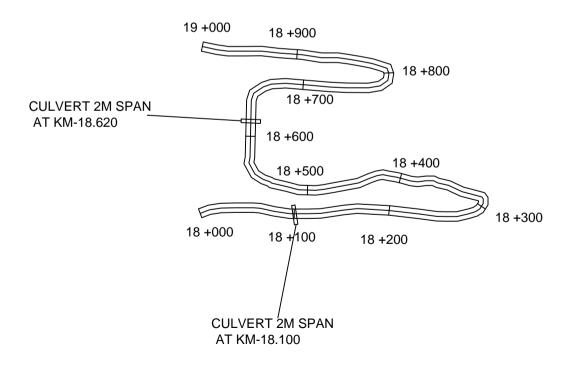


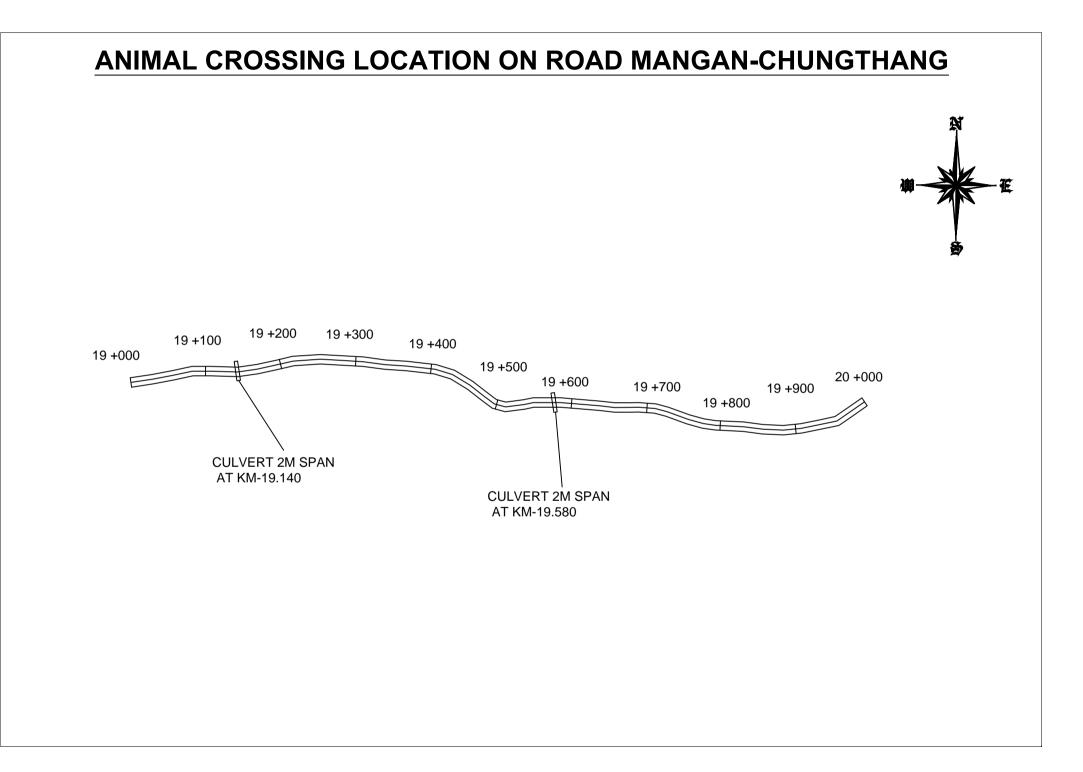


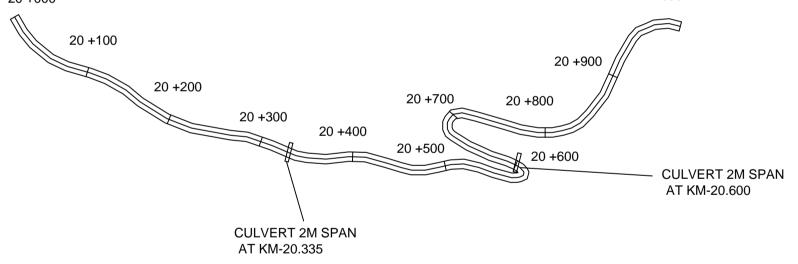


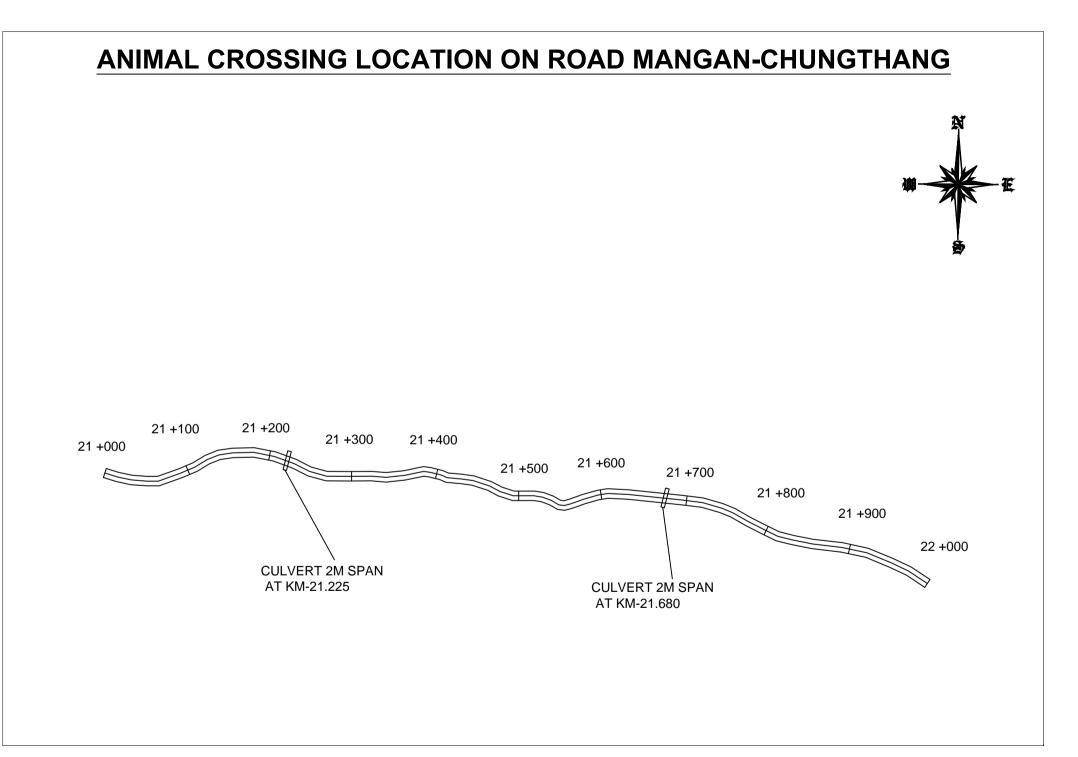


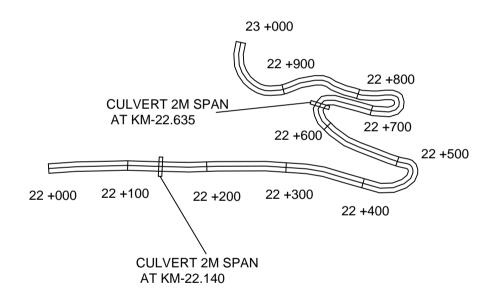


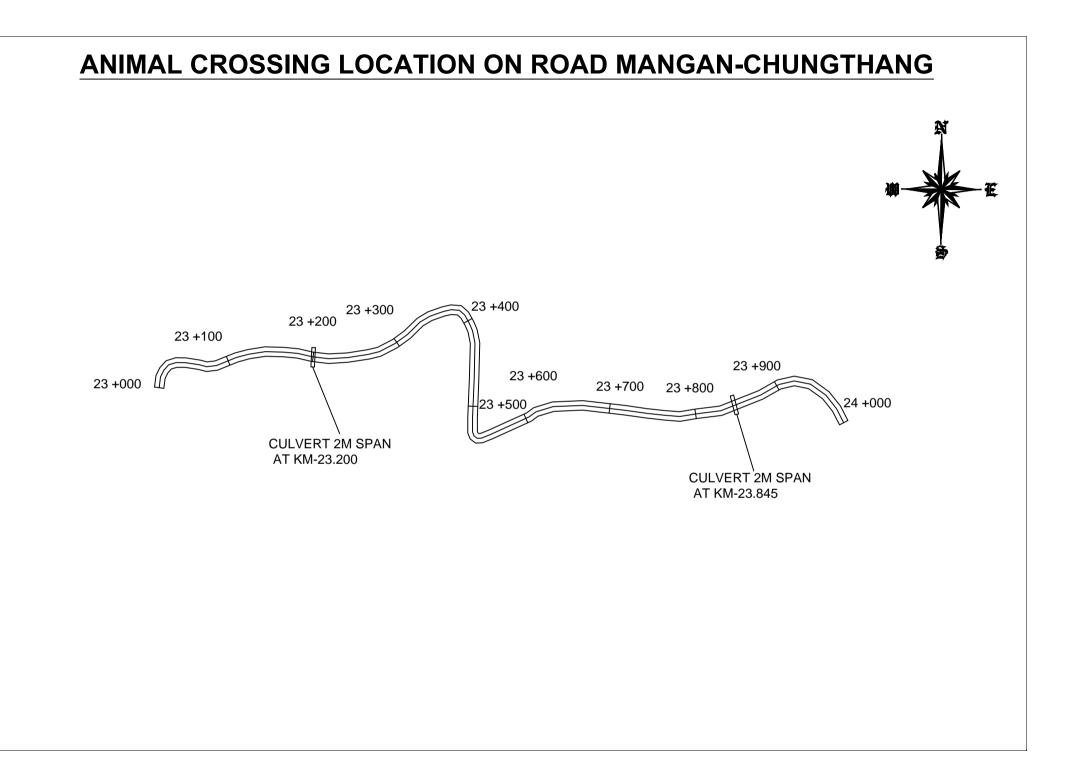


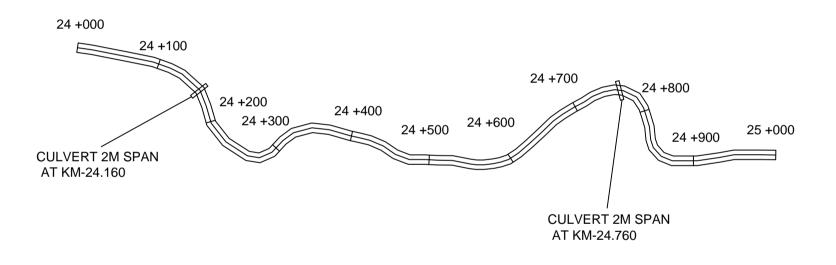


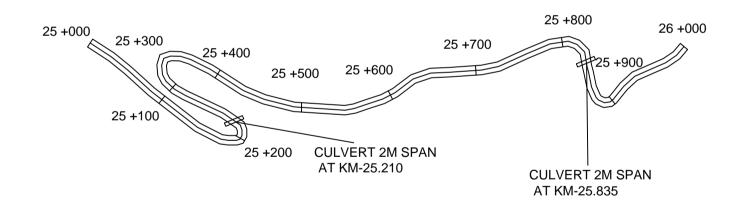


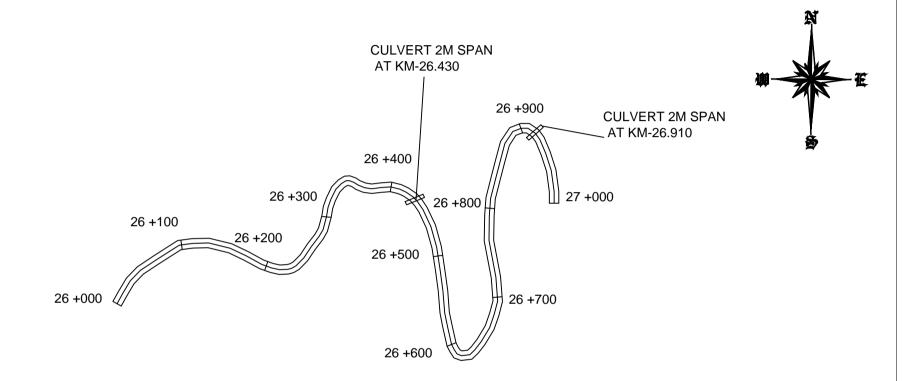


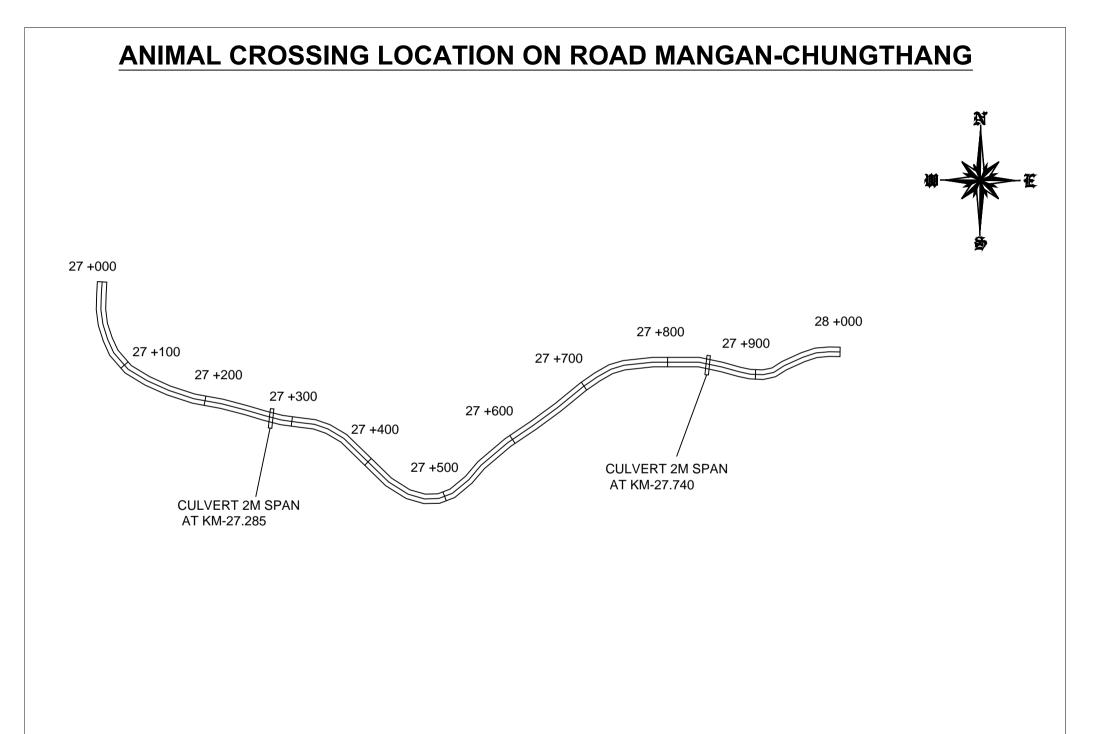


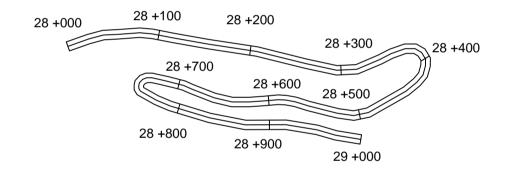


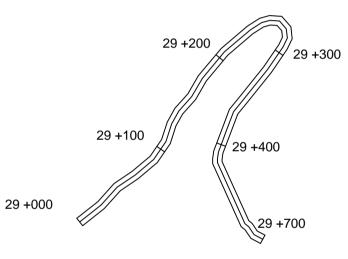




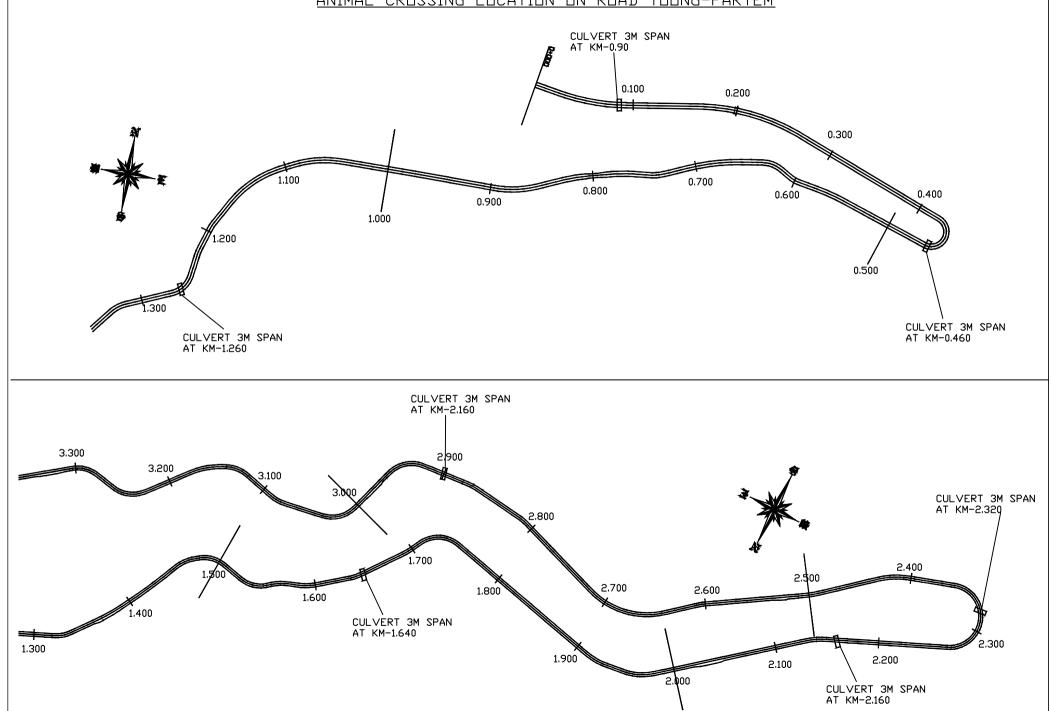


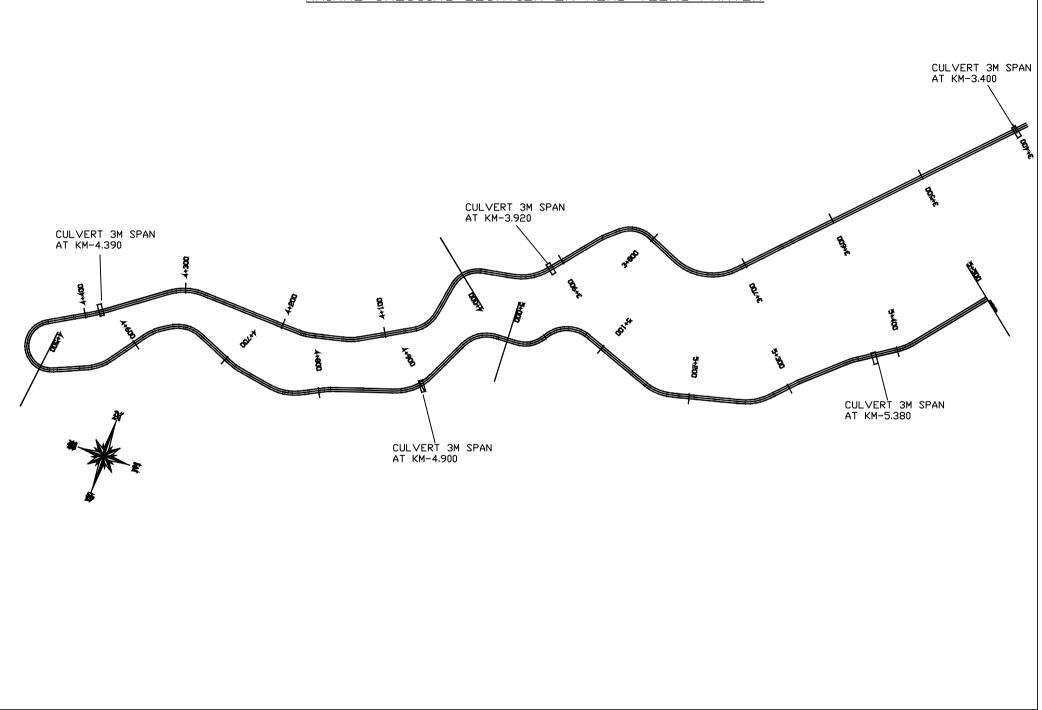

W E

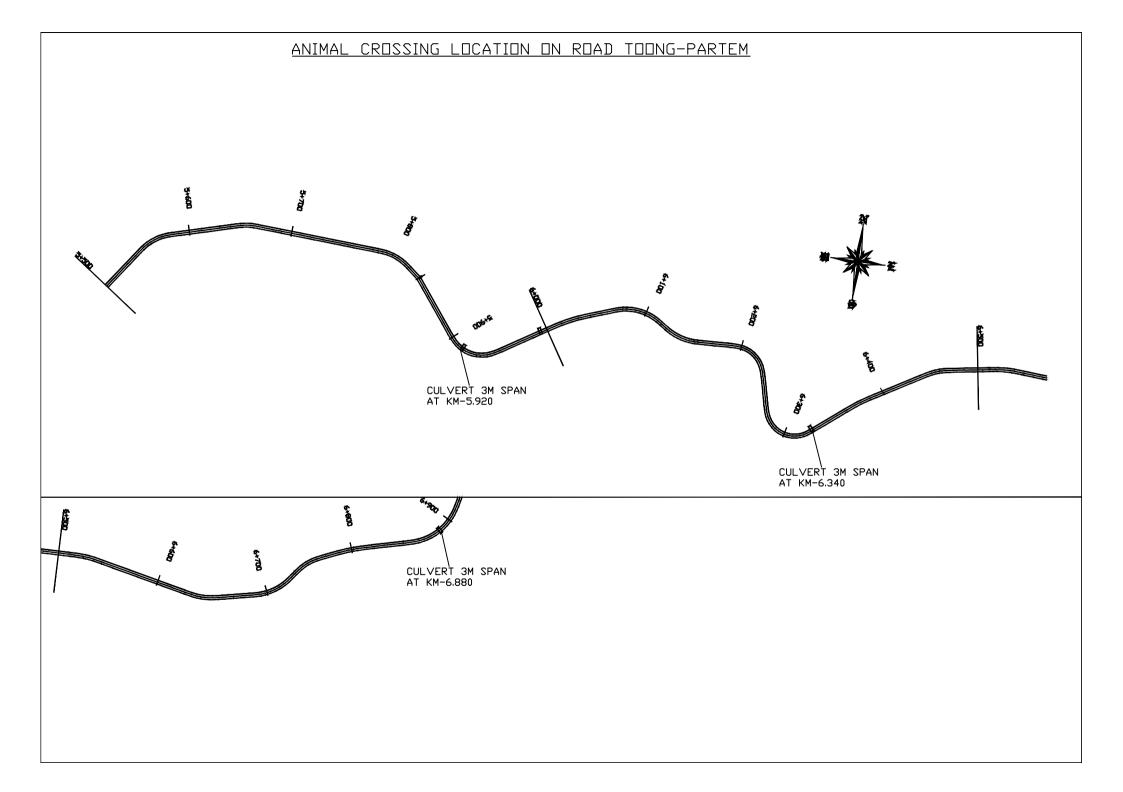

W E

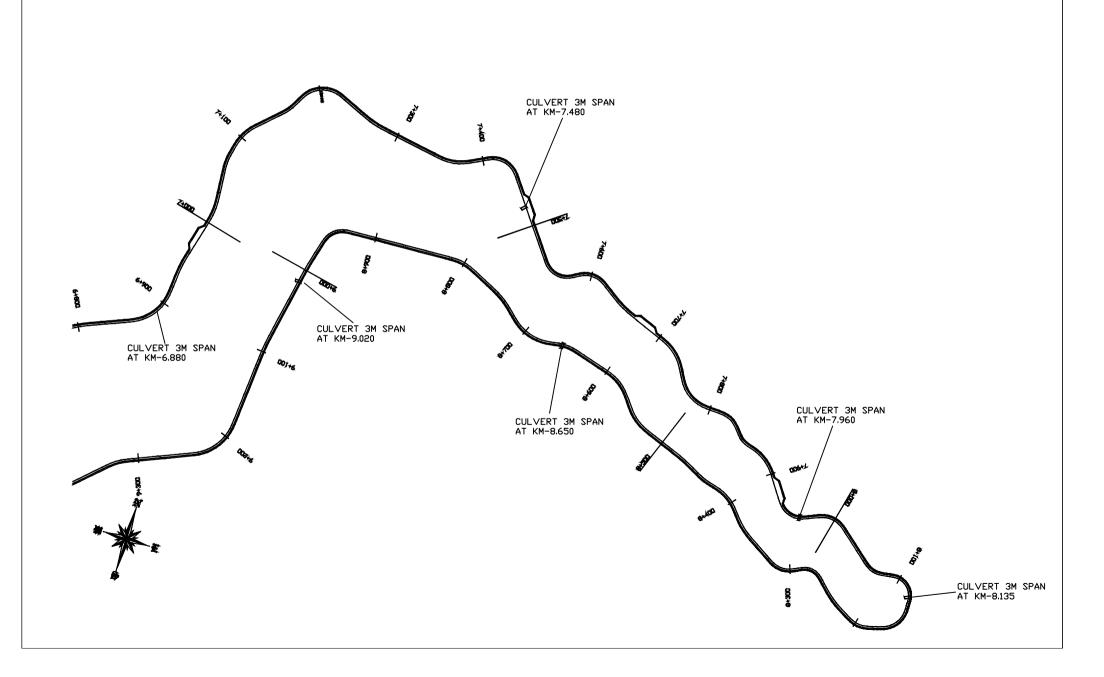


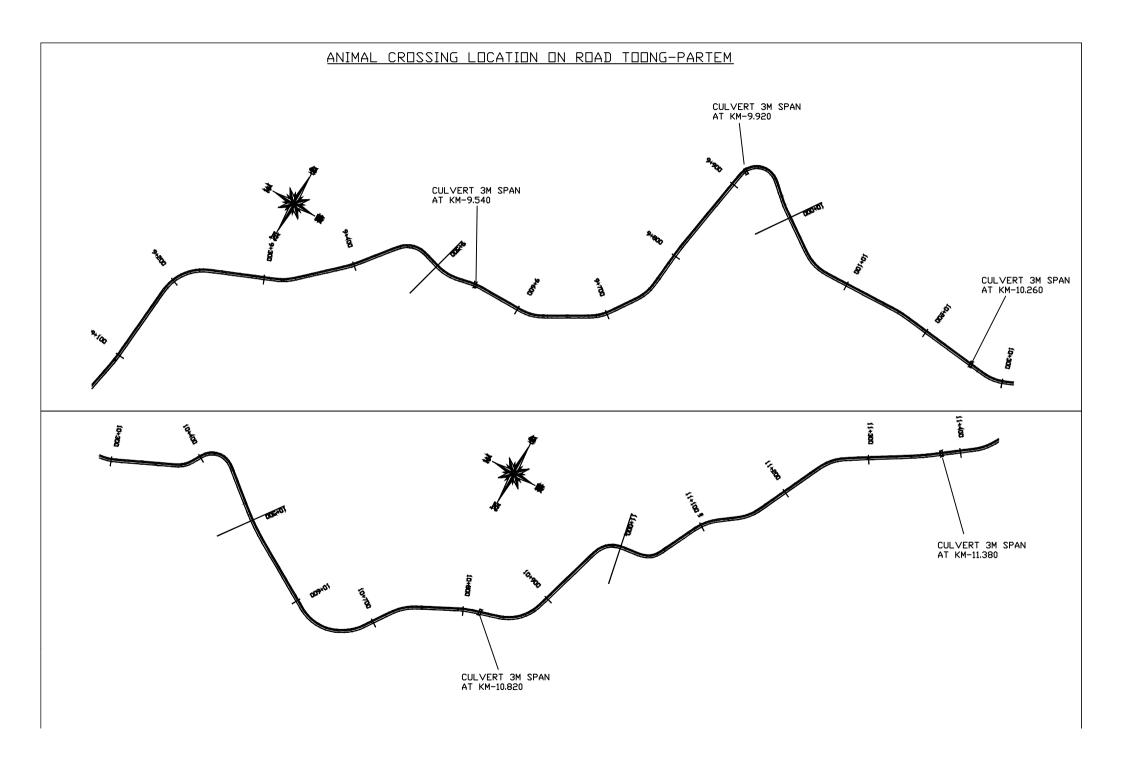
W W W

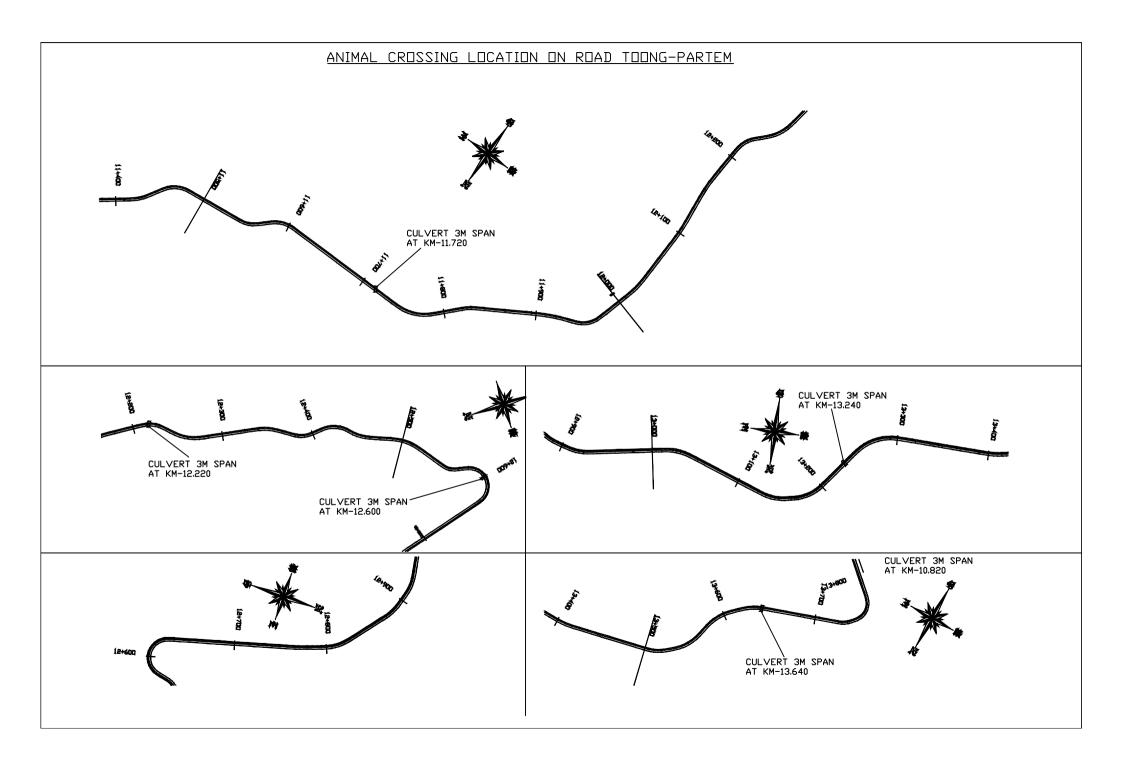

A TE

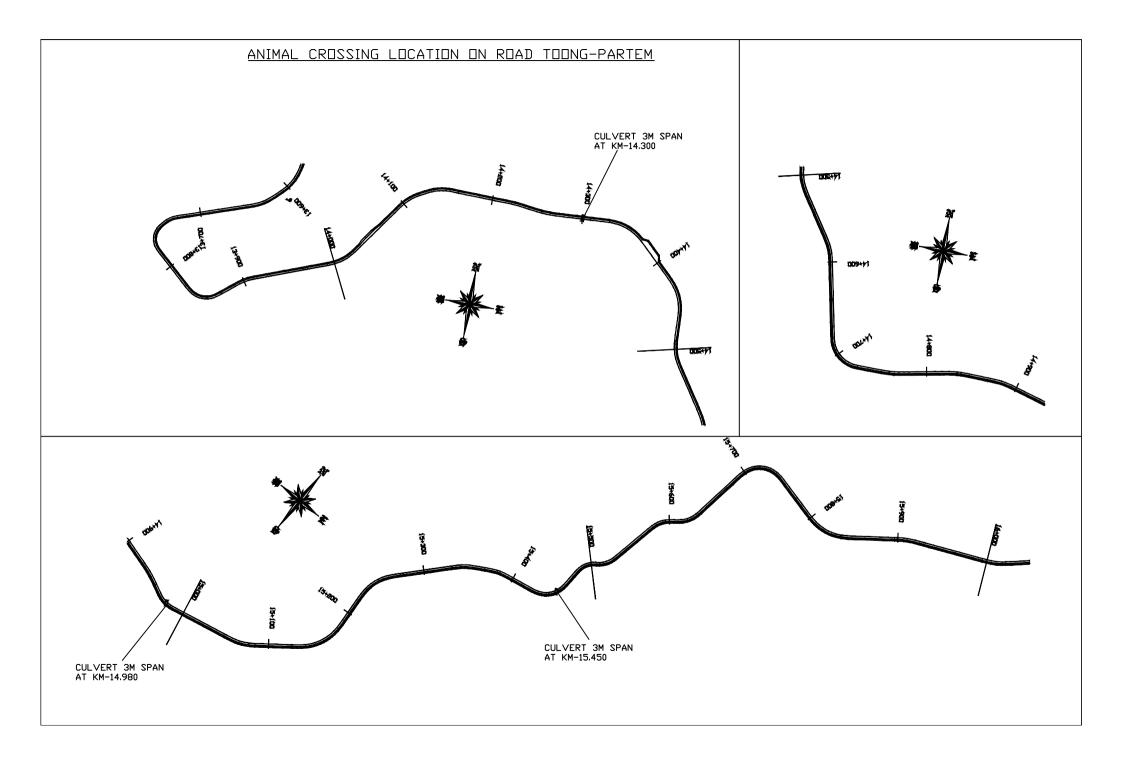


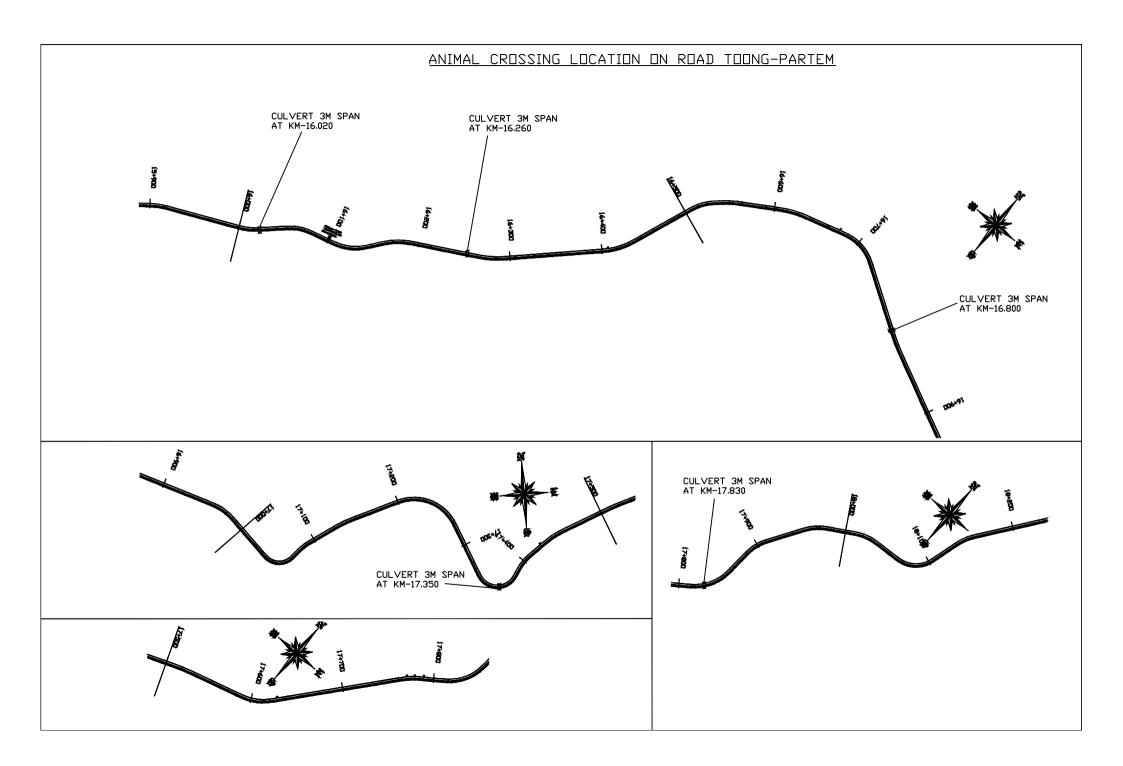

DETAILS OF ANIMAL CROSSING LOCATION ON ROAD MANGAN-CHUNGTHANG							
SI No	Proposed	Width of	Geographica	Remarks			
	Chainage of	crossing in					
	Animal crossing						
	-						
1	0.010	2	27°30'14.81" N	88°32'21.65"E			
2	0.630	2	27°30'27.12" N	88°32'17.62"E			
3	0.980	2	27°30'27.12 N 27°30'33.28" N	88°32'17.02 E			
4	1.430	2	27°30'43.76" N	88°32'28.35"E			
5	1.920	2	27°30'59.13" N	88°32'20.87"E			
6	2.460	2	27°30'59.44" N	88°32'36.07"E			
7	3.010	2	27°30'58.44" N	88°32'53.52"E			
8	3.560	2	27°30'59.56" N	88°33'05.79"E			
9	4.170	2	27°30'55.73" N	88°33'22.27"E			
10	4.680	2	27°30'47.80" N	88°33'36.60"E			
11	5.290	2	27°30'44.71" N	88°33'44.47"E			
12	5.800	2	27°30'48.57" N	88°33'52.38"E			
13	6.020	2	27°30'55.15" N	88°33'58.80"E			
14	6.290	2	27°30'57.06" N	88°34'07.28"E			
15	6.820	2	27°30'54.79" N	88°34'19.18"E			
16	7.220	2	27°30'51.42" N	88°34'35.12"E			
17	7.810	2	27°30'53.36" N	88°34'46.74"E			
18	8.220	2	27°30'53.48" N	88°34'53.15"E			
19	8.700	2	27°30'52.85" N	88°34'56.32"E			
20	9.010	2	27°30'54.46" N	88°34'58.20"E	7.45 Mtr Length		
21	9.680	2	27°30'57.42" N	88°35'09.80"E	. U		
22	10.080	2	27°31'04.34" N	88°35'20.83"E			
23	10.490	2	27°31'31.30" N	88°35'26.63"E			
24	11.320	2	27°31'41.53" N	88°35'38.45"E			
25	11.800	2	27°31'34.81" N	88°35'59.73"E			
26	12.290	2	27°31'38.32" N	88°36'25.64"E			
27	12.790	2	27°31'57.08" N	88°36'20.52"E			
28	13.200	2	27°31'59.56" N	88°36'29.62"E			
29	13.800	2	27°32'05.28" N	88°36'36.07"E			
30	14.300	2	27°32'04.85" N	88°36'37.25"E			
31	14.800	2	27°32'03.97" N	88°36'38.25"E]		
32	15.400	2	27°32'05.87" N	88°36'37.54"E]		
33	15.900	2	27°32'07.45" N	88°36'42.37"E]		
34	16.410	2	27°32'10.19" N	88°36'49.67"E]		
35	16.910	2	27°32'17.10" N	88°36'10.97"E			
36	17.550	2	27°32'22.17" N	88°37'12.22"E			
37	18.100	2	27°32'28.39" N	88°37'22.32"E			
38	18.620	2	27°32'32.54" N	88°37'34.91"E			
39	19.140	2	27°32'34.92" N	88°37'32.30"E			

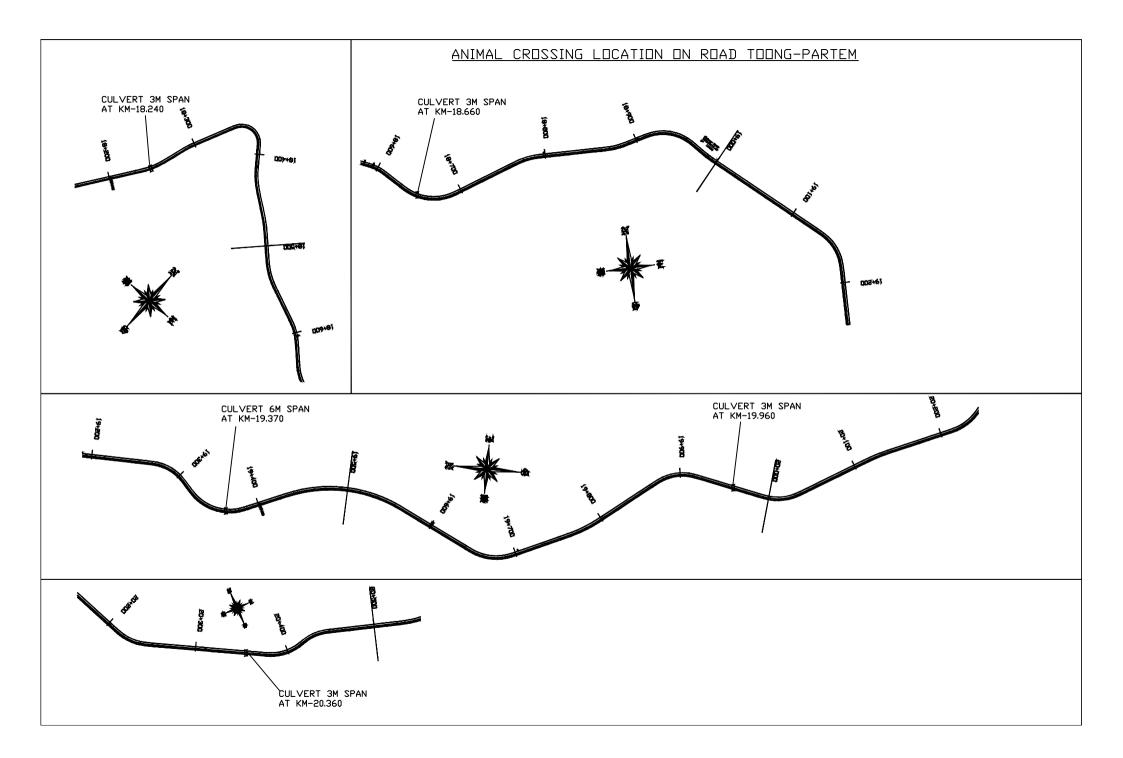

DETAILS OF ANIMAL CROSSING LOCATION ON ROAD MANGAN-CHUNGTHANG							
SI No	Proposed Chainage of Animal crossing	Width of crossing in Mtr	Geographica	Remarks			
40	19.580	2	27°32'37.31" N	88°37'40.78"E			
41	20.600	2	27°32'37.69" N	88°37'50.20"E			
42	20.335	2	27°32'44.56" N	88°38'13.92"E			
43	21.225	2	27°32'50.21" N	88°38'25.52"E			
44	21.680	2	27°32'55.23" N	88°38'37.29"E			
45	22.140	2	27°33'00.62" N	88°38'38.38"E			
46	22.635	2	27°33'03.50" N	88°38'33.99"E			
47	23.220	2	27°33'04.10" N	88°38'41.08"E			
48	23.845	2	27°33'02.75" N	88°38'50.78"E			
49	24.160	2	27°33'03.91" N	88°39'08.12"E	7 45 Mtr Longth		
50	24.760	2	27°33'15.09" N	88°39'15.62"E	7.45 Mtr Length		
51	25.210	2	27°33'21.82" N	88°39'08.72"E			
52	25.835	2	27°33'37.87" N	88°39'07.92"E			
53	26.430	2	27°33'54.61" N	88°39'05.19"E			
54	26.910	2	27°34'02.08" N	88°39'04.88"E			
55	27.285	2	27°34'04.77" N	88°39'04.02"E]		
56	27.740	2	27°34'20.87" N	88°39'00.39"E			
57	28.300	2	27°35'12.96" N	88°39'04.35"E]		
58	28.830	2	27°35'25.19" N	88°39'07.53"E]		
59	29.240	2	27°35'41.01" N	88°38'59.35"E			

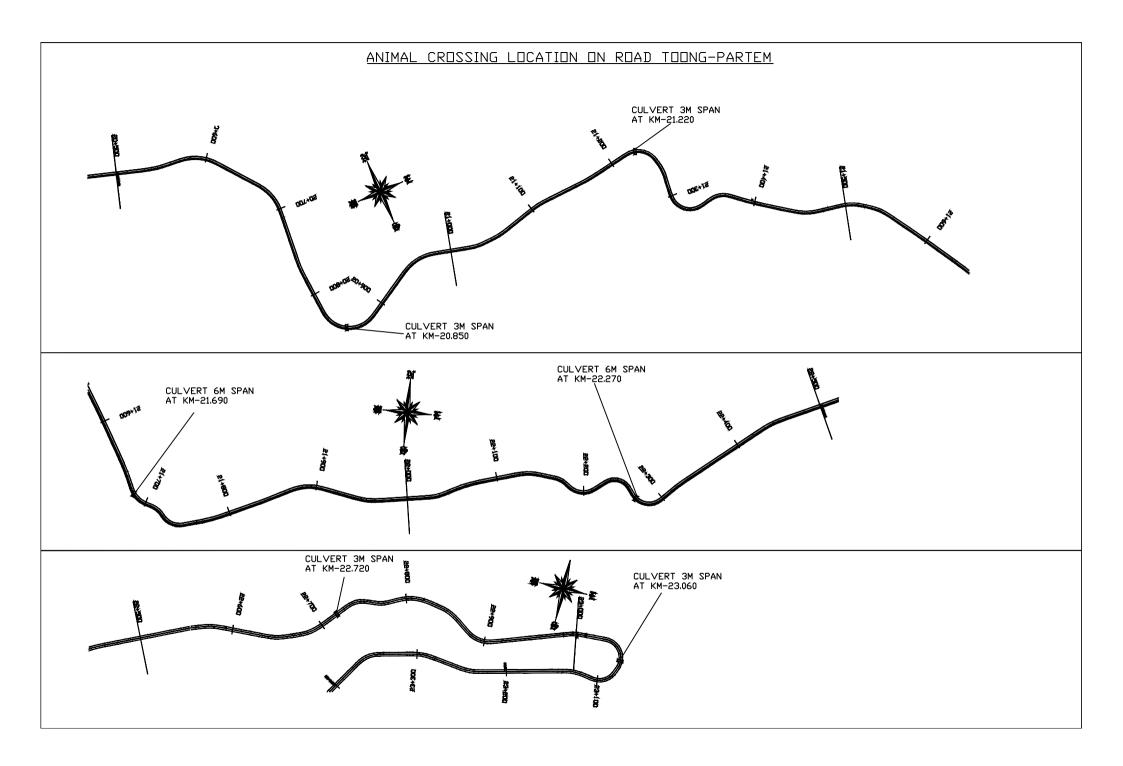

	Details for Existing Minor and Major Bridge of Road Mangan-Chungthang							
Sr No	Location	Width (Mtr)	Latitude	Longitude	Remarks			
1	5.400	27.43	27 ⁰ 30'53.33"N	88 ⁰ 33'53.80"E	7.45 Mtr Length			
2	17.070	21.34	27 ⁰ 32'44.50"N	88 ⁰ 38'19.03"E				
3	18.500	48.77	27 ⁰ 32′58.14"N	88 ⁰ 38′41.00"E				
4	29.330	55.00	27 ⁰ 36′05.68"N	88 ⁰ 38'47.43"E				

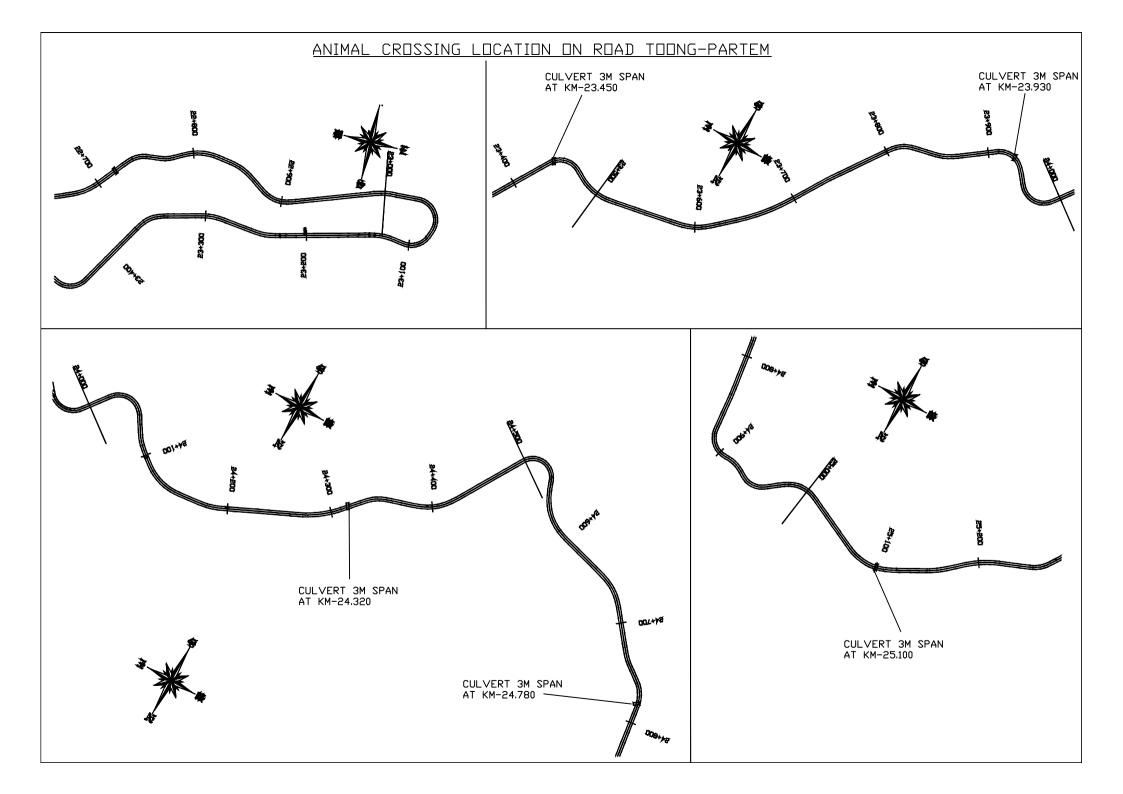


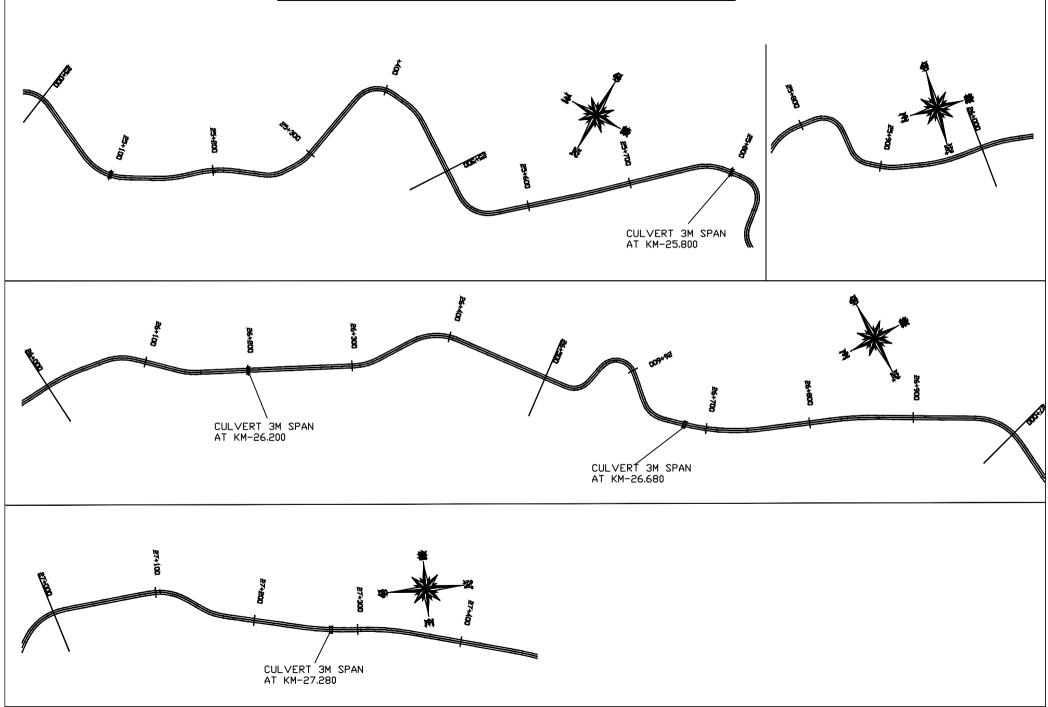


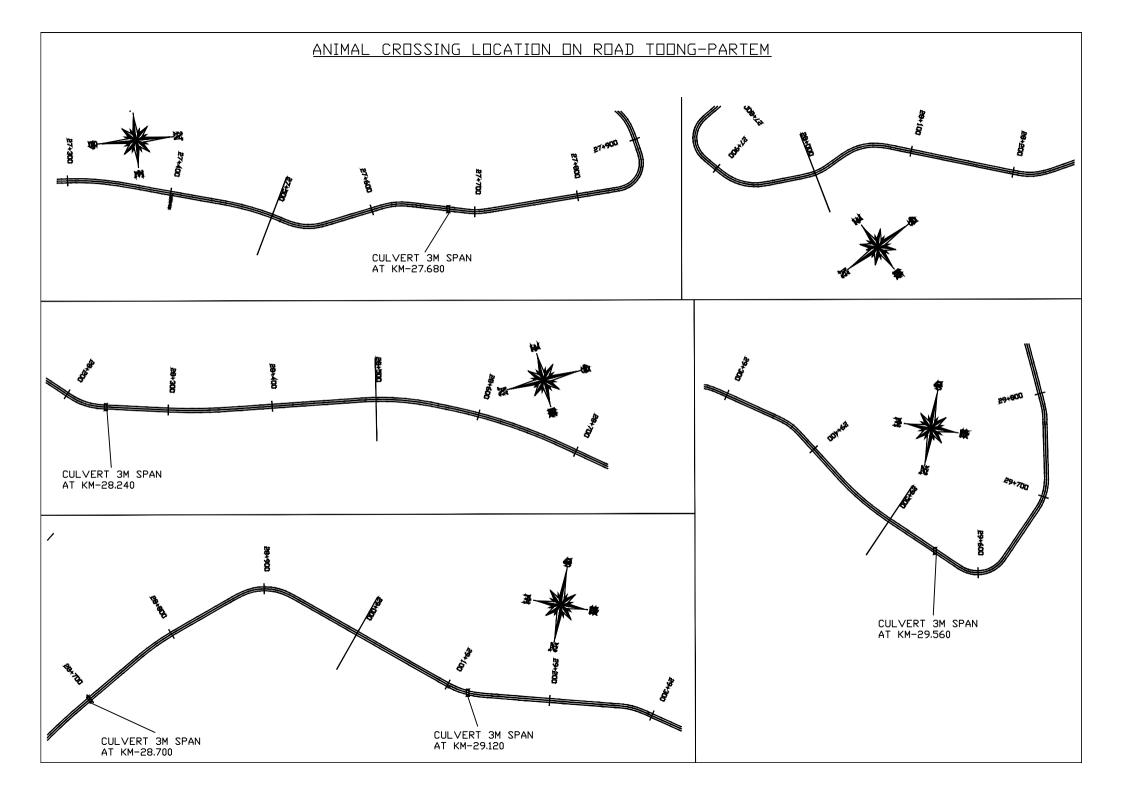


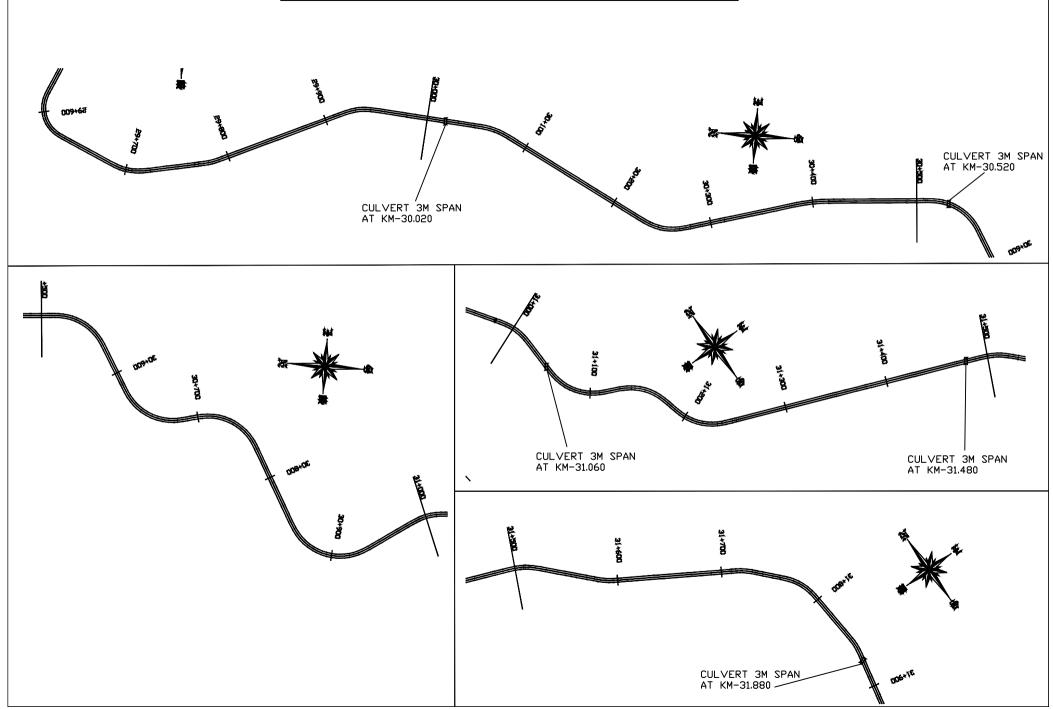


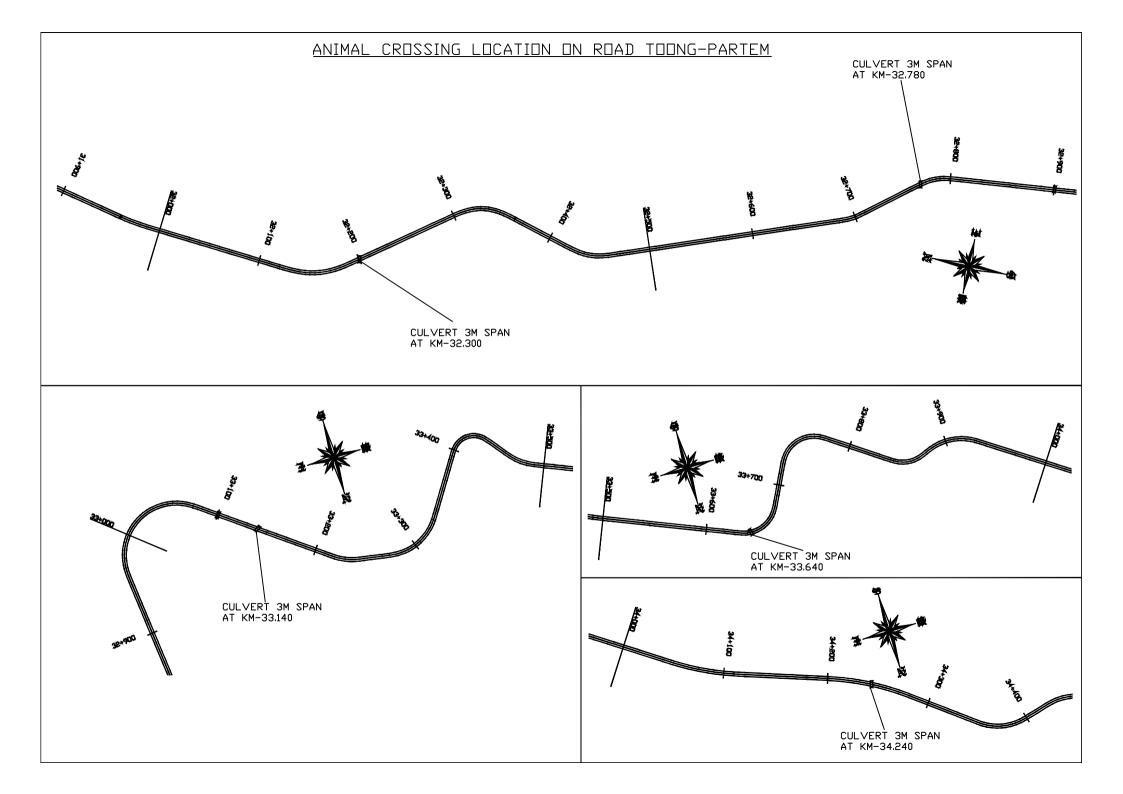


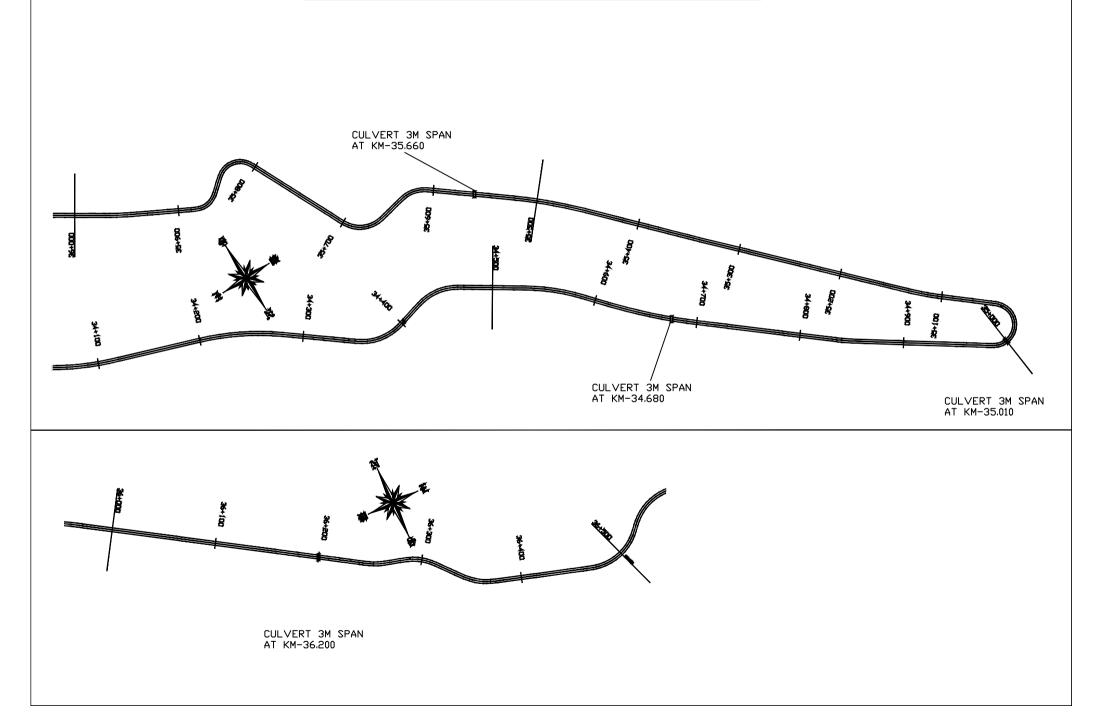


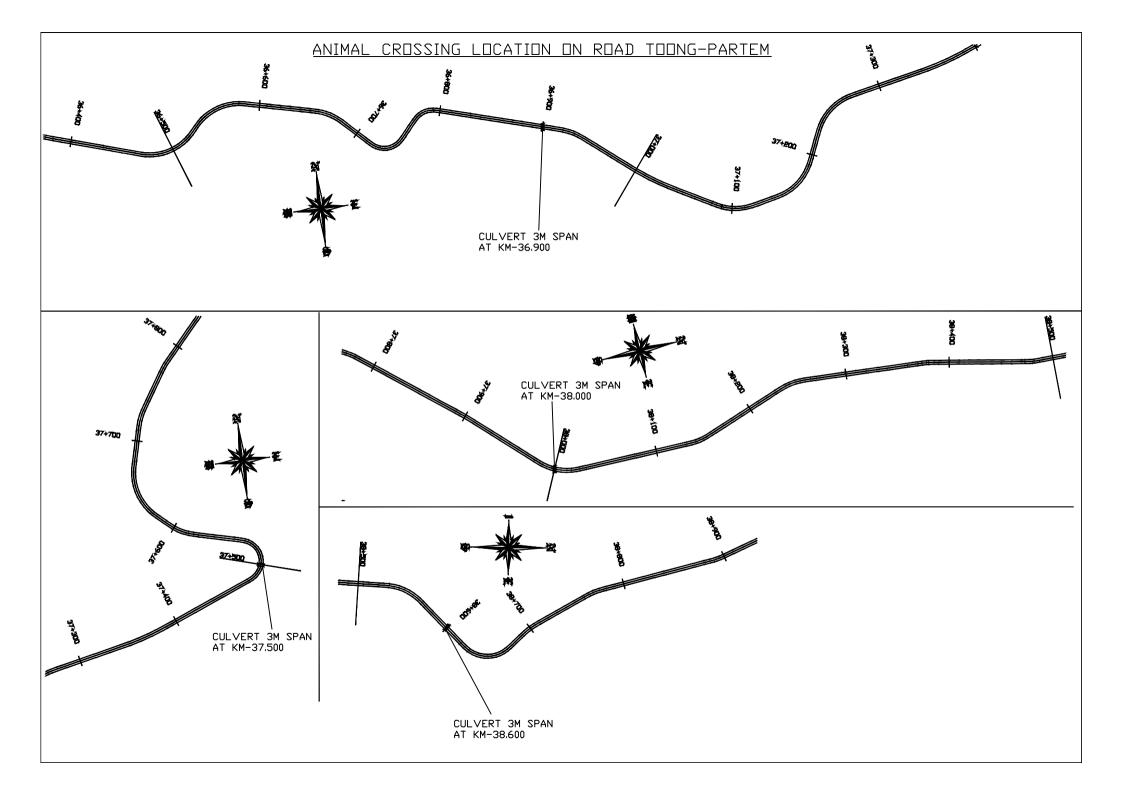


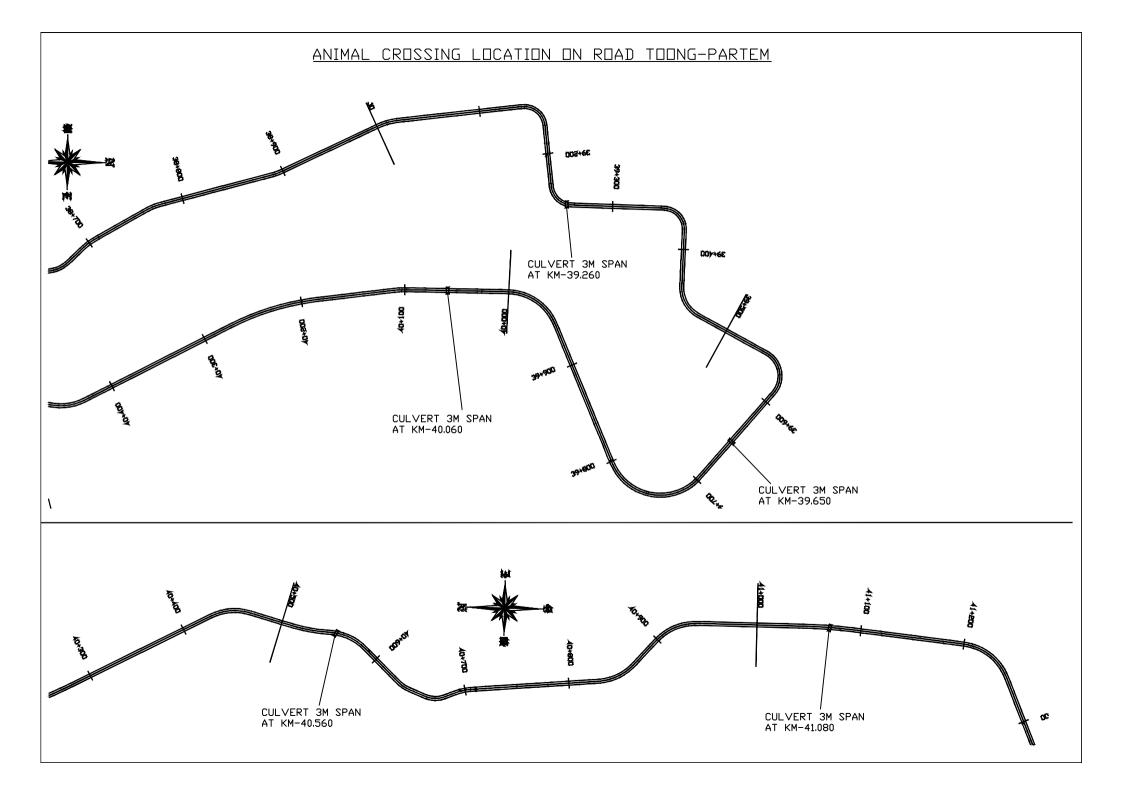


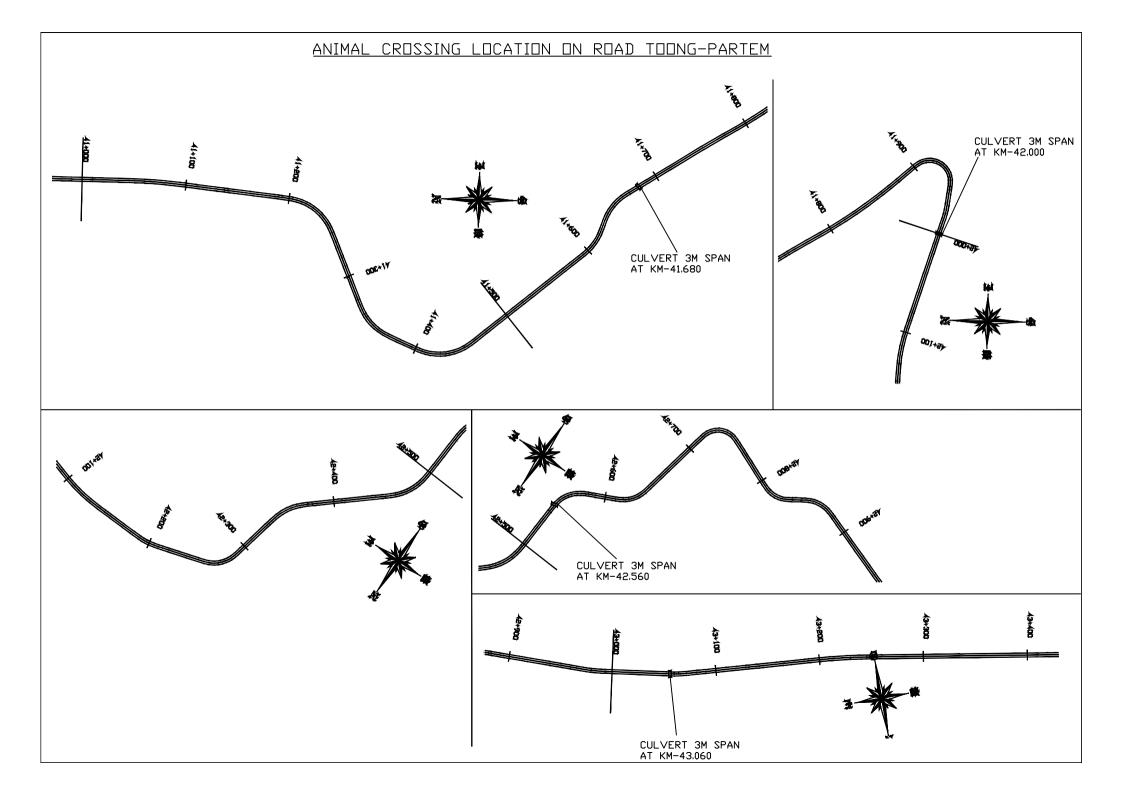


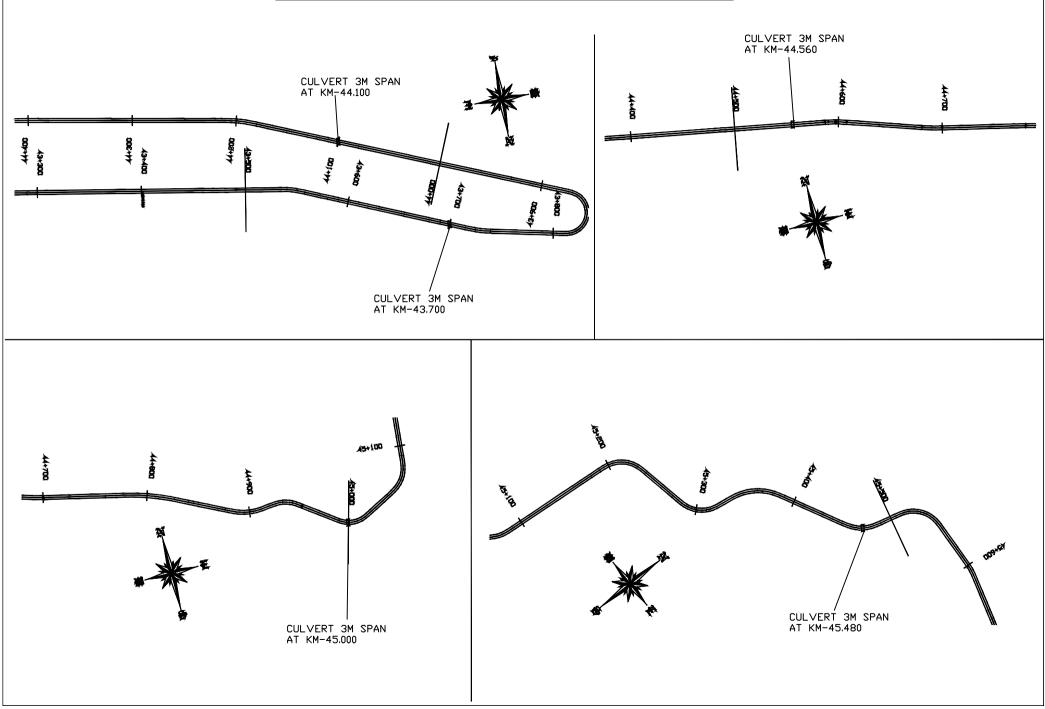


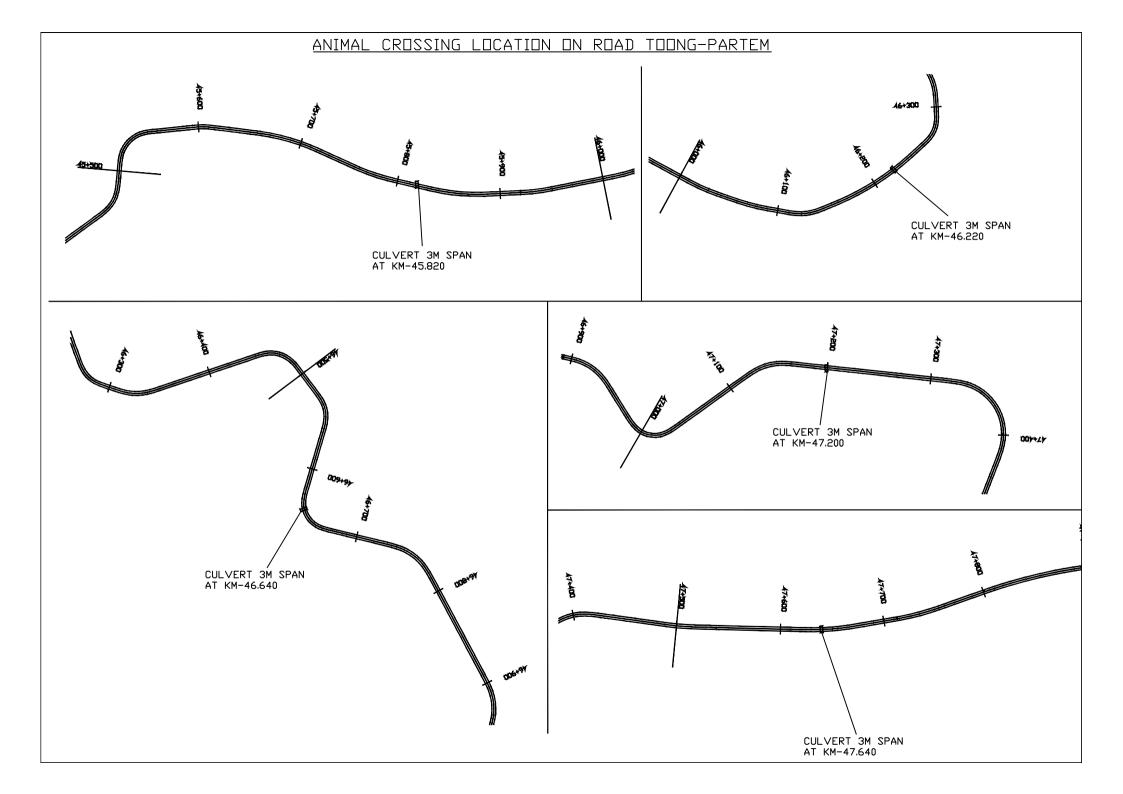


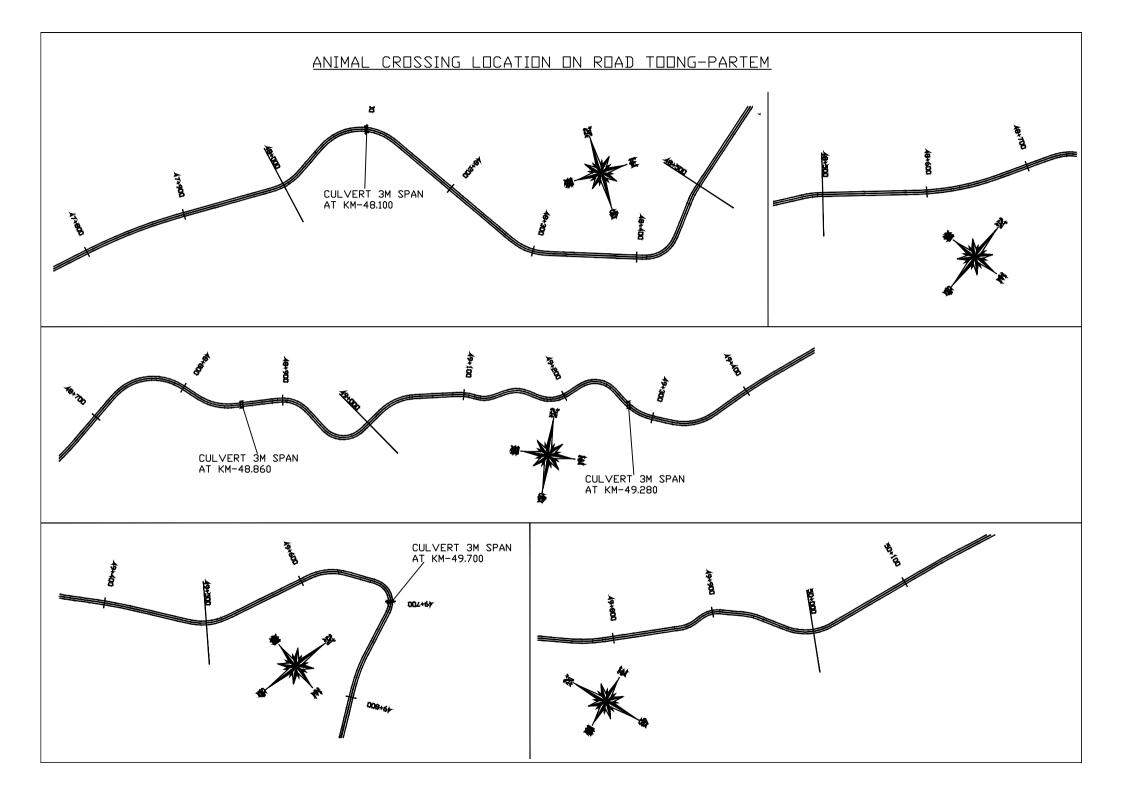


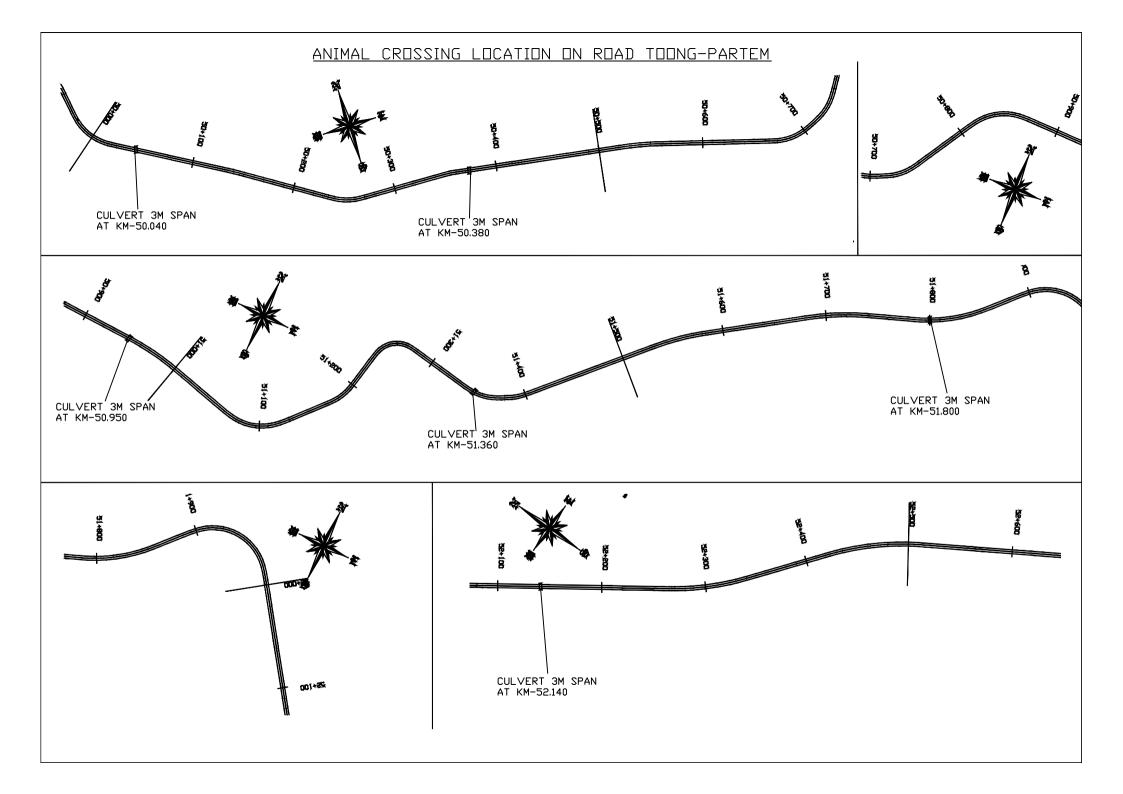


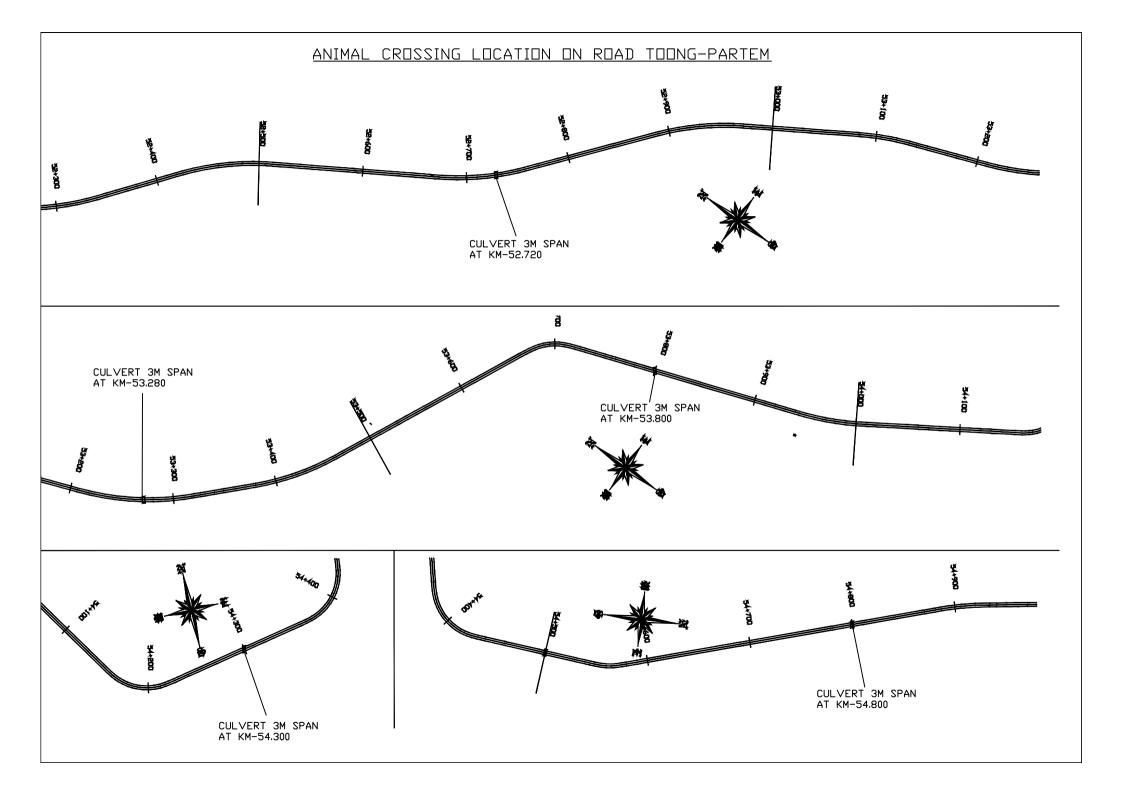


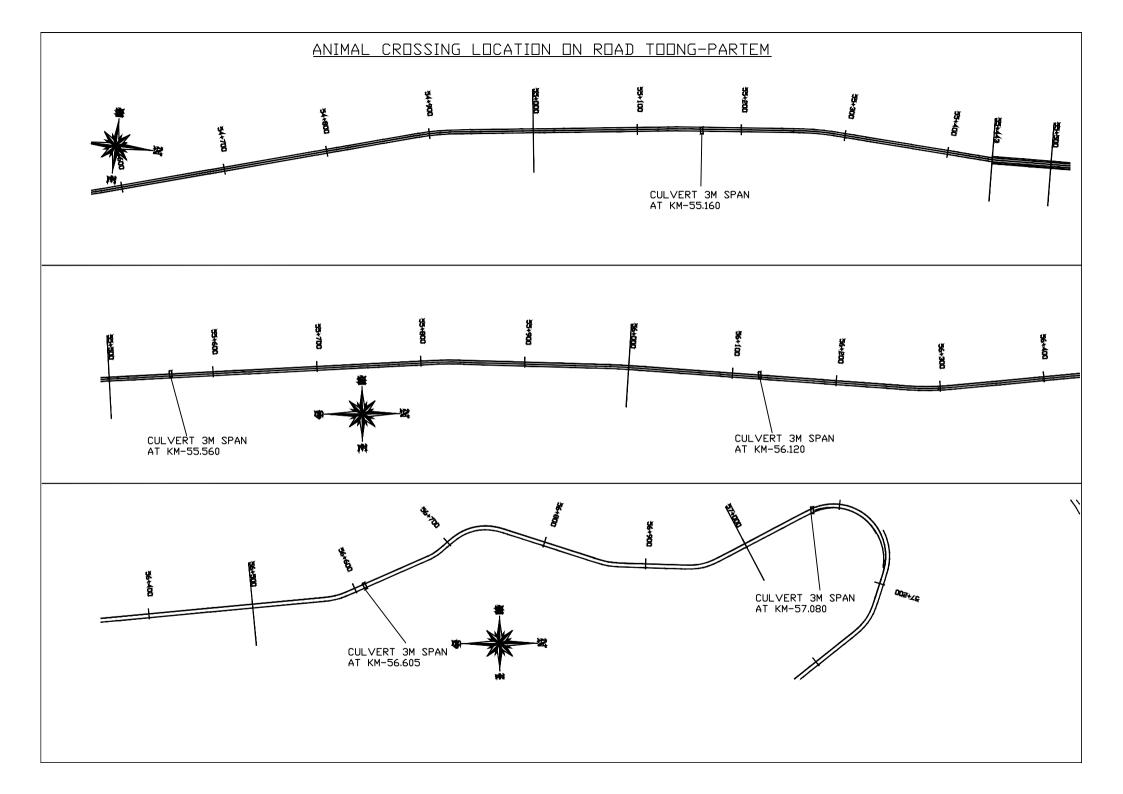


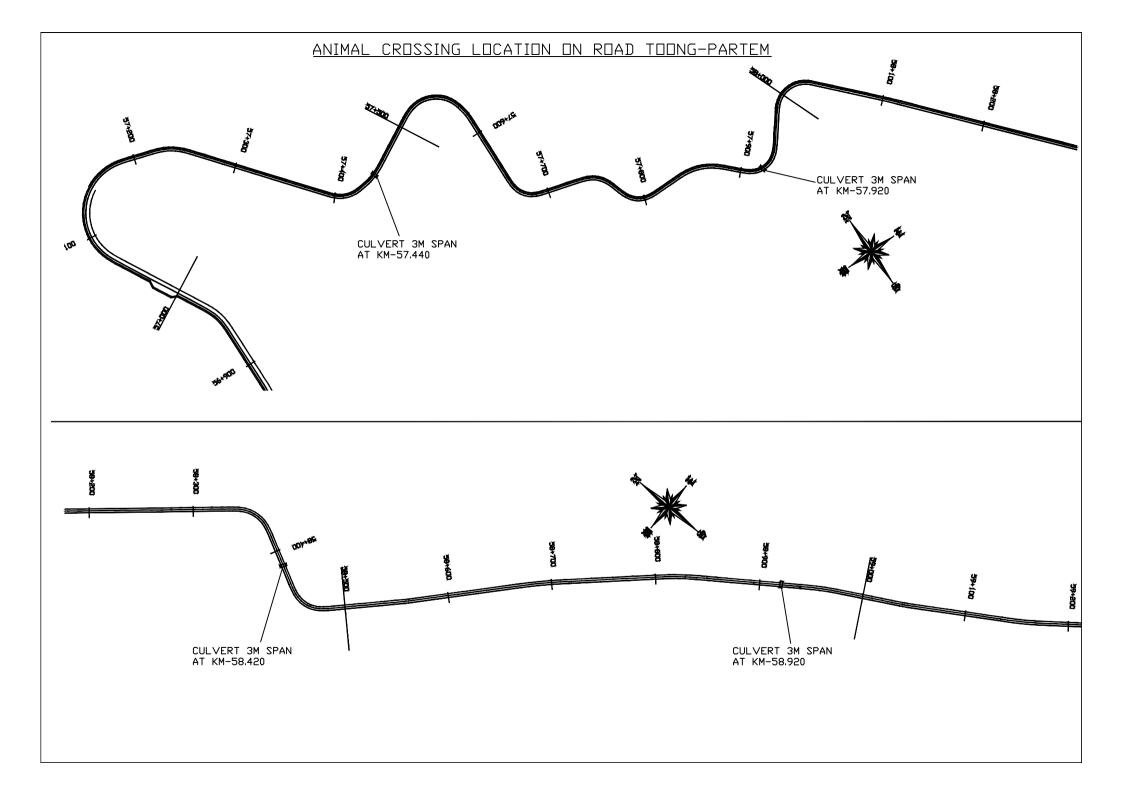


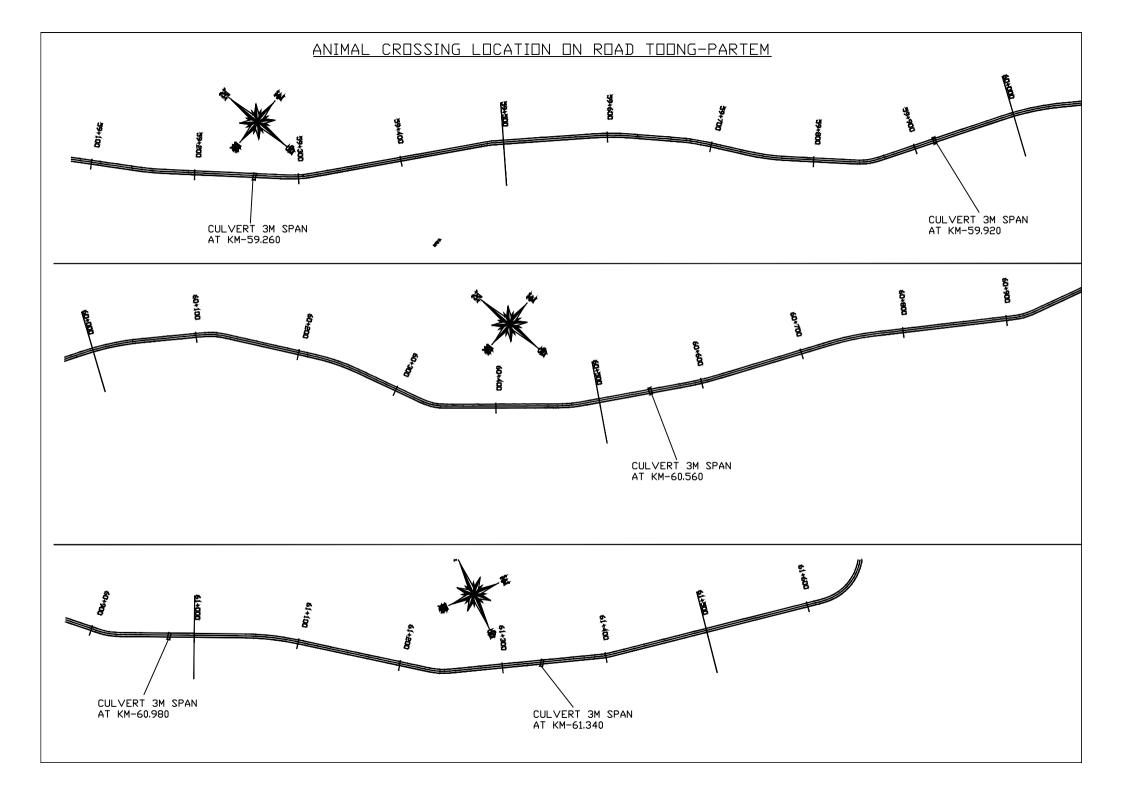


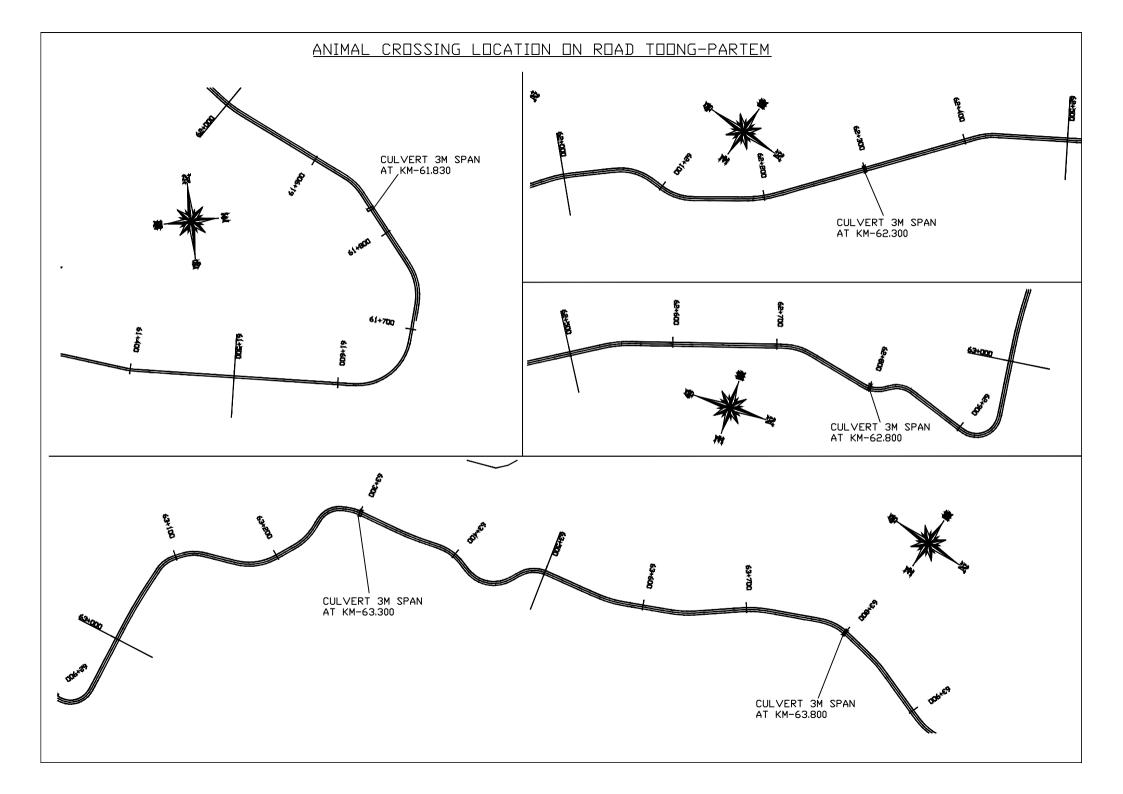


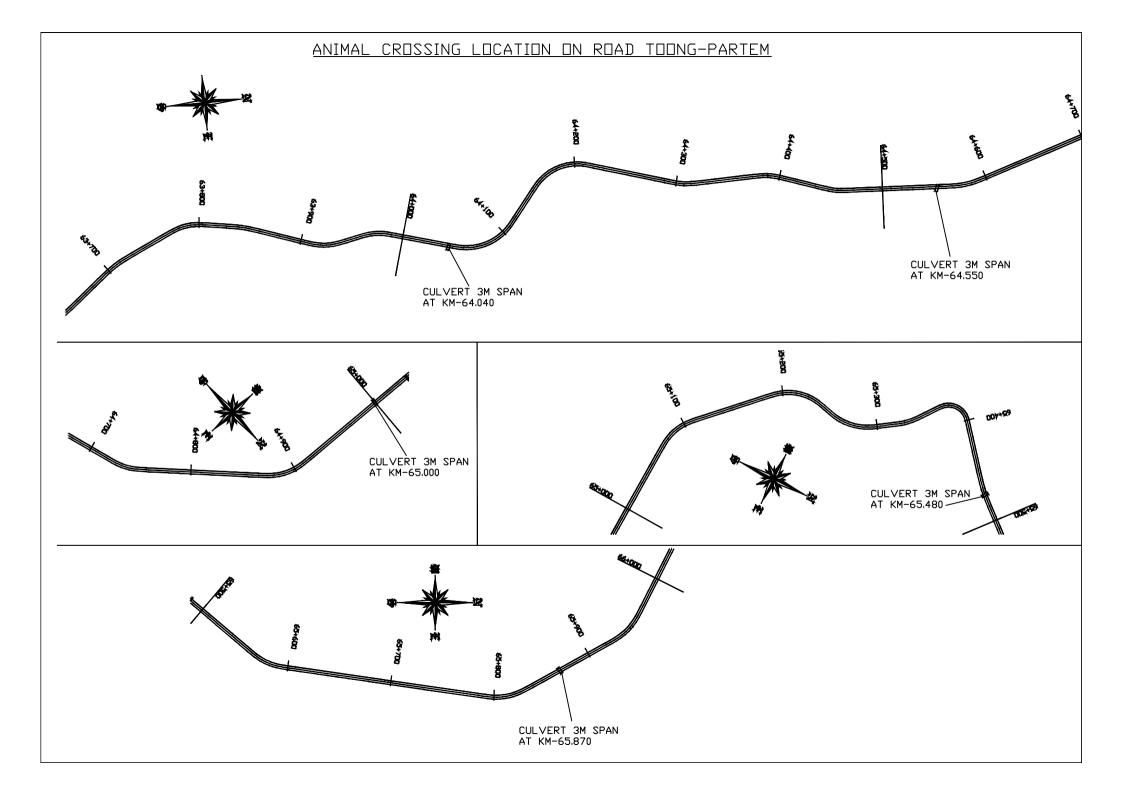


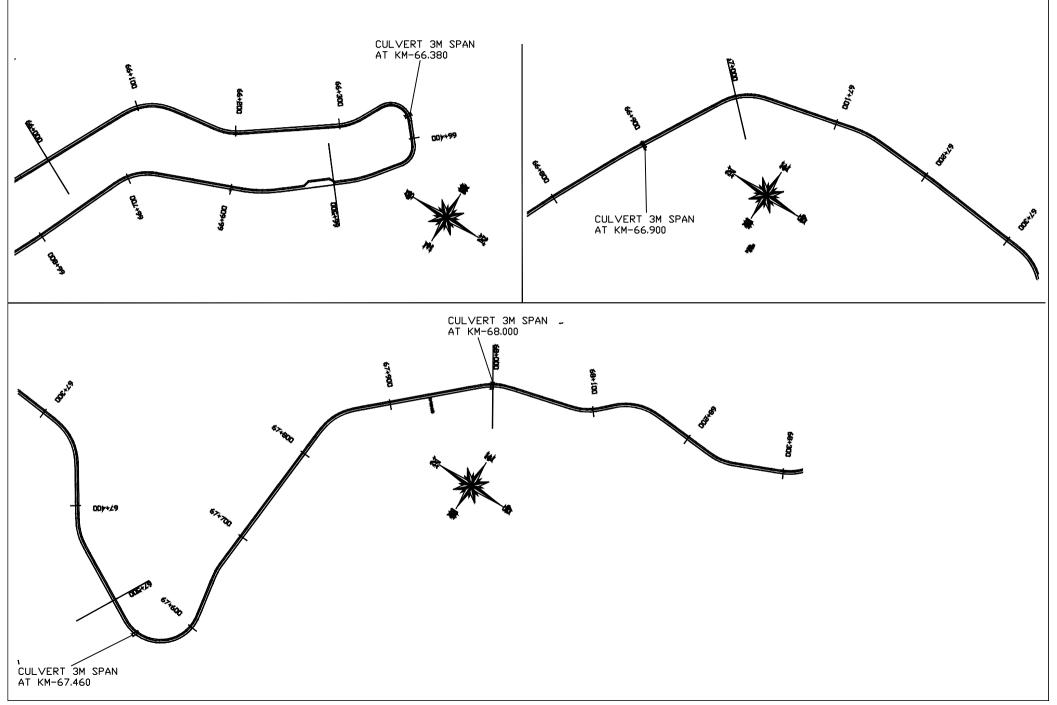


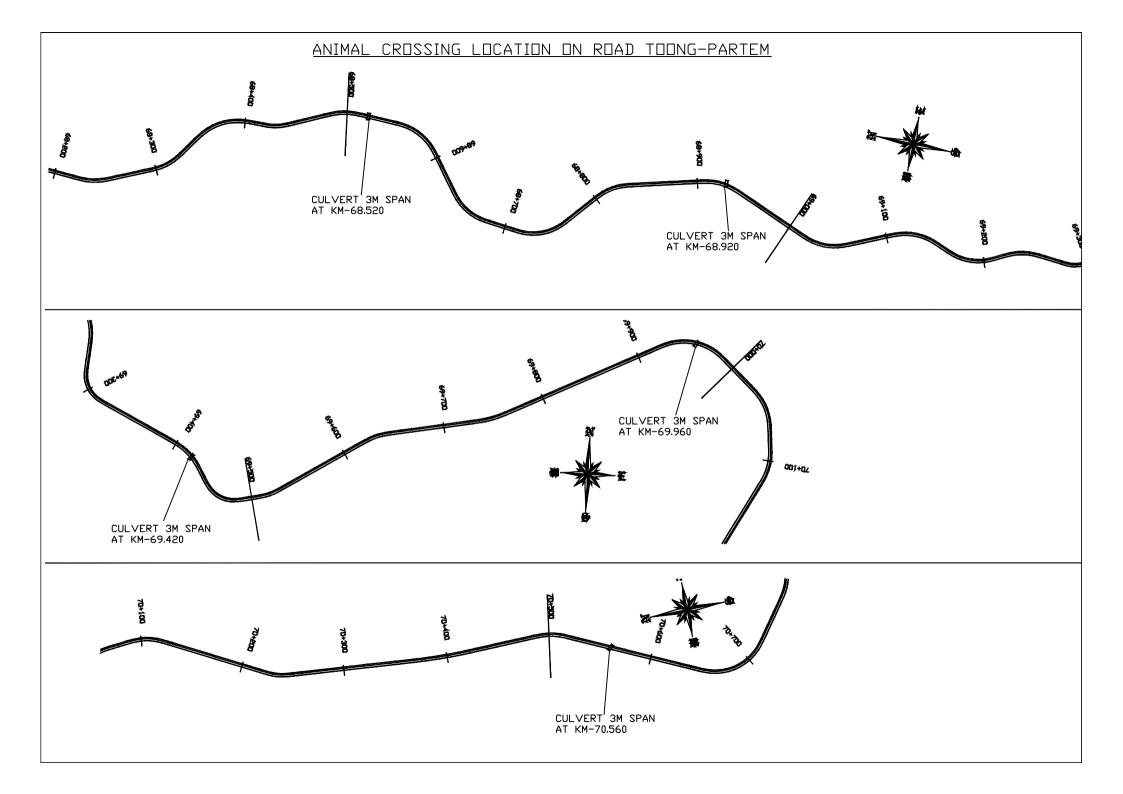


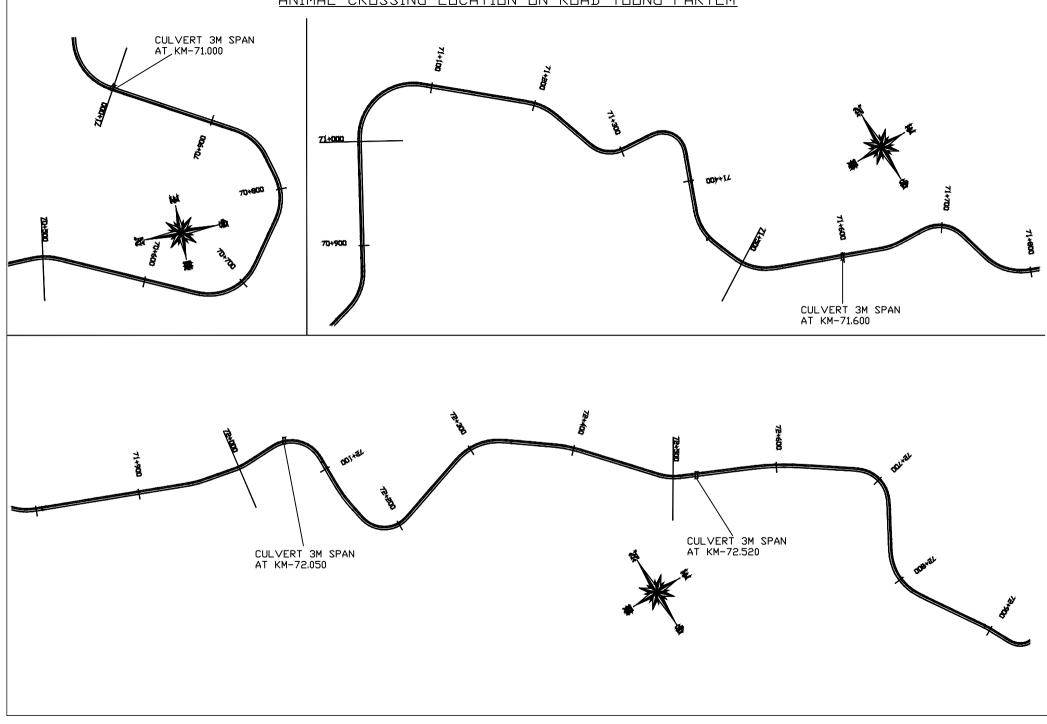


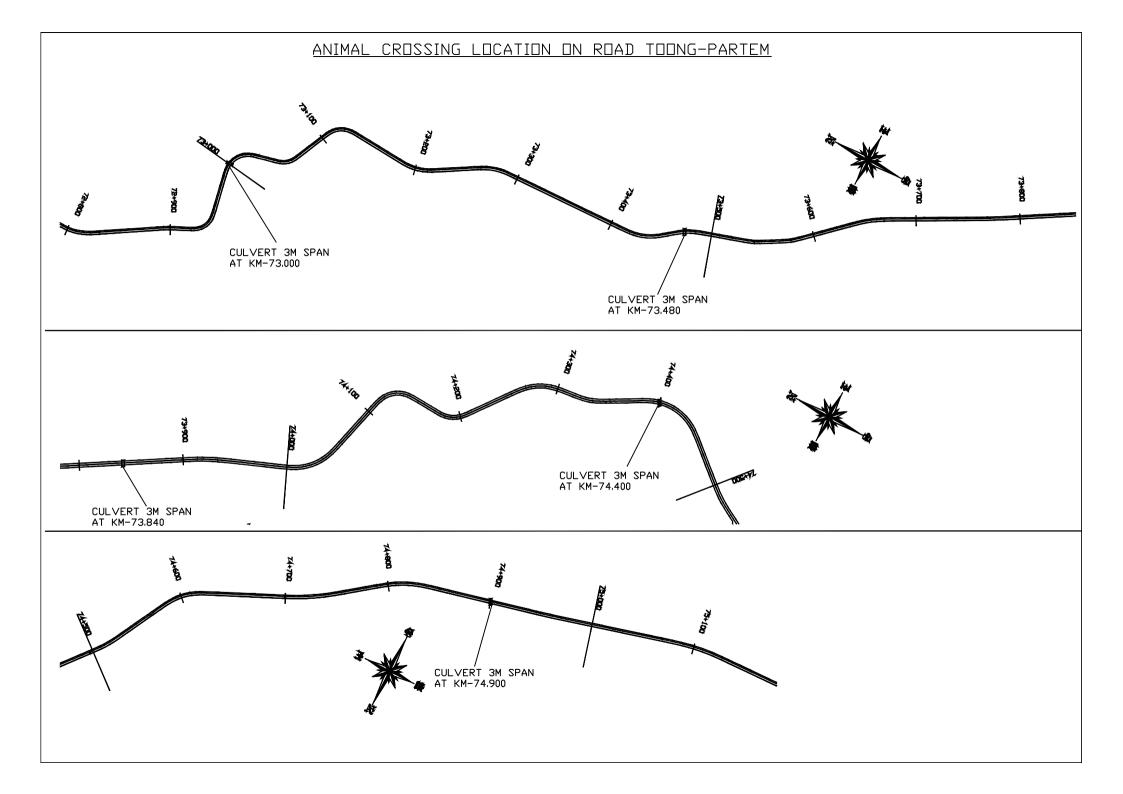


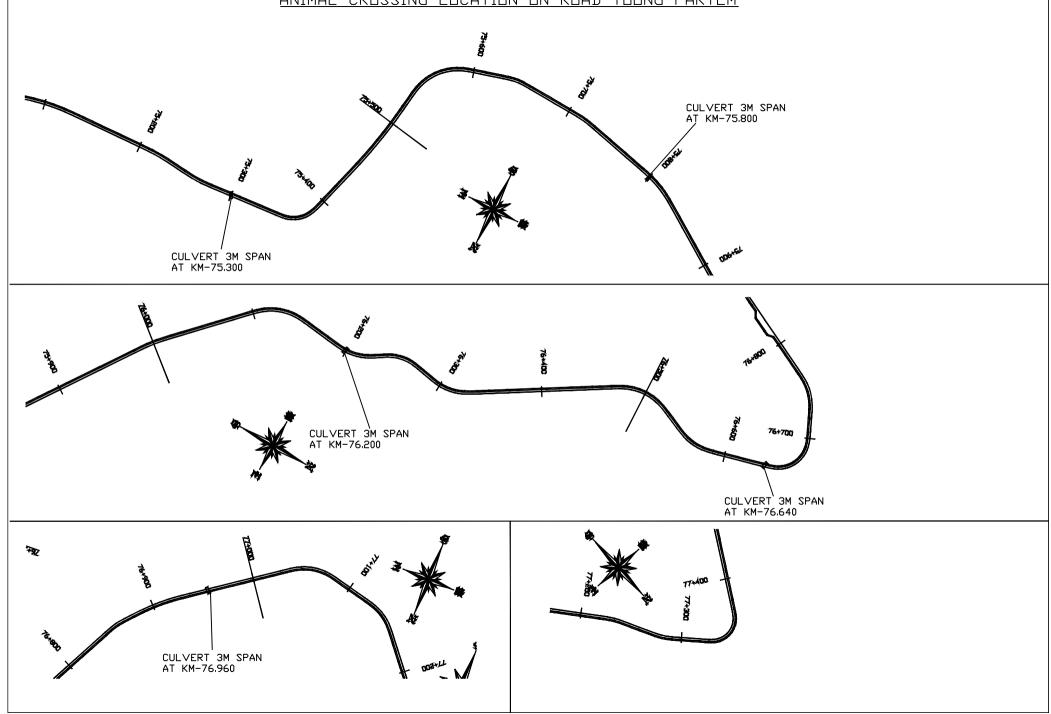


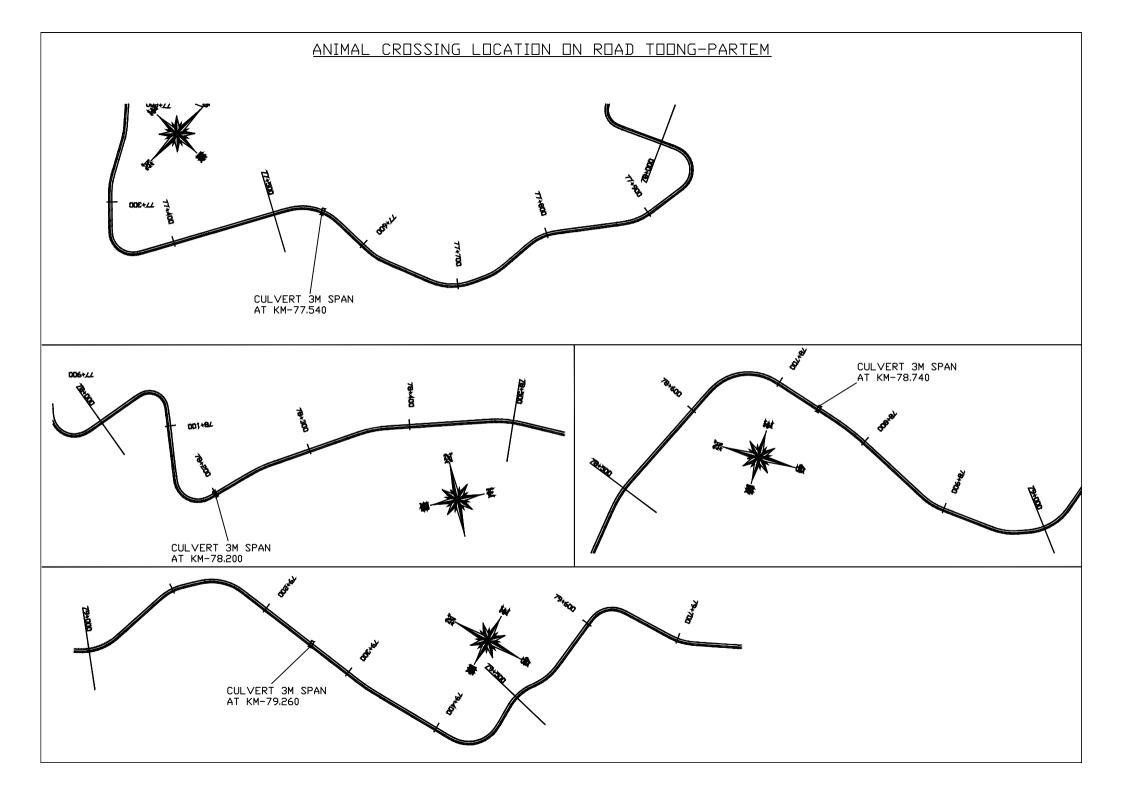


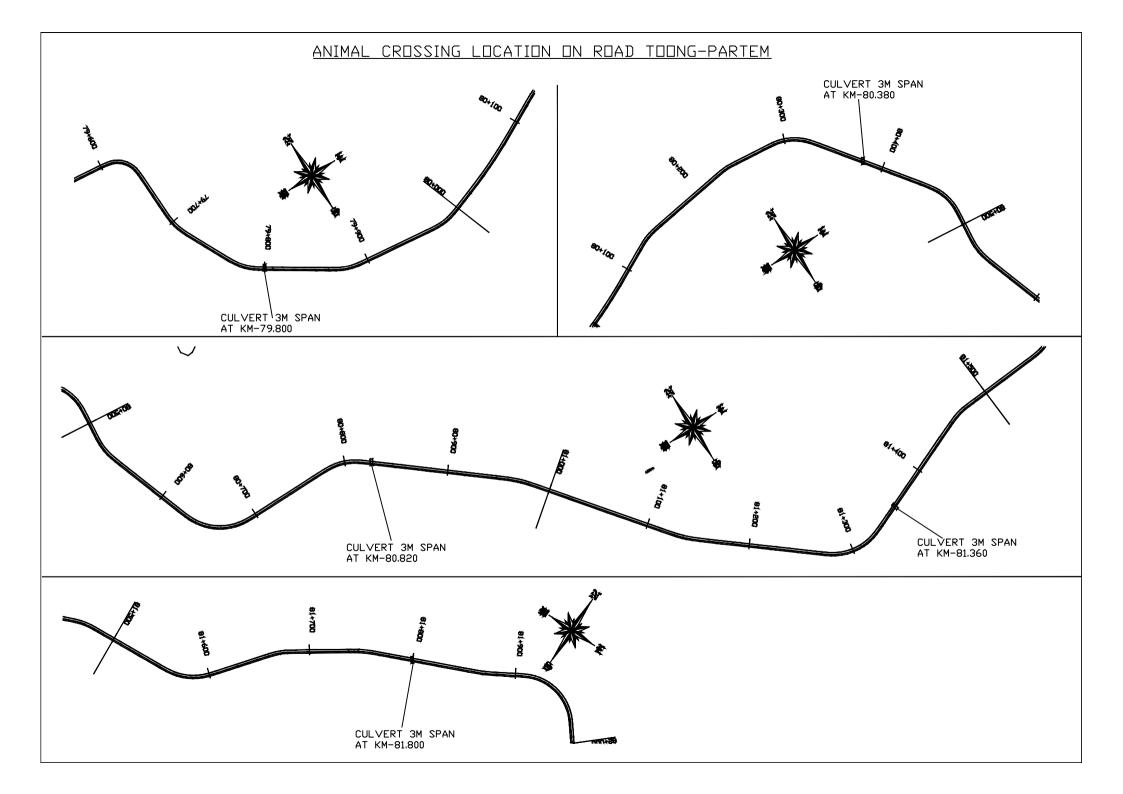


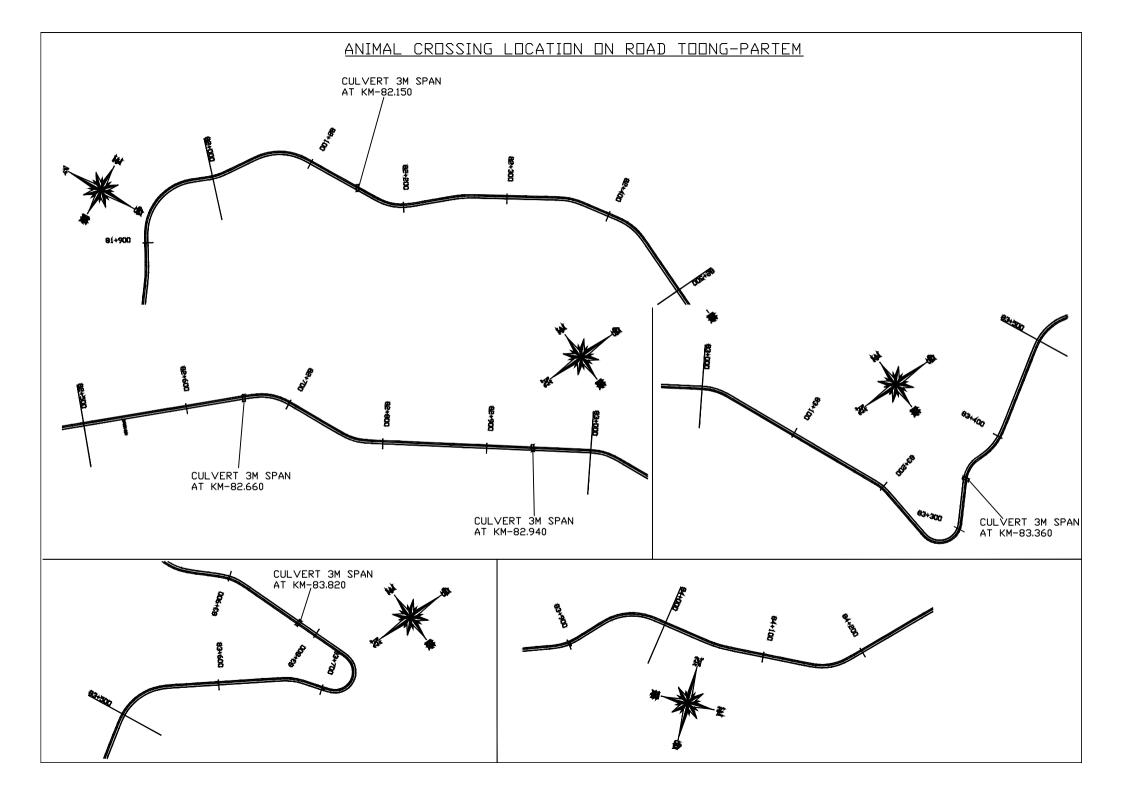



<u>ANIMAL CROSSING LOCATION ON ROAD TOONG-PARTEM</u>

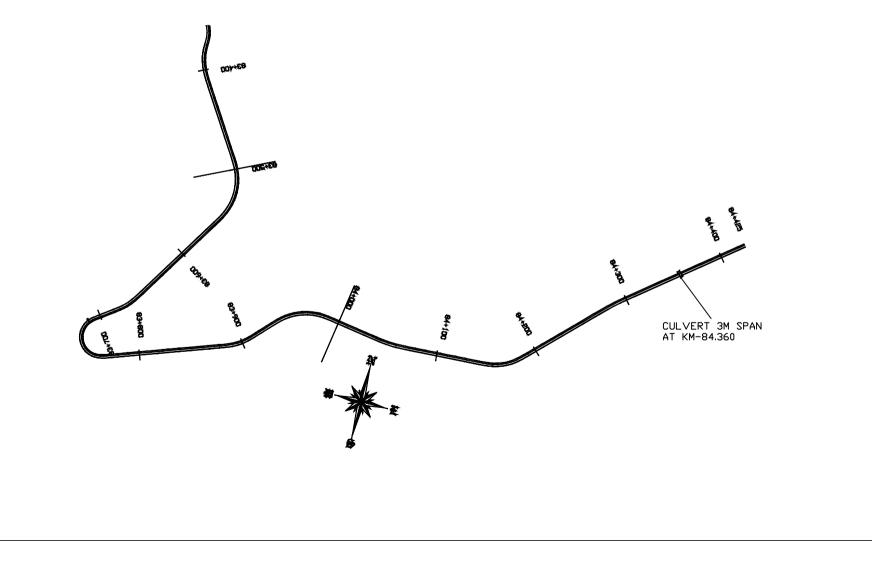



ANIMAL CROSSING LOCATION ON ROAD TOONG-PARTEM





ANIMAL CROSSING LOCATION ON ROAD TOONG-PARTEM



ANIMAL CROSSING LOCATION ON ROAD TOONG-PARTEM

DETAILS OF ANIMAL CROSSING LOCATION ON ROAD TOONG -PARTEM					
SI No	Proposed Chainage of Animal crossing	Width of crossing in Mtr	Geographica	Remarks	
1	0.090	3	27°32'57.50" N	88°38'44.71"E	
2	0.460	3	27°32'54.66" N	88°38'55.66"E	
3	1.260	3	27°32'50.42" N	88°38'32.01"E	
4	1.640	3	27°32'43.10" N	88°38'20.25"E	
5	2.160	3	27°32'38.16" N	88°38'04.07"E	
6	2.320	3	27°32'35.52" N	88°38'59.94"E	
7	2.900	3	27°32'38.89" N	88°38'18.77"E	
8	3.400	3	27°32'46.39" N	88°38'34.07"E	
9	3.920	3	27°32'40.12" N	88°38'25.96"E	
10	4.390	3	27°32'34.08" N	88°38'11.15"E	
11	4.900	3	27°32'34.95" N	88°38'22.77"E	
12	5.380	3	27°32'40.56" N	88°38'37.23"E	
13	5.920	3	27°32'42.81" N	88°38'53.37"E	
14	6.340	3	27°32'41.88" N	88°39'05.15"E	
15	6.880	3	27°32'48.26" N	88°39'23.26"E	
16	7.480	3	27°32'55.20" N	88°39'34.35"E	
17	7.960	3	27°32'48.42" N	88°39'47.10"E	
18	8.135	3	27°32'46.62" N	88°39'54.62"E	
19	9.540	3	27°32'39.53" N	88°39'16.25"E	
20	9.920	3	27°32'31.18" N	88°39'09.66"E	
21	10.260	3	27°32'33.26" N	88°38'58.35"E	
22	10.820	3	27°32'31.74" N	88°38'41.36"E	
23	11.380	3	27°32'19.10" N	88°38'28.42"E	
24	11.720	3	27°32'16.06" N	88°38'17.23"E	7.45 Mtr Length
25	12.220	3	27°32'04.32" N	88°38'08.64"E	
26	12.600	3	27°31'54.00" N	88°38'00.97"E	
27	13.240	3	27°32'00.38" N	88°37'45.63"E	
28	13.640	3	27°31'56.00" N	88°37'33.46"E	
29	13.800	3	27°31'52.59" N	88°37'31.41"E	
30	14.300	3	27°31'56.43" N	88°37'46.70"E	
31	14.980	3	27°31'45.79" N	88°38'02.65"E	
32	15.450	3	27°31'55.21" N	88°38'15.03"E	
33	16.020	3	27°32'05.92" N	88°38'28.18"E	
34	16.260	3	27°32'09.86" N	88°38'35.83"E	
35	16.800	3	27°32'17.08" N	88°38'50.48"E	
36	17.350	3	27°32'11.10" N	88°39'06.10"E	
37	17.830	3	27°32'19.80" N	88°39'19.96"E	
38	18.240	3	27°32'29.33" N	88°39'28.62"E	
39	18.660	3	27°32'27.11" N	88°39'39.31"E	
40	19.370	3	27°32'17.34" N	88°39'53.43"E	
41	19.960	3	27°31'58.81" N	88°39'55.74"E	
42	20.360	3	27°31'48.97" N	88°40'03.52"E	
43	20.850	3	27°31'39.70" N	88°40'13.96"E	
44	21.220	3	27°31'41.55" N	88°40'56.66"E	
45	21.690	3	27°31'32.41" N	88°40'37.28"E	
46	22.270	3	27°31'33.81" N	88°40'56.83"E	
47	22.720	3	27°31'39.68" N	88°41'11.68"E	
48	23.060	3	27°31'40.45" N	88°41'22.65"E	

49	23.450	3	27°31'35.58" N	88°41'09.32"E	
50	23.930	3	27°31'29.71" N	88°40'56.20"E	
51	24.320	3	27°31'27.95" N	88°40'45.19"E	
52	24.780	3	27°31'28.98" N	88°40'33.36"E	
53	25.100	3	27°31'33.68" N	88°40'26.00"E	
54	25.800	3	27°31'24.25" N	88°40'06.510"E	
55	26.200	3	27°31'29.27" N	88°39'54.28"E	
56	26.680	3	27°31'31.40" N	88°39'41.97"E	
57	27.280	3	27°31'51.16" N	88°39'33.69"E	
58	27.680	3	27°32'04.08" N	88°39'36.28"E	
59	28.240	3	27°32'01.85" N	88°39'27.56"E	
60	28.700	3	27°31'47.47" N	88°39'21.36"E	
61	29.120	3	27°31'45.44" N	88°39'08.18"E	
62	29.560	3	27°31'49.19" N	88°38'53.75"E	
63	30.020	3	27°31'37.04" N	88°38'52.80"E	
64	30.520	3	27°31'21.33" N	88°38'51.09"E	
65	31.060	3	27°31'08.08" N	88°38'45.08"E	
66	31.480	3	27°31'00.36" N	88°38'57.24"E	
67	31.880	3	27°30'51.18" N	88°39'05.51"E	
68	32.300	3	27°30'38.40" N	88°39'07.20"E	
69	32.780	3	27°30'24.16" N	88°39'11.74"E	
70	33.140	3	27°30'18.42" N	88°39'07.37"E	
71	33.640	3	27°30'20.70" N	88°38'52.80"E	
72	34.240	3	27°30'24.85" N	88°38'34.03"E	
73	34.680	3	27°30'31.88" N	88°38'31.21"E	
74	35.010	3	27°30'37.86" N	88°38'11.56"E	
75	35.660	3	27°30'24.13" N	88°38'27.85"E	
76	36.200	3	27°30'15.24" N	88°38'42.93"E	7.45 Mtr Length
77	36.900	3	27°30'10.42" N	88°39'05.34"E	
78	37.500	3	27°30'12.38" N	88°39'23.95"E	
79	38.000	3	27°30'24.16" N	88°39'27.18"E	
80	38.600	3	27°30'42.79" N	88°39'29.10"E	
81	39.260	3	27°31'00.30" N	88°39'27.95"E	
82	39.650	3	27°31'05.67" N	88°39'36.15"E	
83	40.060	3	27°30'56.83" N	88°39'31.04"E	
84	40.560	3	27°30'41.09" N	88°39'34.20"E	
85	41.080	3	27°30'25.90" N	88°39'34.72"E	
86	41.680	3	27°30'11.48" N	88°39'34.31"E	
87	42.000	3	27°30'04.31" N	88°39'36.80"E	
88	42.560	3	27°29'56.64" N	88°39'22.57"E	
89	43.060	3	27°29'54.47" N	88°39'08.31"E	
90	43.700	3	27°29'58.99" N	88°38'45.56"E	
90	43.700	3	27°29'55.81" N	88°38'43.50 L 88°38'48.69"E	
92	44.100	3		88°39'05.25"E	
92	44.360	-	27°29'52.14" N 27°29'47.58" N	88°39'20.04"E	
		3			
94	45.480	3	27°29'58.03" N	88°39'30.57"E	
95	45.820	3	27°29'56.51" N	88°39'40.96"E 88°39'53.88"E	
96	46.220	3	27°29'59.83" N		
97	46.640	3	27°30'08.36" N	88°39'50.99"E	
98	47.200	3	27°30'24.31" N	88°39'49.62"E	
99	47.640	3	27°30'27.92" N	88°40'00.31"E	
100	48.100	3	27°30'29.16" N	88°40'16.45"E	
101	48.860	3	27°30'29.87" N	88°40'37.12"E	
102	49.280	3	27°30'31.30" N	88°40'51.02"E	

103	49.700	3	27°30'39.54" N	88°41'00.63"E	
104	50.040	3	27°30'30.54" N	88°41'07.29"E	
105	50.380	3	27°30'26.54" N	88°41'18.54"E	
106	50.950	3	27°30'27.78" N	88°41'37.50"E	
107	51.360	3	27°30'30.84" N	88°41'49.35"E	
108	51.800	3	27°30'38.85" N	88°42'02.22"E	
109	52.140	3	27°30'37.01" N	88°42'10.62"E	
110	52.720	3	27°30'24.67" N	88°42'21.76"E	
111	53.280	3	27°30'15.96" N	88°42'30.56"E	
112	53.800	3	27°29'56.78" N	88°42'49.19"E	
113	54.300	3	27°29'46.00" N	88°42'59.53"E	
114	54.800	3	27°29'59.70" N	88°43'01.52"E	
115	55.160	3	27°30'11.17" N	88°42'59.30"E	
116	55.560	3	27°30'41.03" N	88°42'59.41"E	
117	56.120	3	27°30'59.78" N	88°42'58.06"E	
118	56.605	3	27°31'13.99" N	88°42'57.23"E	
119	57.080	3	27°31'08.43" N	88°43'09.50"E	
120	57.440	3	27°31'03.64" N	88°43'18.60"E	
121	57.920	3	27°30'52.14" N	88°43'26.51"E	
122	58.420	3	27°30'40.67" N	88°43'38.07"E	
123	58.920	3	27°30'27.41" N	88°43'50.02"E	
124	59.260	3	27°30'19.12" N	88°43'56.92"E	
125	59.920	3	27°30'02.96" N	88°44'11.38"E	
126	60.560	3	27°29'50.84" N	88°44'29.94"E	
127	60.980	3	27°29'45.48" N	88°44'44.04"E	
128	61.340	3	27°29'51.67" N	88°44'47.56"E	
129	61.830	3	27°30'02.94" N	88°44'36.50"E	
130	62.300	3	27°30'16.66" N	88°44'30.96"E	7.45 Mtr Length
131	62.800	3	27°30'24.86" N	88°44'20.26"E	
132	63.300	3	27°30'39.45" N	88°44'14.66"E	
133	63.800	3	27°30'54.44" N	88°44'14.90"E	
134	64.040	3	27°31'01.85" N	88°44'16.05"E	
135	64.550	3	27°31'11.41" N	88°44'03.12"E	
136	65.000	3	27°31'22.19" N	88°44'01.78"E	
137	65.480	3	27°31'37.78" N	88°43'58.67"E	
138	65.870	3	27°31'45.44" N	88°43'53.51"E	
139	66.380	3	27°31'35.14" N	88°44'06.42"E	
140	66.900	3	27°31'20.96" N	88°44'06.87"E	
141	67.460	3	27°31'13.37" N	88°44'18.86"E	
142	68.000	3	27°31'56.93" N	88°44'25.33"E	
143	68.520	3	27°30'42.53" N	88°44'24.08"E	
144	68.920	3	27°30'31.69" N	88°44'29.65"E	
145	69.420	3	27°30'36.83" N	88°44'46.41"E	
146	69.960	3	27°30'20.38" N	88°44'46.06"E	
147	70.560	3	27°30'17.82" N	88°44'54.66"E	
148	71.000	3	27°30'07.22" N	88°45'01.65"E	
149	71.600	3	27°29'57.89" N	88°45'18.31"E	
150	72.050	3	27°29'51.79" N	88°45'31.48"E	
150	72.520	3	27°29'41.37" N	88°45'39.38"E	
151	73.000	3	27°29'27.63" N	88°45'44.16"E	
152	73.480	3	27°29'14.30" N	88°45'53.08"E	
155	73.840	3	27°29'05.44" N	88°46'00.91"E	
154	74.400	3	27°28'55.03" N	88°45'46.29"E	
155	74.900	3	27°28'52.28" N	88°45'29.82"E	
100	74.300	5	21 20 JZ.20 IN	00 J 29.02 L	

157	75.300	3	27°28'48.73" N	88°45'19.16"E	
158	75.800	3	27°29'01.39" N	88°45'10.27"E	
159	76.200	3	27°29'10.65" N	88°44'58.95"E	
160	76.640	3	27°29'04.81" N	88°44'52.89"E	
161	76.960	3	27°29'05.13" N	88°44'46.56"E	
162	77.540	3	27°28'54.72" N	88°44'40.72"E	
163	78.200	3	27°28'47.34" N	88°44'56.77"E	
164	78.740	3	27°28'33.02" N	88°44'58.72"E	
165	79.260	3	27°28'20.57" N	88°45'06.29"E	
166	79.800	3	27°28'19.51" N	88°45'24.79"E	7 45 Mtr Longth
167	80.380	3	27°28'07.67" N	88°45'36.87"E	7.45 Mtr Length
168	80.820	3	27°27'58.79" N	88°45'48.65"E	
169	81.360	3	27°28'06.00" N	88°46'06.01"E	
170	81.800	3	27°27'55.96" N	88°46'14.52"E	
171	82.150	3	27°27'45.62" N	88°46'10.37"E	
172	82.660	3	27°27'36.12" N	88°45'56.13"E	
173	82.940	3	27°27'29.96" N	88°45'56.67"E	
174	83.360	3	27°27'24.18" N	88°45'58.25"E	
175	83.820	3	27°27'29.69" N	88°45'13.07"E	
176	84.360	3	27°27'35.07" N	88°46'29.36"E	

	Details for P	roposed Minor and	Major Bridge of r	oad Toong-Parter	m -PT-4865-Tamze
Sr No	Location	Width (Mtr)	Latitude	Longitude	Remarks
1	2.220	6.00	27 ⁰ 32'37.05"N	88 ⁰ 38'01.51"E	
2	3.920	6.00	27 ⁰ 32'39.41"N	88 ⁰ 38'24.97"E	
3	4.900	6.00	27 ⁰ 32'35.06"N	88 ⁰ 38'22.80"E	
4	7.480	6.00	27 ⁰ 32'55.21"N	88 ⁰ 39'35.92"E	
5	10.420	10.00	27 ⁰ 32'31.22"N	88 ⁰ 38′53.28"E	
6	10.980	6.00	27 ⁰ 32'27.51"N	88 ⁰ 38'38.13"E	
7	19.360	10.00	27 ⁰ 32'16.19"N	88 ⁰ 39'53.39"E	
8	21.320	10.00	27 ⁰ 31'38.92"N	88 ⁰ 40'28.05"E	
9	22.200	6.00	27 ⁰ 31'33.33"N	88 ⁰ 40'55.40"E	
10	24.520	10.00	27 ⁰ 31'23.73"N	88 ⁰ 40'40.63"E	
11	25.480	10.00	27 ⁰ 31'27.72"N	88 ⁰ 40'16.27"E	
12	26.580	10.00	27 ⁰ 31'34.30"N	88 ⁰ 39'43.18"E	
13	27.120	6.00	27 ⁰ 31'46.16"N	88 ⁰ 39′31.83"E	
14	28.060	10.00	27 ⁰ 32'04.63"N	88 ⁰ 39'31.72"E	
15	29.880	6.00	27 ⁰ 31'43.15"N	88 ⁰ 39'16.97"E	
16	33.740	10.00	27 ⁰ 30'18.37"N	88 ⁰ 38'50.55"E	
17	36.500	10.00	27 ⁰ 30'11.14"N	88 ⁰ 38'52.81"E	
18	36.740	10.00	27 ⁰ 30'10.20"N	88 ⁰ 39'00.06"E	
19	39.040	6.00	27 ⁰ 30'55.65"N	88 ⁰ 39'24.97"E	
20	40.800	6.00	27 ⁰ 30'33.97"N	88 ⁰ 39'32.70"E	
21	41.560	6.00	27 ⁰ 30'13.36"N	88 ⁰ 39'31.41"E	7.45 Mtr Length
22	47.000	6.00	27 ⁰ 30'18.31"N	88 ⁰ 39'52.23"E	
23	48.420	10.00	27 ⁰ 30'22.28"N	88 ⁰ 40'24.70"E	
24	48.630	10.00	27 ⁰ 30'26.52"N	88 ⁰ 40'30.36"E	
25	50.220	6.00	27 ⁰ 30'27.18"N	88 ⁰ 41′13.11"E	
26	58.460	10.00	27 ⁰ 30'37.29"N	88 ⁰ 43'40.03"E	
27	62.140	10.00	27 ⁰ 30'11.51"N	88 ⁰ 44'31.15"E	
28	63.900	6.00	27 ⁰ 30'57.53"N	88 ⁰ 44'15.61"E	
29	66.320	10.00	27 ⁰ 31'35.80"N	88 ⁰ 44'04.85"E	
30	68.140	10.00	27 ⁰ 30'53.33"N	88 ⁰ 44'22.61"E	
31	68.580	6.00	27 ⁰ 30'40.17"N	88 ⁰ 44'25.04"E	
32	69.240	10.00	27 ⁰ 30'34.64"N	88 ⁰ 44'40.48"E	
33	70.440	10.00	27 ⁰ 30'16.96"N	88 ⁰ 44'51.18"E	
34	71.700	10.00	27 ⁰ 29'56.78"N	88 ⁰ 45'20.93"E	1
35	73.000	10.00	27 ⁰ 29'27.46"N	88 ⁰ 45′44.21"E	
36	73.100	10.00	27 ⁰ 29'25.11"N	88 ⁰ 45'40.40"E	
37	74.880	10.00	27 ⁰ 28'52.62"N	88 ⁰ 45'30.05"E	
38	76.500	10.00	27 ⁰ 29'03.44"N	88 ⁰ 44'57.67"E	
39	78.060	10.00	27 ⁰ 28'50.51"N	88 ⁰ 44'55.42"E	1
40	79.420	10.00	27 ⁰ 28'18.41"N	88 ⁰ 45'11.83"E	

