

Mitigation plan and conservation of wildlife

for Proposed

Rehabilitation and Upgradation of NH 565 from KM 133.922 to 154.900 to two lanes with paved shoulder in the State of Andhra Pradesh under NHDP IV

Located at: Davupally in Guntur dist and ends near Mallepalem Junction in Prakasam dist) for 20.978 Km Road length

BY

GREENTECH ENVIROS,

17-1-391/S/505, Road no. 12, Flat no 201, S.R. Residency, Singareni Officers Colony, Saidabad, Hyderabad, Telangana, India 500059
Phone: 9290516935, 8247298769
Email: greentechenviros@gmail.com

STUDY PERIOD: November, 2021

Acknowledgments

We acknowledge the support from the Principle Chief Conservator of Forests (Wildlife) and Chief Wildlife Warden, Govt. of Andhra Pradesh, Conservator of Forest, Guntur, Divisional Forest Officer, Markapur Wildlife management Division and the field staff during our field survey. We are thankful to Forest department for all required permissions and extending necessary support during our field survey.

Table of Contents

1.	INTRODUCTION	5
	1.1. IMPORTANCE OF BIOLOGICAL SURVEY NEED FOR THE PRESENT STU	UDY 5
	1.2. PROJECT BACKGROUND	5
	1.3. PROJECT DESCRIPTION	6
	1.4. GUIDELINES FOR WILDLIFE ISSUES DURING LINEAR EXPANSION PRO	OJECTS 8
	1.5. SCOPE OF THE STUDY:	10
	1.6. THE KEY OBJECTIVES OF THE STUDY:	10
2.	STUDY AREA	11
	2.1. BIOGEOGRAPHIC DESCRIPTION OF THE STUDY AREA	12
	2.2. PROTECTED AREAS & ECO-SENSITIVE AREAS IN THE CORE AND BUFFER	ZONES (UPTO TO
	10 km radius)	13
	2.3. IMPORTANCE TO THE COUNTRY, REGION	15
3.	METHODS ADOPTED	18
	3.1. SOURCES OF DATA COLLECTION:	18
	3.2. EQUIPMENT / INSTRUMENTS DEPLOYED	18
	3.3. VEGETATION SURVEY METHOD	18
	3.4. FAUNAL SURVEY METHOD:	19
4.	SURVEY RESULTS	20
	4.1. KEY FINDINGS OF BIODIVERSITY MONITORING	20
	4.2. VEGETATION FOUND DURING THE FIELD STUDY:	20
	4.3. FAUNA OF THE STUDY AREA	25
5.	IMPACTS OF PROJECT ACTIVITIES AND MITIGATION PLAN	27
	5.1. JUSTIFICATION OF THE PROJECT:	27
	5.2. SPECIES SPECIFIC IMPACTS:	27
	5.3. WILDLIFE RELATED ISSUES:	29
	5.3.1. Impact study for Direct habitat loss:	30
	5.3.2. Impact on barrier effect:	30
	5.3.3. Impact on disturbance leading to displacement of animal groups:	34
	5.3.4. Impact on collision risk:	34
	5.4. IMPACTS VS MITIGATION MEASURES OF THE REGION	36
	5.5. PROJECT CONTRACTORS CONDITIONS DURING CONSTRUCTION PHASE:	45
	5.6. CULVERTS FOR WILDLIFE MOVEMENT	46
6.	PROJECT SPECIFIC MITIGATION PLAN WITH FINANCIAL OUTLA	AY 47
	6.1. MITIGATION MEASURES	47
	6.1.1. Plantation and other habitat improvement activities within the forest area	as. 47
	6.1.2. Development of infrastructure	48
	6.1.3. Habitat enrichment works	48
	6.1.4. Wildlife research and monitoring works	48

6.1.5.	Protection of wildlife	49
6.1.6.	Publicity and Awareness	49
6.1.7.	Species specific general mitigation measures	49
6.2. Fi	NANCIAL PLAN	50
RI	EFERENCES	54
Al	NNEXURES	55
8.1. A	NNEXURE 1 (LIST OF EXISITNG AND PROPOSED STRUCTURES)	55
8.2. An	NNUXURE -2 (LIST OF FLORA)	60
8.3. An	66	
8.3.1.	Mammals	66
8.3.2.	Aves	66
<i>8.3.3.</i>	Reptiles	68
8.3.4.	Amphibians	69
8.3.5.	Butterflies	69
	6.1.6. 6.1.7. 6.2. FII AN 8.1. AN 8.2. AN 8.3.1. 8.3.2. 8.3.4.	6.1.6. Publicity and Awareness 6.1.7. Species specific general mitigation measures 6.2. FINANCIAL PLAN REFERENCES ANNEXURES 8.1. ANNEXURE 1 (LIST OF EXISITING AND PROPOSED STRUCTURES) 8.2. ANNUXURE -2 (LIST OF FLORA) 8.3. ANNUXURE -3 (LIST OF FAUNA) 8.3.1. Mammals 8.3.2. Aves 8.3.3. Reptiles 8.3.4. Amphibians

1.1. IMPORTANCE OF BIOLOGICAL SURVEY NEED FOR THE PRESENT STUDY

Roads especially highways have been recognized as arteries providing a range of services and carrying vital goods and people that are key divers of growing economy. Roads are known to boost economic growth in many sectors, like farm sector through faster and timely of farm produce to markets and tourism sector, particularly to remote locations, India has also embarked on developing and expanding the road network, as part of infrastructure development for its growing needs.

1.2. PROJECT BACKGROUND

Roads & Building Department of (NH Division) of Andhra Pradesh has been entrusted to implement an ambitious plan on development of various national highway corridors for augmenting their capacity adequately for safe and speedy movement of traffic taking into account the traffic growth in such corridor in future decades. Such network of good national highways is projected to be the minimum basic requirement of providing a level playing field for the producers and manufacturers in different regions of the country.

The project road starts near Davupally at Km 133.922 of NH-565 and ends at Km 154.900 near Mallapalem Junction in the state of Andhra Pradesh. It passes through Guntur and Prakasam Districts of Andhra Pradesh.

The primary objective of the project road widening is to cater for the increased demand of traffic and address the safe & efficient movement of the traffic in forthcoming years. The other objective of widening and strengthening of project road is to promote economic development in the project region.

The Project is proposed for 2 Lane with Paved Shoulder configuration interlinking different National Highways connecting Prakasam and Guntur Districts of Andhra Pradesh. The proposed National Highway will provide better connectivity to several towns and cities viz.

Macherla, Markapuram and Yerragondapalem and give an infrastructure fillip to the states of Andhra Pradesh, Telangana and Tamil Nadu.

ToR was obtained for the proposed project vide (10-2/2019-IA.III) dated 5th March, 2019 and EIA has been prepared as per the approved ToR (Copy of the Approved ToR is attached as Annexure I).

1.3. PROJECT DESCRIPTION

The project road is located in the Andhra Pradesh State. It passes through Guntur and Prakasam Districts of Andhra Pradesh. Majorly, it passes through Markapur WLM Forest division. Also, the road is within 10 km radius of NSTR (Nagarjunasagar- Srisailam Tiger Reserve) Zone. The land along the project road is mostly forest land and remaining are agricultural land, except at built up areas, where there is nominal barren land. Educational institutions and religious structures exist in some of the villages.

Rehabilitation and Up-gradation of NH-565 from KM 133.922 to 154.900 to two lanes with paved shoulder in the State of Andhra Pradesh under NHDP IV with a total of 20.978 Km is in urgent need to improve the road network and conditions. In fact less than 200/0 of all the census villages in the state are connected by all weather roads. Even the existing roads lack longitudinal and cross drainage, retaining walls, roadside parapets and good road geometrics leading to longer journey times, slow speeds and increased wear-tear of vehicles. To reduce travelling time and to ensure faster movement of perishable farm produce (fruits and vegetables), better roads are the only feasible alternative resulting in greater utilisation of resources and socio-economic development of the people. The success of the various investments by the government in the different sectors depend to a great extent on the adequacy of the transport infrastructure i.e. road network in the state.

Nature of the Project: 2-lane with paved shoulder configuration NH-565 from 133.922 km to 154.900 km. The entire project road traverses through rolling terrain except at isolated hill sections and settlements. The carriageway, in general, is of single lane with average lane

width of 3.6 m. At present, the connectivity between Macharla and Markapuram is either via SH-56 and SH-88 which is two lane with paved shoulder. The new proposed National Highway shall bring down the travel time distance. Moreover, the new National Highway facility is access controlled and hence will provide good riding quality, better safety, and a reliable infrastructure. All of these elements will result in cost savings and efficiency improvement. The ToR was obtained for the proposed project vide (10-2/2019-IA.III) dated 5th March, 2019 and EIA has been prepared as per the approved ToR.

- a. The project road passes through Mutukuru Reserve Forest (KM 134/922 to KM 143/000) Guntur district and Markapur Reserve Forest (KM 143/000 to KM 154/900) Prakasam district.
- b. It starts near Davupally and ends near Mallapalem Junction village. It passes through Guntur and Prakasam districts in the state of Andhra Pradesh. 8.3 km of this project is passing through the Guntur District (Mandal Veladurthy) and 12.6 km is passing through Prakasam District (Mandal Pullalacheruvu)
- c. An area of 54 Ha. of Forest land is required for diversion.
- d. The proposed project road passes through the buffer zone of Nagarjunsagar Srisailam Tiger Reserve also known as "Rajiv Gandhi Wild Life Sanctuary". Hence Wildlife Clearance is required. The process for Wildlife Clearance has been initiated.
- e. The geographical co-ordinates of the proposed road between $16^{0}16$ "21.626"N, $79^{0}19$ "16.226"E to $16^{0}8$ "7.396"N, $79^{0}20$ "3.498"E
- f. Railway station (Donakonda) is located at a distance of 37.2km, from the proposed site.
- g. The nearest airport to the project site is located at Vijaywada at a distance of about 143km away
- h. The project area falls under Seismic Zone-III as per Indian Standards, IS: 1893 (Part-1) 2002.

Wildlife encompasses both animals and plants. Wildlife conservation is not just aiming of protection Rare, Endangered and Threatened species but also to achieve well recognised means of achieving ecological security, human wellbeing and sustainable development of any country. Wildlife habitat is considered as the environment used by an animal and is

essential for food, mating, cover and other requirements for survival. Whereas, linear projects such as roads is important to the country for economic growth and to meet the transportation needs of the people. Hence, incorporating the ecological considerations into modern design techniques will result in favourable win to win approach to safeguard the interests of both wildlife and people.

Through this mitigation plan, we could able to minimise long term impacts on flora and fauna of the region and also useful for habitat improvement activities, afforestation, research works, wildlife monitoring, awareness programmes and forest protection activities. Few potential infrastructure facilities proposed in this plan would certainly enrich conservation activities within the forest core areas. In this plan certain direct and indirect impacts were identified under different phases of the proposed activity and suggested certain mitigation measures. Certain guidelines are also given to persons involved in the construction activities which can be monitored by forest authorities.

1.4. GUIDELINES FOR WILDLIFE ISSUES DURING LINEAR EXPANSION PROJECTS

Mitigation strategies:

Mitigation strategies should be considered and applied in the planning stages of the project cycle.

Data collections and survey guidelines:

For existing facilities, which generally undergo enlargement or upgrading, the focus should be on any necessary repair or rehabilitation of prior environmental damage. For example, a road/railway passing near or through a wildlife area. special attention would be paid to provision of wildlife mitigation measures.

Site-specific issues: Consideration of habitats, geographical location, topography, and vicinity of the existing road line to sites of high biodiversity value.

Species-specific issues: Surveys should be targeted to species of flora and fauna of high biodiversity value, those with a special international or national conservation status, endemic species, and species that are at elevated risk of impact from proposed project facilities. For example, species with a relatively high collision risk of Carnivores and Herbivores of the region.

- Species with a relatively high risk of crossing the roads shall be listed out.
- ❖ Some species may be attracted to feeding areas, which could further increase potential for collision. The habitats for food and water for animals on both sides of the track shall be considered. The areas having meagre food resources must be treated under critical habitat zones.
- Species at risk of habitat fragmentation and associated structures.
- Species with a relatively high risk of disturbance from noise (traffic movement and horn sound).

Season-specific issues: Surveys should take into consideration certain periods during the year when the project site may have a greater or different ecological function or value (e.g., migration, breeding season, or winter seasons). Surveys should usually be conducted for at least one season when at-risk wildlife is identified. Tiger and other major carnivores breeding and mating seasons shall be considered.

Longer surveys may sometimes be necessary in areas with exceptional aggregations of atrisk migratory animals and where existing biodiversity data are limited. This would be determined during project construction phase by forest department.

Surveys should be designed and implemented to adequately guide the underpasses to minimize collision risks to wild species. This is normally expected to entail gathering relatively precise information on the spatial patterns of site utilization by at-risk wildlife species as well as consideration of the locations of certain topographic, ecological, or other landscape features that may attract or otherwise concentrate the activity of movement of wildlife within the project area and its surrounding landscape.

1.5. SCOPE OF THE STUDY:

To prepare wildlife mitigation plan by conducting rapid assessment survey (one season Flora and fauna monitoring survey) in and around the proposed project area up to 10 km radius to identify REET (Rare, Endangered, Endemic and Threated) species of the area through direct and indirect methods.

1.6. THE KEY OBJECTIVES OF THE STUDY:

The objectives of the Mitigation plan are as follows:

- ❖ To conduct the biodiversity monitoring study in and around 10 km radius of the proposed project and to quantify the biodiversity indices and to identify the Rare, endangered, endemic and threatened wildlife with respect to IUCN and Scheduled- I species of the region.
- ❖ To predict impacts of the proposed project on direct habitat loss, barrier effect, disturbance leading to displacement of animal groups, collision risk in the study area.
- ❖ To assess potential animal crossing zones along the existing and proposed road track and to suggest wildlife-crossings (Under passes) at suitable places, which are comfortable and conducive for wildlife movement across the proposed road.
- ❖ To identify areas to build structures such as crossings, culverts, water holes, etc so as not to disrupt the wildlife behaviour and its activities.
- ❖ To suggest mitigation measures to minimize/avoid adverse impacts due to project specific, site specific and species-specific issues.
- ❖ To prepare budgetary on each component identified / suggested by forest department for next 10 years from project implementation.

FIGURE 2 1: LOCATION OF THE PROJECT SITE

2.1. BIOGEOGRAPHIC DESCRIPTION OF THE STUDY AREA

The project study area is situated adjoining to Nagarjunasagar Srisailam Tiger Reserve (NSTR). This sanctuary is situated in the Nallamalas - an offshoot of Southern Eastern Ghats of Andhra Pradesh, the sanctuary is hilly terrain with plateaus, ridges, gorges and deep valleys which support tropical mixed dry deciduous forests with an undergrwoth of Bamboo and Grass. The Project Tigher Circle, Srisailam is mainly constituted with the Nagarjunasagar Srisailam Tiger reserve, Rollapadu wildlife sanctuary and Gundla Braheswaram Wildlife Sanctuary. It spreads over Kurnool, Prakasam and Guntur Districts and is headed by the Field Director, Project Tiger Circle, Srisailam. The Circle consists of (4) wildlife/Territorial Divisions i.e., Atmakur WLM, Markapur WLM, Flying Squag and Bio-Diversity Reasearch Division at Srisailam.

Climate

Nallamalais fall under dry region of Peninsular India. The hot period is from March to May, the temperature reaching up to 45°C. The average annual rainfall for whole of Nallamalais is about 74 cm. The full impact of rainfall is on Gundlabrahmeswaram plateau, which receives about 127 cm.

Rocks and Soils

The rocks fall into two distinctly recognizable formations, viz., the Cuddapah and Kurnool formations of the archean age. Sandstones in mixtures of quartzites, shales and outcrops of barites and manganese ores occur. There are three types of soil: red, mixed varieties and black. The red and mixed varieties occur along the bases of Nallamalais. Towards the interior of the forests, the soil is red with calcareous shales. The humus content is almost negligible. The black soil occurs in plains where cultivation is practised (Krishnan, 1956).

Flora and fauna of the region:

Champion and Seth (1968) classified the forest types of India under 16 type groups. But, due to heavy physical and anthropogenic influences the degraded stages of original climax vegetation types are hardly distinguishable. The following types were recognized in the study area. The tiger reserve harbors endemic species like *Andrographis nallamalayana*, *Eriolaena*

lushingtonii, Crotalaria madurensis var, Dicliptera beddomei and premna hamitonii making it a prospective germ plasm bank. It has been estimated that there are 1581 taxa spread over 149 families occuring in Nallamala which include 29 grass species and 353 medicinal species. Over 80 species of mammals,303 species of Birds, 54 species of reptiles ,20 amphibians, 55 fishes, 101 Butterfiles, 57 species of Moths,45 species of Coleopterans, 35 species of Odonata and numerous other forms of insects are found in the area. The recent Bio-systematic studies carried out by the scientists of Eco-Research and monitoring laboratories led to the discovery of certain new species which were hitherto not recorded. (Source: https://forests.ap.gov.in/tiger-res.phpest Department (ap.gov.in)).

The main types of forest biomes in the reserve are: southern tropical dry mixed deciduous forest, Hardwickia forest and Deccan thorn scrub forests with much Euphorbia scrub. Important plant species here are: *Anogeissus latifolia* (axle wood), *Cleisthanthus collinus* (odcha), *Terminalia* spp., *Pterocarpus marsupium*, *Hardwickia binata* (anjan tree), *Boswellia serrata* (Indian frankincense or salai), *Tectona grandis* (teak), *Mundulea sericea and Albizia* spp. (silk plants).

The main mammals in the reserve are: Bengal tiger, Indian leopard, Sloth bear, Ussuri dhole, Indian pangolin, chital, Sambar deer, Chevrotain, Blackbuck, Chinkara and Chowsingha. Lesser fauna includes Mugger crocodile, Indian python, Indian cobra, Rat snake, Bengal monitor, Indian star tortoise and Indian peafowl. Endemic reptiles like the skinks Ashwamedh writhing skink, Sharma's mabuya lizards and the Nagarjun Sagar racer snake, Wildboar, Mongoose, Porcupine are particular highlights of this region.

2.2. PROTECTED AREAS & ECO-SENSITIVE AREAS IN THE CORE AND BUFFER ZONES (UPTO TO 10 KM RADIUS)

The present study carried for the presence of important wildlife habitats and protected areas, breeding and nesting habitats of fauna and grassland area from core area. These important areas such as Protected areas (National Park, Wildlife Sanctuaries, Conservation Reserves etc. Wetlands of national importance, Ramsar sites, Important Bird Areas (IBAs), classified by the Birdlife International and Bombay Natural History Society etc. Data collected and

information gathered from primary and secondary sources on flora, fauna, protected area, natural habitats, wildlife species etc., were analysed and results are presented as follows.

Table 2.1: Details of protected areas, forests & ecologically sensitive areas

Ecological sensitive habitat	Direction and Distance from the project site.		
Protected Areas	Yes, Nagarjunasagar Srisailam Tiger Reserve (Adjoining to the site) Sirigiripadu beat, Komarolu and Mallapalem beats. Rajiv Gandhi Wildlife sanctuary		
Reserved Forests	Yes		
Wildlife Corridors & Routes	Yes, (Adjoining to the site)		
Wetlands / Water bodies	Yes, (Adjoining to the site)		
Ramsar Site	NIL		

Details of Forest Areas

The details of forest blocks are presented in Table-2.2. The major composition of degraded forest is *Acacia leucophloe*, *Acacia horrida*, *Boswellia serrata Dalbergia sisoo*.

TABLE 2.2: DETAILS OF FORESTS IN STUDY AREA

S. No.	Details Forests	Distance from Site (km)	
1	Mutukuru RF	Adjacent	
2	Markapur RF	Adjacent	
3	Eastern Nallamala RF	3.6	
4	Kandlagunta RF	3.9	

As per State Forest Report 2014, Markapur (WL) Forest Division lies in the south-eastern part of Prakasam district between latitudes 15° 23′1″ and 16°18′16″ N and longitudes 78° 47′48″ and 79° 57′56″ E. Geographical area of the Division is 7,218 Km² which is 25.1% of the area of the district. The seasonal rivers like Gundlakamma, Sagileru, Musi, Paleru and Manneru flow through the Division. The Gundlakamma River rises in Nallamala hills and the famous Cumbum Tank is formed across this river.

Total number of trees found along the project road is of 1322. Right hand side is of 58 and Left hand side is of 740. Various trees like Neem, Teak, Bushes found along the road. The climate of this Division is dry and salubrious, temperatures ranging from 19⁰C to 40⁰C; the annual rainfall is about 871 mm, received mainly from Southwest monsoons. Sandstone mixed with quartzite and occasional shales are the characteristic rock formations on the Veligondas and at their extremes, bordering Kanigiri, the rocks gradually change into Gneisses or Granite composition. Outcrops of Barytes and Manganese ores occur in Veligondas. The soil types found mainly are red loamy, black cotton, sandy loam and sandy. Population of the Division is 0.86 million (2011 Census), per capita forest area is 0.26 Ha and the population density is 155 persons per Km². There are about 48 Beats in the Division. The Sirigiripadu beat, Komarolu and Mallapalem beats comes under the project road.

2.3. IMPORTANCE TO THE COUNTRY, REGION

The Project is a proposed for 2 Lane with Paved Shoulder configuration interlinking different National Highways connecting Prakasam and Guntur Districts of Andhra Pradesh. The proposed National Highway will provide better connectivity to several towns and cities viz. Macherla, Markapuram and Yerragondapalem and give an infrastructure fillip to the states of Andhra Pradesh, Telangana and Tamil Nadu. The National Highway will be access-controlled and ensure high speed traffic movement from Prakasam District to Guntur District. The proposed alignment is selected so as to cover one of the most important south arterial connectivity in the country, further interspersed with feeder highways on its either sides.

At present, the connectivity between Macharla and Markapuram is either via SH-56 and SH-88 which is two lane with paved shoulder. The new proposed National Highway shall bring down the travel time distance. Moreover, the new National Highway facility is access controlled and hence will provide good riding quality, better safety, and a reliable infrastructure. All of these elements will result in cost savings and efficiency improvement.

The Project will further have following benefits at national and regional level:

- ❖ High-speed connectivity and access: The projected National Highway is a proposed for 2 lane with paved shoulder. This will avoid traffic congestion and speed-up the freight movement. It is expected that overall, the proposed National Highway will reduce the travel time.
- ❖ Aiding economic growth: The seamless connectivity will provide better access to vehicles as a link to the National Highways. The Project will reduce travel time and provide boost to trade and commerce linked to the regions connected through this National Highway.
- ❖ Growth of backward areas: The biggest strength of the alignment is that it plans to cover backward districts of Andhra Pradesh. As a result of connectivity and access to other parts of the country, these backward areas will be aided to integrate with other part of India. Further, freight and passenger traffic on the National Highway will help promoting ancillary economy of these regions.
- ❖ Decongestion of existing National and State Highways: The proposed National Highway will take away traffic pressures from Roads. Also, long-distance traffic will shift to the proposed National Highway, thereby leaving the SH for regional and local usage.
- ❖ Usage shift: Long-distance traffic will shift from existing road to the proposed National Highway, resulting in lesser congestion on these highways
- ❖ Improved safety: Due to access control, the Roadway & Travel Safety of the traffic connecting the cities will be enhanced as there will be minimum distractions & conflict zones
- Support to industry: Different types of industries like Manufacturing, Tourism etc. along the proposed National highway will be facilitated in their business operation and reachability.

Following major types of traffic load is expected on the Project:

Commercial and Industrial: Traffic on the existing roads is driven by local, commercial and industrial traffic. Industries such as cement, chemicals and minerals are present along and around the proposed National Highway. These industries are expected to benefit from the National Highway.

- ❖ Tourist: Passenger traffic will be generated due to many places of tourist interest in the districts connected by the National Highway. Apart from places of historical importance such as forts and palaces, traffic would be augmented due to several famous religious places such as the Srisailam and wildlife parks and safari like Amarabad Tiger Reserve.
- ❖ Health and Education: Faster connectivity and accessibility to AP will help in higher flow of traffic from Telangana state, especially for higher education, tertiary healthcare and specialized treatments. Reduction in travel time will allow patients to avail OPD / other medical services from the capital region.

3.1. SOURCES OF DATA COLLECTION:

- ❖ Primary field survey of flora and fauna near Core (up to 1 sq. km) and buffer (up to 10 sq. km radial distance) zones during site visit.
- Secondary data sources from forest department staff, road staff working in the track side, authentic websites, publications etc.

3.2. EQUIPMENT / INSTRUMENTS DEPLOYED

- ❖ Digital Camera (NIKON 42 X zoom)
- ❖ GPS (Available in Mobile and inbuilt camera)
- ❖ Binoculars (OLYMPUS 10 X 50 DPSI)
- ❖ Field observation book, Field guides, Pen, Measuring tape etc

The site visit undertaken from 12th to 15th November, 2021 by experts from M/s Greentech Enviros, and accompanied by the staff members of Satra Infrastructure Pvt Ltd. Seven sampling locations are studied in the study area and collected list of flora and fauna by using quadrant method and belt transect method.

3.3. VEGETATION SURVEY METHOD

Vegetation in the seven sampling locations has been estimated by direct counting of Tree species, their number, GBH value and distance and direction in Row. The status of each identified species was given in terms of four categories such as "Common", "Sporadic", and "Rare". This status is mainly based on Density, Frequency and Abundance estimated during the field visit for Trees, Shrubs and Herbs.

Number of quadrates or belt transacts are finalized based on the Area – Species graph. 20 m X 20 m for tree species, 5 m X 5 m quadrates for shrubs and 1 m X 1 m quadrates for herbs.

In locations where the quadrants are not possible such as hilly areas and agricultural, plantation areas a belt transects of 100m X 10m are applied.

The above parameters are used to determine the following.

- ♦ Determining frequency, abundance, relative frequency, relative density, relative dominance and importance value indices using Mueller-Dombois-Ellenberge [1974] Method
- The flora data collected from 7 sampling points are analysed quantitatively from MS Excel and PAST softwares.
- The biodiversity indices such as Shannon Index, Simpson index, A/F value, Dominance and Evenness e^H/S are statistically analysed and interpreted the data on ecosystem quality.

3.4. FAUNAL SURVEY METHOD:

Mammalian surveys were conducted by using line transect method in all major habitats and recorded the species through direct and indirect evidences. Bird surveys were be carried out through **Point count method** preferably during **dawn and desk**. Secondary data collected from forest department and local people in the study area.

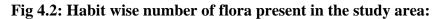
4.1. KEY FINDINGS OF BIODIVERSITY MONITORING

- ❖ The present study was carried out in Winter season for the direct observation in the selected habitats of the study area and analysed the possible impacts on animals of the proposed road expansion and suggested mitigation measures.
- ❖ The entire study area was analysed on hypothetical cluster-based analysis.
- ❖ Mammals monitoring plan relay on direct field observations, indirect evidences, authentic information, desktop study of available relevant literature as well as subject expert's professional judgment. After review of relevant secondary information available for the area habitat and point surveys were undertaken in Monitoring surveys up to 10 km radius of the project area.

4.2. VEGETATION FOUND DURING THE FIELD STUDY:

Trees: The most common tree species occurring are Adina cordifilia, Alangium salviifolium Angeissus latifolia, Azadirachta indica, Bridelia retusa, Cassia fistula, Cassine glauca, Chloroxylon swietenia, Cleistanthus collinus, Cochlospermum religiosum, Dalbergia lanceolaria, Diospyros melanoxylon, Gardenia turgida, Ehretia Leavis, Givotia moluccana, Haldinia cordifolia, Lagerstroemia parviflora, Litsea glutinosa, Madhuca longifolia, Millettia pinnata, Morinda pubescens, Phyllanthus emblica, Prosopis juliflora, Pterocarpus marsupium, Strychnos nux-vomica, Tectona grandis, Terminalia alata, Terminalia chebula, Wrightia arborea, Wrightia tinctoria, Xylia xylocarpa, Ziziphus xylopyrus

Shrubs: The most common shrubs are *Lantana camera*, *Hyptis suaveolens*, *Cassia auriculata*, *Calotropis procera*, *Prosopis juliflora*, *Acacia leucocephala*, *Catunaregam spinosa*, *Caesalpinia bonducella*, *Canthium parviflorum*, *Carissa carandas*, *Capparis sepiaria*, *Celastrus paniculata*.


Herbs: The most common herbs are Tridax procumbens, Cassia occidentalis, Crotan bonplantianum, Datura metel, Eclipta alba, Boerhavia diffusa, Tephrocia purpuria, Achyranthes aspera, Cassia tora, Abutilon indicum, Ipomoea macrantha.

Climbers: The commonly seen climbers are Capparis horrida, Abrus precatorius, Hemidesmus indicus, Clitoria ternatea, Cuscuta reflexa, Desmodium triflorum, Pergularia daemia, Desrris scandans, Hemidesmus indicus, Ipomoea pes-caprae, Ipomoea nil, Ipomoea macrantha, Mucuna pruriens, Evolvulous alsinoides, Gloriosa superba.

Grasses: The common grass species are *Chloris barbata, Cyperus castaneus, and Cynodon dactylon Dactyloctenium aegyptium, Digitaria ciliaris, Eragrostis tenella, Fimbristylis cymosa, Ilaloipsis binata and Imperata cylindrica.*

Fig 4.1: Field photos near core and buffer zones of the study area:

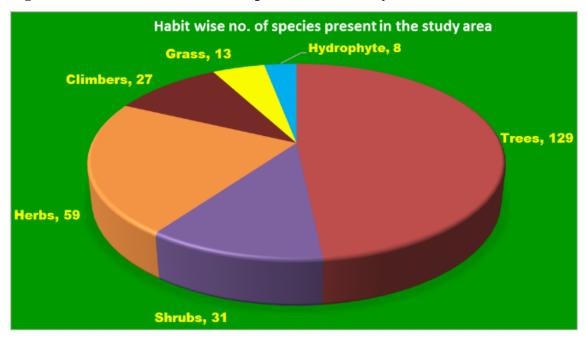
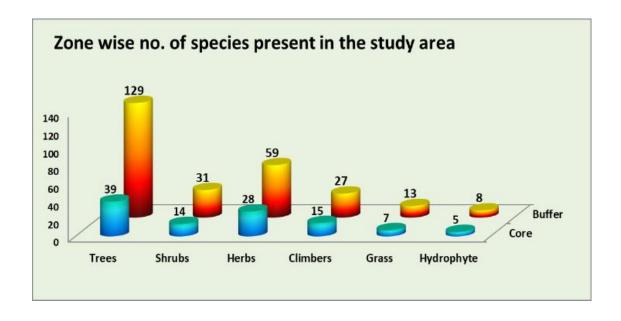
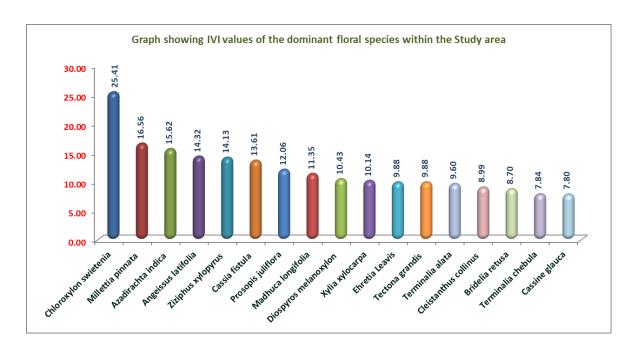


Fig 4.3: Zone wise number of flora present in the study area:




Table 4.1: Data interpretation of Biodiversity indices values of the sampling sites in buffer zone:

Biodiversity	Value	Indication and reason	Relevance to present	
indices			mitigation plan	
Shannon	3.253	Good diversity (Normal	Contractor shall follow	
indices		diversity in ecological studies	instructions given by forest	
		is 1.5 to 3.5 range (Kerkhoff,	department during entire	
		2010).	working period.	
		Reason: Presence of reserve		
		forests and adjoining to		
		Srisailam Tiger Reserve		
Evenness	0.968	Indicates the species are All the species present in the		
e^H/S	(96.8%)	evenly distributed in core	venly distributed in core core zone are also present in	
		and buffer zones. the buffer zone. Hence impact		
			on vegetation present near	
			core zone shall be	
			compensated through	
			afforestation activities of the	
			similar species in the buffer	
			zone as per guidelines taken	
			from forest department.	

4.3. FAUNA OF THE STUDY AREA

From the secondary data and indirect evidences during site visit, the predominant species found are Tiger, Panther, Sloth bear, Jungle cat, Bonnet macaque (*Macaca radiate*), Rhesus macaque (*Macaca mulatta*), Wild boar (*Sus scrofa*), Spotted deer (*Axis axis*), Sambar (*Cervus unicolor*), and Nilgai (*Boselaphus tragocamelus*), Five striped palm squirrel (*Petaurista Pennanti*), Indian Giant Squirrel (*Ratufa indica*), Four-horned antelope (*Tetracerus quadricornis*), Indian hare (*Lepus nigricollis*), Grey House shrew (*Suncus murinus*) and Indian Tree shrew (*Anatha eliioti*). Birds are very common near the aquatic habitats and terrestrial habitats. Peafowls are found near the ponds. Among the reptiles, Skinks, Geckos, lizards are commonly sighted. Snakes such as Krait, Common Tree Snake, Saw scaled wiper, Russell's earth boa, Johns earth boa, Common wolf snake, Indian Cobra, Common Rat snake and Green pit viper are present.

Distribution pattern (A/F ratio): The ratio between abundance and frequency was used to interpret the distribution pattern of species (Whitford, 1949). Distribution

pattern of species in the study area is identified as random distribution as the value of A/F ratio is **0.043.** This random distribution of species is mainly due to various ecosystems present in the buffer zone. The Shannon indices value of study area is 3.253 indicates **Good diversity** (Normal diversity in ecological studies is 1.5 to 3.5 range (Kerkhoff, 2010). Population size and Dominance of the species is 3% and Evenness is around 97% (Indicates the species are evenly distributed in core and buffer zones). This might be due to contiguous patches of Chloroxylon swietenia species and natural species such Azadirachta indica, Phoenix, Prosopis juliflora (near the villages), Peltophorum pterocarpum and Delonix regia (near road side). The present study indicates A<B<C>D>E in frequency classification and as per the Raunkiaer's law of frequency classification indicates that species diversity is distributed maximum for 40 to 60%. This result indicates that all most all plants frequency is more or less equal due to some of the plant species such as Xylia xylocarpa, Syzygium cumini, Phoenix sylvestris, Dalbergia sissoo, Prosopis juliflora, Tectona grandis, Mangifera indica, Terminalia alata and Lantana camara are frequently found floral species throughout the region.

5. IMPACTS OF PROJECT ACTIVITIES

AND MITIGATION PLAN

Chapter 5

5.1. JUSTIFICATION OF THE PROJECT:

The proposed road doubling line has been aligned along the existing road line within the available road land boundaries as far as possible to minimise the forest land diversion/acquisition. There is no alternative route to this alignment hence doubling line proposed along the existing line in the forest corridor with limited vegetation removal.

5.2. SPECIES SPECIFIC IMPACTS:

Impact of few animals found in this region:

Mouse Deer: Mouse-deer (tragulids) in general occupy a range of habitats from evergreen forests to plantations. They are an ancient group of frugivorous ungulates, small-bodied and active both day and night. They are often found in evergreen, semi-evergreen and deciduous forests, as well as in grassland and commercial plantations. The mouse deer is solitary animal except during mating season and hence the communication is likely to be limited to males and females during mating periods. Their territories are relatively small reaching from 13 to 24 hectares but neighbours generally ignore each other rather than competing aggressively. They have a lifespan of 8-12 years in the wild. It is a rare species to spot in wild since it is very shy and of cryptic nature. The conservation status of Indian mouse deer, according to IUCN (International Union for Conservation of Nature and Natural Resources), is Least Concern.

Impact: Very few populations are present near the study area. The loss of habitat due to proposed project is limited due to presence of under passes as a part of mitigative measures. Collision risk is evaluated as moderate.

Palm Civet: The Asian palm civet (*Paradoxurus hermaphroditus*), also called common palm civet, toddy cat and musang, is a viverrid native to South and Southeast Asia. Since 2008, it is IUCN Red Listed as Least Concern as it accommodates to a broad range of habitats.

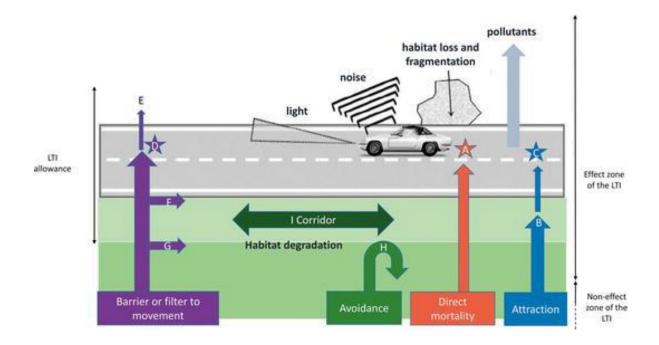
Impact: This is commonly present near the study area. The loss of habitat due to proposed project is very limited due to presence of under passes as a part of mitigative measures. Collision risk is evaluated as moderate.

Wild Cats: Wildcat species are largely nocturnal and solitary, except during the breeding period and when females have young. The size of home ranges of females and males varies according to terrain, the availability of food, habitat quality and the age structure of the population. Male and female home ranges overlap, though core areas within territories are avoided by other cats. Females tend to be more sedentary than males, as they require an exclusive hunting area when raising kittens. Wildcats usually spend the day in a hollow tree, a rock crevice or in dense thickets. It is also reported to shelter in abandoned burrows of other species such as of red fox (*Vulpes vulpes*).

Impact: This is commonly present near the study area. The loss of habitat due to proposed project is very limited due to presence of under passes as a part of mitigative measures. Collision risk is evaluated as moderate.

Spectacled Cobra: The Indian cobra inhabits a wide range of habitats throughout its geographical range. It can be found in dense or open forests, plains, agricultural lands (rice paddy fields, wheat crops), rocky terrain, wetlands, and it can even be found in heavily populated urban areas, such as villages and city outskirts. Preferred hiding locations are holes in embankments, tree hollows, termite mounds, rock piles and small mammal dens.

Impact: This is commonly present near the study area. The loss of habitat due to proposed project is very limited due to presence of under passes as a part of mitigative measures. Collision risk is evaluated as moderate.


Geochelone elegans is a terrestrial species and inhabits scrub forests, grasslands, and some coastal scrublands of arid and semi-arid regions, but also commonly inhabits human-dominated landscapes including fields, hedgerows, and plantations.

Impact: This is rarely seen near the study area. The loss of habitat due to proposed project is very limited due to presence of under passes as a part of mitigative measures. Collision risk is evaluated as moderate.

5.3. WILDLIFE RELATED ISSUES:

The construction of proposed road can have a substantial impact on the degradation and loss of vegetation, natural ecosystems and habitats, fragmentation of habitats. Pollution and dust accumulation on vegetation, noise and vibration impact on wild animals are during operation state. The other major impacts are given in the table.

Fig 5.1 Schematic view of environmental effects of a linear transport infrastructure

5.3.1. IMPACT STUDY FOR DIRECT HABITAT LOSS:

Due to the proposed project the major trees that are going to be removed are *Chloroxylon swietenia*, *Cleistanthus collinus*, *Cochlospermum religiosum*, *Dalbergia lanceolaria*, *Tectona grandis*, *Diospyros melanoxylon*, *Gardenia turgida*, *Ehretia Leavis*, *Givotia moluccana*, *Haldinia cordifolia*, *Lagerstroemia parviflora*, *Prosophis juliflora* etc. There are no Rare and endangered floral species are going to remove from the activity area. Moreover, all the species present in the expansion area and predominantly available throughout the buffer region.

The loss of other shrubs, herbs, climbers and grass species will also play major role for habitat loss for small vertibrates and invertibrates in large scale. Apart from the direct removal of vegetation, long term impacts due to traffic on surrounding flora also need to be considered. The dust and vehicular emmissions are also impact on micro fauna of the region. The effect on flowiring will also impact on butterflies species habitat.

5.3.2. IMPACT ON BARRIER EFFECT:

The proposed road expansion project would create more barrier effect on both nocturnal and diurnal animals. Diurnal animals are active during the daytime, with a period of sleeping or other inactivity at night. The timing of activity by an animal depends on a variety of environmental factors such as the temperature, the ability to gather food by sight, the risk of predation, and the time of year. Commonly classified diurnal animals include mammals, birds, and reptiles. Most primates are diurnal. In this region, the diurnal wild animals are Langurs, Sloth bears, Varanus, Squirrels, Butterflies etc. The barrier effect on these animals are limited due to day light and other ecological parameters. Nocturnal animals are animals that are active at night. They often have special adaptions for nocturnal living, including large eyes for low-light vision, and heightened senses of hearing and smell. Examples of nocturnal animals include Tigers, Panthers, Civets, bats, moths, owls, and wolves. The barrier effect is high in these animals and proper mitigation measures must be taken. Crepuscular animals are active at dawn and dusk. Especially deers, foxes, wolves, hats etc. The barrier impact on these animals are moderate and proper mitigation steps to be taken while expansion work is undertaken.

Restriction on movement of animals due to movement of vehicles 24x7:

The vehicle movement in the reserve forest is throughout the day (24X7). Hence animals of both diurnal and nocturnal animals cannot cross the road all the time. Hence certain mitigation steps need to be taken in this regard. These steps are discussed indetailed in next chapters.

Sound & light pollution due to vehicles and its impact on animal behaviour:

The noise and vibrations are also major causes for distrabances to natural wildlife and sensitive species such as Reptiles and birds. Short-term exposure of noise levels can affect the behavior and physiology of birds, reproductive system as birds avoid reproduction in noisy places. Animals also suffer human like disabilities like hearing loss, loss in responsiveness, dizziness and disturbance. Traffic noise reduced foraging efficiency in most bats. Monkeys also live in noise free areas as exhibited by a study in which continuous noise was supplied in the habitat of the monkeys. The common effects on animals are Hearing loss, Increased heart rate, Increased risk of death, Habitat loss, Trouble in finding prey, Trouble in finding mates as in frogs etc. (Source: Vehicular Noise Pollution: Its Environmental Implications and Strategic Control | IntechOpen). Artificial light has several general effects on wildlife: Attracts some organisms (moths, frogs), resulting in them not being where they should be, concentrating them as a food source to be preyed upon, or just resulting in a trap which exhausts and kills them. Studies show that light pollution is also impacting animal behaviors, such as migration patterns, wake-sleep habits, and habitat formation. Bright lighting also affects the feeding patterns of some bat species, and makes them more vulnerable to predators or likely to crash into buildings.

Impact on movement of reptiles and amphibians:

Roads are one of the most widespread human-caused habitat modifications that can increase wildlife mortality rates and alter behavior. Roads can act as barriers with variable permeability to movement and can increase distances wildlife travel to access habitats. The home range sizes of herpetofauna vary considerably in size. Some species may travel hundreds of feet and up to several miles in one day. Individuals may travel large distances to access habitat used for breeding, feeding or sheltering. These areas can become bisected by

roads. Animals may avoid roads causing a barrier effect or not avoid roads resulting in reduced survivorship from road mortality. When roads act as barriers, this results in habitat fragmentation effects.

Mitigations:

- The breeding sites of animals/amphibians, nesting sites of birds, thermoregulation surface sites of snakes will be avoided for any type of construction.
- Construction/modification of ponds will be done to provide breeding sites to amphibians.
- ❖ The construction of strips of surfaces (next to road where high mortality of snakes are reported) that may attract snakes for thermoregulation will be done.

A study to evaluate road avoidance behavior of reptiles at large spatial scales and the first to estimate energetic consequences of road avoidance in reptiles results suggest that turtles avoid crossing roads, but do not avoid habitats adjacent to roads. Turtles expend more energy on movement in home ranges containing more roads, but the increased energetic expenditure is small compared with energetic investment in reproduction. Overall, our results suggest that reptiles avoid road crossings. However, the additional energy expenditure of reptiles interacting with roads is unlikely to negatively affect fitness through reduced reproductive output, and road crossing avoidance may have positive effects by reducing mortality risk. Mitigation of road impacts on reptile populations should continue to focus on reducing mortality from vehicle strikes.

(Source: https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.5515)

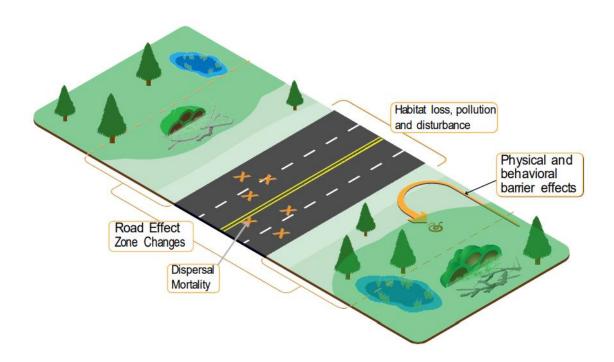


Fig 5.2 Schematic representation of influences within the Road Effect Zone (REZ).

Fahrig and Rytwinski (2009) identified four situations in which roads create negative impacts on organisms:

- (1) species are attracted to roads but are unable to avoid individual cars,
- (2) species have high levels of movement, low reproductive rates, and low densities regardless of their reaction to roads,
- (3) small animals avoid roadside habitat, and
- (4) small animals not impacted by road-affected predators, who have no road/traffic avoidance, are unable to avoid oncoming traffic.

Road mortality of amphibians is much higher during the breeding season as individuals migrate to breeding ponds (Beebee, 2012).

Impact due to loss of termite mounds:

Recent work has shown that termite mound abundance and distribution both in space and time may be modulated by variation in abiotic and biotic resources. Termite mound communities can vary with changes in soil type, rainfall, ecosystem productivity, and

herbivore presence, and termite mounds appear to increase in density with availability of dietary resources such as tree density, and decrease with intensive human land use. Some evidence also suggests that termite diets may shift in response to changing availability of plant resources. Due to present project proposal, in the core project area few termite mounts present near the road side. Due to removal of these termite mounts, impact on both biotic and abiotic features of the area. Certain mitigation measures proposed in the next chapter during the removal of termite mounts in the unavoidable conditions.

5.3.3. IMPACT ON DISTURBANCE LEADING TO DISPLACEMENT OF ANIMAL GROUPS:

The major disturbance will be during road construction period. Certain standard guidelines prepared for issuing to the contractor and full powers to forest authorities to take any action and modifications during construction phases with respect to wildlife protection and conservation.

Distrubances during post construction work or during traffic conditions:

The main distrubances are effect of animals on their feeding, breeding and behavioural aspects due to light, noise, vibrations, loss of vegetations, habitat, pollution etc. The native faunal species which are residents of the core project zone will get distrubbed due to the above facts and displacement will occur in this region. They cannot adjust to the new habitat conditions as well as inter species compitetion for food and other functional aspects will occur.

5.3.4. IMPACT ON COLLISION RISK:

Collision risk study has been conducted by direct and indirect methods. Certain areas sensitive to wildlife crossings were observed during the study and suggest mitigation measures to overcome this problem. Many aspects considered in this regard like slope, curvature, speed of the vehicles, animal escaping routes near the tracks, water bodies, underpasses, ramps etc. Langurs (Bonnet macaque (*Macaca radiate*), Rhesus macaque (*Macaca mulatta*)) are very common throuout the region. They used to stay adjoining to the

roads and sometimes causes problems to the vehilcles. The passengers used to give some food, fruits etc which is also leading to accidents.

Collision impact on reptiles especially snakes, monitor lizards, civets, and other wild cats:

In the study area there are 17 species of reptiles found in this region. Certain nocturnal animals under Mammals are also observed during night time. The chances of road kills are more for cives and other wild cats along with amphibians and reptiles. During monsoon season, amphibians come out from hibernation for breeding. Collision risk is more for Amphibians than reptiles. During our research in this region during 2005, Prionailurus rubiginosus Rusty spotted Cat which is Near Threatened catogiry from IUCN found near Dornal region on road kill.



Fig:5.3 Basic exclusion fencing (side view) used to prevent animals from traversing road surfaces. An overhang is used to prevent animals from climbing or jumping over the top of the fence.

5.4. IMPACTS VS MITIGATION MEASURES OF THE REGION

- ❖ Invariably the user agency is the responsible party to regulate the various activities and man-power relating to the highway widening project.
- Considering the importance of the Tiger Reserve, all the Trees to be felled due to road widening shall be transplanted in the nearest possible and viable forest area for the betterment of the habitat.

Table 5.1: Impacts Vs Mitigation measures and responsible authority to monitor the activities.

Phase/ Aspect	Impacts	Mitigation measures	Responsible
	identified	susggested	authority
Construction	✓ Loss of native	❖ Vegetation removed from	NHAI work
phase:	speices.	the construction zone	contractor
Removal of	✓ Loss of habitat	before commencement of	
vegetation near	for wild	construction. All works	
the project core	animals.	carried out such that the	
area	✓ Habitat	damage or disruption to	
	fragmentation	flora other that those	
	✓ Loss of food	identified for cutting is	
	souce for	minimum.	
	invertibrates.	❖ Only ground cover/shrubs	
	✓ Loss of hiding	that impinge directly on	
	place for	the permanent works or	
	faunal species	necessary temporary	
	from	works removed with prior	
	predators.	approval from the	
	✓ Loss of bird	Environmental Expert.	
	nesting and	The Developer, under any	
	breeding sites.	circumstances not cut or	

		damage trees. Trees	
		identified under the	
		project and cut only after	
		receiving permission from	
		the Forest Department of	
		Andhra Pradesh.	
		❖ Tree transplantation shall	
		be taken up to the near by	
		forest area or along the	
		proposed highway.	
		Compensatory	
		afforestation at 1:3 shall be	
		planted for trees which	
		need to fell.	
		❖ For tree felling, permission	
		shall be taken from	
		concern authorities of	
		Andhra Pradesh Forest	
		Department	
Dust Pollution	✓ Accumulation	The Developer take	NHAI Road
	of dust on	precautions viz. water	work
	plant leaves.	sprinkling etc. to reduce the	contractor
	✓ Reduction of	level of dust generating	
	photosynthetic	from construction site. All	
	rate.	the plants sited at least 1 km	
	✓ Stunted	in the downwind direction	
	growth and	from the nearest human	
	reduction of	settlement.	
	yield.	❖ The Developer will	
	✓ Respiratory	provide necessary	
	disorders to	certificates to confirm that	
	fauna and	all crushers used in	

	human	construction conform to	
	habitations.	relevant dust emission	
		control legislation.	
Noise and	Noise induced	❖ Dense vegetation	NHAI work
vibration	psychological	along the road may be	contractor
generated by	and behavioural	provided for attenuation of	
heavy machinery.	changes occur to	noise.	
	wild animals.	❖ Acoustic enclosure should	
	Distrubance	be placed to cover the	
	caused to human	hammer and the exposed	
	habitations.	pile to reduce the air noise.	
		The air noise levels can be	
		reduced to about 60 dB	
		with these measures	
		❖ Silence zone will be	
		marked and provided with	
		sign boards to alert drivers	
		Noise buffers using	
		diversity of tree species,	
		with a range of foliage	
		shapes and sizes,	
		combination of shrubs and	
		trees and evergreen species	
		will be provided.	
		Servicing of all	
		construction vehicles and	
		machinery done for exhaust	
		silencers and will be	
		checked and if found	
		defective will be replaced.	
		❖ All the construction	
		sites within 150m of the	

		nearest habitation, noisy	
		construction work such as	
		crushing; concrete mixing	
		stopped during the night	
		time between 10.00 pm to	
		6.00 am.	
		No noisy construction	
		activities permitted around	
		educational institutions /	
		health centers (silence	
		zones) up to a distance of	
		100 m from the sensitive	
		receptors.	
		Monitoring carried out	
		at the construction sites as	
		per the monitoring schedule	
		and results will be	
		submitted to IC.	
Loss of top soil.	Loss of	❖ Topsoil on stripping shall	NHAI work
	hibernating	be removed and stockpiled	contractor
	fauna.	on sides to be used on the	
		side slopes, for top cover of	
		borrow areas and for	
		plantation in pits	
		Soil compaction for	
		embankment work should	
		be done immediately to	
		avoid erosion.	
Solid waste	Death to faunal	❖ The Environmental Expert	NHAI work
generation	species.	approved these disposal	contractor
	*		

			joint inspection on the site	
			with the Developer.	
		*	Non- bituminous wastes	
			dumped in borrow pits	
			(preferably located in	
			barren lands) covered with	
			a layer of the soil. No new	
			disposal site created as part	
			of the project, except with	
			prior approval of the	
			Environment Expert. All	
			waste materials completely	
			disposed of and the site	
			fully cleaned and certified	
			by Environmental Expert	
			before handing over.	
Constuction	Degradation of	*	Precautions will be taken	NHAI work
activity	Habitat Quality		to avoid leakage of	contractor
			chemicals, any hazardous	
			materials due to	
			construction activities.	
		*	Labour camps will be	
			located far from habitat of	
			any fauna	
		*	Invasive alien species will	
			be removed from time to	
			time	
Operation phase:	Injury and	*	With the proposed	Both NHAI
Direct Collision	mortality due to		mitigative measures such	and Forest
	direct collision.		as construction of culvers,	department.
	There is a		road alignment,	
	potential impact		speedbreakers etc,	

	of direct animal	*	Injured animals shall be	
	hitting during		immediately taken to forest	
	animal crossing		department or veterinary	
	the roads.		hospitals	
Impact of	Restricts animal	*	Hedges along both sides of	NHAI work
headlight glare	movement nearer		road will be provided to	contractor
on wild animals.	to road		lower the intensity of lights	
Degradation of	Water, air, soil	*	Habitat improvement	Forest
habitat quality.	and biodiversity		programmes shall be taken	department
	of the region will		up on either side of the	with the funds
	get deteriorated		forest areas of the present	deposited by
	in long term.		road.	NHAI work
				contractor as
		*	Ecological monitoring by	part of WL
			expert scientist must be	report.
			done once in every 4 years	
			to know the animal	
			behaviour and migration	
			status.	
Langurs (Bonnet	Langurs are	T	hey should be rehabilitated	Forest
macaque	hundred in	fr	om the existing range.	department
(Macaca radiate),	number and get	Sı	apply of sufficient food and	with the funds
Rhesus macaque	killed during	w	ater shall be taken care to	deposited by
(Macaca	direct collisions.	th	em.	NHAI work
mulatta)) create				contractor as
problems to				part of WL
Vihicles.				report.
Impact on turtle	Indian Star	*	Limit the construction	
	Toritoise		activity within the	
	movement will		designated areas.	
	be restricted.			

			trapped in, or in danger	
			from civil works and use a	
			qualified person to relocate	
			the animal.	
Avoidance of	To avoid Injury	*	Animal underpasses are	NHAI work
Road by Animals	and Mortality of		proposed to be constructed	contractor
	animals		for animals to cross the	
			road.	
		*	Different types of	
			underpasses like Box	
			culverts, pipe culverts, and	
			culverts with furniture will	
			be constructed for passage	
			of herpeto-fauna,	
			amphibians etc.	
		*	Fences will be provided in	
			combination with	
			underpasses to direct	
			animals away from the	
			road.	
		*	Vegetation or other habitat	
			features (rocks, fallen	
			timber) will be placed,	
			planted or allowed to	
			regrow so that animals are	
			directed to preferred	
			crossing locations.	
		*	The plantation and lighting	
			systems along the road	
			should be made less	
			attractive to birds to avoid	

				collision of birds with	
				vehicles.	
Reduce	.	Wild animals	*	Construct more number of	NHAI work
access		frequently		under passess where	contractor
		move for food,		animal crossings are more.	
		water and	*	Creation or improvement	
		mating. Access		of water bodies will be	
		to other side of		done so that the animals	
		the road reduce		have access to water.	
		where	*	Plantation along the water	
		underpasses		body will be done to attract	
		are not present.		the animals towards it.	
			*	The saltlicks areas will be	
				protected from reach of	
				human beings.	
Increased	;	Impact on	*	Caution signs will be	NHAI work
Human Pressure		wildlife with		provided to alert drivers	contractor
and Human-		human		about wildlife	
Wildlife Conflict		activities.	*	Speed limit will be	
				restricted in and around	
				dense habitation area to	
				avoid any collision of	
				animal.	
			*	Parking shall be restricted	
				to avoid any encounter of	
				humans with animals.	
			*	Temporary warning signs	
				may be provided to warn	
				drivers during specific time	
				like breeding periods of	
				animals or animal	
				movement.	

*	Animal Detection Systems	
	may be provided for	
	detection of any animal	
	near road.	
*	Poachers will be warned	
	through sign boards	

5.5. PROJECT CONTRACTORS CONDITIONS DURING CONSTRUCTION PHASE:

- ❖ Maintaining records on Awareness programmes, Animal sightings, Deaths, accidents etc and shall inform to forest department for further action.
- ❖ Necessary guidelines shall be taken from forest authorities throughout the construction phase.
- ❖ The contractors to establish environmental units and implement public awareness programs during construction regarding the impacts caused by the construction activity.
- ❖ All building material for workers should be brought carried from outside the project area.
- ❖ Workers should be supplied all food material cooked near Y.Palem region.
- ❖ Project staff and workers should not be allowed to have fire-arms and animal traps etc.
- ❖ Forest fires must be avoided by the worker activities.
- ❖ Employment agreements should specify heavy penalties for illegal hunting, trapping and wildlife trading − all other ancillary works should also agree not to participate in such activities:
- ❖ If any of the hunting activity is observed then the worker will be removed from the employment with immediate effect and legal action will be taken by forest department.
- ❖ There should be speed limit for the material carrying trucks/dumpers while traversing through the forest areas if at all. It is always better not to travel in the forest areas that would disturb the animal behaviour.
- Honking should be strictly prohibited in the forest area by the trucks and dumper used for the construction activity.
- ❖ No disposal of construction waste in the forest premises
- ❖ No earthen material or water from the springs present in the forest area will be used for the construction activity.
- Comply with environmental standards and strictly control workers to behave responsibly with respect to environmental issues;
- Site-specific waste collection and disposal management plan should be in place to, include good site practices such as: Providing the appropriate spill kits (e.g., containing absorbent cloths and disposal containers) on-site during construction; Prohibition of

- dumping or burying wastes within Project site; Implementation of an on-going waste management program consisting of reduction, reuse, and recycling of materials.
- ❖ Work should be under ISO14001 accreditation for environmental management which also be imposed on all the subcontractors; and cover each spot where excavated material is stored when climate conditions require to effect dust control by usage of dust suppression substances.

5.6. CULVERTS FOR WILDLIFE MOVEMENT

There are 22 existing culverts in total with 17 pipeand 5 slab /archculverts along the project stretch. The width of the existing culverts ranges from 7.4m to maximum of 12.50m. The height of the slab type existing culverts are 1.5 m. Now 12 additional box type culverts are recommended unded this proposal for movement of mammals, reptiles and amphibians. All the existing culverts which are in fair condition are proposed for widening without opening in the median portion. In general widening is proposed to match with the cross section of approach at the culvertlocation. The entire Slab culverts are proposed for widening as they are hydraulically adequateand structurally fair in condition in with course rubble masonry substructure and foundation isproposed for reconstruction with box culvert of equivalent or higher ventarea. New culverts with Boxtype, both with and without cushionare proposed depending upon the location, size, and finished road level (FRL) and invert level.

For wildlife movement, all pipe type are now reconstructed as Box model type. Out of which, for the movement of wild fauna such as Tigers, Leopards, Slothbears, Deers etc the height of the box types are ranges from 3m to 5 m and and width of the box type model culvert ranges from 5m to 6m. Improvement Proposals of Culverts are given under annexure 8.1.

6.PROJECT SPECIFIC MITIGATION PLAN WITH FINANCIAL OUTLAY

Chapter 6

6.1. MITIGATION MEASURES

Mitigation measures for the proposed road network evolved through a multi-step simultaneous process. We first evaluated the existing and proposed drainage and crossing structures on field, assessed the possibility of making the structures more suitable for wildlife movement and finally overlapped potential multi-taxa crossing zones to finalise the location and dimensions of the crossing structures.

The principal mitigation measure in the construction phase is strict application of standard specifications for erosion and sediment control, including routine inspections. The trees were cut are keeping at the minimum level by modifying alignments, eccentric and concentric widening. No construction vehicles are allowed to enter into the dense vegetation area. As per the study objectives, we studied impacts of the proposed project on direct habitat loss, barrier effect, disturbance leading to displacement of animal groups, collision risk in the study area by using appropriate standard methods.

The details of the proposed mitigation measures are given below are for existing and proposed road network.

6.1.1. PLANTATION AND OTHER HABITAT IMPROVEMENT ACTIVITIES WITHIN THE FOREST AREAS.

- a. Compensatory afforestation under supervisor of Forest department.
- b. Maintenance of forest roads for monitoring and protection of wildlife and habitat.

6.1.2. DEVELOPMENT OF INFRASTRUCTURE

- a. Underpasses shall be constructed at selected locations. The existing under passes must be maintained by NHAI contractor as per forest department suggestions.
- b. Ramps / sloped pathway from rail level to natural forest in cutting portions suitably. As the work of Ramps and underpass bridges involves safety criteria due to running traffic, the construction of bridges to be done by NHAI under WL Mitigation plan duly showing the cost of such structures in Mitigation plan.

6.1.3. HABITAT ENRICHMENT WORKS

- a. Water storage and retention structures and saucer pits shall be constructed to retain the rain water for summer season.
- b. Automatic Solar water motors with borewell and storage pits
- c. Tractors and tankers shall be purchased for filling water in saucer pits
- d. Percolation tanks are to be developed Markapur division.
- e. Solar based automatic water filling system will be placed for drinking purpose of wildlife.

6.1.4. WILDLIFE RESEARCH AND MONITORING WORKS

- a. A wildlife monitoring station shall be established for further study on biodiversity of the region at Y.Palem.
- Equipment for wildlife monitoring and research must be purchased for longterm monitoring aspects.
- c. Ecological monitoring at a gap of every 4 to 5 years to understand the wildlife population and effectiveness of mitigation.
- d. Experts on ecological aspects shall be appointed for studying the detailed mitigation plan. This work can be given to any reputed and experienced National, Regional level NGOs and Government organisations.

6.1.5. PROTECTION OF WILDLIFE

- a) Mobile team for forest and wildlife protection during and after the project construction phase
- b) Watch towers shall be constructed for wildlife monitoring with in the study area.
- c) Fencing on the either side of the road shall be developed during construction phase.
- d) Fire lines shall be created with 3M width within the reserve forest areas for 10 km length.

6.1.6. PUBLICITY AND AWARENESS

- a. Publicity and awareness camps shall be conducted at local level.
- b. Awareness among all the workers and contractors during project phase regularly.
- c. 10 nos of Signage and boards to be placed at frequent intervals.

6.1.7. SPECIES SPECIFIC GENERAL MITIGATION MEASURES

- a) Artificial saltlicks shall be arranged within the forest areas.
- b) Wildlife alerting Alarm / sound systems near tunnels, cuttings, turnings etc.
- c) Vehicle speed to be maintained and minimised as per norms.
- d) Approach roads shall be constructed only near the project area.
- e) For any work related for project, existing roads only to be utilised
- f) Eco-friendly engineering practices shall be employed.
- g) As and when required forest officials can conduct meetings with NHAI officials, contractors, workers, etc., and can inspect any project site, machinery, premises, etc.,
- h) No waste of any kind / debris to be dumped in reserve forest area.
- i) From time to time any conditions stipulated by forest officials for interest of wild life to be incorporated by contractors / user agency during construction phase.

6.2. FINANCIAL PLAN

Table: 6.1 Physical and Financial plan for the proposed project (Rs in Lakhs)

S.No	Particulars	Nos	Unit cost	Total amount (Rs in Lakhs)
1	Underpasses	6	25.00	150.00
2	Ramps / sloped pathway from road level to natural forest in cutting portions suitably	LS	LS	100.00
3	Detailed study to understand the long-term impact on wildlife due to expansion project	1 No	LS	25.00
4	Ecological monitoring at a gap of every 4 to 5 years to understand the wildlife population and effectiveness of mitigation.	3 times	2.00	6.00
5	Equipment for wildlife monitoring and research	LS	LS	10.00
6	Wildlife monitoring and interpretation centres at Y.PALEM	LS	LS	20.00
7	Fencing at selected locations	2 km	5.00	10.00
8	Percolation tanks	10 No	0.50	5.00
9	Water storage and retention structure / Saucer pits	10	LS	10.00
10	Automatic Solar water motors with borewell and storage pits	4	10.00	40.00
11	Tractor, tanker for filling water in saucer pits	3	12.00	36.00
12	Signage and boards	10	0.50	5.00
13	Publicity and Awareness camps	10	1.00	10.00
14	Fire lines creation	10 km	LS	5.00
15	Watch tower for wildlife monitoring	2 no	12.00	24.00

16	Maintenance of forest roads for monitoring and	LS	LS	20.00
	protection of wildlife and habitat			
17	Mobile team for forest and wildlife protection during	10 No	15	450.00
	and after the project construction phase. The Mobile		years@ 3	
	team should have minimum 10 protection watchers		lakhs	
	and monitoring needs to be done at least 15 years.		each	
19	Overhead charges	LS	LS	10.00
	Grand total excluding the works to be executed			936.00
	by NHAI			

Table: 6.2 YEAR WISE FINANCIAL PLAN* (Rs. In Lakhs)

Year	1	2	3	4	5	6	7	8	9	10	Total
	2022- 2023	2023- 2024	2024- 2025	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030	2030- 2031	2031- 2032	(Rs in Lakhs)
Underpass	25	25	25	25	25	25	0	0	0	0	150.00
Ramps / Sloped pathways	25	25	25	25	0	0	0	0	0	0	100.00
Detailed study to understand the long-term impact on wildlife due to expansion project	5	0	5	0	5	0	5	0	5	0	25.00
Ecological monitoring at a gap of every 4 to 5 years to understand the wildlife population and effectiveness of mitigation.	0	0	2	0	0	0	2	0	0	2	6.00
Equipment for wildlife monitoring and research	5	5	0	0	0	0	0	0	0	0	10.00
Wildlife monitoring and interpretation centre at Y.PALEM	20	0	0	0	0	0	0	0	0	0	20.00
Fencing at selected locations.	5	5	0	0	0	0	0	0	0	0	10.00
Percolation tanks	2	2	1	0	0	0	0	0	0	0	5.00

Water storage and retention structure / Saucer pits	0	0	0	4	3	3	0	0	0	0	10.00
Automatic Solar water motors with borewell and storage pits	10	0	10	0	10	0	10	0	0	0	40.00
Tractor, tanker for filling water in saucer pits	12	0	0	12	0	0	12	0	0	0	36.00
Signage and boards	1	1	1	1	1	0	0	0	0	0	5.00
Publicity and Awareness camps	1	1	1	1	1	1	1	1	1	1	10.00
Fire lines creation	1	1	1	1	1	0	0	0	0	0	5.00
Watch tower for wildlife monitoring	12	12	0	0	0	0	0	0	0	0	24.00
Maintenance of forest roads for monitoring and protection of wildlife and habitat	5	5	5	5	0	0	0	0	0	0	20.00
Mobile team for forest and wildlife protection during and after the project construction phase	45	45	45	45	45	45	45	45	45	45	450.00
Overhead charges	1	1	1	1	1	1	1	1	1	1	10.00
	175	128	122	120	92	75	76	47	52	49	936.00

7.REFERENCES

- WII (2016). Eco-friendly measures to mitigate Impacts of Linear Infrastructure on Wildlife. Wildlife Institute of India
- Green infrastructure design for transport projects a road map to protecting by asia's wildlife biodiversity,2019 Asian Development Bank
- Champion, H.G. and S.K. Seth, 1968. A Revised Survey of the Forest Types of India. 1st Edn., Govt. of India Press, Nueva Delhi, India, Pages: 404
- ❖ Ellis, J.L., 1987. Flora of Nallamalais. Vol. 1-2, Botanical Survey of India, Calcutta
- Reddy, C.S., M.S.R. Murthy and C.B.S. Dutt, 2002. Vegetation diversity and endemism in Eastern Ghats, India. Proceedings of the National Seminar on Conservation of Eastern Ghats, March 24-26, 2002, EPTRI., Hyderabad, pp. 109-134
- Reddy, K.N., C.S. Reddy and S.N. Jadhav, 2005. Ethnobotany of certain orchids of Eastern Ghats of Andhra Pradesh. Indian For., 135: 90-96.
- Reddy, C.S., M. Brahmam and V.S. Raju, 2006. Conservation prioritization of endemic plants of Eastern Ghats, India. J. Econ. Taxon. Bot., 30: 755-772.

8.1. ANNEXURE 1 (LIST OF EXISITNG AND PROPOSED STRUCTURES)

Improvement Proposals of Culverts

	Je (Km)	e (Km)	Exist		Struc ails	ture	Impi	rovemer	nt Pro	posal	s		Prop
S No	Existing Chainage (Km)	Design Chainage (Km)	Туре	No of cells	Dia/span	width of	Improvement Proposals	Туре	No. of Vents	Clear span (m)	Clear Height	TCS	osed Widt h (m)
1	136/ 092	135+ 991	Pipe	1	0.7	7.6	Reconst ruction	Box	1	1.5	1.5	TCS - 1	15
2	-	136+ 319	-	-	-	-	New Constru ction	Box	1	5.0	3.0	TCS - 6&6 A	13.3
3	-	137+ 100	-	-	-	-	New Constru ction	Box	1	1.5	1.5	TCS - 1	15
4	140/ 130	139+ 954	Pipe	1	0.7	7.6	Reconst ruction	Box	1	1.5	1.5	TCS - 4	13.25
5	-	140+ 700	-	-	-	-	New Constru ction	Box	1	6.0	3.0	TCS - 6&6 A	13.3
6	141/ 477	140+ 917	Pipe	1	0.7	7.6	reconstr uction	Box	1	1.5	1.5	TCS - 6&6 A	13.3
7	142/ 137	141+ 574	Pipe	1	0.8	9	reconstr uction	Box	1	1.5	1.5	TCS -	13.3

	le (Km)	e (Km)	Exist		Struc ails	ture	Impi	rovemer	nt Pro	posal	s		Duan
S No	Existing Chainage (Km)	Design Chainage (Km)	Туре	No of cells	Dia/span	width of	Improvement Proposals	Туре	No. of Vents	Clear span (m)	Clear Height	TCS	Prop osed Widt h (m)
												6&6 A	
8	-	142+ 035	-	-	-	-	New Constru ction	Box	1	1.5	1.5	TCS - 6&6 A	13.3
9	-	142+ 234	-	-	-	-	New Constru ction	Box	1	1.5	1.5	TCS - 6&6 A	13.3
10	143/ 148	142+ 518	Slab	1	3	7.7	Reconst ruction	Box	1	5.0	6.0	TCS - 6&6 A	13.3
11	143/ 364	142+ 730	Pipe	1	0.6	7.6	reconstr uction	Box	1	1.5	1.5	TCS - 6&6 A	13.3
12	143/ 814	143+ 181	Pipe	1	0.7	7.8	reconstr uction	Box	1	1.5	1.5	TCS - 6&6 A	13.3
13	144/ 312	143+ 607	Pipe	1	0.9	7.6	reconstr uction	Box	1	1.5	1.5	TCS - 6&6 A	13.3
14	-	143+ 782	-	-	-	-	New Constru ction	Box	1	1.5	1.5	TCS - 6&6 A	13.3

	Je (Km)	e (Km)	Exist		Struc ails	ture	Impi	rovemer	nt Pro	posal	s		Bron
S No	Existing Chainage (Km)	Design Chainage (Km)	Туре	No of cells	Dia/span	width of	Improvement Proposals	Туре	No. of Vents	Clear span (m)	Clear Height	TCS	Prop osed Widt h (m)
15	-	144+ 583	-	-	-	-	New Constru ction	Box	1	1.5	1.5	TCS - 6&6 A	13.3
<mark>16</mark>	-	144+ 750	-		-	-	New Constru ction	Box	1	5.0	3.0	TCS - 6&6 A	13.3
17	145/ 804	144+ 921	Pipe	1	0.7	7.6	reconstr uction	Box	1	1.5	1.5	TCS - 3	14
18	146/ 225	145+ 382	Pipe	1	0.8	7.4	reconstr uction	Box	1	1.5	1.5	TCS - 1	15
19	146/ 604	145+ 732	Pipe	1	0.9	7.4	reconstr uction	Box	1	1.5	1.5	TCS - 1	15
20	-	146+ 343	-	-	-	-	New Constru ction	Box	1	2	1.5	TCS - 2	15
21	-	146+ 526	-	-	-	-	New Constru ction	Box	1	4	1.5	TCS - 2	15
22	-	146+ 781	-		-	-	New Constru ction	Box	1	5.0	3.0	TCS - 2	<mark>15</mark>
23	149/ 405	148+ 442	Pipe	1	0.8	10	Reconst ruction	Box	1	1.5	1.5	TCS - 5&5 A	13.25
24	149/ 566	148+ 603	Pipe	1	0.7	7.9	reconstr uction	Box	1	1.5	1.5	TCS -	13.25

	Je (Km)	e (Km)	Exist		Struc ails	ture	Impi	rovemer	nt Pro	posal	s		Prop
S No	Existing Chainage (Km)	Design Chainage (Km)	Туре	No of cells	Dia/span	width of	Improvement Proposals	Туре	No. of Vents	Clear span (m)	Clear Height (m)		osed Widt h (m)
												5&5 A	
25	149/ 752	148+ 792	Slab	1	1	7.9	Reconst ruction	Box	1	1.5	1.5	TCS - 5&5 A	13.25
26	150/ 408	149+ 429	Pipe	1	0.8	17. 4	reconstr uction	Box	1	1.5	1.5	TCS - 1	15
27	151/ 056	150+ 073	Slab	1	1	12	reconstr uction	Вох	1	1.5	1.5	TCS - 1	15
28	151/ 346	150+ 365	Pipe	N V	-	7.6	reconstr uction	Вох	1	1.5	1.5	TCS - 3	14
29	151/ 605	150+ 623	Slab	1	1	12. 1	reconstr uction	Box	1	1.5	1.5	TCS - 1	15
30	152/ 577	151+ 595	Slab	1	4	7.9	reconstr uction	Box	1	4	1.5	TCS - 1	15
31	153/ 709	152+ 717	Pipe	1	0.7	7.6	reconstr uction	Box	1	1.5	1.5	TCS - 5&5 A	13.25
32	153/ 789	152+ 797	Pipe	1	0.7	7.2 5	reconstr uction	Вох	1	1.5	1.5	TCS - 5	13.25
33	153/ 931	152+ 939	Pipe	2	1	7.6	reconstr uction	Box	1	1.5	1.5	TCS - 5&5 A	13.25
<mark>34</mark>	-	153+ 285	-	-	-	-	New Constru ction	Box	1	5.0	3.0	TCS -	13.25

	Je (Km)	e (Km)	Exist	ing Det	Struc ails	ture	Imp	rovemer	nt Pro	posal	S		Prop
S No	Existing Chainage	Design Chainage	Туре	No of cells	Dia/span	width of	Improvement Proposals	Туре	No. of Vents	Clear span (m)	Clear Height	TCS	osed Widt h (m)
												<mark>5&5</mark> A	

8.2. ANNUXURE -2 (LIST OF FLORA)

S.No.	Botanical Name	Common name	Family	Habit
1	Acacia auriculiformis Benth.	Australia thumma	Leguminosae	Tree
2	Acacia chundra (Rottler)Willd.	Sandra tree	Mimosaceae	Tree
3	Acacia leucophloea (Roxb.)	Tella thumma	Leguminosae	Tree
4	Acacia nilotica (L.) Delile	Nalla thumma	Leguminosae	Tree
5	Acrocarpus fraxinifolius	Galivana chettu	Fabaceae	Tree
6	Adina cordifilia	Bandaru	Rubiaceae	Tree
7	Aegle marmelos (L.) Corrêa	Velaga	Rutaceae	Tree
8	Ailanthus excelsa Roxb.	Pedda manu	Simaroubaceae	Tree
9	Alangium salviifolium (L.f.) Wangerin	Vuduga chettu	Cornaceae	Tree
10	Albizia amara (Roxb.) B.Boivin	Konda sigara	Leguminosae	Tree
11	Albizia odoratissima	Ganara	Mimosaceae	Tree
12	Albizia lebbeck (L.) Benth.	Dirisanam	Leguminosae	Tree
13	Alstonia scholaris R.BR.	Edakula pala	Apocynaceae	Tree
14	Angeissus latifolia	Vellama	Combretaceae	Tree
15	Annona reticulata	Ramaphalam	Annonaceae	Tree
16	Annona squamosa	Seethaphalam	Annonaceae	Tree
17	Atalantia monophylla	Karunimma	Rutaceae	Tree
18	Azadirachta indica A.Juss.	Vepa	Meliaceae	Tree
19	Balanites aegyptiaca Delile.	Gara	Zygophyllaceae	Tree
20	Bauhinia purpurea L.	Bodhanta	Leguminosae	Tree
21	Bauhinia racemosa	Are	fabaceae	Tree
22	Borassus flabellifer L.	Thadi chettu	Arecaceae	Tree
23	Bridelia monoica	Tella balli	Euphorbiaceae	Tree
24	Bridelia retusa	Anem	Euphorbiaceae	Tree
25	Buchanania lanzan	Jarumamidi	Anacardiaceae	Tree
26	Butea monosperma (Lam.) Taub.	Modhuga	Leguminosae	Tree
27	Calophyllum inophyllum	Pagada	Calophyllaceae	Tree
28	Canthium dicoccum	Noorillu	Rubiaceae	Tree
29	Careya arborea	Kumbi	Lecethydaceae	Tree
30	Cassia fistula L.	Rela	Leguminosae	Tree
31	Cassia montana	Konda tangedu	Caesalpinaceae	Tree
32	Cassia siamea Lam.	Seema thangedu	Leguminosae	Tree
33	Cassine glauca (Rottb.) Kuntze	Nirija	Celastraceae	Tree
34	Casuarina equisetifolia	Sarugudu	Casurinaceae	Tree
35	Ceiba pentandra (L.) Gaertn	Tella buruga	Malvaceae	Tree
36	Chloroxylon swietenia	Billudu	Meliaceae	Tree
37	Chukrasia tabularis A.Juss.	Konda vepa	Meliaceae	Tree
38	Cinchona orixense	Potaka	Rubiaceae	Tree
39	Citrus limon (L.) Burm. f.	Nimma	Rutaceae	Tree
	Cleistanthus collinus (Roxb.) Benth. ex			
40	Hook.f.	Vadisaku	Euphorbiaceae	Tree
41	Cochlospermum religiosum (L.) Alston	Kondagogu	Bixaceae	Tree

42	Cocos nucifera L.	Kobbari	Arecaceae	Tree
43	Dalbergia lanceolaria L.f.	Yerrapatsaru	Leguminosae	Tree
44	Dalbergia latifolia Roxb.	Jiteegi	Leguminosae	Tree
45	Dalbergia paniculata L.f.	Pachari	Leguminosae	Tree
46	Dalbergia sissoo DC.	Sisu	Leguminosae	Tree
47	Delonix regia (Hook.) Raf.	Chittikesaram	Leguminosae	Tree
48	Dendrocalamus strictus(Roxb.) Nees	Sanna vedru	Graminae	Tree
49	Dichrostachys cinerea	Velthuru	Mimosaceae	Tree
50	Diospyros ferrea	Pisineka	Ebenaceae	Tree
51	Diospyros sylvatica	Gatha	Ebenaceae	Tree
52	Diospyros melanoxylon Roxb	Tunki	Ebenaceae	Tree
53	Ehretia Leavis	Gidugu	Boraginaceae	Tree
54	Eucalyptus citriodora Hook.	Lemon scented gum	Myrtaceae	Tree
55	Eucalyptus tereticornis	Nelagiri	Myrtaceae	Tree
56	Ficus benghalensis L.	Marri	Moraceae	Tree
57	Ficus hispida L.f.	Medipandu,Bemmedu akulu	Moraceae	Tree
58	Ficus mollis	Juvvi	Moraceae	Tree
59	Ficus racemosa	Medi	Moraceae	Tree
60	Ficus religiosa L.	Ravi	Moraceae	Tree
61	Gardenia turgida	Peddabikki	Rubiaceae	Tree
62	Garuga pinnata	Garuga	Burseraceae	Tree
63	Givotia moluccana	tella poliki	Euphorbiaceae	Tree
64	Gmelina arborea	Konda gummidi	Verbenaceae	Tree
65	Grevia tilifolia	Tada	Tiliaceae	Tree
66	Grevillea robusta	Silver oak	Protiaceae	Tree
67	Haldinia cordifolia	Pasupu-kadamba	Rubiaceae	Tree
68	Hardwickia binata	Yepi, Narayepi	Leguminosae	Tree
69	Holarrhena pubescens	Tedlapala	Apocynaceae	Tree
70	Holoptelea integrifolia Roxb.	Nemalinara	Ulmaceae	Tree
71	Hymenodictyon orixense	Bandaaru-chettu	Rubiaceae	Tree
72	Ixora arborea	Koravi	Rubiaceae	Tree
73	Ixora parviflora	Puttapala	Rubiaceae	Tree
74	Kydia calycina	Konda patti	Malvaceae	Tree
75	Lagerstroemia parviflora	Chennagi	Lythraceae	Tree
76	Lannea coromandelica (Houtt.) Merr.	Gumpena	Anacardiaceae	Tree
77	Leucaena leucocephala (Lam.) de Wit	Jabarichettu	Leguminosae	Tree
78	Litsea glutinosa	Naramamidi	Annonaceae	Tree
79	Madhuca longifolia	Ippa	Sapotaceae	Tree
80	Mallotus philippensis	Kunkuma	Euphorbiaceae	Tree
81	Mangifera indica L.	Mamidi	Anacardiaceae	Tree
82	Manilkara hexandra	Pala	Sapotaceae	Tree
83	Melia azedarach	Turka Vepa	Meliaceae	Tree
84	Melia dubia	Munnatikaaraka	Meliaceae	Tree
85	Millettia pinnata (L.) Panigrahi	Adivi ganuga	Leguminosae	Tree
86	Mitragyna parvifolia (Roxb.) Korth.	Nerkadamba	Rubiaceae	Tree
87	Morinda pubescens	Togaramogali	Moraceae	Tree
88	Morinda tinctoria Roxb.	Maddichettu	Rubiaceae	Tree
89	Mundulea sericea	Tella bitlu	fabaceae	Tree

90	Murraya paniculata	Gulimi	Rutaceae	Tree
91	Naringi crenulata	Korivelaga	Rutaceae	Tree
92	Nyctanthes arbor-tristis L.	Parijatham	Oleaceae	Tree
93	Ochna obtusa	Tammi	Ochnaceae	Tree
94	Pavetta indica L.	Lakkapapidi	Rubiaceae	Tree
95	Peltophorum pterocarpum (DC.) K.Heyne	Kondachintha	Leguminosae	Tree
96	Phoenix sylvestris (L.) Roxb.	Eethachettu	Arecaceae	Tree
97	Phyllanthus acidus	Racha usiri	Phyllanthaceae	Tree
98	Phyllanthus emblica L.	Usiri	Phyllanthaceae	Tree
99	Pithecellobium dulce (Roxb.) Benth.	Sima chinta	Leguminosae	Tree
100	Prosopis chilensis (Molina) Stuntz.	Mulla thumma	Leguminosae	Tree
101	Prosopis juliflora(Sw.) DC.	English tumma	Mimosaceae	Tree
102	Protium serratum	Unduruka	Burseraceae	Tree
103	Pterocarpus marsupium	Yegisa	fabaceae	Tree
104	Pterospermum xylocarpum	Loluga	Malvaceae	Tree
105	Samanea saman (Jacq.) Merr.	Nidraganeeru	Sapindaceae	Tree
106	Sapindus emarginata	Kunkudu	Sapindaceae	Tree
107	Schrebera swietenioides	Esuka rasi	Oleaceae	Tree
108	Sclechera oleosa	Busi	Annonaceae	Tree
109	Semecarpus anacardium	Nalla jeedi	Anacardiaceae	Tree
110	Sterculia urens	Thapsi	Sterculiaceae	Tree
111	Stereospermum personatum(Hassk.)	Ambuvasini	Bignoniaceae	Tree
112	Streblus asper	Barrenka	Moraceae	Tree
113	Strychnos nux-vomica	Mushini	Loganiaceae	Tree
114	Strychnos potatorum	Induga	Loganiaceae	Tree
115	Syzygium cumini (L.) Skeels	Neredu	Myrtaceae	Tree
116	Tamarindus indica L.	Chintha	Leguminosae	Tree
117	Tectona grandis L.f.	Teak	Lamiaceae	Tree
118	Terminalia alata	Nallamaddi	Combretaceae	Tree
119	Terminalia bellirica	Thani	Combretaceae	Tree
120	Terminalia catappa L.	Badham	Combretaceae	Tree
121	Terminalia chebula	Karaka	Combretaceae	Tree
122	Thespecia populnea	Ganga Raavi	Malvaceae	Tree
123	Thevetia neriifolia	Pacha ganneru	Apocynaceae	Tree
124	Vitex negundo L.	Vavili	Lamiaceae	Tree
125	Wrightia arborea	Adaviankudu	Apocynaceae	Tree
126	Wrightia tinctoria (Roxb.) R.Br.,	Palakodisa	Apocynaceae	Tree
127	Xylia xylocarpa Roxb	Konda thangedu	Leguminosae	Tree
128	Ziziphus mauritiana Lam.	Reni	Rhamnaceae	Tree
129	Ziziphus xylopyrus	Gotti	Rhamnaceae	Tree
130	Desmodium pulchellum	Kuradia gachha	Fabaceae	Shurb
131	Desmodium velutinum	Gitanaramu	Fabaceae	Shurb
132	Grewia rothii	Miri Chara	Malvaceae	Shurb
133	Grewia hirsuta	Chimachipuru	Tiliaceae	Shurb
134	Helicteres isora	Guvardara	Sterculiaceae	Shurb
135	Leea asiatica	Amkador	Vitaceae	Shurb
136	Woodfordia fruticosa	Jargi	Lythraceae	Shurb
137	Abutilon indicum (L.) Sweet	Thutturubenda	Malvaceae	Shrub
138	Agave americana L.	Gitta nara	Asparagaceae	Shrub

139	Caesalpinia bonduc (L.) Roxb.	Gacha podha	Leguminosae	Shrub
140	Caesalpinia pulcherrima (L.) Sw.	Rathna gandhi	Leguminosae	Shrub
141	Calotropis gigantea (L.) Dryand.	Tella jilledu	Apocynaceae	Shrub
142	Calotropis procera (Aiton) Dryand.	Erra jilledu	Apocynaceae	Shrub
143	Capparis zeylanica L.	Aru donda	Capparaceae	Shrub
144	Caralluma umbellata Roxb.	Kundeti kommulu	Apocynaceae	Shrub
145	Carissa carandas L.	Kalvi	Apocynaceae	Shrub
146	Catunaregam spinosa (Thunb.) Tirveng.	Manga	Rubiaceae	Shrub
147	Clerodendrum phlomidis L.f.	Kond-takal	Lamiaceae	Shrub
148	Datura stramonium L.	Ummetha	Solanaceae	Shrub
149	Erythroxylum monogynum Roxb.	Dedaraaku	Erythroxylaceae	Shrub
150	Euphorbia cactus	Jemudu	Euphorbiaceae	Shrub
151	Euphorbia tirucalli L.	Tirukalli	Euphorbiaceae	Shrub
152	Grewia hirsuta Vahl.	Jaani Chettu	Tiliaceae	Shrub
153	Grewia flavescens Juss.	Jana	Malvaceae	Shrub
154	Hyptis suaveolens (L.) Poit.	Danthitulasi	Lamiaceae	Shrub
155	Ipomoea carnea Jacq.	Rubber mokka	Convolvulaceae	Shrub
156	Jasminum angustifolium Vahl.	Adavi malli	Oleaceae	Shrub
157	Jasminum roxburghianum Wall. ex C.B.Clarke	Garuda malli	Oleaceae	Shrub
158	Lantana camara L.	Pulikampa	Verbenaceae	Shrub
159	Leonotis nepetifolia (L.) R.Br.	Rana bheri	Lamiaceae	Shrub
160	Opuntia dillenii (Ker Gawl.) Haw.	Naga jamudu	Cactaceae	Shrub
161	Phoenix acaulis Roxb.	Chitteetha	Palmae	Shrub
162	Senna auriculata (L.) Roxb.	Tangedu	Leguminosae	Shrub
163	Senna occidentalis (L.) Link	Kasintha	Leguminosae	Shrub
164	Solanum pubescens.Willd.	Uchintha	Solanaceae	Shrub
165	Solanum surattense Burm. f.	Nela vakudu	Solanaceae	Shrub
166	Xanthium strumariumL.	Marula-Mathangi	Asteraceae	Shrub
167	Ziziphus oenopolia (L.) Mill.	Pariki	Rhamnaceae	Shrub
168	Azolla pinnata subsp. africana (Desv.)	Mosquito fern	Salviniaceae	Hydrophyte
169	Eichornia crassipes Solms.	Gurrapu dekka	Pontederiaceae	Hydrophyte
170	Ipomoea aquatica Forssk.	Thooti Koora	Convolvulaceae	Hydrophyte
171	Lemna minor Hegelm.	Duck Weed	Araceae	Hydrophyte
172	Marsilea quadrifolia L.	Araa koora	Marsileaceae	Hydrophyte
173	Nelumbo nucifera Gaertn.	Indian Lotus	Nelumbonaceae	Hydrophyte
174	Typha angustata L.	Jammu	Typhaceae	Hydrophyte
175	Vallisneria spiralis L.	Punatsu	Hydrocharitaceae	Hydrophyte
176	Acalypha indica L.	Muripindi	Euphorbiaceae	Herb
177	Achyranthes aspera L.	Uttareni	Amaranthaceae	Herb
178	Aerva lanata (L.) Juss	Thelaga pindi	Amaranthaceae	Herb
179	Aeschynomene aspera L	Neeti jeeluga	Leguminosae	Herb
180	Ageratum conyzoides (L.) L.	Vasavi	Asteraceae	Herb
181	Aloe vera (L.) Burm.f.	Kithanara	Tiliaceae	Herb
182	Alternanthera sessilis (L.) R.Br. ex DC.	Ponagantiaku	Amaranthaceae	Herb
183	Amaranthus spinosus L.	Mulla thotakoora	Amaranthaceae	Herb
184	Amaranthus viridis L.	Chilakathotakoora	Amaranthaceae	Herb
185	Argemone mexicana L.	Brahmadandi	Papaveraceae	Herb
186	Barleria prionitis L.	Pachagorinta	Acanthaceae	Herb

187	Blumea mollis (D. Don) Merr.	Kukkapogaku	Asteraceae	Herb
188	Boerhavia diffusa L.	Atikimamidi	Nyctaginaceae	Herb
189	Borreria hispida Spruce ex K.Schum.	Madana	Rubiaceae	Herb
190	Catharanthus roseus (L.) G.Don	Billaganneru	Apocynaceae	Herb
191	Celosia virgata Jacq.	Guruga	Amaranthaceae	Herb
192	Cleome viscosa L.	Kukka vomintha	Cleomaceae	Herb
193	Crotalaria juncea L.	Janumu	Leguminosae	Herb
194	Croton bonplandianus Baill.	Vana mokka	Euphorbiaceae	Herb
195	Eclipta alba (L.) Hassk.	Guntagalagara	Asteraceae	Herb
196	Euphorbia hirta L.	Nanubalu	Euphorbiaceae	Herb
197	Evolvulus alsinoides (L.) L	Vishnukrantha	Convolvulaceae	Herb
198	Fimbristylis cymosa R.Br.	Pulupu gaddi	Cyperaceae	Herb
199	Gomphrena serrata L.	Tella bendumalli	Amaranthaceae	Herb
200	Hygrophila auriculata (Schumach.) Heine	Mundla gobbi	Acanthaceae	Herb
201	Indigofera hirsuta L.	Kolapattitulu	Leguminosae	Herb
202	Indigofera linnaei Ali	Chalapachi	Leguminosae	Herb
203	Justicia procumbens L.	Water Willow	Acanthaceae	Herb
204	Leucas aspera (Willd.) Link	Tummi	Lamiaceae	Herb
205	Ludwigia perennis L.	Lavangakaya mokka	Onagraceae	Herb
206	Mimosa pudica L.	Atthi pathi	Leguminosae	Herb
•••		Threadstem		
207	Mollugo cerviana (L.) Ser.	carpetweed	Molluginaceae	Herb
208	Ocimum canum Sims.	Kukka Tulasi	Lamiaceae	Herb
209	Oldenlandia umbellata L.	Chiru veru	Rubiaceae	Herb
210	Oxalis corniculata L.	Indian Sorrel	Oxalidaceae	Herb
211	Parthenium hysterophorus L.	Vayyaribhama	Asteraceae	Herb
212	Pavonia zeylanica Cav.	Karubenda	Malvaceae	Herb
213	Phyllanthus amanus	Nela Usiri	Euphorbiaceae	Herb
214	Phyllanthus maderaspatensis L.	Nalla Usirika	Phyllanthaceae	Herb
215	Plumbago zeylanica L.	Agnimaata	Plumbaginaceae	Herb
216	Portulaca oleracea L.	Pappu Kura	Portulacaceae	Herb
217	Ruellia tuberosa L.	Jurbula gadda	Acanthaceae	Herb
218	Scoparia dulcis L.	Potti boli	Plantaginaceae	Herb
219	Sesuvium portulacastrum (L.) L.	Thikka Kura	Aizoaceae	Herb
220	Sida acuta Burm.f.	Medabirusaku	Malvaceae	Herb
221	Sida cordifolia L.	Chiru Benda	Malvaceae	Herb
222	Sida spinosa L.	Naga bala Ratrinta	Malvaceae	Herb
	Sonchus oleraceus (L.) L.		Compositae	Herb
224	Sphaeranthus indicus L.	Bodasaramu	Asteraceae Leguminosae	Herb
225	Tephrosia purpurea (L.) Pers.	Vempali	- U	Herb
226 227	Trianthema portulacastrum L.	kadaraku	Aizoaceae	Herb
228	Tribulus terrestris L. Tridax procumbens (L.) L.	Cinnpalleru Gaddichamanthi	Zygophyllaceae Asteraceae	Herb Herb
229	•	Chirusitrika	Malvaceae	Herb
230	Triumfetta pentandra A.Rich. Urena lobata L.	Pedda benda	Malvaceae	Herb
231	Vanda tessellata	Kodikalla chettu	Orchidaceae	Herb
232	Vernonia cinerea (L.) Less.	Sahadevi		
233	Waltheria indica L.	Nalla Benda	Compositae Malvaceae	Herb Herb
233	Ziziphus nummularia (Burm.f.) Wight &	14ana Denua	1VI aI V aCE aE	11010
234	Arn.	Nela regu	Rhamnaceae	Herb

235	Apluda mutica L.f.	Mauritian grass	Poaceae	Grass
236	Aristida hystrix L.f.	Threeawn Grass	Poaceae	Grass
237	Brachiaria eruciformis	Mauritius signal grass	Poaceae	Grass
238	Chloris barbata	Uppu Gaddi	Poaceae	Grass
239	Chloris virgata Sw.	feather fingergrass	Poaceae	Grass
240	Cymbopogon citratus	Lemon grass	Poaceae	Grass
241	Cynodon dactylon (L.) Pers.	Bermuda grass	Poaceae	Grass
242	Cyperus castaneus	Black flatsedge	Poaceae	Grass
243	Cyperus flavidus	Rice flat sedge	Cyperaceae	Grass
244	Cyperus rotundus L.	coco-grass	Cyperaceae	Grass
245	Digitaria ciliaris	Southern crabgrass	Poaceae	Grass
	Eragrostis tenella (L.) P.Beauv.ex	_	_	_
246	Roem.& Schult.	Love grass	Poaceae	Grass
247	Heteropogon contortus (L.)	Black speargrass	Poaceae	Grass
248	Abrus precatorius L.	Gurivinda	Leguminosae	Climber
249	Ampelocissus latifolia	Adavi Draksha	Vitaceae	Climber
250	Ampelocissus tomentosa	Adavi Draksha	Vitaceae	Climber
251	Asparagus racemosus Willd.	Pilli Gaddalu	Asparagaceae	Climber
252	Cayratia pedata	Gummadi teega	Vitaceae	Climber
253	Cissus quadrangularis L.	Nalleru	Vitaceae	Climber
254	Clitoria ternatea L.	Sanku-Pushpamu	Leguminosae	Climber
255	Cocculus hirsutus	Cheepuru theega	Menispermaceae	Climber
256	Combretum albidum	Bandi kattu teega	Combretaceae	Climber
257	Cryptolepis buchananii	Adavipala teega	Apocynaceae	Climber
258	Cuscuta reflexa Roxb.	Sitamma pogunalu	Convolvulaceae	Climber
259	Derris scandens	Nalla Teega	Fabaceae	Climber
260	Dioscorea pentaphylla L.	Adavi gunusuthega	Dioscoreaceae	Climber
261	Gymnema sylvestre	Podapatri	Asclepiadaceae	Climber
262	Ipomoea macrantha Roem. & Schult.	Fence Morning glory	Convolvulaceae	Climber
263	Ipomoea nil (L.) Roth.	Kolli Vittulu	Convolvulaceae	Climber
264	Ipomoea obscura (L.) Ker Gawl.	Golla jiddu aku	Convolvulaceae	Climber
265	Jasminum auriculatum	Banamallika	Oleaceae	Climber
266	Merremia tridentata (L.) Hallier f.	Seethamma jada	Convolvulaceae	Climber
267	Mucuna pruriens (L.) DC.	Dulagondi	Leguminosae	Climber
268	Olax scandens	Turakavepa	Olacaceae	Climber
269	Passiflora edulis Sims.	Fashion fruit	Passifloraceae	Climber
270	Pergularia daemia (Forssk.) Chiov.	Dustapu-Teega	Apocynaceae	Climber
271	Rivea hypocrateriformis Choisy.	Bodditeega	Convolvulaceae	Climber
272	Tinospora cordifolia (Willd.) Miers.	Tippa teega	Menispermaceae	Climber
273	Ventilago maderaspatana	Surugudu	Rhamnaceae	Climber
274	Wattakaka volubilis	Dudipalatiga	Asclepiadaceae	Climber

8.3. ANNUXURE -3 (LIST OF FAUNA)

8.3.1. MAMMALS

S.No.	Scientific Name	Common Name	WPA Status	IUCN
1	Panthera tigris	Tiger	Part I of Schedule I	EN
2	Panthera pardus	Leopard	Part I of Schedule I	EN
3	Melursus ursinus	Sloth bear	Part I of Schedule I	VU
4	Hyaena hyaena	Hyena	Schedule III	NT
5	Hystrix indica	Porcupine	Schedule IV	LC
6	Sus scrofa	Wild pig	Schedule III	LC
7	Felis chaus	Jungle cat	Schedule II	LC
8	Viverricula indica	Civet Cat	Schedule II	LC
9	Cuon alpinus	Wild Dog	Schedule II	EN
10	Paradoxurus hermaphroditus	Palm Civet	Schedule II	LC
11	Semnopithecus entellus	Deccan Hanuman Langur	Part-II of Sch-II	LC
12	Macaca mulatta	Macaque Rhesus	Part-I of Sch-II	LC
13	Herpestes edwardsii	Indian grey Mongoose	Part II of Schedule II	LC
14	Axis axis	Spotted Deer	Schedule III	LC
15	Cervus unicolor	Sambar	Schedule III	VU
16	Boselaphus tragocamelus	Nilgai	Schedule III	LC
17	Bendicota bengalensis	Indian mole rat	Schedule V	LC
18	Mus musculus	House Mouse	Schedule V	LC
19	Ananthana ellioti	Tree shrew	Schedule V	LC
20	Rattus rattus	House rat	Schedule V	LC
21	Bendicota indica	Bandicoot rat	Schedule V	LC
22	Mus booduga	Little Indian Field mouse	Schedule V	LC
23	Cynopterus sphinx	Short-Nosed Fruit Bat	Schedule V	LC
24	Rousettus leschenaulti	Fruit bat	Schedule V	NT
25	Pipistrellus coromandra	Indian Pipistrelle	Schedule V	LC
26	Rhinopoma hardwickii	Lesser Mouse-Tailed Bat	Schedule V	LC
27	Lepus nigricollis	Black-naped Hare	Schedule IV	LC
28	Funambulus palmarum	Three striped palm squirrel	Schedule IV	LC

8.3.2. AVES

Scientific Name	Common Name	IUCN Status	IWPA (1972) Status
Phalacrocorax niger	Little cormorant	LC	Sch-IV
Ardea cinerea	Grey heron	LC	Sch-IV
Ardeola grayii	Pond heron	LC	Sch-IV
Bubulcus ibis	Cattle egret	LC	Sch-IV

Scientific Name	Common Name	IUCN Status	IWPA (1972) Status
Egretta garzetta	Little egret	LC	Sch-IV
Ixobrychus cinnamomeus	Chestnut bittern	LC	Sch-IV
Pseudibis papillosa	Black ibis	LC	Sch-IV
Porphyrio porphyrio	Purple moorhen	LC	Sch-IV
Pavo cristatus	Indian Peafowl	LC	Sch-I
Fulica atra	Coot	LC	Sch-IV
Vanellus indicus	Red wattled lapwing	LC	Sch-IV
Strptopelia chinensis	Spotted dove	LC	Sch-IV
Psittacula cyanocepahala	Blossomheaded parakeet	LC	Sch-IV
Eudynamis scolopacea	Koel	LC	Sch-IV
Athene brama	Spotted owlet	LC	Sch-IV
Apus affinis	House swift	LC	Sch-IV
Cypsiurus parvus	Palm swift	LC	Sch-IV
Ceryle rudis	Lesser Pied kingfisher	LC	Sch-IV
Merops leschenaultii	Chestnutheaded bee-eater	LC	Sch-IV
Merops philippinus	Blue tailed bee-eater	LC	Sch-IV
Merops orientalis	Small green bee-eater	LC	Sch-IV
Coracias benghalensis	Indian roller	LC	Sch-IV
Megalaima viridis	Small green barbet	LC	Sch-IV
Megalaima haemacephala	Crimson breasted barbet	LC	Sch-IV
Pitta brachyura	Indian pitta	LC	Sch-IV
Ermeopterix grisea	Ashycrowned finch-lark	LC	Sch-IV
Hirundo concolor	Dusky crag martin	LC	Sch-IV
Hirundo rustica	Eastern swallow	LC	Sch-IV
Dicrurus adsimilis	Black drongo	LC	Sch-IV
Dicrurus caerulescens	Whitebellied drongo	LC	
Dicrurus paradiseus	Greater racket-tailed drongo	LC	Sch-IV Sch-IV
Artamus fuscus	Ashy swallow-shrike	LC	Sch-IV
Sturnus malabaricus	Greyheaded myna	LC	Sch-IV
Sturnus pagodarum	Brahminy myna	LC	Sch-IV
Acridotheres tristis	Common myna	LC	Sch-IV
Corvus splendens	House crow	LC	Sch-IV
Corvus macrorhynchos	Jungle crow	LC	Sch-IV
Pericrocotus cinnamomeus	Small minivet	LC	
		LC	Sch IV
Pycnonotus cafer	Redvented bulbul	LC	Sch-IV
Turdoides affinis	Whiteheaded babbler	LC	Sch-IV
Copsychus saularis	Magpie-Robin	LC	Sch-IV
Saxicoloides fulicata	Indian robin	LC	Sch-IV
Monticola solitarius	Blue rock thrush	LC	Sch-IV

Scientific Name	Common Name	IUCN	IWPA (1972)
3		Status	Status
Zoothera citrina	White-throated ground thrush	LC	Sch-IV
Turdus merula	Blackbird	LC	Sch-IV
Parus major	Grey tit	LC	Sch-IV
Parus xanthogenys	Yellowcheeked tit	LC	Sch-IV
Anthus hodgsoni	Indian tree pipit	LC	Sch-IV
Anthus trivialis	Tree pipit	LC	Sch-IV
Motacilla flava	Yellow wagtail	LC	Sch-IV
Dicaeum agile	Thickbilled flowerpecker	LC	Sch-IV
Dicaeum erythrorhynchos	Tickell's flowerpecker	LC	Sch-IV
Nectarinia zeylonica	Purplerumped sunbird	LC	Sch-IV
Nectarinia asiatica	Purple sunbird	LC	Sch-IV
Zosterops palpebrosa	White-eye	LC	Sch-IV
Passer domesticus	House sparrow	LC	Sch-IV
Ploceus philippinus	Baya	LC	Sch-IV
Ploceus manyar	Streaked weaver bird	LC	Sch-IV
Lonchura punctulata	Spotted munia	LC	Sch-IV
Lonchura malacca	Blackheaded munia	LC	Sch-IV
Anas poecilorhyncha	Spot-billed Duck	LC	Sch-IV

^{*}Status assigned by the IUCN, where - CR - Critically Endangered; EN - Endangered; LC - Least Concern; NT - Near Threatened; VU - Vulnerable, DA - Data Deficient, NE - Not Evaluated, R: Resident; RM: Resident Migratory; M: Migratory. All the birds observed from the study area.

8.3.3. REPTILES

Scientific Name	Common Name	IUCN	IWPA
Bungarus caeruleus	Common Krait		Not listed
Dendrelaphis tristis	Common Tree Snake	LC	
Echis carinatus	Saw scaled wiper		
Eryx conicus	Russells earth boa		
Eryx johii	Johns earth boa		
Lycodon aulicus	Common wolf snake		
Naja naja	Indian Cobra	LC	Sch- II
Ptyas mucosus	Common Rat snake	LC	Sch- II
Trimeresurus gramineus	Green pit viper	LC	Sch- IV
Hemidactylus flaviviridis	North house gecko		

Cyrtodactylus kacchensis	Black rock gecko		
Hemimidactylus brooki	House gecko	LC	
Vipera russelli	Russel's Viper	LR	Sch- II
Calotes rouxi	Forest Calottes	LC	
Calotes versicolor	Common garden lizard	LC	
Mabuya carinata	Common Skink	LC	
Chamaeleon zelanicus	Chameleon	VU	Sch- II

8.3.4. AMPHIBIANS

		IUCN	IWPA (1972)
Species	Common name	status	Status
Duttaphrynus stomaticus Lüken	Marbled toad	LC	Schedule IV
Duttaphrynus melanostictus Schneider	Common Indian toad	LC	Schedule IV
	Ornate narrow		
Microhyla ornata (Dumėril & Bibron)	mouthed Frog	LC	Schedule IV
Uperodon globulosus (Günther)	Indian balloon frog	LC	Schedule IV
Uperodon systoma Schneider	Marbled balloon frog	LC	Schedule IV
Hoplobatrachus crassus (Jerdon)	Jerdon's bull frog	LC	Schedule IV
Hoplobatrachus tigerinus (Daudin)	Indian bull frog	LC	Schedule IV
Euphlyctis hexadactylus (Lesson)	Indian pond frog	LC	Schedule IV
Sphaerotheca breviceps (Schneider)	Indian burrowing frog	LC	Schedule IV
Euphlyctis cyanophlyctis (Schneider)	Skittering frog	LC	Schedule IV

8.3.5. BUTTERFLIES

S. No.	Scientific Name	Common Name	Status
	Family – Nymphalidae		
1	Acraea violae	Tawny Coster	C
2	Danaus chrysippus chrysippus	Plain Tiger	VC
3	Danaus genutia genutia	Striped Tiger	C
4	Precis almana almana	Peacock Pansy	С
5	Precis hierta hierta	Yellow Pansy	VC
	Family -Lycaenidae		
6	Castalius rosimon rosimon	Common Pierrot	Schedule I of Part IV
7	Chilades laius	Lime Blue	VC
8	Freyeria trochylus	Grass Jewel	VC
9	Tarucus nara	Rounded Pierrot	VC
	Family -Pieridae		
10	Colotis eucharis eucharis	Plain Orange Tip	С
11	Ixias pyrene sesia	Yellow Orange Tip	VC

12	Catopsilia pomona	Common Emigrant	VC
13	Eurema hecabe simulata	Common Grass Yellow	VC
	Family -Hesperiidae		
14	Borbo bevani	Bevan's Swift	R
	Family -Papilionidae		
15	Papilio demoleus	Lime Butterfly	UC