

भारत सरकार GOVERNMENT OF INDIA खान मंत्रालय MINISTRY OF MINES भारतीय खान ब्यूरो INDIAN BUREAU OF MINES क्षेत्रीय खान नियंत्रक के कार्यालय OFFICE OF THE REGIONAL CONTROLLER OF MINES



BY REGD PARCEL

Phone: 0674-2352463 Tele Fax: 0674-2352490 E-mail: ro.bhubaneshwar@ibm.gov.in Plot No.149, Pokhariput BHUBANESWAR-751020

Date: 02.09.2022

No. BBS/SNG/IRON/2175/RMP/2022-23

To

The Managing Director & Nominated Owner, M/s Odisha Mining Corporation Ltd OMC House, Bhubaneswar -751001

Sub: Approval of Review of Mining Plan of Rantha Iron Ore Mine along with Progressive Mine Closure Plan (PMCP), over an area of 268.84 ha in Sundargarh district of Odisha State, submitted by M/s Odisha Mining Corporation Ltd under Rule 17 of Minerals (Other than Atomic and Hydro Carbons Energy Minerals) Concession Rules, 2016.

Ref: - i) Your letter No. 10873/OMC/PMC/2022 dated 08.07.2022.

- ii) This office email letter of even no. dated 08.08.2022.
- iii) Your letter No. 13710/OMC/PMC/2022 dated 22.08.2022.

Sir,

In exercise of the powers conferred by clause (b) of sub-section (2) of section 5 of the Mines & Minerals (Development & Regulation) Act, 1957 and clause (1) of Rule 16 & Rule 17 of the Minerals (Other than Atomic and Hydro Carbons Energy Minerals) Concession Rules, 2016 read with Government of India Order No. S.O. 1857(E) dated 18th May, 2016, I hereby Approve the Review of Mining Plan including Progressive Mine Closure Plan of Rantha Iron Ore Mine over an area of 268.84 ha of M/s Odisha Mining Corporation Ltd in Sundargarh district of Odisha State submitted under Rule 17 of Minerals (Other than Atomic and Hydro Carbons Energy Minerals) Concession Rules, 2016. This approval is subject to the following conditions:

- I. The Review of Mining Plan is approved without prejudice to any other law applicable to the mine area from time to time whether made by the Central Government, State Government or any other authority and without prejudice to any order or direction from any court of competent jurisdiction.
- II. The proposals shown on the plates and/or given in the document is based on the lease map /sketch submitted by the applicant/ lessee and is applicable from the date of approval.
- III. It is clarified that the approval of aforesaid Review of Mining Plan does not in any way imply the approval of the Government in terms of any other provision of Mines & Minerals (Development & Regulation) Act, 1957, or the Mineral Concession Rules, 2016 and any other laws including Forest (Conservation) Act, 1980, Environment (Protection) Act, 1986 or the rules made there under, the Occupational Safety, Health and Working Conditions Code, 2020 and Rule & Regulations made there under.
- IV. Indian Bureau of Mines has not undertaken verification of the mining lease boundary on the ground and does not undertake any responsibility regarding correctness of the boundaries of the leasehold shown on the ground with reference to lease map & other plans furnished by the applicant / lessee.

## **RANTHA IRON ORE MINES**

## **REVIEW OF MINING PLAN**

Mining Plan/Review of Mining Plan/Modified in Approved Mining Plan of Rantha Iron Ore Mine/Deposit over an area of **268.84** Ha as per ROR and **268.84** Ha as per DGPS submitted under Rule  $\frac{16(1)*/17(2)*/17(3)*}{17(3)*}$  of Minerals (Other than Atomic and Hydro-Carbons Energy Minerals) Concession Rules, 2016.

## **TEXT**

| Mine/Deposit Name          | Rantha Iron Ore Mine                                         |
|----------------------------|--------------------------------------------------------------|
| Mining Lease no-           | 698                                                          |
| Mine Code-                 | 300RI13058                                                   |
| In Villages-               | Rantha (Khandadhar P.R.F) & Khandadhar R.F                   |
| Tehsil-                    | Lahunipara                                                   |
| District-                  | Sundargarh                                                   |
| State                      | Odisha                                                       |
| Total-Lease area           | <b>268.84 Ha</b> as per DGPS                                 |
| Forest Area                | 268.84 На.                                                   |
| Non-Forest area            | 0.00 На.                                                     |
| Lease Execution Date       | 31.12.1968                                                   |
| Lease period-              | 70 years from 31.12.1968 to 30.12.2038 (TO BE EXTENDED) Quit |
| Mineral-                   | Iron Ore                                                     |
| Proposed category of Mine- | A-Mechanized                                                 |
| Mining plan period-        | 2023-24 to 2027-28                                           |
| Working proposal period-   | 2023-24 to 2027-28                                           |
| Applicant/lessee           | Odisha Mining Corporation Ltd                                |
| IBM Registration no-       | IBM/4269/2011                                                |
| Address-                   | OMC House, Bhubaneswar - 751001,                             |
| Address-                   | District: Khurda, State: Odisha                              |
| Phone-                     | Tel: 0674-2377400 & 2377401,                                 |
| Priorie-                   | Fax No: (0674) 2580145/020                                   |
| Email-                     | info@odishamining.in                                         |
| Prepared by-               |                                                              |
| Qualified Person Name-     | 1.Sri Pradip Kumar Sahoo, B. Tech in Mining Engineering      |
| Qualified Person Nume-     | 2. Sri Rabindra Mohanty, M. Sc in Geology                    |
| Address-                   | OMC House, Bhubaneswar - 751001,                             |
| Auui ess-                  | District: Khurda, State: Odisha                              |
| Phone-                     | 9439277649,7978567771                                        |
| Email-                     | pksahoo2@odishamining.in, rmohanty@odishamining.in           |





## CONSENT LETTER / UNDERTAKING / CERTIFICATE FROM THE LESSEE

1. The Review of Mining Plan in respect of Rantha Iron Ore Mine of Odisha Mining Corporation Limited over an area of 268.84 Ha in Village Rantha (Khandadhar P.R.F) and Khandadhar R.F in Tahasil Lahunipara, Bonai sub-division of Sundargarh district of Odisha state submitted under Rule 17(2) of Minerals (Other than Atomic and Hydro Carbons Energy Minerals) Concession Rule, 2016 has been prepared by following Qualified Persons namely Sri Pradip Kumar Sahoo, Manager (Mining) & Sri Rabindra Mohanty, Sr. Manager (Geology) of OMC Ltd Jointly.

This is to request the Regional Controller of Mines, Indian Bureau of Mines, Bhubaneswar, to make any further correspondence regarding any correction of the Review of Mining Plan with the said qualified persons at their addresses below.

Sri Pradip Kumar Sahoo, Manager (Mining)

OMC House, Post Box No 34, Bhubaneswar, Odisha - 751001

Phone: (0674), 2399950 Fax: (0674) 2391629, 2396889,

Email: pksahoo2@odishamining.in

Sri Rabindra Mohanty, Sr. Manager (Geology)

OMC House, Post Box No 34, Bhubaneswar, Odisha - 751001

Phone: (0674), 2399950 Fax: (0674) 2391629, 2396889, Email: rmohanty@odishamining.in

We hereby undertake that all modifications / updating as made in the said Review of Mining Plan by the said qualified persons be deemed to have been made with our knowledge and consent and shall be acceptable on us and binding in all respects.

- 2. It is certified that the **CCOM's Circular no. 2/2010** related to DGPS survey of the lease area has already been implemented by ORSAC, an authorized agency approved by the State Government.
- 3. It is certified that the Progressive Mine Closure Plan prepared under Rule 23 of MCDR, 2017 of Rantha Iron Ore Mine of Odisha Mining Corporation Ltd over an area of 268.84 Ha complies with all statutory rules, regulations, orders made by the Central or State Government, statutory organization, court etc. which have been taken into consideration and wherever any specific permission is required, the lessee will approach the concerned authorities.

The information furnished in the **Progressive Mine Closure Plan** is true and correct to the best of our knowledge and records.

4. The provisions of Mines Act, Rules and Regulations made there under have been observed in the Review of Mining Plan of Rantha Iron Ore Mine over an area of 268.84 Ha in Sundargarh district of Odisha state belonging to Odisha Mining Corporation Limited and where specific permissions are required, the applicant will approach the DGMS. Further, standards prescribed by DGMS in respect of miner's health will be strictly implemented.

Place: Bhubaneswar - Date: 05.07.2022

Managing Director & Nominated Owner
Odisha Mining Orporation Limited
OMC House, Bhubaneswar

THE Odisha Mining Corporation Ltd.

(A Gold Category State PSU)
Registered Office: OMC House, Bhubaneswar -751001, India
Tel: 0674-2377400/2377401, Fax: 0674-2396889, www.omcltd.com

CIN: U131000R1956SGC000313





## **CERTIFICATE FROM THE QUALIFIED PERSONS**

The provisions of the Mineral Conservation and Development Rules, 2017 have been observed in the preparation of Review of Mining Plan for Rantha Iron Ore Mines over an area of 268.84 Ha(as per DGPS) in Village Rantha (Khandadhar P.R.F) and Khandadhar R.F in Lahunipara Tahasil Bonai sub-division of Sundargarh district of Odisha state and whenever specific permissions are required, the applicant will approach the concerned authorities of Indian Bureau of Mines.

The information furnished in the Mining Plan is true and correct to the best of our knowledge.

PRADIP Digitally signed

KUMAR KUMAR SAHOO Date: 2022.08.19

SAHOO 10:53:26 +05'30'

Qualified Person

Digitally signed RABINDRA by RABINDRA MOHANTY Date: 2022.08.19 10:53:45 +05'30'

Qualified Person

Place: Bhubaneswar

Date: 19.08.2022

(A Gold Category State PSU) Registered Office: OMC House, Bhubaneswar - 751001, India Tel: 0674-2377400/2377401, Fax: 0674-2396889, 2391629, www.omcltd.in

CIN: U13100OR1956SGC000313



## **UNDERTAKING**

Vide letter no 9658/OMC/PMC/2022, dtd: 18.06.2022, Odisha Mining Coproration Ltd has requested Regional Controller of Mines, IBM, Bhubaneswar to grant six (06) months' time extension for compliance of Rule 34A of MCDR' 2017, i.e. submission of DEM and Orthomosaic images obtained from Drone Survey for all mines of OMC Ltd.

For the instant case, i.e. Review of Mining Plan of Rantha Iron Ore Mine, we do hereby undertake to submit the processed output [digital elevation model (DEM) and Orthomosaic] images obtained from Drone survey and its report as per Rule 34A(3) of MCDR' 2017 within the time period as requested in our above letter.

Date: 17-08-2022

Dr Suman Krishna Sit

GM (Geology)

Power of Attorney Holder

Odisha Mining Corporation Ltd

Encl: Copy of letter no 9658/OMC/PMC/2022, dtd: 18.06.2022.

Tel: 0674-2377400/2377401, Fax: 0674-2396889, www.omcltd.com

CIN: U131000R1956SGC000313



To

The Regional Controller of Mines Indian Bureau of Mines Plot No - 149, Pokhariput, Bhubaneswar - 751020

Sub: Request for time extension of Six (06) months for submission of processed output [digital elevation model (DEM) and Orthomosaic] images obtained from Drone survey and its report as per the Rule 34A of MCDR'2017 in respect of all mines of Odisha Mining Corporation Ltd.

Sir,

This has reference to Rule 34A of MCDR' 2021, wherein (1) every lessee having (a) an annual excavation plan of one million tonne or more in a particular year; or (b) leased area of fifty hectares or more, shall carry out a drone survey of the leased area and upto hundred meters outside the lease boundary in the month of April and May every year and submit the processed output [digital elevation model (DEM) and Orthomosaic] images obtained from such survey or any other format as may be specified by the Indian Bureau of Mines in this regard to the Controller General on or before 1<sup>st</sup> day of July every year.

In this regard, IBM has notified the Standard Operating Procedure under sub rule (5) of rule 34A of MCDR, 2017 for carrying out drone survey and submission of Digital Aerial Images of Mining areas to Indian Bureau of Mines on 22.04.2022.

Accordingly, OMC has taken necessary steps for engagement of agencies for carrying out drone based survey by tendering process, which may take 2-3 months time till finalisation. As, drone based survey is new in concept and has to be complied from this year, so it is very difficult for us for complying the same within due time because of finalisation of agencies for carrying out such surveys.

Therefore, it is requested to grant us six (06) months' time extension for compliance of Rule 34A of MCDR' 2017 for all mines of Odisha Mining Corporation Ltd.

Yours faithfully,

Managing Director & Nominated Owner Odisha Mining Corporation Limited OMC House, Bhubaneswar - 1

THE Odisha Mining Corporation Ltd.

(A Gold Category State PSU)
Registered Office: OMC House, Bhubaneswar -751001, India
Tel: 0674-2377400/2377401, Fax: 0674-2396889, www.omcltd.com

CIN: U131000R1956SGC000313



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

S. J.

#### **INRODUCTORY NOTE:**

Service Milites Rantha Iron Ore Mines is owned by M/s Odisha Mining Corporation Limited, a Govt. of Ddisha Undertaking Rantha Iron Ore Lease of M/s Odisha Mining Corporation is located in village Rantha & Khandadhar Re Forest Lahunipara Tahsil and Bonai sub-division of Sundargarh district of Odisha state between 21°45'12.45558"N- 21°46'54.64380"N & longitude 85°08'11.37095"E - 85°08'52.12745''E and is covered survey of India topo-sheet no. F45N1 (73G/1).

#### STATUS OF LEASE:

Lease deed for Rantha lease was executed on 31.12.1968 for a lease area of 408.8731 Ha (As per RoR) & 408.832 Ha (as per DGPS) for a period of 50 years. Copy of lease deed for Rantha lease is enclosed at annexure 7. Subsequently, State Government order that in terms of rule 3(1) of Mineral (Mining by Government Company) Rules 2015 dated 03.12.2015, the period of the original lease is deemed to be granted for 50 years i.e. from 31.12.1968 to 30.12.2018. Further in terms of rule 3(2) and 3(3) of said rules, the validity period of the lease is extended for a further period of 20 years from 31.12.2018 to 30.12.2038 vide letter no: III(B) SM-25/2012/203/SM. Bhubaneswar Dated. 09.02.2016 over retained area of 268.84 Ha. Copy of lease extension letter from state Govt. is enclosed as annexure 8. The ML area granted at different points of time in chronological order is given in the table below:-

| SI. No | Event with justification, if any      | Remarks                        |  |  |
|--------|---------------------------------------|--------------------------------|--|--|
|        | Lease deed for Rantha was executed    | Lease Period : 31.12.1968 to   |  |  |
| 1      | on 31.12.1968 for a lease area of     | 30.12.2018                     |  |  |
|        | 408.8731 Ha for a period of 50 years. | 30.12.2018                     |  |  |
|        | The validity of the lease is extended |                                |  |  |
|        | for a further period of 20 years vide |                                |  |  |
|        | letter no: III(B)SM-                  | Extended period: 31.12.2018 to |  |  |
| 2      | 25/2012/203/SM. Bhubaneswar           | 30.12.2038                     |  |  |
|        | Dated. 09.02.2016 over retained       |                                |  |  |
|        | area of 268.84 Ha.                    |                                |  |  |

#### STATUS OF ENVIRONMENT CLEARANCE:

Environment clearance for the lease has been granted by MoEF vide letter no. J-11015/1085/2007-IA. II (M) dated 11.06.2008 for a rated iron ore production capacity of 1.0 million tonnes per annum. A copy of the same is enclosed as Annexure- 17.

#### STATUS OF FOREST CLEARANCE:

Application for Stage-I forest clearance have been applied to MoEF & CC vide letter No. 2917/OMC/F&E/2020 dated 20.02.2020. A copy of the same is enclosed as Annexure-15. Stage -II forest clearance for belt conveyor route has been obtained from MoEF & CC vide letter No- 8-113/2000-FC (Vol-III) dated 06.12.2021.





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

#### STATUS OF CONSENTS FROM SPCB:

Consent to establish for 1 MTPA has been granted by State Pollution Control Board vide Consent Order No 9547/IND-II-NOC-4584 on dated 26.04.2007. Consent to Establish is enclosed as Annexure as Consent to Depart to be obtained after getting all statutory clearances.

#### STATUS OF SURFACE RIGHT:

Permission for surface operation over 408.7730 Ha. out of 408.8731 hectares original M.L area was obtained by Lessee from the office of the Collector, Sundargarh vide letter No.XII-92/73-1193 dated 21.07.1973. M.L area applied for retaining over 268.84 Ha is a part of 408.7730 Ha in the originally executed M.L area over 408.8731 Ha. Hence, surface right of the retained area of 268.84 Ha. has been obtained.

Copy of letter of grant of surface right permission is given in Annexure - 16. Copy of land schedule is given at annexure 10.




Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

|    | REVIEW OF MINING                                                          | 5 ΡΙ ΔΝΙ ΔΤ Δ                    | GLANCE                                  |              | -1/2      | 317                                     | C TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The same of the sa |
|----|---------------------------------------------------------------------------|----------------------------------|-----------------------------------------|--------------|-----------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Name of the Applicant /lessee                                             |                                  |                                         | oration Lim  | it 6d S   |                                         | MINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2  | IBM Registration no                                                       | IBM/426                          |                                         | Oracion Emil | 113       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>医别</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3  | Address of Applicant                                                      | OMC House, Bhubaneswar - 751001, |                                         |              |           | किस्                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                           | District: Khurda, State: Odisha. |                                         |              |           | E H                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4  | Name of Mine                                                              |                                  | on Ore Mir                              |              | 1/3       | 2V7.                                    | OF INOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (-//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5  | Mine Code                                                                 | 300RI130                         | 058                                     |              |           | 1                                       | सर्०                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6  | Lease area in hects.                                                      | 268.84 Ha                        | a. (As per D                            | GPS).        |           |                                         | Andread Control of the Control of th |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7  | Forest area                                                               | 268.84 Ha                        |                                         |              |           | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8  | Name of Mineral                                                           | IRON.                            |                                         |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9  | Lease period from to                                                      | Initial Gra                      | int: 31.12.1                            | .968 to 30.1 | 2.2018.   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 | Plan proposal period                                                      |                                  | 31.12.2018<br>to 2027-28.               | to 30.12.20  | 38.       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 | Mineral Reserve (111, 121 & 122) in tonnes                                |                                  | 0 2027-28.                              |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | wineral reserve (111, 121 & 122) in tonnes                                | 111-Nil.<br>121- 2977            | 70270                                   |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                           | 122-4113                         |                                         |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                           | 1                                | 9,17,012 to                             | nnes         |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12 | Mineral Resources (211, 221,222, 331, 332, 333 &                          | 221- 17654                       | 50, 222-68                              | 78088,       |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 334) in tonnes                                                            | Total: 86,                       | 43,538 toni                             | nes          |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13 | Total (Reserve/ Resource) in tonnes                                       | 7,09,17,03                       | 12 tonnes                               |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14 | Reserve Estimated as on                                                   | 30.06.202                        | 2.                                      |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15 | Explored Area in Ha.                                                      | G1-39.632                        | 2 Ha., G2- 1                            | 65.724 Ha.,  | G3- Nil   | ,G4-                                    | 63.484 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | На.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16 | Evaloration Programmed at 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1             | Explored 8                       | & found No                              | n-Mineraliz  | ed- 20 l  | Ha.(G                                   | 32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 | Exploration Proposal of bore holes for Five Year.                         | 192 nos.                         |                                         |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                           | In Situ                          |                                         | From Di      |           | 1                                       | otal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17 | Production proposal Iron Ore in tonnes year wise i.e.                     | (Year w                          | rise)                                   | (Year v      | vise)     | (Y                                      | ear wise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | FY 2023-24 to 2027-28                                                     | 10,00                            | 0,000                                   | 0            |           | 10,                                     | 00,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18 | OB/Waste handling proposal in CUM year wise i.e.                          | 2023-24                          | 2024-25                                 | 2025-26      | 2026-     | └──<br>27                               | 2027-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | FY 2023-24 to 2027-28                                                     | 1,50,000                         | 1,70,000                                | 3,10,000     | 7,00,0    | 000                                     | 2,00,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19 | Present EC permission in tonnes (Mineral or ROM).                         | 10,00,000                        |                                         |              | 1,,00,0   |                                         | 2,00,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 | Plantation proposal in Five years in numbers                              | 8040 Nos.                        |                                         |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21 | Plantation area proposal in Five year (ha).                               | 6.7 Ha.                          |                                         |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22 | Back filling proposal in Five year (ha).                                  | No Propos                        | al During th                            | ne RMP Per   | iod i e d | 2023                                    | -24 to 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 027-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                                                                           | 28.                              |                                         |              |           |                                         | 21102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23 | Check Dams numbers in Five year                                           | 0 Nos.                           |                                         |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24 | Garland drain in meters in Five year                                      | 1710 mtr.                        |                                         |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25 | Retaining wall in meters in Five year                                     | 1710 mtr                         | *************************************** |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26 | Settling ponds (Numbers) in Five year                                     | 02 Nos.                          |                                         |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27 | Area put to use at end of five year in ha                                 | 70.166 Ha.                       |                                         |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28 | Bank Guarantee Amount Rs                                                  | Rs. 3,50,83                      | ,000/-                                  |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29 | Validity of BG upto                                                       | 31.03.2028                       |                                         |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | Any other important information                                           | Not Applic                       |                                         |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31 | Percentage of revenue sharing bid in case of                              | Not Applica                      | able.                                   |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32 | auction grant of block  Amount of performance security and details if any | B1 1 A 1-                        | 1.1                                     |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | Amount of performance security and details if any                         | Not Applica                      | able.                                   |              |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |







Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

# PART: A Index

|           |                                         | Merica x * 11   |
|-----------|-----------------------------------------|-----------------|
| CHAPTER   | PARTICULARS                             | PAGE NOT OF THE |
| CHAPTER 1 | GENERAL INFORMATION                     | 11-15           |
| CHAPTER 2 | GEOLOGY & EXPLORATION                   | 16-84           |
| CHAPTER 3 | MINERAL PROCESSING                      | 85-89           |
| CHAPTER 4 | MINING OPERATIONS                       | 90-105          |
| CHAPTER 5 | SUISTAINABLE MINING                     | 106-113         |
| CHAPTER 6 | PROGRESSIVE MINE CLOUSER PLAN           | 114-119         |
| CHAPTER 7 | FINANCIAL ASSURANCE/ PERFORMANCE SURETY | 120-123         |
| CHAPTER 8 | REVIEW OF PREVIOUS PROPOSALS            | 124-129         |
| CHAPTER 9 | IMPACT ASSESSMENT                       | 130-137         |
|           |                                         |                 |



Rantha Iron Ore Mine

Odisha Mining Corporation, Ltd

## PART-B

**List of Annexure (in pdf format):** 

| Annexure No   | Description                                                                              | PageNo  |
|---------------|------------------------------------------------------------------------------------------|---------|
| Annexure - 1  | Copy of List of Board of Directors                                                       | TO THE  |
| Annexure - 2  | Copy of Board resolution on appointment of nominated owner                               | 2-2     |
| Annexure - 3  | Copy of Photo Id & Address proof of the Nominated Owner                                  | 3-5     |
| Annexure - 4  | Copy of Certificate of Incorporation                                                     | 6-6     |
| Annexure - 5  | Copy of Qualification & Experience Certificates of Qualified Persons                     | 7-19    |
| Annexure - 6  | Copy of initial Grant order                                                              | 20-21   |
| Annexure - 7  | Copy of Lease Deed                                                                       | 22-61   |
| Annexure - 8  | Copy of letter dated 09.02.2016 from Steel and Mines Govt. of Odisha extension of        | 62-65   |
|               | mining lease up to 30.12.2038                                                            |         |
| Annexure - 9  | Copy of Letter dated 25.04.2018 form Director of Mines authenticated precise area map    | 66-66   |
| Annexure - 10 | Land Schedule of the part area over 268.84 ha. applied for retaining.                    | 67-67   |
| Annexure - 11 | Land schedule of the FMCP approved part surrendered accepted area over 139.992 ha.       | 68-68   |
| Annexure - 12 | FMCP approval letter of surrendered area over 139.992 ha. dt. 25.10.2018 and certificate | 69-71   |
|               | from IBM with regard to its implantation                                                 |         |
| Annexure - 13 | Acceptance of the part surrendered area over 139.992 ha. by the State Govt. dated        | 72-74   |
|               | 22.07.2019                                                                               |         |
| Annexure -14  | Copy of Stage-II forest clearance letter for Conveyor route                              | 75-78   |
| Annexure - 15 | Proposal for diversion of 268.84 ha of Forest land within the Rantha Iron Ore Mines.     | 79-80   |
| Annexure - 16 | Copy of Permission for surface operation from the Collector, Sundargarh                  | 81-81   |
| Annexure - 17 | Copy of Environmental Clearance                                                          | 82-90   |
| Annexure - 18 | Copy of CTE order from SPCB,                                                             | 91-94   |
| Annexure - 19 | Copy of Approval letter of last Mining Plan                                              | 95-96   |
| Annexure - 20 | Copy of Work order for core drilling                                                     | 97-104  |
| Annexure -21  | Copy of Form-J, the notice of sinking boreholes                                          | 105-105 |
| Annexure -22  | Bore hole Drilled details                                                                | 106-109 |
| Annexure -23  | Copy of Form-K along with details of borehole logs                                       | 110-256 |
| Annexure -24  | Copy of Chemical Analysis Certificate of drill core sample of iron ore                   | 257-395 |
| Annexure-25   | Copy of NABL accreditation M/s Superintendence Company of India Pvt. Ltd. who has        | 396-398 |
|               | carried out chemical analysis of drilled core/litho logs                                 |         |
| Annexure-26   | Copy of Bulk density test report of Iron ore and mineral reject                          | 399-399 |
| Annexure -27  | Copy of NABL certificate Ms. Mitra S.K who has carried out bulk density test             | 400-402 |
| Annexure -28  | Copy of Recovery Test Report of Iron ore and mineral reject with NABL certificate Ms     | 403-404 |
|               | Earth & Environment who has carried out recovery test                                    |         |
| Annexure -29  | Water Balance Chart                                                                      | 405-406 |
| Annexure -30  | Material balance chart & Process flow diagram                                            | 407-408 |
| Annexure- 31  | Calculation of production of Ore, mineral reject & waste for the financial year          | 409-413 |
| Annexure- 32  | Environment Monitoring Report                                                            | 414-517 |
| Annexure -33  | Surveyor certificate                                                                     | 518-518 |
| Annexure -34  | Conceptual planning                                                                      | 519-525 |
| Annexure- 35  | Copy of Demographic profile data                                                         | 526-528 |
| Annexure -36  | Pre-feasibility report                                                                   | 529-556 |
| Annexure- 37  | Photographs                                                                              | 557-558 |
| Annexure- 38  | Copy of Bank Guarantee                                                                   | 559-563 |



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

OF WHITES



## List of Plates (Geometry type: Polygon, Datum: WGS 84)

| SI. No | Plan                                       | Scale   | Plate No.         | Format |
|--------|--------------------------------------------|---------|-------------------|--------|
| 01.    | Key Plan                                   | 1:50000 | Plate No. 01      | PDF    |
| 02.    | Lease Plan                                 | 1:3960  | Plate No. 02      | PDF    |
| 03.    | DGPS Plan                                  | 1:3960  | Plate No. 02A     | PDF    |
| 04.    | Surface Plan                               | 1:2000  | Plate No. 03      | .KML   |
| 05.    | Geological Plan                            | 1:2000  | Plate No. 04      | .KML   |
| 06.    | Geological Sections                        | 1:2000  | Plate No. 05A-05B | PDF    |
| 07.    | Development Plan 2023-24 to 2027-28        | 1:2000  | Plate No. 06A-06E | .KML   |
| 08.    | Development Sections 2023-24<br>to 2027-28 | 1:2000  | Plate No. 07A-07E | PDF    |
| 09.    | Conceptual Plan                            | 1:2000  | Plate No. 08      | .KML   |
| 10.    | Conceptual Sections                        | 1:2000  | Plate No. 09      | PDF    |
| 11.    | Environment Plan                           | 1:5000  | Plate No. 10      | .KML   |
| 12.    | Progressive Mine Closure<br>Plan           | 1:2000  | Plate No. 11      | .KML   |
| 13.    | Progressive Mine Closure<br>Section        | 1:2000  | Plate No. 12      | PDF    |
| 14.    | Financial Assurance Plan                   | 1:2000  | Plate No. 13      | .KML   |
| 15.    | Plan Showing Conveyor corridor.            |         | Plate No. 14      | PDF    |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

# Chapter 1: GENERAL INFORMATION

#### 1.1: Lease Details:

|                                  |                                        |              | 11 10 101 110  |  |  |
|----------------------------------|----------------------------------------|--------------|----------------|--|--|
| IBM Registration Number:         | IBM/4269/2011                          |              | ित सर          |  |  |
| Lease Code:                      | 698                                    |              |                |  |  |
| Mine Code:                       | 300RI13058                             |              |                |  |  |
| Name of Lessee:                  | ODISHA MINING CORI                     | PORATION L   | IMITED         |  |  |
| Address of Lessee:               | OMC House, Post Box<br>751001, Odisha. | No.34, Bhu   | baneswar-      |  |  |
| Type of Lessee :                 | PSU                                    |              | ,              |  |  |
| Name of Mining Lease:            | RANTHA IRON ORE M                      | INE          |                |  |  |
| State:                           | ODISHA                                 |              |                |  |  |
| District:                        | SUNDARGARH                             |              |                |  |  |
| Tehsil/ Taluk/ Mandal:           | LAHUNIPARA                             |              |                |  |  |
| Village:                         | RANTHA,KHANDADHA                       | AR P.R.F & k | CHANDADHAR R.F |  |  |
| Lease Area (Ha):                 | 268.84                                 |              |                |  |  |
| Forest Area (Ha):                | 268.84                                 |              |                |  |  |
| Name of Minerals:                | IRON.                                  |              |                |  |  |
| Name of associated minerals:     | NA                                     |              |                |  |  |
| Type:                            | EXISTING LEASE                         |              |                |  |  |
| Five Year Block (Financial Year) | 2023-24 TO 2027-28                     |              |                |  |  |
| Type of working:                 | OPENCAST                               |              |                |  |  |
| Nature of Use:                   | NON-CAPTIVE                            |              |                |  |  |
| Category of Mine:                | A-MECHANIZED                           |              |                |  |  |

#### 1.1.1: Initial/subsequent Lease grants details:

|                     |            |            |                           | Lease             |
|---------------------|------------|------------|---------------------------|-------------------|
| Grant               | From       | То         | Lease deed execution date | Registration Date |
| Initial grant       | 31.12.1968 | 30.12.2018 | 31.12.1968                | 22.11.1968        |
| 1 <sup>st</sup> RML | 31.12.2018 | 30.12.2038 | 31.12.1968                | 22.11.1968        |

Lease Deed attached as Annexure-7 & Extension of Validity of lease attached as Annexure- 8. Supplementary lease deed with the State Government is yet to be executed.

### 1.1.2: Mining Plan Submission Criteria Details:

| Type of document                          | Review o | of Mining Plan for the period from 2023-24 to 2027-28. |
|-------------------------------------------|----------|--------------------------------------------------------|
| Reason/s for modification                 | NA       | স্কাৰ বাৰ দৰ্গক<br>Regional Controller of Mines        |
| Period for which modification is proposed | NA       | र्वास्त्र होते स्वर्ध                                  |
| LOI Number:                               | NA       | Indian Bureau of Mines                                 |
| Date:                                     | NA       | भुवनेश्वर/Bhubaneswar                                  |



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

## 1.2: Land Ownership Details:

| S.N. | Village        | Taluka     | Area (Ha) | Plot no/<br>Khasra No | Type of<br>Land | Nature of Land          |
|------|----------------|------------|-----------|-----------------------|-----------------|-------------------------|
| 1    | Khandadhar R.F | Lahunipada | 199.814   |                       | Forest Land     | Government Waste Land र |
| 2    | Rantha         | Lahunipada | 0.862684  | 110,40                | Forest Land     | Government Waste Land   |
| 3    | Rantha         | Lahunipada | 4.78544   | 111,40                | Forest Land     | Government Waste Land   |
| 4    | Rantha         | Lahunipada | 2.49948   | 117,40                | Forest Land     | Government Waste Land   |
| 5    | Rantha         | Lahunipada | 4.38695   | 118,40                | Forest Land     | Government Waste Land   |
| 6    | Rantha         | Lahunipada | 4.49366   | 121,40                | Forest Land     | Government Waste Land   |
| 7    | Rantha         | Lahunipada | 2.40576   | 122,40                | Forest Land     | Government Waste Land   |
| 8    | Rantha         | Lahunipada | 8.37509   | 186,40                | Forest Land     | Government Waste Land   |
| 9    | Rantha         | Lahunipada | 7.3943    | 188,40                | Forest Land     | Government Waste Land   |
| 10   | Rantha         | Lahunipada | 1.59105   | 18940                 | Forest Land     | Government Waste Land   |
| 11   | Rantha         | Lahunipada | 1.82661   | 192,40                | Forest Land     | Government Waste Land   |
| 12   | Rantha         | Lahunipada | 16.0595   | 193,40                | Forest Land     | Government Waste Land   |
| 13   | Rantha         | Lahunipada | 7.42079   | 194,40                | Forest Land     | Government Waste Land   |
| 14   | Rantha         | Lahunipada | 6.0563    | 195,40                | Forest Land     | Government Waste Land   |
| 15   | Rantha         | Lahunipada | 0.867978  | 197,40                | Forest Land     | Government Waste Land   |

#### 1.3: Existing Lease:

| Date of Execution | 31.12.1968 |
|-------------------|------------|

## 1.3.1: Approval of earlier Mining Plan & Its Subsequent Review in Chronological Order:

|        |                                | D . +      | Peri      | od        | Type of Approved               |
|--------|--------------------------------|------------|-----------|-----------|--------------------------------|
| SI. No | Letter no.                     | Date       | From      | То        | Document                       |
| 1      | 314(3)98/MCCM@MP-2             | 13.10.1998 |           |           | Mining Plan                    |
| 2      | 314(3)2006-MCCM(CZ)/S-1        | 23.10.2006 | 2003-2004 | 2007-2008 | Scheme of Mining<br>Plan       |
| 3      | 314(3)2008-MCCM(CZ)/MS-26      | 05.03.2009 | 2008-2009 | 2012-2013 | Scheme of Mining<br>Plan       |
| 4      | FMCP/FM/43-ORI/BHU             | 25.10.2018 |           |           | Final Mine Closure<br>Plan     |
| 5      | MPM/FMM/06-ORI/BHU/2019-<br>20 | 01.10.2019 | 2018-19   | 2022-23   | Modification of<br>Mining Plan |

## 1.3.2: Partial Surrendered Area during Stages of Operations in Chronological Order:

| SI.<br>No. | Date       | Supplementary Surrender order<br>Letter Number       | Supplementary Lease<br>Deed Date                                          | Final Retained Area<br>over which current<br>Mining Plan is<br>Prepared ( ha) |
|------------|------------|------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 01.        | 22.07.2019 | <u>5252</u> /S&M, Bhubaneswar<br>III (B) SM-25/2012. | Supplementary lease deed with the State Government is yet to be executed. | 268.84 Ha.                                                                    |





Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

#### 1.3.3: Transfer of Lease Area Subsequent to Grant:

|                 |                                  |                                             |                       | Nature of                     | blocktransferred                                  |  |
|-----------------|----------------------------------|---------------------------------------------|-----------------------|-------------------------------|---------------------------------------------------|--|
| Sl. No.         | Transfer of lease<br>deed Number | Date of execution of<br>Transfer lease deed | Name of<br>Transferor | Granted<br>through<br>auction | othersthan through,<br>auction for captive<br>use |  |
| Not Applicable. |                                  |                                             |                       |                               |                                                   |  |

#### 1.3.4: Statutory Compliances:

#### 1.3.4.1: Environment Clearance:

| Applicable            | Yes                        |  |
|-----------------------|----------------------------|--|
| Letter No             | J-11015/1085/2007-IA.II(M) |  |
| Date                  | 11.06.2008                 |  |
| Validity              | 30.12.2038                 |  |
| ROM Mineral in tonnes | 1000000                    |  |

#### 1.3.4.2: SPCB Approvals:

| Letter No             | 9547/IND-II-NOC-4584 |  |
|-----------------------|----------------------|--|
| Approval of           | Consent to Establish |  |
| Date                  | 26.04.2007           |  |
| Validity              | 30.12.2038           |  |
| ROM Mineral in tonnes | 1000000              |  |

Consent to operate to be obtained after getting all statutory clearances.

#### 1.3.4.3: Forest Clearance:

Application for Stage-I forest clearance have been applied to MoEF & CC vide letter No. 2917/OMC/F&E/2020 dated 20.02.2020. A copy of the same is enclosed as Annexure-15. Stage —II forest clearance for belt conveyor route has been obtained from MoEF & CC vide letter No- 8-113/2000-FC (VoI-III) dated 06.12.2021.

| Applicable | Yes            |   |
|------------|----------------|---|
| Letter No  | Not Available. |   |
| Date       | Not Available  |   |
| Validity   | Not Available  |   |
| Area (Ha)  | 268.84 Ha.     | i |

#### 1.3.4.4: Land Acquisition Details:

| Total Area acquired/purchased so far | Nil |
|--------------------------------------|-----|
| Total Amount Paid (INR)              | Nil |

#### 1.3.5: Mine Location Details:

| Toposheet Number:     | F45N1 (73G/1),                  |
|-----------------------|---------------------------------|
| ropositeet Natifiber. | Attached Key Plan as Plate no-1 |
|                       |                                 |



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

## 1.3.5.1: Location of Boundary Pillars-(add additional Row for subsequent pillars):

|         |            |                                  |                                   |               | 115 97 0       |
|---------|------------|----------------------------------|-----------------------------------|---------------|----------------|
| SI. No. | Pillar No. | Pillar Latitude<br>(dd:mm:ss.ss) | Pillar Longitude<br>(dd:mm:ss.ss) | Easting       | Northing       |
| 1       | M L-A      | 21°46'54.64380"                  | 85°08'52.12745"                   | 308500.348121 | 2409829.486227 |
| 2       | ML-A1      | 21 °46′50.89922"                 | 85°08'52.23212"                   | 308501.973067 | 2409714.2781   |
| 3       | ML-A2      | 21°46'43.02926"                  | 85°08'52.45199"                   | 308505.385    | 2409472.146    |
| 4       | ML-A3      | 21°46'35.47052"                  | 85°08'52.66297"                   | 308508.657    | 2409239.589    |
| 5       | ML-A4      | 21°46'27.55031"                  | 85°08'52.88401"                   | 308512.085    | 2408995.911    |
| 6       | ML-A5      | 21°46'19.78416"                  | 85°08'53.10071"                   | 308515.445597 | 2408756.97295  |
| 7       | ML-B       | 21°46'12.07986"                  | 85°08'53.31592"                   | 308518.786696 | 2408519.93778  |
| 8       | ML-B1      | 21°46'11.90736"                  | 85°08'48.19212"                   | 308371.519197 | 2408516.39827  |
| 9       | ML-B2      | 21°46'11.76661"                  | 85°08'43.99557"                   | 308250.90274  | 2408513.51663  |
| 10      | ML-B3      | 21°46'11.42757"                  | 85°08'33.88464"                   | 307960.295762 | 2408506.57945  |
| 11      | M L-B4/M   | 21°46'11.10132"                  | 85°08'24.14307"                   | 307680.304163 | 2408499.9131   |
| 12      | M jD3      | 21°45'12.52483"                  | 85°08'17.18929"                   | 307458.811498 | 2406700.67926  |
| 13      | ML-D4      | 21°45'12.64531"                  | 85°08'27.29882"                   | 307749.331131 | 2406700.88809  |
| 14      | ML-D5      | 21°45'12.76646"                  | 85°08'37.51892"                   | 308043.027818 | 2406701.08448  |
| 15      | ML-D6      | 21°45'12.88968"                  | 85°08'47.80550"                   | 308338.634774 | 2406701.32679  |
| 16      | M L-E      | 21°45'13.26966"                  | 85°08'55.47307"                   | 308559.084627 | 2406710.37327  |
| 17      | ML-E1      | 21°45'23.12839"                  | 85°08'55.34083"                   | 308558.917614 | 2407013.64281  |
| 18      | ML-F       | 21°45'31.12078"                  | 85°08'55.23496"                   | 308558.82126  | 2407259.50057  |
| 19      | M L-G      | 21°45'31.19763"                  | 85°09'01.95777"                   | 308752.006914 | 2407259.55096  |
| 20      | ML-G1      | 21°45'34.66136"                  | 85°09'01.88196"                   | 308751.104007 | 2407366.11076  |
| 21      | ML-G2      | 21°45'44.25862"                  | 85°09'01.66485"                   | 308748.399957 | 2407661.36753  |
| 22      | ML-G3      | 21°45'54.26981"                  | 85°09'01.43829"                   | 308745.577537 | 2407969.359    |
| 23      | ML-G4      | 21°46'03.81409"                  | 85°09'01.22287"                   | 308742.903695 | 2408262.98586  |
| 24      | ML-G5      | 21°46'13.36836"                  | 85°09'01.00819"                   | 308740.255624 | 2408556.91976  |
| 25      | ML-G6      | 21°46'23.21792"                  | 85°09'00.78701"                   | 308737.530282 | 2408859.93822  |
| 26      | ML-G7      | 21°46'32.92000"                  | 85°09'00.56876"                   | 308734.835454 | 2409158.4198   |
| 27      | ML-G8      | 21°46'42.61844"                  | 85009'00.35035"                   | 308732.135332 | 2409456.78978  |
| 28      | ML-H       | 21°46'51.75200"                  | 85°09'00.14520"                   | 308729.608467 | 2409737.78093  |
| 29      | ML-M1      | 21°46'05.19006"                  | 85°08'24.20928"                   | 307680.016709 | 2408318.07739  |
| 30      | ML-N       | 21°46'00.53083"                  | 85°08'24.26422"                   | 307679.869313 | 2408174.75418  |
| 31      | ML-N1      | 21°46'00.39278"                  | 85°08'16.98060"                   | 307470.558777 | 2408173.02919  |
| 32      | ML-0       | 21°46'00.26986"                  | 85°08'10.43142"                   | 307282.353775 | 2408171.51793  |
| 33      | ML-01      | 21°45'51.10107"                  | 85°08'10.61172"                   | 307284.131315 | 2407889.45001  |
| 34      | M L-02     | 21°45'35.75736"                  | 85°08'10.91281"                   | 307287.088635 | 2407417.4177   |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| SI. No. | Pillar No. | Pillar Latitude<br>(dd:mm:ss.ss) | Pillar Longitude<br>(dd:mm:ss.ss) | Easting       | Northing       |
|---------|------------|----------------------------------|-----------------------------------|---------------|----------------|
| 35      | ML-03      | 21°45'27.91478"                  | 85°08'11.06680"                   | 307288.603548 | 24071769.14968 |
| 36      | ML-04      | 21°45'20.31110"                  | 85°08'11.21574"                   | 307290.062412 | 2406942.28095  |
| 37      | ML-P       | 21°45'12.45558"                  | 85°08'11.37095"                   | 307291.608513 | 2406700.56428  |

### 1.3.6: Owner/Nominated Owner Details:

| Name                  | PAN of<br>Nominated<br>Owner | Address of Nominated<br>Owner                                                   | Mobile<br>Number | E-mail                                           | Please attach Minutes of Board Resolution in case of Nominated Owner |
|-----------------------|------------------------------|---------------------------------------------------------------------------------|------------------|--------------------------------------------------|----------------------------------------------------------------------|
| BALWANT<br>SINGH, IAS | BFMPS6439D                   | Managing Director<br>OMC HOUSE,POST BOX NO-<br>34,BHUBANESWAR ODISHA-<br>751001 | 9777355594       | info@odishamining.in<br>,<br>md@ odishamining.in | Attached in<br>Annexure-2                                            |

## 1.3.7: Qualified Person Details as per M (OAHCEM) CR, 2016:

| Sr.<br>No | Prefix | Name                     | PAN of QP  | Address                                                      | Mobile no. | Qualification                      | Experience<br>in years as<br>prescribed<br>under the<br>rule | Email                                                   |
|-----------|--------|--------------------------|------------|--------------------------------------------------------------|------------|------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|
| 01.       | Mr.    | PRADIP<br>KUMAR<br>SAHOO | BPMPS0920K | OMC HOUSE,POST<br>BOX NO-<br>34,BHUBANESWAR<br>ODISHA-751001 | 9439277649 | B.TECH IN<br>MINING<br>ENGINEERING | 14                                                           | pksahoo2@<br>odishamining.in<br>pmc@<br>odishamining.in |
| 02.       | Mr.    | RABINDRA<br>MOHANTY      | BFOPM2802N | OMC HOUSE,POST<br>BOX NO-<br>34,BHUBANESWAR<br>ODISHA-751001 | 7978567771 | M.SC IN<br>GEOLOGY                 | 16                                                           | rmohanty@<br>odishamining.in<br>pmc@<br>odishamining.in |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd.

MINES

## **Chapter 2**

## **GEOLOGY & EXPLORATION**

#### 2.1: GEOLOGY:

#### 2.1.1: Topography:

| Terrain | Undulating |
|---------|------------|
|         |            |

#### Relief:

| Highest Level (m) from MSL | Lowest Level (m) from MSL | Average Level (m) from MSL |
|----------------------------|---------------------------|----------------------------|
| 1015                       | 705                       | 860                        |

| Drainage Pattern | Order of Stream | Minimum Distance of Stream from Lease Area (m) |
|------------------|-----------------|------------------------------------------------|
| Dendritic        | Order 1         | 2500metre (Khandadhar)                         |

## 2.1.2: Details of Physiographic features and Infrastructures available in and around the lease/ block area:

| Description                           | Location if<br>existing<br>Within the<br>lease/block<br>area. | Distance from boundary periphery in kms, if existing outside the lease/block area. (within 5.00Kms) | Remark if any                                                                                                                                                                                          |
|---------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| River/Nallah/Reservoir                | Khandadhar<br>Nala                                            | 2.5 Kms                                                                                             | The drainage system of the area is mostly influenced by a perennial nala known as Khandadhar nala which flows due north and lies 2.5 km west of the lease area which is the tributary of Kurarhi nadi. |
| Public roads (Tar road,<br>cart road) | There is no public road within the lease area.                | 0.1 Kms                                                                                             | The lease area is is connected to Sareikala road at a distance of 100 mts from lease boundary.                                                                                                         |
| Railway track                         | There is no railway line within the lease area.               |                                                                                                     | <b></b>                                                                                                                                                                                                |



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

| Description                                                        | Location if existing Within the lease/block area. | Distance from boundary periphery in kms, if existing outside the lease/block area. (within 5.00Kms) | Remark if any        |
|--------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|
| Human settlements                                                  | Rantha                                            | Tilkuda,Usukuda<br>,Sareikal                                                                        |                      |
| Archaeological monuments/ places of worships/public utilities etc. | Nil                                               | Nil                                                                                                 |                      |
| Wild life sanctuaries/<br>national parks                           | Nil                                               | Nil                                                                                                 |                      |
| Coastal Regulation<br>Zone (CRZ)                                   | Nil                                               | Nil                                                                                                 |                      |
| Power transmission lines/telephone lines                           | Nil                                               | Nil                                                                                                 |                      |
| Firing range                                                       | Nil                                               | Nil                                                                                                 |                      |
| Ordinance factory                                                  | Nil                                               | Nil                                                                                                 |                      |
| grazing land/ burial<br>ground or cremation<br>ground              | Nil                                               | Nil                                                                                                 |                      |
| Any other specify                                                  | Hutments                                          | 0 Kms.                                                                                              | Encroached Hutments. |

| Particulars                  | Distance from lease boundary in kms                                            |  |  |  |
|------------------------------|--------------------------------------------------------------------------------|--|--|--|
| Nearby village               | Tilkuda,Usukuda,Sareikal, Rantha                                               |  |  |  |
| Nearest Railway station      | Barsuan (Rourkela-Barsuan route) at a distance of about 18 km from lease area. |  |  |  |
| Nearest Port                 | Pradeep (300 kms distance from lease area)                                     |  |  |  |
| Distance of SH/NH from lease | NH-215 (about 18kms distance from lease                                        |  |  |  |
| area                         | area)                                                                          |  |  |  |

#### 2.1.3: Regional Geology:

Geology of the M.L area is a part and parcel of the Singhbhum – Sudargarh – Bonai iron ore belt, also known as the Jamda – Koira valley and is represented by a narrow NNE plunging folded synclinorium of 60 Km long and 25 Km in width. The Precambrian horse-shoe shaped belt is well known for its



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd To Mining

large reserves of iron and manganese ore. The general strike is northeast to northerly and dipsare moderate to the west. The western limb of the synclinorium is slightly overturned.

The Precambrian rocks of this region comprising of basic lava, tuffs, banded it on formation (BLF) shales, conglomerates and sandstones etc. were mapped for the first time by Jones (1934). The stratigraphic succession established by Jones has largely been modified later by Dunn (1940). Based on detailed mapping in the northern parts of the belt, Dunn recognized a new group lying unconformable over the Iron Ore Group, which he named as the "Kolhan Group". The rock types of the area belonging to the Kolhan Group lies to the north of Nuamundi in Bihar.

The most acceptable litho – stratigraphic succession for the belt was proposed by Murthy and Acharya (1975). They identified different depositional facies and proposed a more detailed stratigraphic succession. They also proposed a new name the "Koira Group" to the rocks of Bonai-Sundargarh belt. The stratigraphy suggested by Murthy and Acharya (1975) has been given in the table below:

Kolhan

Sandstone, Conglomerate -

Group

Breccia

------ Unconformity ------

Mixed

Basic Lava, tuffs and tuffites of Volcanic facies iron, manganese,

Facies

lenses of iron formation, chert, small lenses of sandy and silty shale

Formation

of clastic facies

Banded

Banded shale member

Shale

Black shale member

Formation

Black shale-chert member

Koira

Group

Banded

Finely banded Jaspilite member

Iron

Coarsely banded Jaspilite member

Formation

Tuffaceous shale

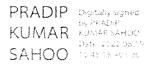
Basic lava

Volcanic

Basal sandstone, Gritty sandstone,

Formation

Quartzite Conglomeratic at places with inter-bedded lava at top


------ Unconformity ------

Singhbhum Granite with enclaves of older meta-basic and meta-sedimentary rocks.

#### 2.1.4: Local Geology & Structure:

#### 2.1.4.1: Local Geological Set-Up:

M.L area applied for retaining displays an undulated topography with hillocks and valleys. Lithounits such as Laterite, BHJ / BHQ / Chert and Shale are found to occur in the area.





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd=

Nalas flowing in the area are structurally controlled. Both E-W and N-S folding are prominent with plunging direction uniformly towards N100E or S100W. In general, reversal of plunge is occasionally noted. The axial plane cleavages of the mega folds have acted uniformly as a prominent passage for stream flow. Folds of micro and mega scale are very common. Major fault is not seen in the area. Joints are numerous and developed due to competency of the rock.

The lithological succession as observed within the lease area is as follows:

Soil & alluvium

Recent

Laterite

Iron Ore Group

Iron Ore

BHJ / BHQ / Chert Shale.

#### 2.1.4.2: Structure:

The structural study of the area is very well achieved while taking traverse along the nala. All along, the BHJ is exposed. The nala is fully structurally controlled. Both E-W and N-S folding is very prominent with plunge direction uniformly towards N10°E to N10°W. Reversal of plunge is occasional marked. The axial plane cleavage of the mega folds has acted uniformly as a prominent Passage for stream flow. Once it follows the axial plane, it passes through the bedding plane making an obtuse kink in the flow direction. Because of very tight folding the overall appearance of the nala is very straight. Similar parallel streams have been formed as a result of the structure only. The general strike of the litho units, particularly BHJ, varies from N20°W to N15°E with dip varying from 20° to 60° towards east and west respectively.

Folds of both micro and mega scale are very common and book examples of various types of folds are very common. Faults of major scale are rarely seen. Joints are numerous and developed due to competency of the rock.

The structure has helped to decipher the stratigraphic sequence of the area. But at places the gradational contact caused difficulty in delineating the top and bottom criteria. However the Shale exposed in the area bears a gradational contact with the Iron ore bodies. Sometimes BHJ occur as undigested patches within the Iron ore bodies.

## 2.1.4.3: Lithology, Petrographic & Mineralogical Description for Major, Associated & Indicator Minerals:

The different litho units of Rantha Iron Ore Mine has been given below:

BHJ: The most fascinating structural imprints are very well reflected in the BHJ units exposed all along the Nala sections where the top formations have been eroded out. Because of the folded structure BHJ has been observed at the crest of the mounds at place. Iron ore bodies overlie the BHJ in the east and to the west ferruginous shale overlies the BHJ.

Shale: The shale occurring to the west of the leasehold area is ferruginous in nature and bears a gradational contract with Iron ore bodies at places. The Northern part is latertised. The colour



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd 5

depth grayish white and hard sometimes confused with hard chert are also observed. Tufaceous shale of light green colour is also seen in the lease hold.

Iron Ore Bodies: Mostly soft laminated Iron ore occur above the BHJ and at it times it also bears a gradational relationship with the BHJ, along the nala sections due to crestal part of the fold have been easily ended out giving a deep cutting. Soft laminated ore mostly occupies the crestal part of the mounds. Hard massive ore have not been encountered so far. The friable nature of ore and undigested BHJ chunks in them devalue the deposit for its exploitation. On the surface either it is covered by soil or at places lateritised with lot of lemonite in it.

#### Type of ores

Based on the field visa-a-vise macroscopic characters the iron ore in this area are classified as:

- i. Laminated or biscuity ore
- ii. Powdery ore or blue dust iii.
- iii. Conga ore
- iv. Recemented ore and
- v. Lateritic ore

The origin of different varieties of iron ore such as lamininated, biscuity, shaly ore and conga area the products of secondary enrichment in BHQ and BHJ group of rocks .The process is brought out by three ways.

- 1. Leaching of silica in solution and its removal causing enrichment of iron oxide in the process. 2. Segregation of iron ore oxide at favorable areas by sub-surface water to fill in the voids created by removal of silica.
- 3. Partial replacement of silica by Jasper and iron oxide from the mineralized solution.

Different types of ore were produced due to varying degree of leaching, enrichment and replacement that took place in BHQ and BHJ formation with the aid of underground meteoric water.

#### 2.1.4.4: Mode of Occurrence& Controls of Mineralization:

Numerous large deposits of rich Iron Ores in the Bonai-Keonjhor belt occur predominantly in association with iron formation and with adjoining ferruginous shale/chert. The iron ore deposits are generally exposed at the surface occupying hilltop and valley slope region. The ore bodies occur in the form of regular and continuous beds. These beds are conformably disposed in relation to other members of the sequence and show remarkable structural concordance. The ore bodies nevertheless occur as detached masses separated by barren saddles with irregular boundaries.

The deposits largely composed of hematite while the other distinct type of deposit occurs nearly towards the base of the banded iron formation around Rantha area comprising of hematite,





**Rantha Iron Ore Mine** 

Odisha Mining Corporation Ltd

magnetite and martite. The ore bodies proceed downwards into lower grade ores and finally into the original bedrock (BHJ).

The iron ore resources in this belt are associated either directly or indirectly with the bedded rocks, chemically precipitated banded iron formation (BIF) and fine clastic (tuffaceous shale). This region is well endowed with resource base of iron ore both in terms of quantity and quality.

The iron ore bodies mostly occur as detached masses with irregular boundaries towards the top of the banded iron formation and shale. The occurrence of detached masses may be due to cross fold or cross-faulted natures of the formations in the region.

The deposits are confined to hilltops often extending some considerable distance along the flanks as well. The other types less widely distributed are the laminated and biscuity ore at the outskirt of the banded iron formation or ferruginous shale horizon. These ore bodies in fact are mostly confined to the crest and trough zones of the folds. It is often observed that conglomeratic conga ore is uniformly distributed as blankets over this laminated variety in some areas. The powdery ore known as blue dust is traced as pockets within the other ore bodies. The recemented ore another important zone, however, runs for more than lkm in length has been observed.

#### 2.1.4.5: Extent of Weathering/ Alteration:

It is difficult to inherent that banded iron-formation (BIF) to produce representative information. The qualitative effects of weathering in BIF, and the progressive stages that lead to iron enrichment are not hard to follow, but to establish even semi-quantitative data is difficult. In general, the range of minerals found in BIF is not large. Even with the variation imposed by metamorphism, it is possible to limit discussion to a handful of mineral groups—silica, iron oxides and silicates.

#### 2.1.4.6: Nature/Form of Mineral:

The nature/ form of mineral of the Rantha Iron ore lease areas are Lump, Fines and Friable.

#### 2.1.4.7: Extent of Mineralization:

The different litho units of Rantha Iron Ore lease is given below:

Iron ore is associated with the following litho units and covers about 65-70% area. The rocks bearing iron ore are of various types are as follows,

#### a. Lateritic Iron Ore:

Lateritic iron ore in the ML is the lateritised product of hard/ soft laminated iron ore. Thus, the same structures as found in the parent rocks could also be seen in this rock types.

#### b. Soft Laminated Ore (SLO):

It is found in most of the quarries. It is overlain by ferruginous shale, laterite/soil and iron ore float. Considerable thickness of SLO has been encountered in the boreholes drilled in the area.

c. Hard Massive Ore (HMO)/Hard Laminated Ore (HLO):





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

1000

4> HMO in the ML area is highly jointed and has moderate dip towards north/west direction. To smaller in-situ HLO patches are found within the Laterised HLO exposures in the NW quadrant ON COUNT OF INDIP the ML. the HLO blocks have moderate dip towards the directions of north.

#### d. Blue Dust:

रेत महर्तर It occurs at some selective patches in the area. The only silica available has been leached out leaving behind hematite grains to give rise to blue dust.

#### 2.1.4.8: Deposit Type (as per MEMC Rule):

As per Mineral (Evidence and Content) Rule'2015, the Rantha Iron Ore Mine is Bedded Stratiform and tabular deposit of regular habit.

Strike / Trend of the Ore Body

: N200 W to N 150E

Amount of dip of Orebody

: 20<sup>0</sup> to 60<sup>0</sup> E and West

Dip Direction of the Ore Body

: Westerly and Easterly

Plunge of Mineral Body (degree) (if any)

: Nil

Direction of plunge

: NA

#### 2.2: Exploration:

## 2.2.1: Summary of the Previous Exploration (for fresh grant) / During Last Plan Period (For existing leases):

Due to want of forest clearance permission the exploration proposal has not been initiated.

#### 2.2.1.1: Geological Mapping:

| Sl. No | Year           | Scale | Area Covered |
|--------|----------------|-------|--------------|
| 1      | 2018-19        | Nil   | · Nil        |
| 2      | 2019-20        | Nil   | Nil          |
| 3      | 2020-21        | Nil   | Nil          |
| 4      | 2021-22        | Nil   | Nil          |
| 5      | 2022-23( As on | Nil   | Nil          |
| ر      | 30.06.2022)    | 1411  | 1 1 1        |

#### 2.2.1.2: Airborne Geophysical Survey: Nil.

|            |                   |             |                 |                          |    | titude | Long | Longitude |  |
|------------|-------------------|-------------|-----------------|--------------------------|----|--------|------|-----------|--|
| SI.<br>No. | Type of<br>Survey | Spacing (m) | Total line (km) | Area Covered<br>(Ha/km²) | То | From   | То   | From      |  |
|            | Nil.              |             |                 |                          |    |        |      |           |  |

#### 2.2.1.3: Ground Geophysical Survey: Nil

|         |                   |                |                    |                          | La | atitude | Lo | ngitude |
|---------|-------------------|----------------|--------------------|--------------------------|----|---------|----|---------|
| SI. No. | Type of<br>Survey | Spacing<br>(m) | Total line<br>(km) | Area Covered<br>(Ha/km2) | То | From    | То | From    |
|         | NIL.              |                |                    |                          |    |         |    |         |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

#### 2.2.1.4: Geochemical Survey: Nil.

|         |                |               |                | Area Covered       |
|---------|----------------|---------------|----------------|--------------------|
| Sl. No. | Type of Sample | No of Samples | Analysisreport | (Ha/km²)/> or NOTA |
|         | A              | ्त सह         |                |                    |

#### 2.2.1.5: Pitting: Nil.

|     | N1               | Nil.  |
|-----|------------------|-------|
|     | Number of pits * | INII. |
| - 1 |                  |       |

#### 2.2.1.6: Trenching: Nil.

| SI.<br>No. | Year | Pit ID | Length<br>of Pit<br>(m) | Width<br>of Pit<br>(m) | Depth<br>of Pit<br>(m) | Depth<br>(from) | Depth(to) | Running<br>meters | Litho<br>units<br>exposed | Name of<br>the<br>radical | Av.<br>Grade<br>(in %) | Latitude | Longitue |
|------------|------|--------|-------------------------|------------------------|------------------------|-----------------|-----------|-------------------|---------------------------|---------------------------|------------------------|----------|----------|
|            | Nil. |        |                         |                        |                        |                 |           |                   |                           |                           |                        |          |          |
|            |      | No     | o. of tren              | ches                   |                        | Nil             |           |                   |                           |                           |                        |          |          |

#### 2.2.1.6.1: Spacing: NA

| Min (m) | Avg (m) |  |
|---------|---------|--|
|         |         |  |

| SI. No. | Year | Trench ID | Length of<br>Trench (m) | Width of<br>Trench (m) | Depth of<br>Trench (m) | Depth(from) | Depth(to) | Running<br>meters | Litho units<br>exposed | Name of the<br>radical | Av.grade | Latitude(fro<br>m) | Longitude<br>(from) | Latitude( to) | Longitude<br>(to) |
|---------|------|-----------|-------------------------|------------------------|------------------------|-------------|-----------|-------------------|------------------------|------------------------|----------|--------------------|---------------------|---------------|-------------------|
|         | Nil. |           |                         |                        |                        |             |           |                   |                        |                        |          |                    |                     |               |                   |

#### 2.2.1.7 Exploratory Drilling (Core/non-Core): Nil

|           |      | Core holes         |                                   | Non-core (RC/DTH) |                                   | Grand total     |                    | Attach<br>sheet of | log  <br>each                    |    |
|-----------|------|--------------------|-----------------------------------|-------------------|-----------------------------------|-----------------|--------------------|--------------------|----------------------------------|----|
| SI.<br>No | Year | Exploration agency | Number of<br>boreholes<br>drilled | Total<br>meter    | Number of<br>boreholes<br>drilled | Total<br>mteres | Total<br>boreholes | Total<br>meters    | borehole<br>csv/excel<br>format. | in |
|           | Nil. |                    |                                   |                   |                                   |                 |                    |                    |                                  |    |

#### 2.2.1.8: Exploratory Mining: Nil.

| Sl. No. | Pit/Adit ID | Length in Mtr | Width in Mtr | Depth in mtrs | Volume<br>(m³) |
|---------|-------------|---------------|--------------|---------------|----------------|
|         |             | NII.          |              |               |                |

#### 2.2.1.9: Sampling:

|            |                   | Number                     | Number of           | Loca     | ntion     | D 1            |  |  |  |
|------------|-------------------|----------------------------|---------------------|----------|-----------|----------------|--|--|--|
| SI.<br>No. | Type of<br>Sample | of<br>Samples<br>Collected | samples<br>analyzed | Latitude | Longitude | Remarks if any |  |  |  |
|            | Nil.              |                            |                     |          |           |                |  |  |  |



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

OF MINE

#### 2.2.1.10: Chemical Analysis:

| 2.2.1.     | .10: Chemical An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TO OF MINES |                         |                |                    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|----------------|--------------------|
| Sl.<br>No. | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minerals    | Radical with grade in % | Name of Agency | Type of Attachment |
| 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Nil.                    |                | E. Con Thinks      |
|            | Marie Control of the |             |                         |                | रित सार्व          |

#### 2.2.1.11: Petrology & Mineralogical Studies: Nil.

|         | Type of | Number of    | Number of       | Petrographic Study |
|---------|---------|--------------|-----------------|--------------------|
| Sl. No. | Sample  | Sample Drawn | Sample Analyzed | Report             |
|         |         | Nil.         |                 |                    |

#### 2.2.1.12: Beneficiation Studies: Not Applicable.

| Sl. No. | Type of Beneficiation | Number of Samples | Attach |
|---------|-----------------------|-------------------|--------|
|         |                       | Nil.              |        |

## 2.2.1.13: Bulk Density Study as per M (EMC) Rules, 2016 and SOP of CGPB:

Method adopted for calculating bulk density of ore and waste:

The bulk Density has been determined by M/s SUPCO India (Pvt). Ltd., a NABL accredited laboratory.

The international standard specifies two methods of determining the bulk density of Iron ore.

Method 1 is applicable to natural Iron ore and processed Iron ore having a nominal size of -100micron.

Method 2 is applicable to a natural Ironore and processed ores, regardless of size.

#### 2. Principle:

A test is introduced into a container of known volume until surface is level. The bulk density calculated as the ratio of the sample to the internal volume of the container.

Note 1 Constant mass is achieved when the difference in mass between two subsequent measurements become less than 0.05% of the initial mass the test sample.

In the case of method 2, the test sample shall have a minimum mass of 35 tonnes, the recommended mass being 50 tonnes.

Note 2 A test sample of mass 35 tonnes has a volume of approximately 14 m³ to 23.6 m³, according to the material.

#### 3. Apparatus:

General: The test apparatus shall comprise

- a) Ordinary laboratory equipment, such as hand tools and safety equipment.
- b) Small container,
- c) Large container, and
- d) A weighing device.

#### Method 1:

Small container, made of metal, cylindrical in form, and having an internal diameter of 400 mm ±2mm and an internal height of 400 mm ± 2mm (inner volume: approximately 0.05 m3). The container wall and bottom shall have sufficient thickness to ensure their rigidity during the test. The container shall be reinforced by a steel band around the outside periphery at the top, and shall have two handles, 1800



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

apart, attached to the outer surface by welding. A carriage or other suitable device may be provided to facilitate its transportation within the laboratory. The volume of the container shall be determined with a precision of 0, 1 using potable water of known density.

Weighing device, capable of weighing the test sample and test portions and having a sensitivity of 1/1000 or better.

#### Method: 2:

Large container, such as truck or railway wagon, of regular geometrical shape, with smooth inner surface of the walls and bottom, and in good general condition, the container shall have sufficient capacity to hold. When filled, a minimum of 10 t of test shall be 10 times the maximum particle size of the test portion.

Weighing device, preferably of platform type, capable of weighing the mass to be determined to a sensitivity of 1/200

Density determination

#### Method 1 - Small container:

Weigh the dried container and record the mass (mO) to the nearest 0.2 kg.

Fill the container with the sample of as-received, air dried material, using a proper shovel. Empty the shovel from a height not exceeding 50 mm above the surface of the material in the container. Fill the container carefully, in order to prevent evident segregation.

After filling the container to over flowing, draw a straight-edge across the top of the container to make the heaped surface level.

Transfer the filled container to the weighing device without loss of sample from the container, weigh the filled container and record the mass (m1) to the nearest 0.2 kg.

#### Method 2 – Large containers:

Measure the length, width and height of the container with a precision of  $\pm 0.5$  % and then calculate and record its volume (V). Weigh the empty container and record the mass (mO).

With the container on a level surface, discharge the sample into it manually or by mechanical means, taking care to avoid breakages or segregation of particles. Level off the upper surface across the top of the container, verifying by visual inspection and removing or pushing down any particles which would appear to obstruct the passage of a straight-edge if it were pulled across the top of the container.

Weigh the filled container and record the mass (m1).

Expression of Result

Calculation of the bulk density (Pap)

The bulk density, (Pap), expressed in kg/m³, is calculated from the following formula:

m1 - m0 -----

V

Where

(Pap) =

mO is the mass, in kilograms, of the empty container;

m1 is the mass, in kilograms, of the container plus sample;

V is the volume, in cubic meters, of the container.



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

The bulk density of the individual ore types as given below were taken as the in-situ densities of the respective ore type. It has been derived from the exploration report of Rantha Iron Ore Mines.

## Average Bulk Density of Different Ore Types

|     |            |                     |           | 7 OF 1915          |  |
|-----|------------|---------------------|-----------|--------------------|--|
| SI. | Nature of  | Mineral             | Number of | Bulk Density       |  |
| No. | Ore/OB     | iviiiletat          | samples   | Established (t/m³) |  |
| 01  |            | Ore ( Fe > 55% )    | 1         | 3.00               |  |
|     | Iron Ore   | Mineral             |           |                    |  |
| 02  | (Hematite) | Reject/Subgrade (Fe | 1         | 2.7                |  |
|     |            | between 45 – 55 %)  |           |                    |  |

Copy of report of bulk density test carried out by Mitra S.K, a NABL accredited lab is enclosed as Annexure 26.

#### 2.2.1.14: Area Covered under Exploration:

| Level of      | Area    | Area in Ha |         |  |
|---------------|---------|------------|---------|--|
| exploration   | Forest  | Non-       | area in |  |
| - Inprovation | TOTESE  | forest     | Ha.     |  |
| G-1           | 39.632  | 0          | 39.362  |  |
| G-2           | 165.724 | 0          | 165.724 |  |
| G-3           | 0       | 0          | 0       |  |
| G-4           | 63.484  | 0          | 63.484  |  |
| Area          |         |            |         |  |
| proved as     | 20      | 0          | 20.00   |  |
| Non-          | 20      |            | 20.00   |  |
| mineralized   |         |            |         |  |
| Area to be    |         |            |         |  |
| explored      | 0       | 0          | 0       |  |
| Total         | 268.84  | 0          | 268.84  |  |

## 2.2.2: Summary of the Previous Exploration (Before Last Plan Period):

(A) M/s Mining Associates Pvt. Limited (MAPL), Atwal Nagar, S.B. Gorai Road, Asansol - 713-301 West Bengal.

(iii)E mail addresses and phone no.

M/s Mining Associates Pvt. Limited (MAPL) –

Phone – (0341) 2220757, 2220758, 2205765

### 2.2.2.1: Geological Mapping:

|         |                  | T       |                   |
|---------|------------------|---------|-------------------|
| Sl. No. | Year             | Scale   | Area Covered (ha) |
| 01.     | Prior to 2018-19 | 1: 4000 | 268.84            |

2.2.2.2: Airborne Geophysical Survey: Not Applicable.

|                 | T       |         | , , , , , , , , , , , , , , , , , , , |              |          |           |  |
|-----------------|---------|---------|---------------------------------------|--------------|----------|-----------|--|
| SI.             | Type of | Spacing | Total line                            | Area Covered |          |           |  |
| No.             | Survey  | (m)     | (km)                                  | (ha)         | Latitude | Longitude |  |
| Not Applicable. |         |         |                                       |              |          |           |  |



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

## 2.2.2.3: Ground Geophysical Survey: Not Applicable.

| Sl. No.         | Type of Survey | Spacing (m) | Total line<br>(km) | Area<br>Covered (ha) | Latitude Longitude |  |  |  |  |
|-----------------|----------------|-------------|--------------------|----------------------|--------------------|--|--|--|--|
| Not Applicable. |                |             |                    |                      |                    |  |  |  |  |

## 2.2.2.4: Geochemical Survey: Not Applicable.

| Sl. No. | Type of Sample  | No of Samples |
|---------|-----------------|---------------|
|         | Not Applicable. |               |

#### 2.2.2.5: Pitting:

| SI.<br>No. | Pit ID          | Length of<br>Pit (m) | Width<br>of Pit<br>(m) | Depth of<br>Pit (m) | Litho<br>Unit<br>Expose<br>d | Litho<br>Unit<br>From (m) | Litho<br>Unit To<br>(m) | Average<br>Grade | Running<br>Meters (m) | Latitude | Longitu<br>de |
|------------|-----------------|----------------------|------------------------|---------------------|------------------------------|---------------------------|-------------------------|------------------|-----------------------|----------|---------------|
|            | Not Applicable. |                      |                        |                     |                              |                           |                         |                  |                       |          |               |

#### **2.2.2.6: Trenching:**

| Niconale and E.T.  | Spacing         |         |         |  |  |
|--------------------|-----------------|---------|---------|--|--|
| Number of Trenches | Min (m)         | Max (m) | Avg (m) |  |  |
| l l                | Not Applicable. |         |         |  |  |

## **Area Covered Under Trenching:**

#### Co-ordinates:

| Latitude | Longitude  |
|----------|------------|
| Not Ap   | pplicable. |

| SI.<br>No. | Trench ID       | Length<br>of<br>Trench<br>(m) | Width<br>of<br>Trench<br>(m) | Depth<br>of<br>Trench<br>(m) | Litho<br>Unit<br>Exposed | Average<br>Grade<br>(%) | Running<br>Meters<br>(m) | From<br>Longitude | From<br>Latitude | To<br>Latitude | To<br>Longitude |
|------------|-----------------|-------------------------------|------------------------------|------------------------------|--------------------------|-------------------------|--------------------------|-------------------|------------------|----------------|-----------------|
|            | Not Applicable. |                               |                              |                              |                          |                         |                          |                   |                  |                |                 |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

#### 2.2.2.7: Exploratory Drilling:

## 2.2.2.7.1:Core/Non-core Drilling:

|           |             |                                                                          |                                           |                | T                                        |               |                    |                                                                           |
|-----------|-------------|--------------------------------------------------------------------------|-------------------------------------------|----------------|------------------------------------------|---------------|--------------------|---------------------------------------------------------------------------|
|           | 1           |                                                                          | Core                                      | holes          | Non-core                                 | (RC/DTH)      | Gran               | d'total" wow                                                              |
| SI.<br>No | Year        | Exploration agency                                                       | Number<br>of Core<br>boreholes<br>drilled | Total<br>meter | Number<br>of DTH<br>boreholes<br>drilled | Total<br>mtrs | Total<br>boreholes | Attach log-<br>sheet of<br>each<br>borehole<br>in<br>csv/excel<br>format. |
| 1         | 2007-<br>08 | (i)M/s Mining<br>Associates Pvt.<br>Limited (MAPL),<br>Atwal Nagar, S.B. | 26                                        | 1003.55        | Nil                                      | Nil           | 26                 | Bore Hole<br>Log sheet<br>of collar,                                      |
| 2         | 2009-<br>10 | Gorai Road,<br>Asansol - 713301                                          | 29                                        | 852.85         | Nil                                      | Nil           | 29                 | assay and                                                                 |
| 3         | 2010-<br>11 | West Bengal.                                                             | 22                                        | 630.55         | Nil                                      | Nil           | 22                 | geology<br>files are<br>Attached                                          |
| The d     |             | irand Total                                                              | 77                                        | 2486.95        | Nil                                      | Nil           | 77                 | in<br>Annexure-<br>23.                                                    |

The details of all the bore holes explored at Rantha Iron Ore Mines as on 30.06.2022 have been attached in Annexure-23.

## 2.2.2.8: Exploratory Mining: Not Applicable.

| SI. No. | Pit ID          | Volume (m³) |
|---------|-----------------|-------------|
|         | Not Applicable. |             |

### 2.2.2.9: Sampling:

| SI. No. | Type of    | Number of | Area    | Latitude    | Longitude  | Remarks |
|---------|------------|-----------|---------|-------------|------------|---------|
|         | Sample     | Samples   | Covered |             |            |         |
|         |            |           | (ha)    |             |            |         |
| 1       | Drill core | 31        | 1       | 2407888.014 | 308366.794 |         |
| 2       | Drill core | 44        | 1       | 2407988.049 | 308366.806 |         |
| 3       | Drill core | 36        | 1       | 2408088.049 | 308266.806 |         |
| 4       | Drill core | 31        | 1       | 2408088.014 | 308166.793 |         |
| 5       | Drill core | 38        | 1       | 2407885.137 | 308266.806 |         |
| 6       | Drill core | 18        | 1       | 2407988.049 | 308266.806 |         |
| 7       | Drill core | 41        | 1       | 2407788.014 | 308364.708 |         |
| 8       | Drill core | 42        | 1       | 2407988.049 | 308166.806 |         |
| 9       | Drill core | 21        | 1       | 2407888.014 | 308166.794 |         |
| 10      | Drill core | 15        | 1       | 2407788.014 | 308266.794 |         |
| 11      | Drill core | 31        | 1       | 2407685.809 | 308362.699 |         |
| 12      | Drill core | 30        | 1       | 2407688.014 | 308466.794 |         |
| 13      | Drill core | 25        | 1       | 2407788.014 | 308466.794 |         |
| 14      | Drill core | 42        | 1       | 2407688.05  | 308569.911 |         |

PRADIP Digitally signed by PHADIP KUMAR KUMAR SAHDO SAHOO 10/46/16 - 03/38

RABINDRA DE PASITORA MOHANTY Date 1821 de 19

Digitally signed

11 48 43 +09 30



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| Sl. No. | Type of Sample | Number of<br>Samples | Area<br>Covered<br>(ha) | Latitude                   | Longitude                | Remarks       |
|---------|----------------|----------------------|-------------------------|----------------------------|--------------------------|---------------|
| 15      | Drill core     | 25                   | 1                       | 2407500.040                | 200466.000               |               |
| 16      | Drill core     | 21                   | 1                       | 2407588.049                | 308466.806               |               |
| 17      | Drill core     | 56                   | 1                       | 2407588.049                | 308366.794               | The same and  |
| 18      | Drill core     | 35                   | 1                       | 2407588.014                | 308566.876               | BY CONT OF IM |
| 19      | Drill core     | 32                   | 1                       | 2407488.014                | 308466.794               | ्रित सार      |
| 20      | Drill core     | 49                   | 1                       | 2407508.176                | 308366.794               |               |
| 21      | Drill core     | 49                   | 1                       | 2407588.015                | 308666.794               |               |
| 22      | Drill core     | 47                   |                         | 2407488.014                | 308562.107               |               |
| 23      | Drill core     | 39                   | 1                       | 2407488.015                | 308664.823               |               |
| 24      | Drill core     | 64                   | 1                       | 2407688.015                | 308666.794               |               |
| 25      | Drill core     | 44                   | 1                       | 2407888.049                | 308466.806               |               |
| 26      | Drill core     | 22                   | 11                      | 2407988.049                | 308468.451               |               |
| 27      | Drill core     | 29                   | 1                       | 2407788.05                 | 308555.806               |               |
| 28      | Drill core     | 40                   | 1                       | 2407866.373                | 307768.947               |               |
| 29      | Drill core     | 38                   | 1                       | 2407670.049                | 307772.794               |               |
| 30      | Drill core     | 47                   | 1                       | 2407677.013                | 307579.794               |               |
| 31      |                |                      | 1                       | 2407466.571                | 307537.528               |               |
| 32      | Drill core     | 40                   | 1                       | 2407868.746                | 307560.646               |               |
| 33      | Drill core     | 37                   | 1                       | 2407388.049                | 307928.807               |               |
|         | Drill core     |                      | 1                       | 2407278.618                | 307528.274               |               |
| 34      | Drill core     | 22                   | 1                       | 2407233.049                | 307724.807               |               |
| 35      | Drill core     | 19                   | 1                       | 2407426.049                | 307737.807               |               |
| 36      | Drill core     | 13                   | 1                       | 2407286.704                | 307967.804               |               |
| 37      | Drill core     | 24                   | 1                       | 2407088.013                | 307366.815               |               |
| 38      | Drill core     | 13                   | 1                       | 2407905.727                | 307409.648               |               |
| 39      | Drill core     | 17                   | 4                       | 2407262.199                | 307348.815               |               |
| 40      | Drill core     | 20                   | 4                       | 2407288.049                | 308166.807               |               |
| 41      | Drill core     | 36                   | 4                       | 2407700.049                | 308168.806               |               |
| 42      | Drill core     | 19                   | 4                       | 2407088.013                | 307566.795               |               |
| 43      | Drill core     | 11                   | 4                       | 2407088.013                | 307767.199               |               |
| 44      | Drill core     | 26                   | 4                       | 2407088.014                | 307966.795               |               |
| 45      | Drill core     | 54                   | 4                       | 2407343.165                | 308128.802               |               |
| 46      | Drill core     | 14                   | 4                       | 2407088.014                | 308166.795               |               |
| 47      | Drill core     | 20                   | 4                       | 2407288.174                | 308367.664               |               |
| 48      | Drill core     | 14                   | 4                       | 2407502.013                | 307335.794               |               |
| 49      | Drill core     | 15                   | 4                       | 2407869.122                | 308072.485               |               |
| 50      | Drill core     | 16                   | 4                       | 2407088.014                |                          |               |
| 51      | Drill core     | 24                   | 4                       | 2407088.014                | 308366.795               |               |
| 52      | Drill core     | 29                   | 4                       | 2407088.014                | 308550.705               |               |
| 53      | Drill core     | 8                    | 4                       |                            | 308566.849               |               |
| 54      | Drill core     | 12                   | 4                       | 2407670.266<br>2407765.014 | 307377.881               |               |
| 55      | Drill core     | 36                   | 4                       |                            | 308088.794               |               |
| 56      | Drill core     | 23                   | 4                       | 2407291.343                | 308717.016               |               |
| 57      | Drill core     | 8                    | 4                       | 2406888.049<br>2407976.049 | 308366.807<br>308065.806 |               |

PRADIP Digitally aigned by PRADIP KUMAR KUMAR SAHOO Date 2021 08:10

Digitally signed RABINDRA BURABRIDA MOHANTY DATA BOOLER NO 10 48 48 400 20



Odisha Mining Corporation Ltd Rantha Iron Ore Mine

| CI No   | T f        | N         | T .     |             | <i></i>    | 314 03 1X         |            |
|---------|------------|-----------|---------|-------------|------------|-------------------|------------|
| Sl. No. | Type of    | Number of | Area    | Latitude    | Longitude  | w Remarks         | <i>-</i>   |
|         | Sample     | Samples   | Covered |             | 1/5        |                   | (S)        |
|         | D 111      | 40        | (ha)    |             | <b>F</b> § | L LIMY            | NE.        |
| 58      | Drill core | 40        | 4       | 2406888.014 | 308550\686 |                   | £          |
| 59      | Drill core | 40        | 4       | 2407883.049 | 307968.806 | CONT. OF MOIN     | <u>ځ</u> * |
| 60      | Drill core | 51        | 4       | 2407891.05  | 308565.806 | रेक सार्वर        |            |
| 61      | Drill core | 43        | 4       | 2407783.487 | 308658.096 | The same a second |            |
| 62      | Drill core | 14        | 4       | 2406888.014 | 308166.795 |                   |            |
| 63      | Drill core | 43        | 4       | 2407888.05  | 308666.806 |                   |            |
| 64      | Drill core | 6         | 4       | 2408251.014 | 307998.793 |                   |            |
| 65      | Drill core | 44        | 4       | 2406709.937 | 308369.171 |                   |            |
| 66      | Drill core | 22        | 4       | 2406888.049 | 307966.807 |                   |            |
| 67      | Drill core | 6         | 4       | 2408306.014 | 308399.793 |                   | $\neg$     |
| 68      | Drill core | 42        | 4       | 2408401.143 | 308183.914 |                   |            |
| 69      | Drill core | 10        | 4       | 2408230.049 | 307798.806 |                   |            |
| 70      | Drill core | 3         | 4       | 2408089.05  | 308576.806 |                   |            |
| 71      | Drill core | 12        | 4       | 2408485.049 | 307964.805 |                   |            |
| 72      | Drill core | 5         | 4       | 2408495.049 | 308355.805 |                   | $\neg$     |
| 73      | Drill core | 11        | 4       | 2408090.049 | 308471.806 |                   | $\dashv$   |
| 74      | Drill core | 12        | 4       | 2406708.362 | 308164.088 |                   |            |
| 75      | Drill core | 17        | 4       | 2408498.049 | 308141.805 |                   | $\neg$     |
| 76      | Drill core | 28        | 4       | 2408106.143 | 308384.718 |                   | $\dashv$   |
| 77      | Drill core | 16        | 4       | 2407988.014 | 308574.766 |                   | $\dashv$   |

#### 2.2.2.10: Chemical Analysis:

| SI.<br>No. | Sample ID     | Minerals                                                  | Radical Analysis                 | ("Fe" range in %)  |
|------------|---------------|-----------------------------------------------------------|----------------------------------|--------------------|
|            | RNT01/1 to 31 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S | Fe: 50.68                        | 3 to 63.62         |
| 1          |               |                                                           | SIO <sub>2</sub> : 0.37 to 7.73  | Al2O3: 3.07 to 16  |
|            |               |                                                           | P: 0.031 to 0.059                | S: 0.029 to 0.05   |
|            | RNT02/1 to 44 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S | Fe: 21.78                        | 3 to 64.58         |
| 2          |               |                                                           | SIO₂: 0.2 to 60.21               | Al2O3: 1 to 14.9   |
|            |               |                                                           | P: 0.025 to 0.059                | S: 0.025 to 0.059  |
|            | RNT03/1 to 36 | Fe ,SiO₂,Al₂O₃,P,S                                        | Fe: 30.37                        | ' to 63.56         |
| 3          |               |                                                           | SIO₂: 1.88 to 44.88              |                    |
|            |               |                                                           | P: 0.029 to 0.089                | S: 0.027 to 0.065  |
|            | RNT04/1 to 31 | Fe ,SiO₂,Al₂O₃,P,S                                        | Fe: 30.4                         | to 60.73           |
| 4          |               |                                                           | SIO₂: 1.29 to 50.6               | Al2O3: 3.5 to 21.5 |
|            |               |                                                           | P: 0.031 to 0.53                 | S: 0.029 to 0.048  |
|            | RNT05/1 to 38 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S | Fe: 46.95                        | to 64.53           |
| 5          |               |                                                           | SIO₂: 0.4 to 19.97               | Al2O3: 1.6 to 44.4 |
|            |               |                                                           | P: 0.022 to 0.048                | S: 0.029 to 0.047  |
|            | RNT06/1 to 18 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S | Fe: 34.29                        | to 64.68           |
| 6          |               |                                                           |                                  | Al2O3: 2.4 to 11.2 |
|            |               |                                                           | P: 0.036 to 0.048                | S: 0.029 to 0.048  |
| 7          | RNT07/1 to 41 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S | Fe: 36.98                        | to 63.36           |
|            |               |                                                           | SIO <sub>2</sub> : 1.05 to 33.71 | Al2O3: 1.55 to 15  |



Rantha Iron Ore Mine

2027-28)
Odisha Mining Corporation Ltd

| CI         |                 |                                                            |                                  |                                       |
|------------|-----------------|------------------------------------------------------------|----------------------------------|---------------------------------------|
| SI.<br>No. | Sample ID       | Minerals                                                   |                                  | ysis ("Fe" range in %)                |
|            |                 |                                                            | P: 0.029 to 0.138                | S: 0.022 to 0.022                     |
|            | RNT08/1 to 42   | Fe ,SiO <sub>2</sub> , Al <sub>2</sub> O <sub>3</sub> ,P,S | Fe: 3                            | 6.29 to 62.56                         |
| 8          |                 |                                                            | SIO <sub>2</sub> : 2.24 to 35.88 | Al203: 2:6 to 21-9                    |
|            |                 |                                                            |                                  | S: 0.027 to 0.048                     |
|            | RNT09/1 to 21   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  |                                  | 35.89 to 61.8                         |
| 9          |                 |                                                            |                                  | Al203: 3.6 to 25.7                    |
|            |                 |                                                            | P: 0.029 to 0.048                | S: 0.023 to 0.048                     |
|            | RNT10/1 to 15   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  |                                  | 32 to 56.99                           |
| 10         |                 |                                                            | SIO <sub>2</sub> : 1.28 to 48.64 | Al2O3:4 to 17                         |
|            |                 |                                                            | P: 0.03 to 0.047                 | S: 0.027 to 0.05                      |
|            | RNT11/1 to 31   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  |                                  | 3.48 to 61.59                         |
| 11         |                 |                                                            | SIO₂: 1.52 to 38.79              | Al2O3: 4 to 19.1                      |
|            |                 |                                                            | P: 0.029 to 0.045                | S: 0.024 to 0.048                     |
| 10         | RNT12/1 to 30   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  | Fe: 26                           | 6.08 to 62.43                         |
| 12         |                 |                                                            | SIO₂: 0.57 to 53.84              | Al2O3: 1.8 to 27                      |
|            | DNT10/4         |                                                            | P: 0.028 to 0.046                | Al2O3: 1.8 to 27<br>S: 0.027 to 0.042 |
| 12         | RNT13/1 to 25   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  | Fe: 37                           | 7.28 to 62.34                         |
| 13         |                 |                                                            |                                  | Al2O3: 2.33 to 22.3                   |
|            | DNIT1 4 /4 1 40 |                                                            | P: 0.046 to 0.05                 |                                       |
| 14         | RNT14/1 to 42   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  | i                                | 5.66 to 65.42                         |
| 14         |                 |                                                            | SIO <sub>2</sub> : 1.08 to 13.06 | Al2O3: 2.64 to 24.84                  |
|            | DNT15/1+- 25    | F C'C 11 F                                                 |                                  | S: 0.018 to 0.028                     |
| 15         | RNT15/1 to 25   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  |                                  | 3.08 to 61.71                         |
| 13         |                 |                                                            | SIO <sub>2</sub> : 6.2 to 55.74  | Al2O3: 1.23 to 19.81                  |
|            | RNT16/1 to 21   | Fo CiO ALO DC                                              | P: 0.046 to 0.05                 | S: 0.016 to 0.025                     |
| 16         | NN110/1 to 21   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  | 1                                | 2.72 to 61.32                         |
|            |                 |                                                            |                                  | Al2O3: 3.14 to 17.65                  |
|            | RNT17/1 to 56   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  | P: 0.046 to 0.049                |                                       |
| 17         | 111117/11000    | 1 C ,3102,A1203,P,3                                        |                                  | 5.81 to 66.23                         |
|            |                 |                                                            | P: 0.046 to 0.058                | Al203: 0.17 to 34.63                  |
|            | RNT18/1 to 35   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  |                                  | S: 0.016 to 0.029                     |
| 18         | , = 10 05       | 1 C /5102/A1203,1 /3                                       | Fe: 31<br>SIO₂: 0.5 to 42.77     | .03 to 67.25                          |
|            |                 |                                                            | P: 0.031 to 0.048                | Al203: 2.1 to 14.4                    |
|            | RNT19/1 to 32   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  |                                  | S: 0.031 to 0.049                     |
| 19         |                 | . = /=. = 2/. ((203/. /0                                   | SIO₂: 8 to 20                    | Al2O3: 4 to 10                        |
|            |                 |                                                            | P: 0.035 to 0.045                |                                       |
|            | RNT20/1 to 49   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  |                                  | .22 to 64.31                          |
| 20         |                 | , 2, 223, 13                                               | SIO₂: 3. to 18                   | Al2O3: 2.5 to 7.5                     |
|            |                 |                                                            | P: 0.033 to 0.043                |                                       |
|            | RNT21/1 to 49   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  |                                  | .26 to 67.55                          |
| 21         |                 |                                                            | SIO <sub>2</sub> : 0.55 to 67.3  | Al2O3: 0.69 to 19.34                  |
|            |                 |                                                            | P: 0.027 to 0.054                | S: 0.006 to 0.034                     |
|            | RNT22/1 to 47   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  |                                  | 52 to 29.44                           |
| 22         |                 |                                                            | SIO₂: 0.3 to 24                  | Al2O3: 0.041 to 20.75                 |
|            |                 |                                                            | P: 0.041 to 20.75                | S: 0.007 to 0.0.034                   |
| 23         | RNT23/1 to 39   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S  |                                  | .58 to 65.06                          |
| 23         |                 |                                                            | SIO <sub>2</sub> : 1 to 40.5     | Al203: 2.33 to 26.45                  |
|            |                 |                                                            |                                  |                                       |



| OM  | DISHA NEW OPPORTUNITIES | (20                                                       | Plan & Progressive Mine Closure Plan<br>23-24 to 2027-28) |
|-----|-------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
|     | NEW OFFORTUNITIES       | Rantha Iron Ore N                                         |                                                           |
| SI. |                         |                                                           | AN OF MINES                                               |
| No. | Sample ID               | Minerals                                                  | Radical Analysis ("Fe" range in %)                        |
|     |                         |                                                           | P: 0.037 to 0.54 S: 0.907 to 0.34                         |
| 24  | RNT24/1 to 64           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S | Fe: 64.39 to 66.29                                        |
| 24  |                         |                                                           | SIO <sub>2</sub> : 0.51 yo 27.6 Al2O3:1.83 to 14.2        |
|     | DNITOE /4               |                                                           | P: 0.029 to 0.054 S:0.004 to 0.034                        |
| 25  | RNT25/1 to 44           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P   | Fe: 25.88 to 66.93                                        |
| 25  |                         |                                                           | SIO <sub>2</sub> :1 to 15.06 Al2O3:1.09 to 23.2           |
|     | DNIT26/4 + 44           |                                                           | P: 0.045 to 0.05                                          |
| 26  | RNT26/1 to 44           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S | Fe: 34.25 to 66.93                                        |
| 20  |                         |                                                           | SIO <sub>2</sub> : 1 to 10.2 Al2O3: 1.09 to 25.3          |
|     | DNIT27/4                |                                                           | P: 0.045 to 0.05 S: 0.013 to 0.052                        |
| 27  | RNT27/1 to 29           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> ,P,S | Fe: 29.72 to 64.22                                        |
|     | DNITOOA                 |                                                           | SIO <sub>2</sub> : 2.81 to 46.99 Al203:2.3 to 12.63       |
| 20  | RNT28/1 to 40           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | Fe:4.96 to 60.08                                          |
| 28  |                         |                                                           | SIO <sub>2</sub> :2.58 to 55.56                           |
|     |                         |                                                           | Al2O3: 1.95 to 38.99                                      |
|     | RNT29/1 to 38           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | Fe: 15.2 to 58.02                                         |
| 29  |                         |                                                           | SIO <sub>2</sub> : 3.92 to 20.21                          |
|     |                         |                                                           | Al2O3: 0.34 to 59.7                                       |
|     | RNT32/1 to 47           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | Fe: 25.52 to 67.97                                        |
| 30  |                         |                                                           | SIO <sub>2</sub> : 1.3 to 46.48                           |
|     |                         |                                                           | Al2O3: 0.26 to 26.79                                      |
|     | RNT33/1 to 40           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | Fe: 4.79 to 67.52                                         |
| 31  |                         |                                                           | SIO <sub>2</sub> : 0.63 to 47.52                          |
|     |                         |                                                           | Al2O3: 0.66 to 30.95                                      |
|     | RNT35/1 to 37           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | Fe: 13.47 to 51.46                                        |
| 32  |                         | _, _,                                                     | SIO <sub>2</sub> : 9.18 to 59.45                          |
|     |                         |                                                           | Al2O3: 0.3 to 29.65                                       |
| 33  | RNT37/1 to 2            | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | NA                                                        |
|     | RNT41/1 to 22           |                                                           |                                                           |
| 34  | 111141/1 10 22          | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | Fe: 26.1 to 65.25                                         |
|     |                         |                                                           | SIO₂: 2.08 to 55.84                                       |
|     | RNT42/1 to 19           | F= C:O ALO                                                | Al2O3:1.86 to 17.7                                        |
| 35  | NN142/1 to 19           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | Fe: 28.37 to 54.24                                        |
| 33  |                         |                                                           | SIO <sub>2</sub> : 2.76 to 48.88                          |
|     | RNT44/1 to 13           | F- 6:0 41 0                                               | Al2O3: 2.16 to 17.21                                      |
| 36  | 111144/1 (0.15          | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | Fe: 27.34 to 57.41                                        |
| 50  |                         |                                                           | SIO <sub>2</sub> : 5.08 to 0.56                           |
|     | DNIT/15 /1 +4 25        | F 0:0                                                     | Al2O3: 1.19 to 24.94                                      |
| 37  | RNT45/1 to 25           | Fe ,SiO₂                                                  | Fe: 31.3 to 49.72                                         |
|     | DNIT46/4 + 45           |                                                           | SIO <sub>2</sub> : 8.97 to 44.51                          |
| 20  | RNT46/1 to 12           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | Fe: 42.57 to 47.29                                        |
| 38  |                         |                                                           | SIO <sub>2</sub> : 7.94 to 14.61                          |
|     | DAIT                    |                                                           | Al2O3: 10.03 to 14.76                                     |
| 20  | RNT47/1 to 17           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | Fe: 29.17 to 56.59                                        |
| 39  |                         |                                                           | SIO <sub>2</sub> : 11.38 to 54.64                         |
|     |                         |                                                           | Al2O3: 1.31 to 11.81                                      |
|     | RNT49/1 to 21           | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub>      | Fe: 32.5 to 65.95                                         |
| 40  |                         |                                                           | SIO <sub>2</sub> : 1.32 to 46.9                           |
| 1   |                         |                                                           | Al2O3: 1.82 to 18.85                                      |



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

| SI.<br>No. | Sample ID     | Minerals                                             | Radical Analysis ("Fe" range in %) |
|------------|---------------|------------------------------------------------------|------------------------------------|
|            | RNT51/1 to 38 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 45.25 to 57.72                 |
| 41         |               | , 2, 22 3                                            | SIO <sub>2</sub> :4.23 17.75       |
|            |               |                                                      | Al203: 9.96 to 15.33               |
|            | RNT52/1 to 20 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | F. 27. 60 a. W. W. W.              |
| 42         |               | , 2, 12-3                                            | SIO <sub>2</sub> : 3.48 to 13.69   |
|            |               |                                                      | Al203: 4.18 to 24.14               |
|            | RNT54/1 to 11 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 35.66 to 51.99                 |
| 43         |               |                                                      | SIO₂: 9.86 to 47.7                 |
|            |               |                                                      | Al2O3: 0.36 to 11.1                |
|            | RNT56/1 to 17 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe:47 to 28 to 59.66               |
| 44         |               |                                                      | SIO <sub>2</sub> : 6.39 to 22.82   |
|            |               |                                                      | Al203: 3.04 to 11.21               |
|            | RNT57/1 to 30 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 46.51 to 65.19                 |
| 45         |               |                                                      | SIO <sub>2</sub> : 0.52 to 19.15   |
|            |               |                                                      | Al203: 2.26 to 12.92               |
|            | RNT58/1 to 15 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 51.14 to 66.88                 |
| 46         |               |                                                      | SIO <sub>2</sub> : 2.28 to 15.83   |
|            |               |                                                      | Al203: 0.49 to 12.73               |
|            | RNT59/1 to 20 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 46.36 to 66.07                 |
| 47         |               |                                                      | SIO₂: 0.79 to 10.85                |
|            |               |                                                      | Al203: 2.07 to 18.32               |
|            | RNT60/1 to 15 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 7.26 to 37.48                  |
| 48         |               |                                                      | SIO₂:16.67 to 39.8                 |
|            |               |                                                      | Al2O3: 15.9 to 30.84               |
|            | RNT61/1 to 15 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 28.66 to 54.06                 |
| 49         |               |                                                      | SIO <sub>2</sub> : 9.32 to 54.86   |
|            |               |                                                      | Al2O3:0.86 to 12.91                |
|            | RNT63/1 to 17 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 46.51 to 64.78                 |
| 50         |               |                                                      | SIO <sub>2</sub> : 1.35 to 12      |
|            |               |                                                      | Al2O3: 2.15 to 12.32               |
| F4         | RNT64/1 to 18 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 39.86 to 52.26                 |
| 51         |               |                                                      | SIO₂:7.74 to 28.04                 |
|            | DAIM on the   |                                                      | Al2O3: 2.67 to 14.27               |
| F2         | RNT65/1 to 30 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 49 to 67.04                    |
| 52         |               |                                                      | SIO₂: 0.89 to 10.75                |
|            | DAMES         |                                                      | Al2O3:1.06 to 14.14                |
| F2         | RNT66/1 to 10 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe:24.58 to 33.88                  |
| 53         |               |                                                      | SIO₂: 5.87 to 17.56                |
|            | D. T. T. T.   |                                                      | Al2O3: 18.69 to 39.45              |
| - A        | RNT68/1 to 12 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 35.34 to 51.57                 |
| 54         |               |                                                      | SIO₂: 10.06 to 45.83               |
|            |               |                                                      | Al2O3: 1.83 to 16.28               |
|            | RNT69/1 to 19 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 46.77 to 64.56                 |
| 55         |               |                                                      | SIO₂: 1.6 to 7.15                  |
|            |               |                                                      | Al2O3: 2.32 to 14.41               |
| F.C.       | RNT70/1 to 25 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 34.11 to 59.88                 |
| 56         |               |                                                      | SIO₂: 6.07 to 35.7                 |
|            |               |                                                      | Al2O3: 0.61 to 25.51               |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| SI.<br>No. | Sample ID      | Minerals                                             | Radical Analysis ("Fe" range in %)                                        |
|------------|----------------|------------------------------------------------------|---------------------------------------------------------------------------|
|            | RNT71/1 to 8   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 32.01 to 62.85                                                        |
| 57         |                |                                                      | SIO₂: 3.48 to 49.69                                                       |
|            |                |                                                      | Fe: 32.01 to 62.85  SIO <sub>2</sub> : 3.48 to 49.69  Al2O3: 0.69 to 9.36 |
|            | RNT72/1 to 41  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 44.12 to 56.9                                                         |
| 58         |                |                                                      | SIO₂: 3.24 to 12.75                                                       |
|            |                |                                                      | Al203: 5.02 to 13.54                                                      |
| 50         | RNT74/1 to 24  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 41.98 to 62.9                                                         |
| 59         |                |                                                      | SIO <sub>2</sub> : 2.38 to 17                                             |
|            | DAITTE         |                                                      | Al2O3: 2.2 to 17.25                                                       |
| 60         | RNT75/1 to 36  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 19.94 to 65.08                                                        |
| 60         |                | ·                                                    | SIO <sub>2</sub> : 2 to 28.6                                              |
|            |                |                                                      | Al2O3: 1.35 to 22.11                                                      |
| C1         | RNT76/1 to 43  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 33.02 to 64.55                                                        |
| 61         |                |                                                      | SIO₂: 1.77 to 45.35                                                       |
|            |                |                                                      | Al2O3: 0.35 to 14.23                                                      |
| 60         | RNT77/1 to 14  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 32.58 to 52.98                                                        |
| 62         |                |                                                      | SIO <sub>2</sub> : 5.91 to 47.76                                          |
|            |                |                                                      | Al2O3: 2.8 to 12.83                                                       |
| 60         | RNT78/1 to 44  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 38.19 to 63.14                                                        |
| 63         |                |                                                      | SIO₂: 0.8 to 15.8                                                         |
|            |                |                                                      | Al2O3: 1.22 to 17.32                                                      |
| 5.4        | RNT79/1 to 6   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 25.8 to 38.52                                                         |
| 64         |                |                                                      | SIO₂: 23.94 to 53.7                                                       |
|            |                |                                                      | Al2O3: 1.92 to 14.88                                                      |
| <b>65</b>  | RNT80/1 to 45  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 46.32 to 67.64                                                        |
| 65         |                |                                                      | SIO₂: 0.67 to 9.65                                                        |
|            |                |                                                      | Al2O3: 0.5 to 14.26                                                       |
| 66         | RNT81/1 to 22  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 29.82 to 61.61                                                        |
| 66         |                |                                                      | SIO <sub>2</sub> : 1.43 to 52.49                                          |
|            | DAITOO /       |                                                      | Al2O3: 2.97 to 13.51                                                      |
| C7         | RNT82/1 to 11  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 38.54 to 42.27                                                        |
| 67         |                |                                                      | SIO₂: 11.53 to 21.77                                                      |
|            | DAUTOO //      |                                                      | Al2O3: 11.68 to 19.95                                                     |
| co         | RNT83/1 to 42  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 24.63 to 66.23                                                        |
| 68         |                |                                                      | SIO₂: 0.96 to 55.92                                                       |
|            | D. A. I. T. C. |                                                      | Al2O3: 0.92 to 42.17                                                      |
| 60         | RNT84/1 to 16  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 27.88 to 41.35                                                        |
| 69         |                |                                                      | SIO₂: 13.8 to 21.7                                                        |
|            |                |                                                      | Al2O3: 11.67 to 24.64                                                     |
| 70         | RNT85/1 to 3   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 34.28 to 52.96                                                        |
| 70         |                |                                                      | SIO₂: 4.92 to 41.9                                                        |
|            |                |                                                      | Al2O3: 2.2 to 13.49                                                       |
| 74         | RNT86/1 to 15  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 13.72 to 48.47                                                        |
| 71         |                |                                                      | SIO₂: 0.32 to 26.06                                                       |
|            |                |                                                      | Al2O3: 19.41 to 41.7                                                      |
| 70         | RNT88/1 to 5   | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 25.74 to 40.77                                                        |
| 72         |                |                                                      | SIO <sub>2</sub> : 18.01 to 53.4                                          |
|            |                |                                                      | Al2O3: 1.94 to 16.63                                                      |



Rantha Iron Ore Mine Odisha Mining Corporation Ltd

|            |               |                                                      | // 3 3                             |  |  |  |  |
|------------|---------------|------------------------------------------------------|------------------------------------|--|--|--|--|
| SI.<br>No. | Sample ID     | Minerals                                             | Radical Analysis ("Fe" range in %) |  |  |  |  |
|            | RNT89/1 to 11 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 25.27 to 50.88                 |  |  |  |  |
| 73         |               |                                                      | SIO₂: 8.64 to 53.72                |  |  |  |  |
|            |               |                                                      | Al203: 4.03 to 25.19               |  |  |  |  |
|            | RNT91/1 to 12 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 30.01 to 55.3                  |  |  |  |  |
| 74         |               |                                                      | SIO₂: 3.74 to 47.75                |  |  |  |  |
|            |               |                                                      | Al2O3: 0.77 to 23.28               |  |  |  |  |
|            | RNT92/1 to 17 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 16.02 to 47.24                 |  |  |  |  |
| 75         |               |                                                      | SIO <sub>2</sub> : 1.01 to 50.81   |  |  |  |  |
|            |               |                                                      | Al2O3: 2.76 to 38.11               |  |  |  |  |
|            | RNT93/1 to 28 | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 33.09 to 63                    |  |  |  |  |
| 76         |               |                                                      | SIO <sub>2</sub> : 4.13 to 47.65   |  |  |  |  |
|            |               |                                                      | Al2O3: 1 to 17.77                  |  |  |  |  |
|            | RNT96/1 to 9  | Fe ,SiO <sub>2</sub> ,Al <sub>2</sub> O <sub>3</sub> | Fe: 47.18 to 52.39                 |  |  |  |  |
| 77         |               |                                                      | SIO <sub>2</sub> : 3.15 to 9       |  |  |  |  |
|            |               |                                                      | Al2O3: 6.94 to 14.35               |  |  |  |  |

Chemical analysis report from NABL accredited Lab of bore holes are attached in Annexure-24.

### 2.2.2.11: Petrology & Mineralogical Studies: NIL

| Sl. No. | Type of Sample | Number of<br>Sample Drawn | Number of Sample<br>Analyzed | Petrographic Study<br>Report |  |  |  |
|---------|----------------|---------------------------|------------------------------|------------------------------|--|--|--|
| NIL     |                |                           |                              |                              |  |  |  |

### 2.2.2.12: Beneficiation Test: Not Applicable.

|                 | Sl. No. | Type of Beneficiation | Number of Samples |  |  |  |  |  |
|-----------------|---------|-----------------------|-------------------|--|--|--|--|--|
| Not Applicable. |         |                       |                   |  |  |  |  |  |

### 2.2.2.13: Bulk Density:

Method adopted for calculating bulk density of ore and waste:

The bulk Density has been determined by M/s Mitra SK (Pvt). Ltd., a NABL accredited laboratory.

### 1. Scope:

The international standard specifies two methods of determining the bulk density of Iron ore.

Method 1 is applicable to natural Iron ore and processed Iron ore having a nominal size of -100micron. to 150 micron.

Method 2 is applicable to a natural Iron ore and processed ores, regardless of size.

### 2. Principle:

A test is introduced into a container of known volume until surface is level. The bulk density calculated as the ratio of the sample to the internal volume of the container.

Note 1 Constant mass is achieved when the difference in mass between two subsequent measurements become less than 0.05% of the initial mass the test sample.

In the case of method 2, the test sample shall have a minimum mass of 35 tonnes, the recommended mass being 50 tonnes.





Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

Note 2 A test sample of mass 35 tonnes has a volume of approximately 14 m³ to 23.6 m³, according to the material.

### 3. Apparatus:

General: The test apparatus shall comprise

- a) Ordinary laboratory equipment, such as hand tools and safety equipment.
- b) Small container,
- c) Large container, and
- d) A weighing device.

### Method 1:

Small container, made of metal, cylindrical in form, and having an internal diameter of 400 mm ±2mm and an internal height of 400 mm ± 2mm (inner volume: approximately 0.05 m3). The container wall and bottom shall have sufficient thickness to ensure their rigidity during the test. The container shall be reinforced by a steel band around the outside periphery at the top, and shall have two handles, 1800 apart, attached to the outer surface by welding. A carriage or other suitable device may be provided to facilitate its transportation within the laboratory. The volume of the container shall be determined with a precision of 0, 1 using potable water of known density.

Weighing device, capable of weighing the test sample and test portions and having a sensitivity of 1/1000 or better.

### Method: 2:

Large container, such as truck or railway wagon, of regular geometrical shape, with smooth inner surface of the walls and bottom, and in good general condition, the container shall have sufficient capacity to hold. When filled, a minimum of 10 t of test shall be 10 times the maximum particle size of the test portion.

Weighing device, preferably of platform type, capable of weighing the mass to be determined to a sensitivity of 1/200

Density determination

### Method 1 - Small container:

Weigh the dried container and record the mass (mO) to the nearest  $0.2\ kg$ .

Fill the container with the sample of as-received, air dried material, using a proper shovel. Empty the shovel from a height not exceeding 50 mm above the surface of the material in the container. Fill the container carefully, in order to prevent evident segregation.

After filling the container to over flowing, draw a straight-edge across the top of the container to make the heaped surface level.

Transfer the filled container to the weighing device without loss of sample from the container, weigh the filled container and record the mass (m1) to the nearest 0.2 kg.

### Method 2 - Large containers:

Measure the length, width and height of the container with a precision of  $\pm 0.5$  % and then calculate and record its volume (V). Weigh the empty container and record the mass (mO).

With the container on a level surface, discharge the sample into it manually or by mechanical means, taking care to avoid breakages or segregation of particles. Level off the upper surface across the top of the container, verifying by visual inspection and removing or pushing down any particles which would appear to obstruct the passage of a straight-edge if it were pulled across the top of the container.

Weigh the filled container and record the mass (m1).

**Expression of Result** 

Calculation of the bulk density (Pap)

The bulk density, (Pap), expressed in kg/m³, is calculated from the following formula:

m1 - m0

(Pap) =

V

PRADIP Digitally, signed by PRADIP KUMAR SAHOO MARE 2022/08 TO 48 TO 48

Digitally signed RABINDRA by HABINDRA MOHANCY Date 2021 (Service of the control o



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

Where

is the mass, in kilograms, of the empty container; m0

is the mass, in kilograms, of the container plus sample; m1

is the volume, in cubic meters, of the container.

The bulk density of the individual ore types as given below were taken as the in-situ densities of the respective ore type. It has been derived from the exploration report of Rantha Iron Ore Mines.

### Average Bulk Density of Different Ore Types

|   | SI. |                                            |                         |              |                    |  |
|---|-----|--------------------------------------------|-------------------------|--------------|--------------------|--|
|   | No. | Nature of Ore/OB Mineral Number of samples |                         | Bulk Density |                    |  |
| - | 01  |                                            | 0 /=                    | Samples      | Established (t/m³) |  |
| - |     | Iron Ore                                   | Ore ( Fe > 55% )        | 1            | 3.00               |  |
|   | 02  | (Hematite)                                 | Mineral Reject/Subgrade |              | 3.00               |  |
| L | 02  | (Hematite)                                 | (Fe between 45 – 55 %)  | 3            | 2.70               |  |

Copy of report of bulk density test carried out by Mitra S.K, a NABL accredited lab is enclosed as Annexure 26.

### 2.2.2.14: Area Covered under Exploration:

As per the approved Mod. Of Mining Plan vide letter no. MPM/FM/06-ORI/BHU/2019-20, dtd.01.10.2019 the details are given below;

| G1 (Ha)          | 39.632  |
|------------------|---------|
| G 2 (Ha)         | 165.724 |
| G3 (Ha)          | 0.00    |
| G4 (Ha)          | 63.484  |
| G1+G2+G3+G4 (Ha) | 268.84  |
|                  | 200.04  |

Since the mine has not been working from the approval of the earlier mining plan ,so, no exploration work has been carried out during approved period, so the explored area as per approved Mining Plan.

|        | Area                                   |                           |                           | T                         |                           | T                       | T                       |                         |
|--------|----------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------------|-------------------------|-------------------------|
| Year   | converted<br>to G1 from<br>G2, G3 & G4 | % increase<br>in G-1 Area | Remaining<br>Area % in G2 | Remaining<br>Area % in G3 | Remaining<br>Area % in G4 | Remaining<br>Area in G2 | Remaining<br>Area in G3 | Remaining<br>Area in G4 |
| 2017   | 39.632                                 | Nil                       | 61.64                     | AIT                       |                           |                         |                         |                         |
| 2 2 2. | Ore Body G                             |                           |                           | Nil                       | 23.61                     | 165.724                 | Nil                     | 63,484                  |

### 2.2.3: Ore Body Geometry & Grade:

| Sl.No. | the ore Sti<br>band Tr | Strike / Mineral e Strike |                                | Average<br>Width | Name of the radical     |                           |                        |                        |               |                |
|--------|------------------------|---------------------------|--------------------------------|------------------|-------------------------|---------------------------|------------------------|------------------------|---------------|----------------|
|        |                        | rrend                     | Body Length (m)                | (m)              | Average<br>Depth<br>(m) | Name of<br>the<br>radical | Min<br>Grade<br>(Fe %) | Max<br>Grade<br>(Fe %) | Avg.<br>Grade |                |
| 01.    | Iron Ore               | N200 W to<br>N 150E       | 200 to<br>600 E<br>and<br>West | 1600             | 60                      | 30                        | Fe                     | 47.51                  | 64.76         | (Fe %)<br>55.8 |



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

OF MINES

### 2.2.4: Reserve / Resource Estimation Method:

2.2.4.1: Methodology:

Resource / Reserve Estimation Method

Sectional Method
Software Used (SURPAC&AUTOCAD)

Geological Resource as on 02.06.2019

| Reserve/ resources | Type            | UNFC Code | Iron Ore Quantity (Mt) | Grade                                 |
|--------------------|-----------------|-----------|------------------------|---------------------------------------|
| Reserves           | Proved          | 111       |                        |                                       |
|                    |                 | 121       | 19.176 (+55% Fe)       | 59.5% Fe                              |
|                    | Probable        | 121       | 13.586 (+45-55% Fe)    | 50.3% Fe                              |
|                    | osasic          | 122       | 28.635 (+55% Fe)       | 59.5% Fe                              |
|                    |                 | 122       | 26.790 (+45-55% Fe)    | 50.3% Fe                              |
| Sub-Total (a)      |                 |           | 88.187                 |                                       |
| emaining resources | Feasibility     | 211       |                        |                                       |
|                    | Pre-feasibility | 221       |                        |                                       |
|                    |                 |           |                        |                                       |
|                    |                 | 222       | 0.964 (+55% Fe)        | 59.5% Fe                              |
|                    |                 |           | 0.990 (+45-55% Fe)     | 50.3% Fe                              |
|                    | Measured        | 331       |                        | The bal say                           |
|                    | Indicated       | 332       |                        | 200 to an                             |
|                    | Inferred        | 333       |                        |                                       |
|                    | Reconnaissance  | 334       |                        | ***                                   |
| Sub-Total (b)      |                 |           | 1.954                  |                                       |
| Total (a + b)      |                 |           | 90.141                 | · · · · · · · · · · · · · · · · · · · |

Re-estimation has been carried out considering Mineral (Evidence & Content) Rule'2015. The details are given below.

### Methodology:

Keeping in view the re-draw of geological plan & sections based on the outcomes of 77 boreholes, mineral resources has been re-estimated in the Review of Mining plan considering Mineral (Evidence & Content)Rule' 2015. As per Minerals (Evidence of Mineral Contents) Rule 2015, lateral extension of the mineral continuity shall be limited to a distance of 50% of the borehole spacing & depth continuity of G1 & detailed G2 category mineral resource shall be limited up to the depth of evidence of established mineral evidence. Accordingly, geological cross-sections have been modified & re-assessment of the balance geological & balance mineable reserve has been carried out considering above factors. A fresh estimate has been made on the basis of all the boreholes drilled till date using state of the art mining software i.e. 'SURPAC' at 45% Fe cut off and the resources/ reserves figures have been established as per the guidelines of UNFC.



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

CT)

OF MINES

### Parameters considered for estimation of Mineral Resources

- (a) The threshold value has been considered as per the IBM guidelines is 45% Fe.
- (b) The Cutoff grade considered for estimation of resource/reserve is 55 % Fe.
- (c) Updated pit position as on 30.06.2022.
- (d) Borehole collar, survey, assay & litho data from exploration.
- (e) Pit exposures data & Ultimate Pit.
- (f) The influence of the ore body has been taken @50 mtrs on either side of the grid along the strike of the bore hole drilled. No extrapolation of the ore section has been done beyond 50mtrs.
- (g) The depth continuity of mineralization has been considered limited to the depth up to which direct evidence of mineralization is established.
- (h) The lateral extension has been considered for resource assessment depending on geological continuity by mapping and has not been more than 50 mtrs of the probe point.
- (i) Entire data has been transferred to create a geological database in an ore body modeling software namely 'SURPAC'.
- (j) Bulk density of individual ore types & OB has been used as a tonnage conversion factor (TCF) in this document. The bulk density considered in this report has been taken from the exploration report of OMC & carried out by NABL accredited Laboratory. The copy of Bulk Density report by NABL Accredited laboratory is attached in Annexure-26.
- (k) The Recovery Factor of 100 % for Saleable Ore (+55 % Fe) & Mineral Rejects (+45 % Fe to -55 % Fe) for assessment of Ore resource/reserve has been taken in to consideration. The copy of the recovery test report by NABL accredited laboratory has been attached at Annexure-28.
- (I) In total, 12 nos. of cross sections from 00E to 1200E have been prepared for estimations of resource.
- (m) Grid spacing 100m x 100m (max) bore holes on G1 category and 200m x 200m (max) bore holes on G2 category has been taken to calculate reserve as per MEMC Rule'2015.

### Preparation of Database

Four basic files namely collar, survey, assay and litho files are required in Comma Separated Value (CSV) format for further processing by SURPAC Software. Ore type-wise litho codes used for database preparation is given below.

### Ore Type-wise Litho Codes Used for Database Preparation

| Litho Type                                            | Litho code |
|-------------------------------------------------------|------------|
| Lateritic Iron Ore (LIO)                              | 7A         |
| Soft Laminated Ore (SLO) / Friable Ore                | 7C         |
| Hard Laminated Ore (HLO)/Hard Massive Ore (HMO)       | 7B         |
| Blue Dust (BD)/ Powdery Ore                           | 7D         |
| BHJ/ BHQ/ BMQ                                         | 9          |
| Lateritic/ Ferg. Shale Ore (Mineral Rejects) (45 % to |            |
| 55% Fe)                                               | 4          |
| Waste (Shale, Soil Cover etc.)                        | 5          |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

### **Delineation of Ore Geometry and Construction of Ore Body**

### <u>Preparation of Transverse Sections</u>

Boreholes were displayed in SURPAC graphics window along with litho, Fe%, SiO<sub>2</sub>%, & Al<sub>2</sub>O<sub>3</sub>%, 12 nos. of transverse sections at 100 m & 200 m interval were extracted from 00E to 1200E. The envelopes of ore (Fe% >= 55%), Mineral Rejects (45%<=Fe%<55%) & Waste (Fe%<45%) were delineated at each section considering the continuity of mineralization, lithology and other geological features. Lateral extent of mineralization has been limited up to 50% of borehole spacing & vertical extent of mineralization has been limited up to the depth of evidence of established mineral evidence in the boreholes.

### Preparation of Digital Terrain Model (DTM) of Surface Topography

The digitized contour of updated surface plan with Z values have been transformed into digital terrain model (DTM) utilizing the principle of triangulation and wire framing of points with X, Y and Z co-ordinates. Digital terrain model is the most effective way of representing a surface in three-dimensional computerized form. It is an important tool to calculate volume between two or more surfaces.

### 3-D Solid Modeling of Ore Body

The respective envelopes of ore lithology, Mineral Rejects & waste of the respective transverse cross sections have been connected/ joined to form respective solid ore body models. 3-D solid model of Rantha Iron Ore Mine

### **Block Modeling**

The entire deposit is divided into no. of judiciously chosen sub-blocks for proper estimation of grade and quantity, keeping in view of the structural discontinuity of the deposit, extent etc. The estimated blocks in the block model has been used for optimum pit generation, mine planning and production scheduling.

### Selection of Block Size

Considering the accuracy desired, borehole spacing and mining constraints, a unit block of  $10 \text{ m} \times 10 \text{ m} \times 2.5 \text{ m}$  has been selected for block wise grade estimation.

### Development of Block Model

In order to cover the entire extent of Rantha Iron Ore Mine. Ore Mines in three dimensions, a dummy block model with unit block sizes as indicated above have been generated.

### Addition of Attributes

Attributes are the properties of individual block such as Fe, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, specific gravity, litho code etc. These attributes were added in the dummy block model using suitable technique.





Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

### Application of Constraints

Constraints are the logical combination of spatial operators and objects such as DTM of surface contour, solid model of ore zone, block etc. with which the block model can be enveloped intersected with respect to inside/ outside and above/ below their spatial position. The blockmodel developed for Rantha Iron Ore Mine. Ore Mines has been constrained with the surface DTM with updated pit positions, mining lease boundary, statutory safety barriers, individual quarry boundaries as well as ore type-wise 3-D solid models as developed and discussed in the preceding paragraphs. In this way, the blocks have been enveloped within ore zone boundary and surface topography for the purpose of grade interpolation and reserves estimation. Constrained block model is given below.

### Block model estimation

Block model estimation parameters such as anisotropic ratio, search distances etc. were derived from the results of variogram analysis discussed in previous para. Rantha Iron Ore Mine. ore deposit is uniform in mineralization. It is not erratic in behavior. The coefficient of variation of grades in all the ores are low in the range of 0.03-0.1 indicating uniform grade distribution and the deposit has also been explored at almost uniform grid of 50 m x 50m both along dip and strike direction, the globally accepted technique of Inverse Square Distance (ISD) method has been used for ore reserve estimation for different ore types. The parameters for reserve estimation have been derived from the statistical and geo-statistical analysis done previously. A search ellipsoid as indicated below has been used to select samples for assigning grade to the blocks. The axial parameters and its search orientation were derived from the results of geo-statistical analysis.

The bulk density of the individual ore types as given below were taken as the in-situ densities of the respective ore type. Same has been derived from the exploration report of Rantha Iron Ore Mine.

### **Average Bulk Density of Different Ore Types**

| Sl. No. | Ore Type                           | Bulk Density, t/cu.m |
|---------|------------------------------------|----------------------|
| 1       | Iron Ore >55% Fe                   | 3.00                 |
| 2       | Mineral Reject (45 % Fe to 55% Fe) | 2.7                  |

Copy of report of bulk density test carried out by NABL accredited lab is enclosed as Annexure 26.

For estimation resources the following parameters have been considered:

### Measured resources: -

- The entire exploratory drill holes with grid spacing of 100m X 100m has been considered as G1 category and has been categorized under 331 as per UNFC code.

  Indicated resources: -
- The entire exploratory drill hole with grid spacing at more than 100m X 100m and less than 200m x 200m grid interval and where the borehole density is quite low has been considered as G2 category and has been categorized under 332 as per UNFC code.



Odisha Mining Corporation Ltd

Rantha Iron Ore Mine

### 2.2.4.2: Resource Calculation:

Section-wise Reserve/Resource:

The details of the re

|                                                         | T                                       | I                                       |                                         |                                         |                                   | -                    |
|---------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|----------------------|
| Method<br>used for<br>resource<br>estimation            | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance     | 547.59 John Distance |
| Grade<br>(%)                                            | 47.51                                   | 58.34                                   | 51.34                                   | 64.76                                   | 48.04                             | 57.59                |
| Name<br>of the<br>radical                               | Fe                                      | Fe                                      | Fe                                      | Fe                                      | Fe                                | Fe                   |
| Type<br>of<br>Land                                      | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                            | Forest               |
| Depth Volume Density Quantity (m³) (t/m³) (t/m³) (t/m³) | 62                                      | 62                                      | <b>G</b> 2                              | 62                                      | 62                                | 62                   |
| Resource<br>Quantity<br>(t)                             | 731444                                  | 4392816                                 | 2030778                                 | 4806372                                 | 6549490                           | 5191963              |
| Bulk<br>Density<br>(t/m³)                               | 2.7                                     | 3                                       | 2.7                                     | 3                                       | 2.7                               | က                    |
| Volume<br>(m³)                                          | 270905                                  | 1464272                                 | 752140                                  | 1602124                                 | 2425737                           | 1730654              |
| Depth<br>in mtr                                         | 10                                      | 10.5                                    | 6                                       | 24.70                                   | 15                                | 14.85                |
| Influence<br>(m)                                        | 200                                     | 200                                     | 200                                     | 200                                     | 200                               | 200                  |
| Sectional Area/Block area (sq mtr)                      | 1355                                    | 7321                                    | 3761                                    | 8011                                    | 12129                             | 8653                 |
| Sectional Area/Block area (m) i (sq mtr)                | X1_Y1/MINERAL<br>REJECT/SUB-GRADE       | X2_Y2/SLO                               | X2_Y2/MINERAL<br>REJECT/SUB-GRADE       | X2_Y2/BLUE DUST                         | X3_Y3/MINERAL<br>REJECT/SUB-GRADE | X3_Y3/SLO            |
| SI.<br>No.                                              | $\leftarrow$                            | 2                                       | m                                       | 4                                       | 2                                 | 9                    |

Page **42** of **137** 

MOHANTY.

PRADIP Digitally signed by PRADIP KUMAR SAHOO Date: 2022.08.19
SAHOO 10-08.18 +05:30



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| <u></u>                                      |        |                                         |                                         |                                         |                                         |                                         | 13554                             |
|----------------------------------------------|--------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|
| Method<br>used for<br>resource<br>estimation | Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | So.85 * Square                    |
| Grade<br>(%)                                 |        | 56.74                                   | 56.55                                   | 50.07                                   | 58.33                                   | 56.06                                   | 50,85                             |
| Name<br>of the<br>radical                    |        | Fe                                      | Fe                                      | Fe                                      | Fe                                      | Fe                                      | Fe                                |
| Type<br>of<br>Land                           |        | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                            |
| Level of Exploration                         |        | 62                                      | 62                                      | 62                                      | 62                                      | <b>G</b> 2                              | 61                                |
| Resource<br>Quantity<br>(t)                  |        | 120254                                  | 277742                                  | 1601998                                 | 1607526                                 | 67417                                   | 994526                            |
| Bulk<br>Density<br>(t/m³)                    |        | 3                                       | 3                                       | 2.7                                     | 3                                       | ъ                                       | 2.7                               |
| Volume<br>(m³)                               |        | 40085                                   | 92581                                   | 593333                                  | 535842                                  | 22472                                   | 368343                            |
| Depth<br>in mtr                              |        | 2.70                                    | 6.00                                    | 7.80                                    | 11.90                                   | 2.40                                    | 3.35                              |
| Influence<br>(m)                             |        | 200                                     | 200                                     | 150                                     | 150                                     | 150                                     | 100                               |
| Sectional<br>Area/Block<br>area<br>(sq mtr)  |        | 200                                     | 463                                     | 3956                                    | 3572                                    | 150                                     | 3683                              |
| Cross section/Block                          |        | хз_үз/нсо/нмо                           | X3_Y3/LIO                               | X4_Y4/MINERAL<br>REJECT/SUB-GRADE       | X4_Y4/SLO                               | X4_Y4/LIO                               | X5_Y5/MINERAL<br>REJECT/SUB-GRADE |
| SI.<br>No.                                   |        | 7                                       | ∞                                       | 6                                       | 10                                      | 17                                      | 12                                |

Page **43** of **137** 

PRADIP Digitally signed by PRADIP KUMAR KUMAR SAHOO Date: 20220819 SAHOO 10:48:18 +05:30



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

|                                              | T                             |                                         | ·                                       | ·                                       | 7                                       |                                         | The second secon |
|----------------------------------------------|-------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method<br>used for<br>resource<br>estimation | Inverse<br>Square<br>Distance | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | SQ738 Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Grade<br>(%)                                 | 58.47                         | 56.06                                   | 58.44                                   | 50.08                                   | 57.63                                   | 59.57                                   | 50038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Name<br>of the<br>radical                    | Fe                            | Fe .                                    | Fe                                      | Fe                                      | Fe                                      | Fe                                      | ā.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Type<br>of<br>Land                           | Forest                        | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Level of<br>Exploration                      | 61                            | 61                                      | <b>G</b> 1                              | 61                                      | 61                                      | 61                                      | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Resource<br>Quantity<br>(t)                  | 1581330                       | 39920                                   | 4791901                                 | 4214511                                 | 250026                                  | 3848226                                 | 1439739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bulk<br>Density<br>(t/m³)                    | 8                             | 8                                       | 3                                       | 2.7                                     | 3                                       | ю                                       | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Volume (m³)                                  | 527110                        | 13307                                   | 1597300                                 | 1560930                                 | 83342                                   | 1282742                                 | 533237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Depth<br>in mtr                              | 7.00                          | 0.50                                    | 20.40                                   | 18.90                                   | 9.00                                    | 22.40                                   | 11.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Influence<br>(m)                             | 100                           | 100                                     | 100                                     | 100                                     | 100                                     | 100                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sectional<br>Area/Block<br>area<br>(sq mtr)  | 5271                          | 133                                     | 15973                                   | 15609                                   | 833                                     | 12827                                   | 5332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cross section/Block                          | X5_Y5/SLO                     | X5_Y5/LIO                               | 01s/9k <sup>-</sup> 9x                  | X6_Y6/MINERAL<br>REJECT/SUB-GRADE       | хе_үе/нго/нмо                           | X7_Y7/SLO                               | X7_Y7/MINERAL<br>REJECT/SUB-GRADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SI.<br>No.                                   | 13                            | 14                                      | 15                                      | 16                                      | 17                                      | 18                                      | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Page 44 of 137

PRADIP Digitally signed by PRADIP COMPAR SAHOO DATE: 2022.08.19
SAHOO 10:48.18 +05:30

RABINDRA MANAWAR MOHANT文献



Rantha Iron Ore Mine

| Ltd          |
|--------------|
| Ħ            |
| _            |
| 5            |
| ₽            |
| Corporation  |
| ō            |
| ŏ            |
| Ξ            |
| ರ            |
| b            |
|              |
| $\subseteq$  |
| ᆵ            |
| 1inin        |
| Mining       |
|              |
|              |
|              |
|              |
|              |
| Odisha Minin |
|              |

|                                              | 1                                       | r                                       | 7                                       |                                         |                                         | Ţ                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method<br>used for<br>resource<br>estimation | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance     | Solvania Skillaria Skillar | MASANASINE<br>PROMINING<br>MODIFICATION<br>MODIFICATION<br>MODIFICATION<br>MASANA + 05/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Grade<br>(%)                                 | 57.93                                   | 59.36                                   | 49.58                                   | 57.86                                   | 59.6                                    | 48.79                             | \$ 56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RABINDRY CONTROL OF THE PARTY O |
| Name<br>of the<br>radical                    | Fe                                      | Fe                                      | ъ<br>Э                                  | Fe                                      | Fe                                      | Fe                                | E C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RABINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Type<br>of<br>Land                           | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                            | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Level of<br>Exploration                      | 61                                      | 61                                      | 61                                      | <b>G</b> 1                              | 61                                      | 61                                | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Resource<br>Quantity<br>(t)                  | 61845                                   | 6773448                                 | 2957043                                 | 186858                                  | 5301037                                 | 2710329                           | 88238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bulk<br>Density<br>(t/m³)                    | 3                                       | ю                                       | 2.7                                     | Э                                       | æ                                       | 2.7                               | ю                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of <b>137</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Volume<br>(m³)                               | 20615                                   | 2257816                                 | 1095201                                 | 62286                                   | 1767012                                 | 1003826                           | 228913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Page <b>45</b> of <b>137</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Depth<br>in mtr                              | 310                                     | 26.30                                   | 15.00                                   | 3.00                                    | 21.00                                   | 13.20                             | 9.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Influence<br>(m)                             | 100                                     | 100                                     | 100                                     | 100                                     | 100                                     | 100                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sectional Area/Block area (sq mtr)           | 206                                     | 22578                                   | 10952                                   | 623                                     | 17670                                   | 10038                             | 2289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Digitally signed<br>by PRADIP<br>KUMAR SAHOO<br>Date: 2022.08.19<br>10-48.18 + 05:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cross section/Block                          | V7_Y7/LIO                               | X8_Y8/5LO                               | X8_Y8/MINERAL<br>REJECT/SUB-GRADE       | X8_Y8/LIO                               | 018/6x <sup>-</sup> 6x                  | X9_Y9/MINERAL<br>REJECT/SUB-GRADE | 017/6X <sup>-</sup> 6X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRADIP Digital KUMAR KUMAR SAHOO DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SI.<br>No.                                   | 20                                      | 21                                      | 22                                      | 23                                      | 24                                      | 25                                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Review of Mining Plan & Progressive Mine Closure Plan

|            |                                     |                                    | ODISHA NEW OPPORTUNITIES |                 | (2023-2)<br>Rantha Iron Ore Mine | (2023-24 to               | (2023-24 to 2027-28)<br>e Mine Odisha Mi | 2027-28)<br>Odisha Mining Corporation Ltd | tion Ltd           |                           |           |                                              |  |
|------------|-------------------------------------|------------------------------------|--------------------------|-----------------|----------------------------------|---------------------------|------------------------------------------|-------------------------------------------|--------------------|---------------------------|-----------|----------------------------------------------|--|
| SI.<br>No. | Cross section/Block                 | Sectional Area/Block area (sq mtr) | Influence<br>(m)         | Depth<br>in mtr | Volume<br>(m³)                   | Bulk<br>Density<br>(t/m³) | Resource<br>Quantity<br>(t)              | Level of<br>Exploration                   | Type<br>of<br>Land | Name<br>of the<br>radical | Grade (%) | Method<br>used for<br>resource<br>estimation |  |
| 27         | омн/олн/бх-бх                       | 2923                               | 100                      | 20.30           | 292280                           | m                         | 876840                                   | 61                                        | Forest             | Fe                        | 61.98     | Inverse<br>Square<br>Distance                |  |
| 28         | X10_Y10/SLO                         | 20391                              | 100                      | 31.20           | 2039077                          | ю                         | 6117231                                  | <b>G</b> 1                                | Forest             | A<br>e                    | 58.71     | Inverse<br>Square<br>Distance<br>Method      |  |
| 29         | X10_Y10/MINERAL<br>REJECT/SUB-GRADE | 8387                               | 100                      | 11.25           | 838694                           | 2.7                       | 2264473                                  |                                           | Forest             | Fe                        | 48.85     | Inverse<br>Square<br>Distance<br>Method      |  |
| 30         | X10_Y10/LIO                         | 1085                               | 100                      | 9.91            | 108513                           | 8                         | 325540                                   | <b>G1</b>                                 | Forest             | Fe                        | 56.61     | Inverse<br>Square<br>Distance<br>Method      |  |
| 31         | Х10_Ү10/НСО/НМО                     | 413                                | 100                      | 5.00            | 41250                            | 3                         | 123750                                   | G1                                        | Forest             | Fe                        | 61.24     | Inverse<br>Square<br>Distance<br>Method      |  |
| 32         | X11_Y11/MINERAL<br>REJECT/SUB-GRADE | 5131                               | 100                      | 14.30           | 513144                           | 2.7                       | 1385488                                  | G1                                        | Forest             | Fe                        | 50.08     | Inverse<br>Square<br>Distance<br>Method      |  |
| 33         | X11_Y11/SLO                         | 15310                              | 100                      | 26.95           | 1530964                          | 3                         | 4592892                                  | G1                                        | Forest             | Fe                        | 029025    | SZ:6Z:nv Distance                            |  |

Digitally signed by PRADIP KUMAR SAHOO Date: 2022.08.19 10:48:18 +05/30\* PRADIP KUMAR SAHOO

Page **46** of **137** 



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

| Grade used for resource estimation | lnverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance | 55.8     |
|------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|----------|
|                                    | 63.                                     | 55.                                     | 51.                                     | 62                            | 55       |
| Name<br>of the<br>radical          | Fe                                      | Fe                                      | ਜੂ<br>ਗ                                 | Fe                            |          |
| Type<br>of<br>Land                 | Forest                                  | Forest                                  | Forest                                  | Forest                        |          |
| Level of<br>Exploration            | 61                                      | 61                                      | 61                                      | 61                            |          |
| Resource<br>Quantity<br>(t)        | 338923                                  | 184822                                  | 81501                                   | 53813                         | 79560550 |
| Bulk<br>Density<br>(t/m³)          | 3                                       | 3                                       | 2.7                                     | 3                             |          |
| Volume<br>(m³)                     | 112974                                  | 61607                                   | 30188                                   | 17938                         |          |
| Depth<br>in mtr                    | 7.00                                    | 7.65                                    | 12.00                                   | 8.00                          |          |
| Influence<br>(m)                   | 100                                     | 100                                     | 100                                     | 100                           | Total    |
| Sectional Area/Block area (sq mtr) | 1130                                    | 616                                     | 302                                     | 179                           |          |
| Cross section/Block                | Х11_Ү11/НLО/НМО                         | X11_Y11/LIO                             | X12_Y12/MINERAL<br>REJECT/SUB-GRADE     | X12_Y12/SL0                   |          |
| SI.<br>No.                         | 34                                      | 35                                      | 36                                      | 37                            |          |

# 2.2.4.3: Mineral Resource Estimate for Conversion to Mineral Reserve:

Mineral reserve has been calculated deducting the reserve that would be blocked under the pit slope and within the safety zone inclusive of the safety zone of the existing nala.



PRADIP Digitally signed by PRADIP KUMAR KUMAR SAHOO DAR: 2022.08.19 SAHOO

Page 47 of 137



Rantha Iron Ore Mine Odisha

**Odisha Mining Corporation Ltd** 

# The Parameters of Reserves calculation by Cross Sectional Method are:

extension of the ore body, specific gravity and the percentage of ore recovery. Surface data, structural interpretation and observation Detailed calculation has been carried out in the lease area through coring boreholes, reserves have been estimated based upon the made in the nearby quarries have also been taken into consideration. As per the direction of dip and strike, an attempt was made to construct cross-section across the strike for calculation of reserves. 12 nos. of such sections have been drawn

With a view to estimate the reserves of iron ore available in the deposit, the following parameters have been considered.

- 1. Cut-off Grade
- 2. Length of influence
- 3. Bulk density
- 4. Recovery factor -100%
- 1. Cut-off Grade:

Based on marketability, the cut-off grade of iron ore has been considered at +55% fe. The Sub-grade ore considered 45 to 55% fe.

2. Length of Influence:

The ore zones are generally flat and tabular in nature. The same have been penetrated by vertical drill holes at a closed spaced grid spacing 200m and 100m interval. Depending on the drill holes spacing at specific grid interval, the length of influence has been considered on either side of the sections and taken in to consideration for computation of ore reserves.

3. Bulk Density:

The bulk density of iron ore has been considered as per actual determined by the authenticated NABL accredited laboratory. The copy of the same is attached as annexure-26.

Recovery Factor:

Recovery factor plays a vital role for estimation of reserve. The factor is considered as per actual determination carried out by an STANDARD TO NABL acrredited laboratory. In the lease area recovery factors has been considered as 100%.

Method of Reserve Estimation:

PRADIP Digitally signed by PRADIP KUMAR SAHOO DATE: 2022:08:19

Page **48** of **137** 

RABINDRA KOMINTERSON



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

Systematic geological cross sections are constructed with the surveyed ground profile on which the drill hole inputs and average grade-wise analytical result of different ore zones is plotted and accordingly, the correlation of ore zones are interpreted with respect to grade.

The entire system is calculated through "SURPAC "software. The computed geological reserve is summarized in the table 2.2.4.2

## 2.2.4.4: Threshold value & Cut off Parameters:

- The threshold value has been considered as per the IBM guidelines is 45% Fe.
  - The Cutoff grade considered for estimation of resource/reserve is >55 % Fe. Ď.
    - The Fe % raised between >45% to <55% is considered as Mineral Reject.

## 2.2.4.5: Mining Factors or Assumptions:

The mine is not operated since a long back due to want of forest clearance. The various mining operations such as drilling & blasting, excavation & loading and transportation were practiced in this Rantha Opencast Iron Ore Mine after execution of mining lease over 408.8731 hectares on 31.12.1968. Mining was carried out by manual means on single shift basis with the use of pick axe, crow bars, spades, chisels, hammers and baskets etc. for loosening, excavation and loading and 10t capacity tippers for transportation of ore. ROM iron ore produced from the mine was broken, sized, sorted and blended manually. Finally, saleable materials was loaded manually by head load and transported to the consuming industries.

## 2.2.4.6: Metallurgical Factors or Assumptions:

lump ore (+10 to -40mm) size fraction and fines ore (-10mm) size fraction. The entire ore production including lumps and fines The average grade of Iron ore produced from Rantha Iron Ore Mines is above 55.8% Fe. The mine is supposed to produce calibrated produced from Rantha iron Ore Mines will be consumed in neighbouring steel plant/sponge iron plant of Odisha.

### 2.2.4.7: Cost & Revenue Factors:

### **ECONOMIC EVALUATION**

Odisha and nearby states. To meet market demand with about 60 % Fe the ore produced can be sold after processing हिन्हें डॉटॉर्गंड बेंग्जे The entire ore production including lumps and fines produced from Rantha Iron Ore Mine will be sold to iron ore consumers of sorting. To meet market demand with 60% Fe, both ore and mineral reject produces are proposed to be blended 🔭 required TIT GILL TA Mineral reject/ Sub-Grade ore can be sold directly, as per market requirement.

MOHANTY Date: 2022/08 19 RABINDRA PARAMENTA

Ly PRADIP KUMAR SAHOO Date: 2022.08.19 10:48:18 +05'30' Digitally signed PRADIP KUMAR SAHOO



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

### 2.2.4.8: Market Assessment:

The Cash Flow analysis, NPV and IRR for the project has been shown in the pre-feasibility report. As NPV is positive and IRR is 33% The entire ore production including lumps and fines produced from Rantha Iron Ore Mine will be consumed in neighboring steel plants/sponge iron plants of Odisha and nearby states. To meet market demand with about 60 % Fe the ore produced can be sold after processing i.e. sizing and sorting. If required Mineral reject/ Sub-Grade ore can be sold directly, as per market requirement. so the project is an economic viable proposition.

### 2.2.4.9: Other Modifying Factors:

### Public acceptance:

The mining project has been well accepted by the general public of the surrounding villages as evident from no litigation, agitation or complain by general public have so far been recorded by the lessee.

### Socio-economic impact studies:

The mining activity in the area has already created direct employment opportunity for the local people both directly and indirectly. Workmen to mines, supervisory staff, mining engineers, geologists, surveyors, engineers etc. are employed in the mine. In addition, it will facilitate in developing indirect employment opportunities in transport sector and work shop facilities in the surrounding areas. The lessee will extends its help and supports to welfare measures like free health checkup camps, provision of bore wells, communication facilities, health & sanitation and overall economic condition of the people of nearby villages. The lessee road repairing, provision of drinking water etc. The continuation of mining work has also augmented the educational status, contributes regularly for peripheral development of the area.

### **Government factors**

All the valid rights, approvals, clearances, licensees has been available in favor of Odisha Mining Corporation Limited. National Park

There is no National Park within 10 km radius of the ML area.

### 2.2.4.10: Classification:

### **PROBABLE MINERAL RESERVE (121)**

and the existing quarry. Laterally, the proved zone has been extended 50m beyond the quarry limit as per UNFC, Thus geologicals which later on were converted into one big quarry. The proved reserve has been estimated based on the area covered by drill holes. Detailed exploration has been carried out by core boreholes, surface exposures have been found, number of pits were opened which because in the contract of th

修訂め

智是10%

Sparket Shared S

MOHANTY 0ate 2022 08 19

RABINDRA by PARTIESA MOHANIY

104843 +0530

Digitally signed by PRADIP KUMAR SAHOO Date: 2022.08.19 10.48.18 +05'30' PRADIP KUMAR SAHOO



Rantha Iron Ore Mine C

Odisha Mining Corporation Ltd

prepared and approved and thus recoveries and efficiencies have been estimated. Manpower and requirement of machineries have been estimated based on actual need. Infrastructure resources are already available. The forest clearance is available, however tree falling permission from Divisional Forest Office is yet to be materialized. Thus, the resources can be brought under F2 category. On economic front, the materials have already been dispatched to the various consuming industries in past and accordingly the grade of the ore is acceptable to the marked demand, Land use pattern, working plan is already known and designed. Thus the reserves axis for such estimated reserves can be brought under G1 category. As regards feasibility, it stated that the mining plan was can be brought under El category. In view of the above considerations, the reserves can be classified under 121 category.

### PROBABLE MINERAL RESERVE (122)

axis can be brought under G2 category. On feasibility axis, mining plan was prepared and approved and thus recoveries and efficiencies estimated. Manpower & machine requirement have been estimated based on actual need. Infrastructure resources are economic front, the materials have already been dispatched to the various consuming industries in past. Accordingly the grade of the ore is suitable for meeting the market demands. Land use pattern, working plan is already known or designed. Therefore, the already available. However, the forest clearance is yet to be obtained. Thus, the resources can be brought under F2 category. On Based on the information gathered from the DTH boreholes, the ore zone has been extended laterally beyond proved zone as per UNFC. This lateral extension of the ore body is kept under probable category due to non-confirmation of grade. Thus, the geological reserves can be brought under El category. In view of the above considerations, reserves can be classified under 122 category.

## PREFEASIBLE MINERAL RESOURCES (221 & 222)

The ore which will be blocked and cannot be extracted due to pit slope or safety zone has been put under this category. Probable reserve which cannot be extracted has been categorized as 221 and 222. RABINDRA by RABINDRA

Page **51** of **137** 

PRADIP Digitally signed by PRADIP KUMAR SAHOO Date: 2022.08.19
SAHOO 10:48:18 +05:39



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

# 2.2.4.11: Calculation of blocked resources: >45% Fe to <55% Fe (221)

| Method<br>used for<br>resource<br>estimation       | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method |        |
|----------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------|
| Grade<br>(%)                                       | 47.93                                   | 49.69                                   | 48.97                                   | 50.6                                    | 49.6   |
| Name<br>of the<br>radical                          | Fe                                      | Fe                                      | Fe                                      | Fe                                      | Fe     |
| Type of<br>Land                                    | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest |
| UNFC                                               | 221                                     | 221                                     | 221                                     | 221                                     | 221    |
| Resource<br>Quantity<br>(t)                        | 47862                                   | 15296                                   | 93935                                   | 137718                                  | 294811 |
| Bulk<br>Density<br>(t/m³)                          | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     |        |
| Volume<br>(m³)                                     | 17727                                   | 5665                                    | 34791                                   | 51007                                   |        |
| Depth (m)                                          | 2.0                                     | 1.0                                     | 3.0                                     | 2.0                                     |        |
| Influence<br>(m)                                   | 100                                     | 100                                     | 100                                     | 100                                     |        |
| Sectiona<br>larea/<br>block<br>area (in<br>Sq mrt) | 177.27                                  | 56.65                                   | 347.91                                  | 510.07                                  | Total  |
| Cross<br>section/Blo<br>ck                         | X7-Y7<br>/MR/SG                         | X8-Y8<br>/MR/SG                         | X10-<br>Y10/MR/S<br>G                   | X11-<br>Y11/MR/S<br>G                   | ,      |
| Reserves<br>blocked<br>due to                      | Ultimate<br>Pit Limit                   | Ultimate<br>Pit Limit                   | Ultimate<br>Pit Limit                   | Ultimate<br>Pit Limit                   |        |
| SI.<br>No.                                         | -                                       | 2                                       | 33                                      | 4                                       |        |



Page **52** of **137** 

PRADIP Digitally signed by PRADIP KUMAR KUMAR SAHOO DATE: 2022.08.19
SAHOO 10:48:18 +05:30\*



### Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| (221)            |
|------------------|
| Fe               |
| > 55%            |
| esources:        |
| blocked r        |
| of               |
| <b>Iculation</b> |
| Ca               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                         |                                         |                                         |                                         |                                         | <u> </u>                      | ्यान ब्य                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77      | 1                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------|
| A STATE OF THE PARTY OF THE PAR | Method<br>used for<br>resource<br>estimation | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Pistance | Square Sq |         | RABINDRA by RABINDRA MOHANIY MOHANIY DATE, 2022 08.19 10.48-43 + 05.30                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grade<br>(%)                                 | 56.31                                   | 58.42                                   | 61.29                                   | 57.41                                   | 57.58                                   | 65.62                         | LOGITICAL PARTY OF MAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58 32   | RABINDRA by RABINDRA<br>MOHANTY DATE, 2022, 08.19<br>10-48-43 + 05.30                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name<br>of the<br>radical                    | ਜੂ                                      | ъ                                       | Fe                                      | Ŧ.                                      | Э                                       | Fe                            | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fe      | RABIND                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type of<br>Land                              | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                        | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Forest  |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNFC                                         | 221                                     | 221                                     | 221                                     | 221                                     | 221                                     | 221                           | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 221     |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Resource<br>Quantity<br>(t)                  | 1685                                    | 44364                                   | 22942                                   | 8036                                    | 1213246                                 | 132985                        | 47381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1470639 |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bulk Density<br>(t/m³)                       | æ                                       | m                                       | м                                       | к                                       | m                                       | т                             | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 137                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume<br>(m³)                               | 295                                     | 14788                                   | 7647                                    | 2679                                    | 404415                                  | 44328                         | 15794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | Page <b>53</b> of <b>137</b>                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth (m)                                    | 0.50                                    | 3.00                                    | 0.50                                    | 0.50                                    | 7.00                                    | 2.00                          | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                                         |
| (551)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Influence<br>(m)                             | 100                                     | 100                                     | 100                                     | 100                                     | 100                                     | 100                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                                                         |
| ES. < 33/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sectional area/ block area (in Sq mrt)       | 5.62                                    | 147.88                                  | 76.47                                   | 26.79                                   | 4044.15                                 | 443.28                        | 157.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total   | gned<br>HOO<br>.08.19<br>05:30                                                          |
| alculation of blocked resources, / 33/6 re (221)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cross<br>section/Bloc<br>k                   | OTS/9X <sup>-</sup> 9X                  | X8_Y8/SLO                               | OTS/6A¯6X                               | X10_Y10/SL<br>O                         | X11_Y11/SL<br>O                         | X11_Y11/HL<br>O/HMO           | X11_Y11/LI<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | PRADIP Digitally signed by PRADIP WAS KUMAR SHOO DARE 3022.08.19 SAHOO 10-48.18 +05:30* |
| old to hol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reserves<br>blocked<br>due to                | Ultimate<br>Pit Limit                   | Ultimate<br>Pit Limit         | Ultimate<br>Pit Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | PRA<br>KUN<br>SAF                                                                       |
| alcala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SI.<br>No.                                   |                                         | 2                                       | æ                                       | 4                                       | 2                                       | 9                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                         |



### Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

Calculation of blocked resources: >45% Fe to <55 % Fe

| od<br>or<br>cce<br>rtio                            | e.e. ce                                 | e.<br>e.<br>od                          | e e ce                                  | e e ce                                  | e e ce                                  | 616 m                       | \$ / a                |                                                                        |
|----------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------|-----------------------|------------------------------------------------------------------------|
| Method<br>used for<br>resource<br>estimatio        | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | 7 Thyere<br>Weten<br>Disten | Square                |                                                                        |
| Grade (%)                                          | 51.97                                   | 47.74                                   | 48.3                                    | 50.34                                   | 50.92                                   | As 3 With Badare            | 97.850                | RABINDRA by RABINDRA MOHANTY MOHANTY Date: 2022 08.19 10.48.43 + 05.30 |
| Name of<br>the<br>radical                          | Fe                                      | Fe                                      | Fe                                      | F<br>Đ                                  | Fe                                      | n<br>O                      | Fe                    | RABINDRA<br>MOHANTY                                                    |
| Type of<br>Land                                    | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                      | Forest                |                                                                        |
| UNFC                                               | 222                                     | 222                                     | 222                                     | 222                                     | 222                                     | 222                         | 222                   |                                                                        |
| Resource<br>Quantity (t)                           | 39313                                   | 203827                                  | 119140                                  | 57064                                   | 46278                                   | 61250                       | 27410                 |                                                                        |
| Bulk<br>Density<br>(t/m³)                          | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                         | 2.7                   | Page <b>54</b> of <b>137</b>                                           |
| Volume<br>(m³)                                     | 14560                                   | 75491                                   | 44126                                   | 21135                                   | 17140                                   | 22685                       | 10152                 | Page 5.                                                                |
| Depth<br>(m)                                       | 0.50                                    | 2.00                                    | 2.00                                    | 0.50                                    | 0.50                                    | 2.00                        | 2.00                  |                                                                        |
| Influence<br>(m)                                   | 200                                     | 200                                     | 200                                     | 150                                     | 100                                     | 100                         | 100                   |                                                                        |
| Sectional<br>area/<br>block<br>area (in<br>Sq mrt) | 72.8                                    | 377.455                                 | 220.63                                  | 140.9                                   | 171.4                                   | 226.85                      | 101.52                | gned<br>HOO<br>208.19<br>05130°                                        |
| Cross<br>section/Bl<br>ock                         | X2_Y2/M<br>R/SG                         | X1_Y1/M<br>R/SG                         | X3_Y3/M<br>R/SG                         | X4_Y4/M<br>R/SG                         | X5_Y5/M<br>R/SG                         | X6_Y6/M<br>R/SG             | X7_Y7/M<br>R/SG       | OIP Digitally signed by PRADIP BY PRADIP COMAR SAHOO Date: 2022.08.19  |
| Reserves<br>blocked<br>due to                      | Ultimate Pit<br>limit                   | Ultimate Pit<br>limit                   | Ultimate Pit<br>limit                   | Ultimate Pit<br>Iimit                   | Ultimate Pit<br>limit                   | Ultimate Pit<br>limit       | Ultimate Pit<br>limit | PRADIP<br>KUMAR<br>SAHOO                                               |
| SI.<br>No.                                         | Н                                       | ٧ .                                     | ж                                       | 4                                       | 5                                       | 9                           | 7                     |                                                                        |



Odisha Mining Corporation Ltd Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

|                                                    |                    |                                         |                                         |                                         |                                         |                                         | 1                                           | The state of the s |        |
|----------------------------------------------------|--------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Method<br>used for<br>resource<br>estimatio<br>n   | Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>IT Distance            | Inverse<br>Square<br>Distance<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| Grade<br>(%)                                       |                    | 49.03                                   | 50.22                                   | 49.34                                   | 51.59                                   | 51.96                                   | 47.85                                       | Ty 9 (06 Squai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ship A |
| Name of<br>the<br>radical                          |                    | <del>п</del>                            | т.<br>Ф                                 | Fe                                      | Fe .                                    | Fe                                      | g.                                          | Đ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| Type of<br>Land                                    |                    | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                      | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| UNFC                                               |                    | 222                                     | 222                                     | 222                                     | 222                                     | 222                                     | 222                                         | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Resource<br>Quantity (t)                           |                    | 86801                                   | 367761                                  | 554388                                  | 184663                                  | 57164                                   | 17765                                       | 199151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| Bulk<br>Density<br>(t/m³)                          |                    | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                         | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Volume<br>(m³)                                     |                    | 32148                                   | 136208                                  | 205329                                  | 68394                                   | 21172                                   | 6580                                        | 73760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| Depth<br>(m)                                       |                    | 1.00                                    | 4.00                                    | 3.00                                    | 2.00                                    | 10.00                                   | 2.00                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| Influence<br>(m)                                   |                    | 100                                     | 100                                     | 100                                     | 100                                     | 100                                     | 200                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Sectional<br>area/<br>block<br>area (in<br>Sq mrt) |                    | 321.48                                  | 1362.08                                 | 2053.29                                 | 683.94                                  | 211.72                                  | 32.9                                        | 368.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| Cross<br>section/Bl<br>ock                         |                    | X8_Y8/M<br>R/SG                         | X9_Y9/M<br>R/SG                         | X10_Y10/<br>MR/SG                       | X11_Y11/<br>MR/SG                       | X12_Y12/<br>MR/SG                       | X1_Y1/M<br>R/SG                             | X3_Y3/M<br>R/SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Reserves<br>blocked<br>due to                      |                    | Ultimate Pit<br>limit                   | Safety Zone<br>(7.5 m<br>safety<br>barrier) | Safety Zone(50 m both side of nala)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| SI.<br>No.                                         |                    | ∞                                       | 6                                       | 10                                      | 11                                      | 12                                      | 13                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |

Page **55** of **137** 

RABINDRA by RABINDRA MOHANTY MOHANTA M

PRADIP Digitally signed by PRADIP KUMAR SAHOO DATE: 2022.08.19
SAHOO 10:48:18 +05:30



| isha Min    |  |
|-------------|--|
| Odi         |  |
| Mine        |  |
| n Ore       |  |
| Rantha Iron |  |
| 8           |  |

| Odisha Mining Corporation Ltd |
|-------------------------------|
| Odisha                        |
| a Iron Ore Mine               |
| $\sigma$                      |

| for<br>Irce<br>atio                                |                                              |                                            | į                                       | 1                                       |                                         | 1                                          | A CONTRACTOR OF THE PARTY OF TH |
|----------------------------------------------------|----------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method<br>used for<br>resource<br>estimatio<br>n   | Inverse<br>Square<br>Distance<br>Method      | Inverse<br>Square<br>Distance<br>Method    | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance              | 51.44 Square.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Grade<br>(%)                                       | 48.63                                        | 47.2                                       | 49.02                                   | 48.77                                   | 48.68                                   | 48.69                                      | 51.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Name of<br>the<br>radical                          | F.                                           | F.                                         | Fe                                      | Fe                                      | a<br>9                                  | <u>а</u>                                   | ਰ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Type of<br>Land                                    | Forest                                       | Forest                                     | Forest                                  | Forest                                  | Forest                                  | Forest                                     | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| UNFC                                               | 222                                          | 222                                        | 223                                     | 222                                     | 222                                     | 222                                        | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Resource<br>Quantity (t)                           | 21131                                        | 7031                                       | 2423                                    | 16706                                   | 8575                                    | 149219                                     | 18793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bulk<br>Density<br>(t/m³)                          | 2.7                                          | 2.7                                        | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                        | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Volume<br>(m³)                                     | 7826                                         | 2604                                       | 868                                     | 6188                                    | 3176                                    | 55266                                      | 0969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Depth<br>(m)                                       | 1.00                                         | 2.00                                       | 2.00                                    | 1.00                                    | 1.00                                    | 3.00                                       | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Influence<br>(m)                                   | 150                                          | 100                                        | 101                                     | 100                                     | 100                                     | 100                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sectional<br>area/<br>block<br>area (in<br>Sq mrt) | 52.1733<br>3                                 | 26.04                                      | 8.89                                    | 61.88                                   | 31.76                                   | 552.66                                     | 9.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cross<br>section/Bl<br>ock                         | X4_Y4/M<br>R/SG                              | X6_Y6/M<br>R/SG                            | X7_Y7/M<br>R/SG                         | X8_Y8/M<br>R/SG                         | X9_Y9/M<br>R/SG                         | X10_Y10/<br>MR/SG                          | X11_Y11/<br>MR/SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reserves<br>blocked<br>due to                      | Safety<br>Zone(50 m<br>both side of<br>nala) | Safety<br>Zone(7.5 m<br>safety<br>barrier) | Safety Zone(7.5 m safety                | Safety Zone(7.5 m safety barrier)       | Safety Zone(7.5 m safety barrier)       | Safety<br>Zone(7.5 m<br>safety<br>barrier) | Safety<br>Zone(7.5 m<br>safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SI.<br>No.                                         | 15                                           | 16                                         | 17                                      | 18                                      | 19                                      | 20                                         | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Page **56** of **137** 

PRADIP Digitally signed by PRADIP BY PRADIP BY PRADIP BY PRADIP BY PRADIP BATE: 2022.08.19

RABINDRA BARGINGE MOHANTY DAE 200



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| for<br>for<br>rrce<br>atio                         | pot                                    | rse<br>are<br>nce<br>od                 |           |  |
|----------------------------------------------------|----------------------------------------|-----------------------------------------|-----------|--|
| Method<br>used for<br>resource<br>estimatio        | Method                                 | Inverse<br>Square<br>Distance<br>Method |           |  |
| Grade<br>(%)                                       |                                        | 51.94                                   | 49.59     |  |
| Name of<br>the<br>radical                          |                                        | Fe                                      | Fe        |  |
| Type of<br>Land                                    |                                        | Forest                                  | Forest    |  |
| UNFC                                               |                                        | 222                                     | 222       |  |
| Resource<br>Quantity (t)                           |                                        | 24342                                   | 2270195   |  |
| Bulk<br>Density<br>(t/m³)                          |                                        | 2.7                                     |           |  |
| Volume<br>(m³)                                     |                                        | 9016                                    |           |  |
| Depth<br>(m)                                       |                                        | 2.00                                    |           |  |
| Influence<br>(m)                                   |                                        | 100                                     |           |  |
| Sectional<br>area/<br>block<br>area (in<br>Sq mrt) |                                        | 90.16                                   | Total     |  |
| Cross<br>section/Bl<br>ock                         | section/Bl<br>ock<br>X12_Y12/<br>MR/SG |                                         |           |  |
| Reserves<br>blocked<br>due to                      | barrier)                               | Safety Zone(7.5 m safety                | ) January |  |
| SI.<br>No.                                         |                                        | 22                                      |           |  |



Page **57** of **137** 

PRADIP Digitally signed by fradit KUMAR KUMAR SAHOO Date: 2022,08.19
SAHOO 10:48:18 +05:30



### Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine Odisha Mining Corporation Ltd

Calculation of blocked resources: >55% Fe (222)

| Method used for resource estimation             | Inverse Square<br>Distance<br>Method         | Inverse Square<br>Distance<br>Method | Inverse Square Distance Wethod               | diverse Square |      |
|-------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------|------|
| Grad<br>e (%)                                   | 59.47                                | 65.05                                | 59.65                                | 56.74                                | 58.44                                        | 58.26                                | 58.5                                         | 55.32          | 1000 |
| Name of<br>the<br>radical                       | Fe                                   | Fe                                   | Fe                                   | Fe                                   | Ъ                                            | ត                                    | Б                                            | Fe             |      |
| Type of<br>Land                                 | Forest                               | Forest                               | Forest                               | Forest                               | Forest                                       | Forest                               | Forest                                       | Forest         |      |
| UNFC code                                       | 222                                  | 222                                  | 222                                  | 222                                  | 222                                          | 222                                  | 222                                          | 222            | T    |
| Resource<br>Quantity (t)                        | 89621                                | 40625                                | 150403                               | 20991                                | 331262                                       | 30852                                | 30352                                        | 51556          |      |
| Bulk<br>Density<br>(t/m³)                       | м                                    | m                                    | ю                                    | Ж                                    | m                                            | m                                    | m                                            | m              | 7    |
| Volume<br>(m³)                                  | 29874                                | 13542                                | 50134                                | 2669                                 | 110421                                       | 10284                                | 10117                                        | 17185          |      |
| Depth<br>(m)                                    | 1.00                                 | 1.00                                 | 2.00                                 | 1.00                                 | 2.00                                         | 1.00                                 | 2.00                                         | 2.00           |      |
| Influen<br>ce (m)                               | 200                                  | 200                                  | 200                                  | 200                                  | 200                                          | 150                                  | 150                                          | 100            |      |
| Sectional<br>area/ block<br>area (in Sq<br>mtr) | 149.37                               | 67.71                                | 250.67                               | 34.985                               | 552.105                                      | 68.56                                | 67.44667                                     | 171.85         |      |
| Cross<br>section/Bl<br>ock                      | X2_Y2/5L0                            | X2_Y2/BL<br>UE DUST                  | X3_Y3/SLO                            | X3_Y3/HL<br>O/HMO                    | X3_Y3/SL0                                    | X4_Y4/SLO                            | X4_Y4/SLO                                    | X5_Y5/SLO      |      |
| Reserves<br>blocked due<br>to                   | Ultimate Pit<br>Limit                | Ultimate Pit<br>Limit                | Ultimate Pit<br>Limit                | Ultimate Pit<br>Limit                | Safety<br>Zone(50 m<br>both side of<br>nala) | Ultimate Pit<br>Limit                | Safety<br>Zone(50 m<br>both side of<br>nala) | Ultimate Pit   |      |
| SI.<br>N                                        | ~                                    | 2                                    | 3                                    | 4                                    | 2                                            | 9                                    | 7                                            | ∞              |      |

Page **58** of **137** 

RABINDRA PANGENDA MOHANTY PARE 2025 FEMALE MOHANTY PARE 2025 FEMALE 10-28-43 +05-30

PRADIP Digitally signed by PRADIP BY PRADIP CONTROL BY PRADIP CONTROL BY PRADIP CONTROL BY PRADIP SAME A 105-38



Rantha Iron Ore Mine Odisha Mi

Odisha Mining Corporation Ltd

Page **59** of **137** 

PRADIP Digitally signed by fixed Property By Bradin By Bare 2022,08.19
SAHOO 10:48:18 +05:30

MOHANTY



| Iron Ore Mine Odisha Mining Corporation Ltd |  |
|---------------------------------------------|--|
| Rantha Iron Ore Mine                        |  |

| Since the section of the section o   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preserves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Preserves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Preserves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PRADIP   Depth   Cook   Alexandral   February   Cook   Alexandral   Alexandral   Cook   Alexandral   Alexandral   Cook   Alexandral   |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Neserves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Reserves Cross Sectional area/block blocked due section/Bl area (in Sq to ock mtr)  Ultimate Pit X10_Y10/L 36.23  Safety Sarier) Safety barrier) Safety barrier) Safety barrier) Cone(7.5 m |
| Reserves Cross blocked due section/Bl to ock  Ultimate Pit X10_Y10/L Limit lo Safety barrier) Safety barrier) Safety X10_Y10/L Safety barrier) Safety barrier) Safety X11_Y11/S Lo Lo Limit Lo Lo Limit Lo Lo Limit Lo Lo Limit HLO/HMO Safety barrier) Ultimate Pit X11_Y11/L Limit HLO/HMO Safety barrier) Safety X12_Y12/S Limit HLO/HMO Safety barrier) Ultimate Pit X11_Y11/L Lo Lo Lo Lo Limit HLO/HMO Safety barrier) Safety barrier) Vltimate Pit X11_Y11/S Lo Lo Lo Limit Lo Lo Lo Lo Limit Lo Lo Lo Limit Lo Lo Lo Limit Lo Lo Lo Limit Limit Lo Lo Lo Limit Lo Lo Lo Limit Limit Lo Lo Limit Limit Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Reserves C blocked due sect to complete to complete to complete to complete the complete to complete to complete the complete to complete the complete to complete the complete to complete to complete the com |
| Reserv blocked to to Ultimate Limit Safety ba Ultimate Limit Limit Safety ba Ultimate Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SI. N O. O. O. 20 22 22 23 23 23 25 25 25 25 25 27 27 27 27 27 27 27 27 27 27 27 27 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |







Odisha Mining Corporation Ltd Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

# 2.2.4.12: Calculation of Reserves: > 45% Fe to <55 %Fe (121)

| Method<br>used for<br>resource<br>estimation  | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | lnverse<br>Square<br>Square<br>Distance |
|-----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Grade<br>(%)                                  | 48.57                                   | 49.92                                   | 49.67                                   | 49.55                                   | 49.86                                   | 49.01                                   |
| Name of<br>the of<br>radical                  | Fe                                      | Fe                                      | Fe                                      | Fe                                      | Fe                                      | - Fe                                    |
| Type of<br>Land                               | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                  |
| UNFC                                          | 121                                     | 12.1                                    | 121                                     | 121                                     | 121                                     | 121                                     |
| Reserves<br>Quantity<br>(t)                   | 211251                                  | 162850                                  | 2392193                                 | 555842                                  | 1837929                                 | 1310257                                 |
| Bulk<br>Density<br>(t/m³)                     | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     |
| Volume<br>(m³)                                | 78241                                   | 60315                                   | 885997                                  | 205868                                  | 680715                                  | 485280                                  |
| Depth<br>(m)                                  | 7.30                                    | 3.00                                    | 16.90                                   | 9.00                                    | 14.00                                   | 13.20                                   |
| Influence<br>(m)                              | 150                                     | 100                                     | 100                                     | 100                                     | 100                                     | 100                                     |
| Sectional<br>area/block<br>area in Sq.<br>mtr | 522                                     | 603                                     | 8860                                    | 2059                                    | 6807                                    | 4853                                    |
| Cross<br>Section/Block                        | X4_Y4/MR/SG                             | X5_Y5/MR/SG                             | X6_Y6/MR/SG                             | X7_Y7/MR/SG                             | X8_Y8/MR/SG                             | X9_Y9/MR/SG                             |
| SI.<br>No.                                    | Н                                       | 2                                       | т                                       | 4                                       | ī.                                      | 9                                       |

RABINDRA DI RAZZONIO E POR MOHANTY DIRECTOR DI RAZZONIO E POR MOHANTY DIRECTOR DE PORTO E PORT

PRADIP Digitally signed by PRADIP KUMAR KUMAR SAHOO Date: 2022.08.19
SAHOO 104818 +05'30'

Page **61** of **137** 



Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

| SI.<br>No. | Cross<br>Section/Block | Sectional<br>area/block<br>area in Sq. | Influence<br>(m) | Depth<br>(m) | Volume<br>(m³) | Bulk<br>Density<br>(t/m³) | Reserves<br>Quantity<br>(t) | UNFC | Type of<br>Land | Name of<br>the of<br>radical | Grade<br>(%) | Method<br>used for<br>resource<br>estimation |
|------------|------------------------|----------------------------------------|------------------|--------------|----------------|---------------------------|-----------------------------|------|-----------------|------------------------------|--------------|----------------------------------------------|
| 7          | X10_Y10/MR/S<br>G      | 4224                                   | 100              | 9.00         | 422367         | 2.7                       | 1140390                     | 121  | Forest          | Fe                           | 48.7         | Inverse<br>Square<br>Distance<br>Method      |
| ∞          | X11_Y11/MR/S<br>G      | 3783                                   | 100              | 12.30        | 378275         | 2.7                       | 1021343                     | 121  | Forest          | Fe                           | 49.68        | Inverse<br>Square<br>Distance<br>Method      |
|            |                        |                                        |                  | Total        |                |                           | 8632055                     | 121  | Forest          | Ъ                            | 49.45        | *                                            |

Calculation of Reserves: > 55% Fe (121)

| γ                                             |                                      |                            |                                      |  |
|-----------------------------------------------|--------------------------------------|----------------------------|--------------------------------------|--|
| Method used<br>for resource<br>estimation     | Inverse Square<br>Distance<br>Method | Inverse Square<br>Distance | Inverse Square<br>Distance<br>Method |  |
| Grade<br>(%)                                  | 58.55                                | 57.07                      | 58.7                                 |  |
| Name of<br>the of<br>radical                  | Fe                                   | Fe                         | F.                                   |  |
| Type of<br>Land                               | Forest                               | Forest                     | Forest                               |  |
| UNFC                                          | 121                                  | 121                        | 121                                  |  |
| Reserves<br>Quantity<br>(t)                   | 395318                               | 121267                     | 1880743                              |  |
| Bulk<br>Density<br>(t/m³)                     | ъ                                    | ٣                          | 8                                    |  |
| Volume<br>(m³)                                | 131773                               | 40422                      | 626914                               |  |
| Depth<br>(m)                                  | 9.90                                 | 6.00                       | 22.40                                |  |
| Influence<br>(m)                              | 150                                  | 100                        | 100                                  |  |
| Sectional<br>area/block<br>area in Sq.<br>mtr | 878.4867                             | 404.22                     | 6269.14                              |  |
| Cross<br>Section/Block                        | X4_Y4/SLO                            | X5_Y5/SLO                  | X7_Y7/SLO                            |  |
| SI.<br>No.                                    | Н                                    | 2                          | m                                    |  |



Page **62** of **137** 

PRADIP Digitally signed by PRADIP EN PRADIP CONTRACT CONT



### Review Rantha

| n of Mining Plan & Progressive Mine Closure Plan | 2027-28)             | Odisha Mining Corporation Ltd |
|--------------------------------------------------|----------------------|-------------------------------|
| w of Mining Plan &                               | (2023-24 to 2027-28) | a Iron Ore Mine               |

| Method used<br>for resource<br>estimation | Inverse Square<br>Distance<br>Method | Inverse Square Distance | Inverse 5<br>Distan | RABINDRA bytestering of the Mohanty Bate, 2022.08.19               |
|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------|---------------------|--------------------------------------------------------------------|
| Grade<br>(%)                              | 57.93                                | 58.53                                | 57.42                                | 58.4                                 | 57.86                                | 59.92                                | 61.98                                | 57.08                   | 58.66               | RABINDRA by wellowing solid by MOHANTY Date, 2022,08 19            |
| Name of<br>the of<br>radical              | Fe                                   | Fe                                   | Fe                                   | ā                                    | Fe                                   | Fe                                   | Fe                                   | Fe                      | Fe                  | RAE                                                                |
| Type of<br>Land                           | Forest                               | Forest                  | Forest              |                                                                    |
| UNFC                                      | 121                                  | 121                                  | 121                                  | 121                                  | 121                                  | 121                                  | 121                                  | 121                     | 121                 |                                                                    |
| Reserves<br>Quantity<br>(t)               | 57860                                | 28124                                | 1763827                              | 3971250                              | 186858                               | 2957009                              | 876840                               | 595027                  | 4642215             | 137                                                                |
| Bulk<br>Density<br>(t/m³)                 | ٣                                    | ж                                    | æ                                    | т                                    | ٣                                    | т                                    | к                                    | т                       | т                   | Page <b>63</b> of <b>137</b>                                       |
| Volume<br>(m³)                            | 19287                                | 9375                                 | 587942                               | 1323750                              | 62286                                | 985670                               | 292280                               | 198342                  | 1547405             |                                                                    |
| Depth<br>(m)                              | 3.10                                 | 22.40                                | 20.40                                | 26.30                                | 3.00                                 | 21.00                                | 20.30                                | 9.50                    | 31.00               |                                                                    |
| Influence<br>(m)                          | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                     | 100                 | ned<br>100<br>98.19<br>530°                                        |
| Sectional<br>area/block<br>area in Sq.    | 192.87                               | 93.75                                | 5879.42                              | 13237.5                              | 622.86                               | 9856.7                               | 2922.8                               | 1983.42                 | 15474.05            | DIP Digitally signed by PRADIP Date: 202208.19 OO 10:48:18 +05:30* |
| Cross<br>Section/Block                    | X7_Y7/LIO                            | X7_Y7/SLO                            | 07S/9X <sup>-</sup> 9X               | X8_YSLO                              | X8_Y8/LIO                            | OTS/6X <sup>-</sup> 6X               | X9_Y9/НLО/Н<br>МО                    | 017/6X <sup>-</sup> 6X  | X10_Y10/SLO         | PRADIP<br>KUMAR<br>SAHOO                                           |
| SI.<br>No.                                | 4                                    | 70                                   | 9                                    | 7                                    | 80                                   | 6                                    | 10                                   | H                       | 12                  |                                                                    |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| · · · · · · · · · · · · · · · · · · ·         |                                      |                                      | т                                    | <del></del>                          | r                                    |          |
|-----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------|
| Method used<br>for resource<br>estimation     | Inverse Square<br>Distance<br>Method |          |
| Grade<br>(%)                                  | 61.24                                | 57.15                                | 57.26                                | 62.32                                | 55.7                                 | 58.57    |
| Name of<br>the of<br>radical                  | Б                                    | Fe                                   | Fe                                   | Fe                                   | Fe                                   |          |
| Type of<br>Land                               | Forest                               | Forest                               | Forest                               | Forest                               | Forest                               |          |
| UNFC                                          | 121                                  | 121                                  | 121                                  | 121                                  | 121                                  |          |
| Reserves<br>Quantity<br>(t)                   | 123750                               | 242764                               | 2991238                              | 186143                               | 125991                               | 21146224 |
| Bulk<br>Density<br>(t/m³)                     | m                                    | ĸ                                    | ĸ                                    | m                                    | к                                    |          |
| Volume<br>(m³)                                | 41250                                | 80921                                | 997079                               | 62048                                | 41997                                |          |
| Depth<br>(m)                                  | 20.00                                | 9.90                                 | 20.00                                | 5.00                                 | 6.00                                 |          |
| Influence<br>(m)                              | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | Total    |
| Sectional<br>area/block<br>area in Sq.<br>mtr | 412.5                                | 809.21                               | 9970.79                              | 620.48                               | 419.97                               |          |
| Cross<br>Section/Block                        | X10_Y10/HLO/<br>HMO                  | X10_Y10/LIO                          | X11_Y11/SLO                          | X11_Y11/HLO/<br>HMO                  | X11_Y11/LIO                          |          |
| SI.<br>No.                                    | 13                                   | 14                                   | 15                                   | 16                                   | 17                                   |          |



Page **64** of **137** 

PRADIP Digitally signed by PRADIP KUMAR KUMAR SAHOO DATE, 2022 (8.19 SAHOO TOAR18 +05:30



### Odisha Mining Corporation Ltd Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

## Calculation of Reserves: > 45% Fe to <55 %Fe (122)

|                                              |                                         |                                         |                                         |                                         |                                         |                            | politica a garage                                              |
|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------|----------------------------------------------------------------|
| Method<br>used for<br>resource<br>estimation | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | O.67 Transerse O.67 Method | RABINDRA DY RESIDENCE MOHANTY DATE 2027 08 19 10.48.43 + 08 39 |
| Grade<br>(%)                                 | 51.33                                   | 47.41                                   | 48                                      | 50.32                                   | 51.04                                   | 50.67                      | ADRA MOHA                                                      |
| Name of<br>the of<br>radical                 | Fe                                      | Fe                                      | Fe                                      | 9.                                      | Fe                                      | Fe                         | RABIN                                                          |
| Type of<br>Land                              | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                     |                                                                |
| UNFC                                         | 122                                     | 122                                     | 122                                     | 122                                     | 122                                     | 122                        |                                                                |
| Reserves<br>Quantity<br>(t)                  | 1991465                                 | 509852                                  | 6231198                                 | 1312552                                 | 785397                                  | 1754037                    | 37                                                             |
| Bulk<br>Density<br>(t/m³)                    | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                        | Page <b>65</b> of <b>137</b>                                   |
| Volume<br>(m³)                               | 737580                                  | 188834                                  | 2307851                                 | 486130                                  | 290888                                  | 649643                     |                                                                |
| Depth<br>(m)                                 | 9.00                                    | 10.00                                   | 13.00                                   | 7.30                                    | 3.00                                    | 16.90                      |                                                                |
| Influence<br>(m)                             | 200                                     | 200                                     | 200                                     | 150                                     | 100                                     | 100                        |                                                                |
| Sectional<br>area/block<br>area in Sq<br>mtr | 3687.9                                  | 944.17                                  | 11539.26                                | 3240.867                                | 2908.88                                 | 6496.43                    | P Digitally signed by PRADIP KUMAR SAHOO Date: 202208.19       |
| Cross<br>Sectinon/Block                      | X2_Y2/MR/SG                             | X1_Y1/MR/SG                             | X3_Y3/MR/SG                             | X4_Y4/MR/SG                             | X5_Y5/MR/SG                             | X6_Y6/MR/SG                | PRADIP<br>KUMAR<br>SAHOO                                       |
| SI.<br>No.                                   | -                                       | 2                                       | 8                                       | 4                                       | 72                                      | 9                          |                                                                |



Odisha Mining Corporation Ltd Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

| Method<br>used for<br>resource<br>estimation | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method | Inverse<br>Square<br>Distance<br>Method |          |
|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------|
| Grade<br>(%)                                 | 51.11                                   | 49.13                                   | 48                                      | 48.54                                   | 51.11                                   | 49.29    |
| Name of<br>the of<br>radical                 | Fe                                      | Ā.                                      | Fe                                      | Fe                                      | ъ<br>Ф                                  | g.       |
| Type of<br>Land                              | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest                                  | Forest   |
| UNFC                                         | 122                                     | 122                                     | 122                                     | 122                                     | 122                                     | 122      |
| Reserves<br>Quantity<br>(t)                  | 806202                                  | 1000311                                 | 1023737                                 | 326542                                  | 22971                                   | 15764264 |
| Bulk<br>Density<br>(t/m³)                    | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     | 2.7                                     |          |
| Volume<br>(m³)                               | 298593                                  | 370486                                  | 379162                                  | 120941                                  | 8208                                    |          |
| Depth<br>(m)                                 | 22.40                                   | 14.00                                   | 13.20                                   | 9.50                                    | 12.30                                   | Total    |
| Influence<br>(m)                             | 100                                     | 100                                     | 100                                     | 100                                     | 100                                     |          |
| Sectional<br>area/block<br>area in Sq<br>mtr | 2985.93                                 | 3704.86                                 | 3791.62                                 | 1209.41                                 | 85.08                                   |          |
| Cross<br>Sectinon/Block                      | X7_Y7/MR/SG                             | X8_Y8/MR/SG                             | X9_Y9/MR/SG                             | X10_Y10/MR/S<br>G                       | X11_Y11/MR/S<br>G                       |          |
| SI.<br>No.                                   | 7                                       | 8                                       | 6                                       | 10                                      | 11                                      |          |



Page **66** of **137** 

PRADIP Digitally signed by PRADIP KUMAR SAHOO DATE: 2022,8819
SAHOO 10:48:18 +05:30



Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

Calculation of Reserves: > 55% Fe (122)

| כמונ       | במוכמומנוטוו טו וזכטכו עכט. |                                                              | /)               |              |                |                              |                             |      |                 |                              |              |                                           |
|------------|-----------------------------|--------------------------------------------------------------|------------------|--------------|----------------|------------------------------|-----------------------------|------|-----------------|------------------------------|--------------|-------------------------------------------|
| SI.<br>No. | Cross<br>Sectinon/Block     | Sectional<br>area/block<br>area in Sq<br>mtr                 | Influence<br>(m) | Depth<br>(m) | Volume<br>(m³) | Bulk<br>Density<br>(t/m³)    | Reserves<br>Quantity<br>(t) | UNFC | Type of<br>Land | Name of<br>the of<br>radical | Grade<br>(%) | Method used<br>for resource<br>estimation |
| $\vdash$   | X2_Y2/5L0                   | 7171.99                                                      | 200              | 10.50        | 1434398        | m                            | 4303195                     | 122  | Forest          | Fe                           | 58.32        | Inverse Square<br>Distance<br>Method      |
| 2          | X2_Y2/BLUE<br>DUST          | 7942.91                                                      | 200              | 24.70        | 1588582        | 3                            | 4765746                     | 123  | Forest          | Fe                           | 64.75        | Inverse Square<br>Distance<br>Method      |
| 33         | X3_Y3/5L0                   | 7850.495                                                     | 200              | 14.50        | 1570099        | E.                           | 4710297                     | 124  | Forest          | Fe                           | 57.46        | Inverse Square<br>Distance<br>Method      |
| 4          | X3_Y3/HLO/H<br>MO           | 165.44                                                       | 200              | 2.70         | 33088          | 8                            | 99263                       | 125  | Forest          | Fe                           | 56.74        | Inverse Square<br>Distance<br>Method      |
| 2          | X3_Y3/LIO                   | 462.905                                                      | 200              | 6.00         | 92581          | æ                            | 277742                      | 126  | Forest          | Fe                           | 56.55        | Inverse Square<br>Distance<br>Method      |
| 9          | X4_Y4/SLO                   | 2557.787                                                     | 150              | 11.20        | 383668         | m                            | 1151003                     | 127  | Forest          | Fe                           | 58.25        | Inverse Square<br>Distance<br>Method      |
| 7          | X4_Y4/LIO                   | 149.8133                                                     | 150              | 2.40         | 22472          | æ                            | 67417                       | 128  | Forest          | Fe                           | 56.06        | Inverse Square<br>Distance<br>Method      |
| ∞          | X5_Y5/SLO                   | 4693.91                                                      | 100              | 7.00         | 469391         | 33                           | 1408173                     | 129  | Forest          | Fe                           | 14 US 56     | 58.56 Distance                            |
|            | PRADIP                      | P Digitally signed by PRADIP AR KUMAR SAHOO DATE: 2022.08.19 | D 05             |              |                | Page <b>67</b> of <b>137</b> | 37                          |      |                 | RABIN                        | ANTY POR     | RABINDRA IN CHANGE CO.                    |

PRADIP Digitally signed by PRADIP KUMAR KUMAR SAHOO Date: 2022:08.19 SAHOO



Review of Mining Plan & Progressive Mine Closure Plan Ran

|   | (2023-24 to 2027-28) | Odisha Mining Corporation Ltd |
|---|----------------------|-------------------------------|
| ) | (2023-24             | ntha Iron Ore Mine            |

|                                              |                                      | 0)                                   | 0.                                   | <i>a</i> )                           | a)                                   | (1)                                  | (1)                                  | 0)                    |                                                             |
|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------|-------------------------------------------------------------|
| Method used<br>for resource<br>estimation    | Inverse Square<br>Distance<br>Method | Inverse Square<br>Distance<br>Method | Inverse Square<br>Distance<br>Mẹthod | Inverse Square<br>Distance<br>Method | Inverse Square<br>Distance<br>Method | Inverse Square<br>Distance<br>Method | Inverse Square<br>Distance<br>Method | 1 5 55.03 C. Distance | RABINDAN FORMANY MOHANTY DARE 2022 08 19 10.48.43 +053 30   |
| Grade<br>(%)                                 | 56.06                                | 59                                   | 57.63                                | 59.98                                | 57.87                                | 59.88                                | 57.72                                | 55.03                 | ADRA ESPAGA                                                 |
| Name of<br>the of<br>radical                 | Fe                                   | Fe                                   | <del>.</del> Б                       | Б                                    | ъ                                    | Fe                                   | Fe                                   | A FLI                 | RABINDA                                                     |
| Type of<br>Land                              | Forest                               | Forest                |                                                             |
| UNFC                                         | 130                                  | 131                                  | 132                                  | 133                                  | 134                                  | 135                                  | 136                                  | 137                   |                                                             |
| Reserves<br>Quantity<br>(t)                  | 39920                                | 2886777                              | 250026                               | 1654101                              | 3984                                 | 1781752                              | 1263072                              | 91711                 | 37                                                          |
| Bulk<br>Density<br>(t/m³)                    | æ                                    | æ                                    | æ                                    | m                                    | က                                    | т                                    | co .                                 | ĸ                     | Page <b>68</b> of <b>137</b>                                |
| Volume<br>(m³)                               | 13307                                | 962259                               | 83342                                | 551367                               | 1328                                 | 593917                               | 421024                               | 30570                 |                                                             |
| Depth<br>(m)                                 | 0.50                                 | 20.40                                | 9.00                                 | 22.40                                | 3.10                                 | 26.30                                | 21.00                                | 9.50                  |                                                             |
| Influence<br>(m)                             | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                   |                                                             |
| Sectional<br>area/block<br>area in Sq<br>mtr | 133.07                               | 9622.59                              | 833.42                               | 5513.67                              | 13.28                                | 5939.17                              | 4210.24                              | 305.7                 | P Digitally signed by Parabili KWARS 84900 Date: 2022.08.19 |
| Cross<br>Sectinon/Block                      | X5_Y5/LIO                            | 018/9Х-9х                            | MO<br>MO<br>MO                       | 018/7Y_X                             | 0IJ/LY_X                             | X8_Y8/5L0                            | 018/6\_ex                            | 011/6Y_6X             | PRADIP<br>KUMAR<br>SAHOO                                    |
| SI.<br>No.                                   | 6                                    | 10                                   | 4                                    | 12                                   | 13                                   | 14                                   | 15                                   | 16                    |                                                             |
| ***************************************      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                       |                                                             |



Rantha Iron Ore Mine Odisha Minin

Odisha Mining Corporation Ltd

| SI. | Cross<br>Sectinon/Block | Sectional<br>area/block<br>area in Sq<br>mtr | Influence<br>(m) | Depth<br>(m) | Volume<br>(m³) | Bulk<br>Density<br>(t/m³) | Reserves<br>Quantity<br>(t) | UNFC | Type of<br>Land | Name of<br>the of<br>radical | Grade<br>(%) | Method used<br>for resource<br>estimation |
|-----|-------------------------|----------------------------------------------|------------------|--------------|----------------|---------------------------|-----------------------------|------|-----------------|------------------------------|--------------|-------------------------------------------|
| 17  | X10_Y10/SLO             | 1703.14                                      | 100              | 31.20        | 170314         | m                         | 510941                      | 138  | Forest          | Fe                           | 60.72        | Inverse Square<br>Distance<br>Method      |
| 18  | X10_Y10/LIO             | 191                                          | 100              | 9.50         | 19100          | m                         | 57299                       | 139  | Forest          | Fe                           | 55.03        | Inverse Square<br>Distance<br>Method      |
| 19  | X11_Y11/SLO             | 164.2                                        | 100              | 26.00        | 16420          | m                         | 49259                       | 140  | Forest          | Fe                           | 60.1         | Inverse Square<br>Distance<br>Method      |
| 20  | X11_Y11/LIO             | 3.32                                         | 100              | 7.50         | 332            | m                         | 995                         | 141  | Forest          | Fe                           | 55.62        | Inverse Square<br>Distance<br>Method      |
| 21  | X11_Y11/HLO/<br>HMO     | 5.99                                         | 100              | 7.00         | 599            |                           | 1796                        | 142  | Forest          | Fe                           | 57.76        | Inverse Square<br>Distance<br>Method      |
|     |                         |                                              | Total            |              |                |                           | 25374469                    |      |                 |                              | 59.63        | ,                                         |



| Mineral                             | Hematite (Iron Ore) |
|-------------------------------------|---------------------|
| Reserves/ Resources estimated as on | 30/06/2022          |
| UNIT of estimation                  | Metric Ton          |
|                                     |                     |



of 137

PRADIP Digitally signed by PRADIP KUMAR KUMAR SAHOO Date: 2022.08.19

Page **69** of **137** 



Odisha Mining Corporation Ltd Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

| apoo                                                              |   |                   | Qua                                   | Quantity | Total                        | Ţ.       | Grand            | Forest               | ts         | Gra<br>Non-Forest | Grade      | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | le le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|-------------------------------------------------------------------|---|-------------------|---------------------------------------|----------|------------------------------|----------|------------------|----------------------|------------|-------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Forest Nor                                                        | a | OZ U              | <u> </u>                              | p        | e=(a+c)                      | f=(b+d)  | Total<br>g=(e+f) | % e                  | »q         | %                 | d %        | e %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total<br>g % |
| Fe>45% to Fe>55% to <55% to <55%                                  |   | Fe>45%<br>to <55% | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Fe>55%   | Fe>45% to <55%               | Fe>55%   | Fe>45%           | Fe>45%<br>to<br><55% | Fe<br>>55% | Fe>45%<br>to <55% | Fe<br>>55% | Fe>45%<br>to<br><55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fe<br>>55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fe<br>>45%   |
| 111 Nil Nil                                                       |   | Ë                 |                                       | Nii      | Nil                          | ΞZ       | II.              | ï.                   | Z          | N.                | ΞZ         | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ΞZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · Z          |
| 121 8632055 21146224 Nil                                          |   | ī.<br>Ž           |                                       | Ë        | 8632055                      | 21146224 | 29778279         | 49.45                | 58.57      | Z.                | ΞZ         | 49.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.73        |
| 122 15764264 25374469 Nil                                         |   | ΞĒ                |                                       | ΞΞ       | 15764264                     | 25374469 | 41138733         | 49.29                | 59.63      | ΞΞ                | Z          | 49.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.66        |
| 24396319 46520693 Nil                                             |   | Ē                 |                                       | Ē        | 24396319                     | 46520693 | 70917012         | 49.34                | 59.16      | Ē                 | Ē          | 49.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.68        |
| Fe>45% to Fe>55% to <55% to <55%                                  |   | Fe>45%<br>to <55% |                                       | Fe>55%   | Fe>45% to <55%               | Fe>55%   | Fe>45%           | Fe>45%<br>to<br><55% | Fe<br>>55% | Fe>45%<br>to <55% | Fe<br>>55% | Fe>45%<br>to<br><55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fe >55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fe<br>>45%   |
| 211 Nil Nil                                                       |   | II.               |                                       | N.       | ΞZ                           | Z        | Ë                | I.                   | Ë          | Ē                 | Z          | Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z            |
| 221 294811 1470639 Nil                                            |   | Ē                 |                                       | N:       | 294811                       | 1470639  | 1765450          | 49.6                 | 58.32      | Ξ                 | Z<br>E     | #3.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 158:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56.86        |
| PRADIP Digitally signed KUMAR KUMAR SAHOO  SAHOO 10-18:18 +05'30' |   |                   |                                       |          | Page <b>70</b> of <b>137</b> | ք 137    |                  |                      |            | M R               | ABINDRA    | RABINDRA With Missing Comments of the Comments | Pannesh<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiva<br>Passiv | र जुरूर      |



Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| :                                               | әр                       |                                                                  |          |            | Quantity |                               |          |                |                  |                  |            | Grade            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|-------------------------------------------------|--------------------------|------------------------------------------------------------------|----------|------------|----------|-------------------------------|----------|----------------|------------------|------------------|------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Classification                                  | 100                      | Forest                                                           | est      | Non-Forest | orest    | Total                         | tal      | Grand<br>Total | Forest           | sst              | Non-Forest | rest             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G.<br>Total |
|                                                 |                          | ø                                                                | q        | ú          | ъ        | e=(a+c)                       | (p+q)=   | g=(e+f)        | а %              | % q              | % Э        | % p              | % ə                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % B         |
| 3. Prefeasibility Mineral Resource (B)          | 222                      | 2270195                                                          | 4607893  | ΞΞ         | ΞΞ       | 2270195                       | 4607893  | 6878088        | 49.59            | 60.43            | Ë          | Ë                | 49.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56.85       |
| 4. Measured Mineral Resource (B)                | 331                      | ΞZ                                                               | Nil      | Nil        | Ν̈́      | Nii                           | ΞΞ       | Ë              | Ξ<br>Z           | ΞZ               | Ë          | Ë                | Ξ.<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ë                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ë           |
| 5. Indicated<br>Mineral<br>Resource (B)         | 332                      | Nii                                                              | ΙΪΝ      | Nil        | Ë        | Nii                           | ΞΞ       | Ë              | <del></del><br>Z | Ξ<br>Z           | Ë          | Ξ<br>Z           | Ë                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ë                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ë           |
| 6. Inferred<br>Mineral<br>Resource (B)          | 333                      | ΞZ                                                               | ΙΪΝ      | li N       | Ξ        | Ë                             | ΞZ       | Ë              | Z                | <br>Z            | Ë          | ii.              | Ë                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ë           |
| 7.<br>Reconnaissance<br>Mineral<br>Resource (B) | 334                      | Nil                                                              | Nil      | Nil        | ïŻ       | Ξ                             | ΞΞ       | ΞΞ             | Ë                | <del></del><br>Z | Ξ<br>Ż     | Ë                | =<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΞZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ē           |
| Total (B)                                       |                          | 2565006                                                          | 6078532  | ΞZ         | Ë        | 2565006                       | 6078532  | 8643538        | 49.59            | 59.92            | Ë          | Ë                | 49.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56.85       |
| Grand Total (A<br>+ B)                          |                          | 26961325                                                         | 52599225 | li N       | Ī        | 26961325                      | 52599225 | 79560550       | 49.36            | 59.24            | Ξ          | Nil              | 49.3617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 269.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.8        |
| PRA<br>KUN<br>SAH                               | PRADIP<br>KUMAR<br>SAHOO | Digitally signed<br>by PRADIP<br>KUMAR SAHOO<br>Date: 2022.08.19 |          |            |          | Page <b>71</b> of 1 <b>37</b> | f 137    |                |                  |                  | A A        | GONT OF INDIVATA | RABINDRA BY MOHANTY MO | CALL STATES OF SOURCE S |             |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

## 2.5: Future Exploration Proposal:

## 2.2.5.1: Geological Mapping:

|         |      |       | The state of the s |
|---------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sl. No. | Year | Scale | Area Covered (ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |      | Nil   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## 2.2.5.2: Ground Geophysical Survey: Not Applicable.

| Sl. No. | Type of Survey | Spacing (m) | Total line (km) | Area Covered (ha) | Latitude | Longitude |
|---------|----------------|-------------|-----------------|-------------------|----------|-----------|
|         |                |             | Not Applicable. |                   |          |           |

## 2.2.5.3: Pitting: Not Applicable.

| Number of pits  |
|-----------------|
| Not Applicable. |

| SI. | Year | Land | Pit ID                                | Length of Pit      | Width of Pit | Depth of Pit | Latitude | Longitude |
|-----|------|------|---------------------------------------|--------------------|--------------|--------------|----------|-----------|
| No. |      | type |                                       | (m)                | (m)          | (m)          |          |           |
|     |      |      | · · · · · · · · · · · · · · · · · · · | Not A <sub>l</sub> | oplicable.   |              |          |           |

2.2.5.4: Trenching: Not Applicable.

Number of Trenches: Not Applicable.

2.2.5.4.1: Spacing: Not Applicable.

|         | Spacing         |         |
|---------|-----------------|---------|
| Min (m) | Max (m)         | Avg (m) |
|         | Not Applicable. |         |

## 2.2.5.4.2 Area Covered Under Trenching: Not Applicable.

### **Co-ordinates:**

| Latitude | Longitude  |
|----------|------------|
| Not A    | oplicable. |

| S | - 1 | Trench ID | Length<br>of<br>Trench<br>(m) | Width<br>of<br>Trench<br>(m) | Depth<br>of<br>Trench<br>(m) | Litho<br>Unit<br>Exposed | Average<br>Grade<br>(%) | Running<br>Meters<br>(m) | From<br>Longitude | To<br>Latitude | To<br>Longitude |
|---|-----|-----------|-------------------------------|------------------------------|------------------------------|--------------------------|-------------------------|--------------------------|-------------------|----------------|-----------------|
|   |     |           |                               |                              |                              | Not a                    | Applicable.             |                          |                   |                |                 |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

2.2.5.5: Exploratory Drilling: The future exploration proposal are required only in G2 & G3 area.

## 2.2.5.5.1:Core/Non-core Drilling: Core Drilling

|       |             |                 | In forest are                                                                                                     | а                       |                                                            |                            | In N         | Ion-forest       |                      |                   |                                                                                                                              |                 |
|-------|-------------|-----------------|-------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------|----------------------------|--------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------|
| SI.No | Year        | No. of borehole | Total mtr                                                                                                         | Type of<br>boreho<br>le | Grid<br>interva<br>I                                       | No.<br>of<br>bore<br>holes | Total<br>mtr | Type of borehole | Grid<br>interva<br>I | Total<br>borehole | Total Mtr                                                                                                                    | Attach-<br>ment |
| 1     | 2023-<br>24 | 114             | Each borehole @ 100mtrs or till the end of mineralisation /discontinuation of ore body, whichever is earlier.     | Core                    | 100<br>mtr x<br>100<br>mtr                                 | Nil                        | NIL          | Nil              | NIL                  | 114               | Each borehole @<br>100mtrs or till the end<br>of mineralisation<br>/discontinuation of ore<br>body, whichever is<br>earlier. |                 |
| 2     | 2024-<br>25 | 23              | Each borehole @ 60 mtrs or till the end of mineralisation /discontinuation of ore body, whichever is earlier.     | Core                    | 200<br>mtr x<br>200<br>mtr                                 | Nil                        | NIL          | Nil              | NIL                  | 23                | Each borehole @ 60mtrs or till the end of mineralisation /discontinuation of ore body, whichever is earlier.                 |                 |
| Total | 2 years     | 137             | Each borehole @ 100/60 mtrs or till the end of mineralisation /discontinuation of ore body, whichever is earlier. | Core                    | 100<br>mtr x<br>100<br>mtr &<br>200<br>mtr x<br>200<br>mtr | Nil                        | NIL          | Nil              | NIL                  | 137               | Each borehole @ 100/60 mtrs or till the end of mineralisation /discontinuation of ore body, whichever is earlier.            |                 |





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         | T        |             |              | 2 GENNIER       | The state of the s |
|---------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------|-------------|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         | Propose  |             | Forest/Non   | Surfaçe         | (162 ' 4.1.N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| of      | Propose  | Northing | Easting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Collar | Core/RC | d Depth  | Inclination | Forest:      | / Right/No      | for site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| drillin | d BH No  |          | 20316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RL     | /DTH    | (In Mtr) |             | diverted/Non | n surfaçe       | ,≩electio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| g       |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             | Diverted     | right area      | 5 x y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             | 1 4          | Non Non Surface | Sonth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | PBH 01   | 2407900  | 308366.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 826.8  | Core    | 100      | Vertical    | Forest       | Şürface         | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Right           | proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Non-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | PBH 02   | 2408000  | 308366.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 815    | Core    | 100      | Vertical    | Forest       | Surface         | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Right           | proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Non-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | PBH 03   | 2408100  | 308166.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 811    | Core    | 100      | Vertical    | Forest       | Surface         | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 1 111 03 | 2400100  | 300100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 011    | Corc    | 100      | Vertical    | 101030       | Right           | proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | DDLI O4  | 2400500  | 200267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 027    | C       | 100      |             | F            | Non-            | G2 to G1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | PBH 04   | 2408500  | 308267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 827    | Core    | 100      | Vertical    | Forest       | Surface         | potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Right           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Non-            | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | PBH 05   | 2407885  | 308266.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 829    | Core    | 100      | Vertical    | Forest       | Surface         | proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Right           | proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Non-            | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | PBH 06   | 2407888  | 308166.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 842    | Core    | 100      | Vertical    | Forest       | Surface         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Right           | proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Non-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1st     | PBH 07   | 2407686  | 308362.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 871    | Core    | 100      | Vertical    | Forest       | Surface         | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Year    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Right           | proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2023-   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Non-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24      | PBH 08   | 2407788  | 308466.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 850    | Core    | 100      | Vertical    | Forest       | Surface         | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          | 10.000      | , 0, 00      | Right           | proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Non-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | PBH 09   | 2407688  | 308569.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 894    | Core    | 100      | Vertical    | Forest       | Surface         | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | FBITUS   | 2407000  | 300303.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 054    | Core    | 100      | vertical    | rorest       |                 | proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Right           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | _       |          |             | _            | Non-            | G2 to G1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | PBH 10   | 2408100  | 308667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 889    | Core    | 100      | Vertical    | Forest       | Surface         | potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Right           | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Non-            | G2 to G1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | PBH 11   | 2408000  | 308667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 876    | Core    | 100      | Vertical    | Forest       | Surface         | potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Right           | potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Non-            | C2 += C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | PBH 12   | 2408500  | 308067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 852    | Core    | 100      | Vertical    | Forest       | Surface         | G2 to G1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Right           | potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Non-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | PBH 13   | 2407588  | 308366.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 855    | Core    | 100      | Vertical    | Forest       | Surface         | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Right           | proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |             |              | Non-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | PBH 14   | 2407588  | 308566.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 846.2  | Core    | 100      | Vertical    | Forest       | Surface         | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | FDII 14  | 240/300  | 500500.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 040.2  | Core    | 100      | VEILICAI    | FOLEST       |                 | proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |          |          | and the same of th |        | L       |          | <u> </u>    |              | Right           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |







## Review of Mining Plan & Progressive Mine Closure Plan 2027-28) Odisha Mining Corporation Ltd (2023-24 to 2027-28)

Rantha Iron Ore Mine

| Year<br>of   | Propose | Northing | Easting  | Collar | Core/RC | Propose<br>d Depth | Inclination | Forest/Nor<br>Forest-    | Dight /Nin               | folgital 1            |
|--------------|---------|----------|----------|--------|---------|--------------------|-------------|--------------------------|--------------------------|-----------------------|
| drillin<br>g | d BH No | Northing | Lusting  | RL     | /DTH    | (In Mtr)           | meimation   | diverted/Non<br>Diverted | n surface<br>right area  | selection<br>of An    |
|              | PBH 15  | 2407488  | 308466.8 | 850    | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | Depth<br>proving      |
|              | PBH 16  | 2407508  | 308366.8 | 818    | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | Depth<br>proving      |
|              | PBH 17  | 2408200  | 308367   | 880.5  | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|              | PBH 18  | 2408100  | 308067   | 860    | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|              | PBH 19  | 2408100  | 307967   | 856.5  | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|              | PBH 20  | 2408100  | 307867   | 845    | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|              | PBH 21  | 2407588  | 308666.8 | 829.2  | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | Depth<br>proving      |
|              | PBH 22  | 2407688  | 308666.8 | 800    | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | Depth<br>proving      |
|              | PBH 23  | 2407788  | 308555.8 | 792    | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | Depth<br>proving      |
|              | PBH 24  | 2407677  | 307579.8 | 792.6  | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | Depth<br>proving      |
|              | PBH 25  | 2408000  | 307367   | 801.6  | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|              | PBH 26  | 2407288  | 308367.7 | 815    | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | Depth<br>proving      |
|              | PBH 27  | 2408000  | 307967   | 864.3  | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|              | PBH 28  | 2407900  | 307667   | 845    | Core    | 100                | Vertical    | Forest                   | Non-<br>Surface<br>Right | G2 to G1<br>potential |



## rogressive Mine Closure Plan 2027-28) Odisha Mining Corporation Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)

Rantha Iron Ore Mine

| Year          |                    |          |         | _ 11         |                 | Propose             |             | Forest/Non              | Surface;(                | Reason                |
|---------------|--------------------|----------|---------|--------------|-----------------|---------------------|-------------|-------------------------|--------------------------|-----------------------|
| of<br>drillin | Propose<br>d BH No | Northing | Easting | Collar<br>RL | Core/RC<br>/DTH | d Depth<br>(In Mtr) | Inclination | Forest-<br>diverted/Non | Right/No.                | for site              |
| g             | 4 211 / 10         |          |         |              | ,               | (III IVILI)         |             | Diverted                | N 2-                     | 517)                  |
|               | PBH 29             | 2407900  | 307467  | 823.5        | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 30             | 2407800  | 307367  | 809          | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 31             | 2407800  | 307467  | 834          | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 32             | 2407800  | 307567  | 850.5        | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 33             | 2407800  | 307667  | 861.5        | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 34             | 2407800  | 307767  | 854.3        | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 35             | 2407800  | 307845  | 843          | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 36             | 2407800  | 307967  | 863          | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 37             | 2407800  | 308167  | 927          | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 38             | 2407700  | 307667  | 874          | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 39             | 2407700  | 307467  | 842          | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
| -             | PBH 40             | 2407600  | 307367  | 844.7        | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 41             | 2407600  | 307467  | 850          | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 42             | 2407600  | 307567  | 864.4        | Core            | 100                 | Vertical    | Forest                  | Non-<br>Surface<br>Right | G2 to G1<br>potential |





## Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine Odisha Mining Corporation

| Year    |          |          |         |        |         | Propose  |             | Forest/Non   | "Surtace         | Reason                                         |
|---------|----------|----------|---------|--------|---------|----------|-------------|--------------|------------------|------------------------------------------------|
| of      | Propose  | Northing | Easting | Collar | Core/RC | d Depth  | Inclination | Forest-      | Right/No -       | for site                                       |
| drillin | d BH No  |          | J       | RL     | /DTH    | (In Mtr) | ·           | diverted/Non | n surface=       |                                                |
| g       |          |          |         |        |         |          |             | Diverted     | right area       | n                                              |
|         |          |          |         |        | _       |          |             |              | Non-             | G2 to G1                                       |
|         | PBH 43   | 2407600  | 307667  | 881    | Core    | 100      | Vertical    | Forest       | Surface          | potential                                      |
|         |          |          |         |        |         |          |             |              | Right            |                                                |
|         | 2211.44  | 2427500  | 207767  | 202 5  |         | 100      |             | <b>.</b> .   | Non-             | G2 to G1                                       |
|         | PBH 44   | 2407600  | 307767  | 893.5  | Core    | 100      | Vertical    | Forest       | Surface          | potential                                      |
|         |          |          |         |        |         |          |             |              | Right<br>Non-    |                                                |
|         | DDII 4E  | 2407600  | 200167  | 007    | Coro    | 100      | Vortical    | Forest       |                  | G2 to G1                                       |
|         | PBH 45   | 2407600  | 308167  | 887    | Core    | 100      | Vertical    | Forest       | Surface<br>Right | potential                                      |
|         |          |          |         |        |         |          |             |              | Non-             |                                                |
|         | PBH 46   | 2407500  | 307767  | 94.6   | Core    | 100      | Vertical    | Forest       | Surface          | G2 to G1                                       |
|         | F B11 40 | 2407300  | 307707  | 54.0   | Core    | 100      | Vertical    | 101630       | Right            | potential                                      |
|         |          |          |         |        |         |          |             |              | Non-             |                                                |
|         | PBH 47   | 2407500  | 307667  | 870    | Core    | 100      | Vertical    | Forest       | Surface          | G2 to G1                                       |
|         | 1 211 17 | 2107500  | 30,00.  | 3.0    | 00.0    |          |             |              | Right            | potential                                      |
|         |          |          |         |        |         |          |             |              | Non-             |                                                |
|         | PBH 48   | 2407500  | 307467  | 850    | Core    | 100      | Vertical    | Forest       | Surface          | G2 to G1                                       |
|         |          |          |         |        |         |          |             |              | Right            | potential                                      |
|         |          |          |         |        |         |          |             |              | Non-             | 60. 64                                         |
|         | PBH 49   | 2407400  | 307367  | 839    | Core    | 100      | Vertical    | Forest       | Surface          | G2 to G1                                       |
|         |          |          |         |        |         |          |             |              | Right            | potential                                      |
|         |          |          |         |        |         |          |             |              | Non-             | G2 to G1                                       |
|         | PBH 50   | 2407400  | 307467  | 845    | Core    | 100      | Vertical    | Forest       | Surface          | 1                                              |
|         |          |          |         |        |         | 5 ( )    |             |              | Right            | potential                                      |
|         |          |          |         |        |         |          |             |              | Non-             | G2 to G1                                       |
|         | PBH 51   | 2407400  | 307567  | 846.7  | Core    | 100      | Vertical    | Forest       | Surface          | potential                                      |
|         |          |          |         |        |         |          |             |              | Right            | potential                                      |
|         |          |          |         |        |         |          |             |              | Non-             | G2 to G1                                       |
|         | PBH 52   | 2407400  | 307667  | 850    | Core    | 100      | Vertical    | Forest       | Surface          | potential                                      |
|         |          |          |         |        |         |          |             |              | Right            | <b>P</b> • • • • • • • • • • • • • • • • • • • |
|         |          |          |         |        |         |          |             |              | Non-             | G2 to G1                                       |
|         | PBH 53   | 2407400  | 307867  | 909    | Core    | 100      | Vertical    | Forest       | Surface          | potential                                      |
|         |          |          |         |        |         |          |             |              | Right            |                                                |
|         |          |          |         |        |         |          |             | _            | Non-             | G2 to G1                                       |
|         | PBH 54   | 2407400  | 308067  | 927.6  | Core    | 100      | Vertical    | Forest       | Surface          | potential                                      |
|         |          |          |         |        |         |          |             |              | Right            |                                                |
|         |          | 0.40=:== | 200:    | 00==   |         | 400      |             |              | Non-             | G2 to G1                                       |
|         | PBH 55   | 2407400  | 308167  | 907.7  | Core    | 100      | Vertical    | Forest       | Surface          | potential                                      |
|         |          |          |         |        | 1       |          |             |              | Right            |                                                |
|         | D011.50  | 2407400  | 200267  | 200    |         | 100      | V           | F 1          | Non-             | G2 to G1                                       |
|         | PBH 56   | 2407400  | 308267  | 896    | Core    | 100      | Vertical    | Forest       | Surface          | potential                                      |
|         |          |          |         |        |         |          |             |              | Right            |                                                |



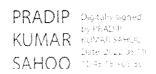
## Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine Odisha Mining Corporation Ltd

|         |          |          |         |        |         |          |             | 1 1          | ** *** ** ** ************************ | 1501      |
|---------|----------|----------|---------|--------|---------|----------|-------------|--------------|---------------------------------------|-----------|
| Year    |          |          |         |        |         | Propose  |             | Forest/Non   | Surface                               | Réason    |
| of      | Propose  | N1 41 1  | F+:     | Collar | Core/RC | d Depth  | Inclination | Forest-      | Right/No.                             | ofor site |
| drillin | d BH No  | Northing | Easting | RL     | /DTH    | (In Mtr) | inclination | diverted/Non | n surface.                            |           |
| g       |          |          |         |        |         | ,        |             | Diverted     | right area                            | n         |
|         |          |          |         |        |         |          |             |              | Non-                                  |           |
|         | PBH 57   | 2407400  | 308367  | 900.5  | Core    | 100      | Vertical    | Forest       | Surface                               | G2 to G1  |
|         | 1 5/1 5/ | 2107100  | 500507  | 300.0  |         | ,        |             |              | Right                                 | potential |
|         |          |          |         |        |         |          |             |              | Non-                                  |           |
|         | PBH 58   | 2407400  | 308467  | 900    | Core    | 100      | Vertical    | Forest       | Surface                               | G2 to G1  |
|         | FB11 30  | 2407400  | 300407  | 500    | Corc    | 100      | Vertical    | 101636       | Right                                 | potential |
|         |          |          |         |        |         |          |             |              | Non-                                  |           |
|         | 5511.50  | 2407400  | 2005.67 | 014    | Cana    | 100      | Vartical    | Caract       |                                       | G2 to G1  |
|         | PBH 59   | 2407400  | 308567  | 914    | Core    | 100      | Vertical    | Forest       | Surface                               | potential |
|         |          |          |         |        |         |          |             |              | Right                                 |           |
|         |          |          |         |        |         |          |             | _            | Non-                                  | G2 to G1  |
|         | PBH 60   | 2407400  | 308667  | 939    | Core    | 100      | Vertical    | Forest       | Surface                               | potential |
|         |          |          |         |        |         |          |             |              | Right                                 |           |
|         |          |          |         |        |         |          |             |              | Non-                                  | G2 to G1  |
|         | PBH 61   | 2407300  | 308467  | 930    | Core    | 100      | Vertical    | Forest       | Surface                               | potential |
|         |          |          |         |        |         |          |             |              | Right                                 | poterreia |
|         |          |          |         |        |         |          |             |              | Non-                                  | G2 to G1  |
|         | PBH 62   | 2407300  | 308267  | 926    | Core    | 100      | Vertical    | Forest       | Surface                               |           |
|         |          |          |         |        |         |          |             |              | Right                                 | potential |
|         |          |          |         |        |         |          |             |              | Non-                                  | 62 . 64   |
|         | PBH 63   | 2407300  | 308067  | 932    | Core    | 100      | Vertical    | Forest       | Surface                               | G2 to G1  |
|         |          |          |         |        |         |          |             |              | Right                                 | potential |
|         |          |          |         |        |         |          |             |              | Non-                                  |           |
|         | PBH 64   | 2407300  | 307867  | 894.5  | Core    | 100      | Vertical    | Forest       | Surface                               | G2 to G1  |
|         | 1 517 04 | 2407300  | 307007  | 05 1.5 | 00.0    | 100      |             |              | Right                                 | potential |
|         |          |          |         |        |         |          |             |              | Non-                                  |           |
|         | חחוו כר  | 2407200  | 207767  | 855    | Core    | 100      | Vertical    | Forest       | Surface                               | G2 to G1  |
|         | PBH 65   | 2407300  | 307767  | 033    | Core    | 100      | Vertical    | 101631       | Right                                 | potential |
|         |          |          |         |        |         |          |             |              | -                                     |           |
|         |          |          |         |        |         | 100      |             | F            | Non-                                  | G2 to G1  |
|         | PBH 66   | 2407300  | 307667  | 838    | Core    | 100      | Vertical    | Forest       | Surface                               | potential |
|         |          |          |         |        |         |          |             |              | Right                                 |           |
|         |          |          |         |        |         |          |             |              | Non-                                  | G2 to G1  |
|         | PBH 67   | 2407300  | 307467  | 831    | Core    | 100      | Vertical    | Forest       | Surface                               | potential |
|         |          |          |         |        |         |          |             |              | Right                                 | P         |
|         |          |          |         |        |         |          |             |              | Non-                                  | G2 to G1  |
|         | PBH 68   | 2407200  | 307367  | 807.6  | Core    | 100      | Vertical    | Forest       | Surface                               | potential |
|         |          |          |         |        |         |          |             |              | Right                                 | potential |
|         |          |          |         |        |         |          |             |              | Non-                                  | C2+: C1   |
|         | PBH 69   | 2407200  | 307467  | 826    | Core    | 100      | Vertical    | Forest       | Surface                               | G2 to G1  |
|         |          |          |         |        |         |          |             |              | Right                                 | potential |
|         |          |          |         |        |         |          |             |              | Non-                                  |           |
|         | PBH 70   | 2407200  | 307567  | 831.6  | Core    | 100      | Vertical    | Forest       | Surface                               | G2 to G1  |
|         | 1 511 70 | 210/200  | 30,30,  | 031.0  |         |          |             |              | Right                                 | potential |
|         |          |          |         |        |         |          |             |              | 1                                     | 1         |



## rogressive Mine Closure Plan 2027-28) Odisha Mining Corporation Ltd Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)

**Rantha Iron Ore Mine** 

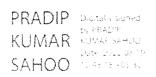

| Year    | · · · · · · · · · · · · · · · · · · · |          |         |                                            |         | Propose  |             | Forest/Non \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Súrface.         | Reason                |
|---------|---------------------------------------|----------|---------|--------------------------------------------|---------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| of      | Propose                               |          | _       | Collar                                     | Core/RC | d Depth  |             | Forest-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Right/No         |                       |
| drillin | d BH No                               | Northing | Easting | RL                                         | /DTH    | (In Mtr) | Inclination | diverted/Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n surface ;      |                       |
| g       |                                       |          |         |                                            |         | (        |             | Diverted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | right area       | n                     |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-             | C2 += C1              |
|         | PBH <b>7</b> 1                        | 2407200  | 307667  | 844                                        | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | G2 to G1<br>potential |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right            | potentiai             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-             | G2 to G1              |
|         | PBH 72                                | 2407200  | 307767  | 868.4                                      | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right            |                       |
|         |                                       |          |         |                                            |         |          |             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Non-             | G2 to G1              |
|         | PBH 73                                | 2407200  | 307867  | 901                                        | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right            |                       |
|         | PBH 74                                | 2407200  | 307967  | 926.4                                      | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Non-             | G2 to G1              |
|         | PDN 74                                | 2407200  | 307907  | 920.4                                      | core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface<br>Right | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-             |                       |
|         | PBH 75                                | 2407200  | 308067  | 951                                        | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | G2 to G1              |
|         |                                       | 2.0,200  |         | 332                                        | 00.0    |          | 10.1.00     | . 0, 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Right            | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-             |                       |
|         | PBH 76                                | 2407200  | 308167  | 954.6                                      | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | G2 to G1              |
|         |                                       |          |         | The same same same same same same same sam |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right            | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-             | G2 to G1              |
|         | PBH 77                                | 2407200  | 308267  | 960                                        | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right            | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-             | G2 to G1              |
|         | PBH 78                                | 2407200  | 308367  | 969                                        | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right            |                       |
|         | 2011.70                               | 2407200  | 200467  | 074                                        |         | 100      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-             | G2 to G1              |
|         | PBH 79                                | 2407200  | 308467  | 974                                        | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right            |                       |
|         | PBH 80                                | 2407200  | 308549  | 968                                        | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Non-<br>Surface  | G2 to G1              |
|         | FBITOU                                | 2407200  | 300343  | 308                                        | Core    | 100      | Vertical    | rorest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Right            | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-             |                       |
|         | PBH 81                                | 2407100  | 308467  | 1002.6                                     | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | G2 to G1              |
|         | 7 277 32                              | 2.0.200  | 200107  | 2002.0                                     | 00.0    |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right            | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-             |                       |
|         | PBH 82                                | 2407100  | 308267  | 982                                        | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | G2 to G1              |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right            | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-             | G2 to C1              |
|         | PBH 83                                | 2407100  | 308067  | 965.4                                      | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | G2 to G1<br>potential |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Right            | potential             |
|         |                                       |          |         |                                            |         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-             | G2 to G1              |
|         | PBH 84                                | 2407100  | 307867  | 922                                        | Core    | 100      | Vertical    | Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface          | potential             |
|         |                                       |          |         |                                            |         |          |             | TO THE PROPERTY OF THE PROPERT | Right            | ,                     |



## Odisha Mining Corporation Ltd Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)

Rantha Iron Ore Mine

| Year          | D                  |          |         | Callar       | Coro/DC         | Propose             |             | Forest/Non<br>Forest- | Sunface<br>Right/No n    |                       |
|---------------|--------------------|----------|---------|--------------|-----------------|---------------------|-------------|-----------------------|--------------------------|-----------------------|
| of<br>drillin | Propose<br>d BH No | Northing | Easting | Collar<br>RL | Core/RC<br>/DTH | d Depth<br>(In Mtr) | Inclination | diverted/Non          | n surface!               | selectio              |
| g             |                    |          |         |              |                 | (,                  |             | Diverted              | right area               | n                     |
|               | PBH 85             | 2407100  | 307667  | 855          | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface          | G2 to G1              |
|               |                    |          |         |              |                 |                     |             |                       | Right                    |                       |
|               | PBH 86             | 2407100  | 307467  | 835          | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               |                    |          |         |              |                 |                     |             |                       | Non-                     |                       |
|               | PBH 87             | 2407000  | 307367  | 809.5        | Core            | 100                 | Vertical    | Forest                | Surface<br>Right         | G2 to G1<br>potential |
|               | DD11 00            | 2407000  | 207467  | 920          | Cono            | 100                 | Vortical    | Forest                | Non-<br>Surface          | G2 to G1              |
|               | PBH 88             | 2407000  | 307467  | 829          | Core            | 100                 | Vertical    | rorest                | Right                    | potential             |
|               | PBH 89             | 2407000  | 307567  | 847.6        | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 90             | 2407000  | 307667  | 867          | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 91             | 2407000  | 307767  | 885          | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 92             | 2407000  | 307867  | 857.5        | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 93             | 2407000  | 307967  | 935.9        | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 94             | 2407000  | 308067  | 952.8        | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 95             | 2407000  | 308167  | 971          | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 96             | 2407000  | 308267  | 990          | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 97             | 2407000  | 308367  | 1004.5       | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|               | PBH 98             | 2407000  | 308467  | 1017         | Core            | 100                 | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |








## Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine Odisha Mining Corporation Ltd

| Year<br>of | Propose |          |         | Collar | Core/RC | Propose<br>d Depth |             | Forest/Non<br>Forest- | Surface W<br>Right/No    |                       |
|------------|---------|----------|---------|--------|---------|--------------------|-------------|-----------------------|--------------------------|-----------------------|
| drillin    | d BH No | Northing | Easting | RL     | /DTH    | (In Mtr)           | Inclination | diverted/Non          | n surface                | selectio              |
| g          |         |          | ,       |        |         |                    |             | Diverted              | right area<br>Non-       | n                     |
|            | PBH 99  | 2407000  | 308549  | 1012.5 | Core    | 100                | Vertical    | Forest                | Surface<br>Right         | G2 to G1<br>potential |
|            | PBH 100 | 2406900  | 308467  | 1010   | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 101 | 2406900  | 308267  | 967    | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 102 | 2406900  | 308064  | 922    | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 103 | 2406900  | 307867  | 881    | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 104 | 2406900  | 307767  | 861.5  | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 105 | 2406800  | 307867  | 857    | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 106 | 2406800  | 307967  | 869,7  | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 107 | 2406800  | 308067  | 889    | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 108 | 2406800  | 308167  | 907.7  | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 109 | 2406800  | 308267  | 926    | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 110 | 2406800  | 308367  | 962    | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 111 | 2406800  | 308467  | 996    | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |
|            | PBH 112 | 2406713  | 308267  | 948    | Core    | 100                | Vertical    | Forest                | Non-<br>Surface<br>Right | G2 to G1<br>potential |








## Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine Odisha Mining Corporation Ltd

|         |           |                                         |         |        |         |          |             | 1100 0       |            | 311        |
|---------|-----------|-----------------------------------------|---------|--------|---------|----------|-------------|--------------|------------|------------|
| Year    |           |                                         | 100     |        |         | Propose  |             | Forest/Non-  | Surface *  | Reason     |
| of      | Propose   | Northing                                | Easting | Collar | Core/RC | d Depth  | Inclination |              |            |            |
| drillin | d BH No   | 110111111111111111111111111111111111111 | 2031118 | RL     | /DTH    | (In Mtr) |             | diverted/Non |            | selectio   |
| g       |           |                                         |         |        |         |          |             | Diverted     | right area | n          |
|         |           |                                         |         |        |         |          |             |              | Non-       | G2 to G1   |
|         | PBH 113   | 2406713                                 | 308067  | 908.5  | Core    | 100      | Vertical    | Forest       | Surface    | potential  |
|         |           |                                         |         |        |         |          |             | -            | Right      | poteritiai |
|         |           |                                         |         |        |         |          |             |              | Non-       | G2 to G1   |
|         | PBH 114   | 2406713                                 | 307967  | 898.8  | Core    | 100      | Vertical    | Forest       | Surface    | potential  |
|         |           |                                         |         |        |         |          |             |              | Right      | potential  |
|         |           |                                         |         |        |         | ,        |             |              | Non-       | Barren     |
|         | PBH 115   | 2406800                                 | 307367  | 840    | Core    | 60       | Vertical    | Forest       | Surface    |            |
|         |           |                                         |         |        |         |          |             |              | Right      | proving    |
|         |           |                                         |         |        |         |          |             |              | Non-       | Barren     |
|         | PBH 116   | 2406800                                 | 307567  | 837.1  | Core    | 60       | Vertical    | Forest       | Surface    |            |
|         |           |                                         |         |        |         |          |             |              | Right      | proving    |
|         |           |                                         |         |        |         |          |             |              | Non-       | Dawe       |
|         | PBH 117   | 2406800                                 | 307767  | 848.9  | Core    | 60       | Vertical    | Forest       | Surface    | Barren     |
|         |           |                                         |         |        |         |          |             |              | Right      | proving    |
|         |           |                                         |         |        |         |          |             |              | Non-       | D          |
|         | PBH 118   | 2407700                                 | 307967  | 855.85 | Core    | 60       | Vertical    | Forest       | Surface    | Barren     |
|         |           |                                         |         |        |         |          |             |              | Right      | proving    |
|         |           |                                         |         |        |         |          |             |              | Non-       |            |
|         | PBH 119   | 2407600                                 | 307967  | 881.89 | Core    | 60       | Vertical    | Forest       | Surface    | Barren     |
|         |           | ,                                       |         | 8      |         |          |             |              | Right      | proving    |
|         |           |                                         |         |        |         |          |             |              | Non-       |            |
| 2 nd    | PBH 120   | 2407500                                 | 308067  | 905.18 | Core    | 60       | Vertical    | Forest       | Surface    | Barren     |
| year    |           |                                         |         | 7      |         |          |             |              | Right      | proving    |
| 2024-   |           |                                         |         |        |         |          |             |              | Non-       | _          |
| 25      | PBH 121   | 2407500                                 | 308267  | 888.97 | Core    | 60       | Vertical    | Forest       | Surface    | Barren     |
|         |           |                                         |         | 8      |         |          |             |              | Right      | proving    |
|         |           |                                         |         |        |         |          |             |              | Non-       |            |
|         | PBH 122   | 2408200                                 | 307867  | 846.44 | Core    | 60       | Vertical    | Forest       | Surface    | Barren     |
|         |           |                                         |         | 3      |         |          |             |              | Right      | proving    |
|         |           |                                         |         |        |         |          |             | -            | Non-       | _          |
|         | PBH 123   | 2408200                                 | 308067  | 856.74 | Core    | 60       | Vertical    | Forest       | Surface    | Barren     |
|         |           |                                         |         | 4      |         |          |             |              | Right      | proving    |
|         |           |                                         |         |        |         |          |             |              | Non-       |            |
|         | PBH 124   | 2408200                                 | 308267  | 882.89 | Core    | 60       | Vertical    | Forest       | Surface    | Barren     |
|         |           |                                         |         | 6      |         |          |             |              | Right      | proving    |
|         |           |                                         |         |        |         |          |             |              | Non-       |            |
|         | PBH 125   | 2408200                                 | 308467  | 852.22 | Core    | 60       | Vertical    | Forest       | Surface    | Barren     |
|         | . 5.1125  | 2.03200                                 | 200107  | 2      |         |          |             |              | Right      | proving    |
|         |           |                                         |         |        |         |          |             |              | Non-       |            |
|         | PBH 126   | 2408400                                 | 307867  | 860    | Core    | 60       | Vertical    | Forest       | Surface    | Barren     |
|         | 1 211 120 | 2-00+00                                 | 307007  | 000    | 2016    |          | v Ci cicai  | 101030       | Right      | proving    |
|         |           |                                         |         |        |         |          |             |              | Migitt     |            |



| <u> U Lv.</u>         |                    | DOD I/      |         |              | (2023-2         | 4 10 2027          |             |                                       | A PARTY OF THE PAR | The state of the s |
|-----------------------|--------------------|-------------|---------|--------------|-----------------|--------------------|-------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | HEW OP             | PORTUNITIES | Ran     | tha Iron     | Ore Mine        | Odis               | ha Mining ( | Corporation L                         | td S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>工分</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u></u>               |                    |             |         |              |                 |                    |             |                                       | A NOT MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Year<br>of<br>drillin | Propose<br>d BH No | Northing    | Easting | Collar<br>RL | Core/RC<br>/DTH | Propose<br>d Depth | Inclination | Forest/Non<br>Forest-<br>diverted/Non | Right/No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reason<br>for site of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| g                     | Q BH NO            |             |         | 1/1          | /0111           | (In Mtr)           |             | Diverted                              | right orea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                     | PBH 127            | 2408400     | 308067  | 863.90<br>8  | Core            | 60                 | Vertical    | Forest                                | Non-<br>Surface<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barren<br>proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| !                     | PBH 128            | 2408400     | 308267  | 845.55<br>6  | Core            | 60                 | Vertical    | Forest                                | Non-<br>Surface<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barren<br>proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | PBH 129            | 2408400     | 308467  | 825.48<br>8  | Core            | 60                 | Vertical    | Forest                                | Non-<br>Surface<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barren<br>proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | PBH 130            | 2408300     | 308667  | 870.82       | Core            | 60                 | Vertical    | Forest                                | Non-<br>Surface<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barren<br>proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | PBH 131            | 2408700     | 308667  | 825.70<br>9  | Core            | 60                 | Vertical    | Forest                                | Non-<br>Surface<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barren<br>proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | PBH 132            | 2408900     | 308667  | 802.23<br>7  | Core            | 60                 | Vertical    | Forest                                | Non-<br>Surface<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barren<br>proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | PBH 133            | 2409100     | 308667  | 811.45<br>7  | Core            | 60                 | Vertical    | Forest                                | Non-<br>Surface<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barren<br>proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | PBH 134            | 2409300     | 308667  | 764.87<br>4  | Core            | 60                 | Vertical    | Forest                                | Non-<br>Surface<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barren<br>proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | PBH 135            | 2409500     | 308667  | 757.23<br>7  | Core            | 60                 | Vertical    | Forest                                | Non-<br>Surface<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barren<br>proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | PBH 136            | 2409700     | 308667  | 719.91<br>6  | Core            | 60                 | Vertical    | Forest                                | Non-<br>Surface<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barren<br>proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | PBH 137            | 2408500     | 308667  | 828.11       | Core            | 60                 | Vertical    | Forest                                | Non-<br>Surface<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barren<br>proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

- a. The locations are spaced suitably (in a grid pattern to the extent possible and may be modified depending on structural complexity) for establishing existence of the ore body and its lateral and vertical continuity.
- b. \*100 / \*60 each borehole drilled @ 100mtrs / @60 mtrs or till the end of mineralization /discontinuation of ore body, whichever is earlier.
- c. If the proposed boreholes found potential mineral during barren proving, then the potential mineralized area will be proved as per Rule 12 (4) of MCDR, 2017.
- d. The no. of boreholes may be decrease or increase depending upon findings of the proposed bore holes.







Rantha Iron Ore Mine

Odisha Mining Corporation Ltd.

OF MINES

e. If the proposed boreholes not completed or drilled in any reason, then the proposal will be carry over to next year.

## 2.2.5.6: Exploratory Mining: Not Applicable.

| SI.<br>No. | year | Pit ID | Length in mtrs | Width in mtrs | Depth in mtrs | Volume (m³) |
|------------|------|--------|----------------|---------------|---------------|-------------|
|            |      |        | Not .          | Applicable.   | L             |             |

## 2.2.5.7: Sampling:

| Sl. No. | Type of Sample | Number of Samples proposed | Area Covered<br>(ha) | Latitude                         | Longitude                        |
|---------|----------------|----------------------------|----------------------|----------------------------------|----------------------------------|
| 01      | Core           | One Sample/Mtr             | G2 and G3            | As per location of the borehole. | As per location of the borehole. |

• The Mineralized portions will sample every one meter or less as per requirement. If the outcome of the boreholes will found non-potential in nature or the borehole drilled in non-mineralized area, then the no of samples will be reduced.

## 2.2.5.8: Petrology & Mineralogical Studies: Not Applicable.

| Sl. No. | Type of Sample | Number of Sample proposed |
|---------|----------------|---------------------------|
|         | Not Appl       | icable.                   |



RABINDRA by RABINDRA MOHANTY LOSS COLLUSIONS



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd -

## Chapter 3: MINERAL BENEFICIATION / PROCESSING

Name of The Ore/Mineral Iron Ore / Hematite

## 3.1: Mineralogy of the ROM ore/ Mineral:

| S. No. | Valuable Mineral Name | Approx. Mineral % | Gangue Mineral/s<br>Name | Approx. Gangue<br>Mineral % |  |  |  |  |  |  |
|--------|-----------------------|-------------------|--------------------------|-----------------------------|--|--|--|--|--|--|
|        | Not Available.        |                   |                          |                             |  |  |  |  |  |  |

## 3.2: Complete Chemical Analysis of the ROM Ore/Mineral:

| Sl. No. | Radicals | Wt % | Wt %          | Wt % | Wt % |
|---------|----------|------|---------------|------|------|
| 01.     |          | . No | ot Available. |      |      |

The mine has been non-operational since long time so Complete chemical analysis of the ROM Ore / Mineral will be carried out after resume of mining operation.

## 3.3: Crushing Section:

| SI. No. | Type of Crusher    | Make                    | Capacity of Crusher (tph) | No. Of | Feed Size | Product Size |
|---------|--------------------|-------------------------|---------------------------|--------|-----------|--------------|
| 31. NO. | Type of Crustier   | iviake                  | capacity of crusher (tph) | Units. | (mm)      | (mm)         |
|         | Circal Intermedial |                         |                           |        |           | 0-10 mm,10-  |
| 01      | Fixed Integrated   | Puzzlona/Sandvic/Extec/ | 350                       | 01     | 0-600 mm  | 40 mm , 5-18 |
| 01.     | Crushing &         | Thysenkrup              | 550                       |        |           | mm & 0-5     |
|         | Screening Plant    |                         |                           |        |           | mm           |
|         |                    |                         |                           |        | 0-300 mm  | 0-10 mm,     |
|         | Mobile integrated  | Duralana/Sanduia/Eutaa/ |                           |        |           | 10-40 mm,5-  |
| 02.     | Crushing & Screen  | Puzzlona/Sandvic/Extec/ | 250                       | 02     |           | 18 mm & 0-5  |
|         | Plant              | Power Screen/Fintec     |                           |        |           | mm           |
|         |                    |                         |                           |        |           |              |

### 3.3.1: Primary Crushing:

| Sl. No. | Type of Crusher                                     | Make                                  | Capacity of<br>Crusher (tph) | No.of Units. | Feed Size<br>(mm) | Product Size (mm) |
|---------|-----------------------------------------------------|---------------------------------------|------------------------------|--------------|-------------------|-------------------|
| 01.     | Fixed Integrated<br>Crushing (Jaw<br>Crusher)       | Puzzlona/Sandvic/Extec/<br>Thysenkrup | 350                          | 01           | 0-600 mm          | 0-100 mm          |
| 02.     | Mobile Integrated<br>Crusher Plant<br>(Jaw Crusher) | Puzzlona/Sandvic/Extec                | 250                          | 02           | 0-300 mm          | 0-100 mm          |

## 3.3.2: Secondary Crushing:

| Sl. No. | Type of Crusher                                      | Make                                  | Capacity of Crusher<br>(tph) | No.of Units. | Feed Size<br>(mm) | Product Size<br>(mm) |
|---------|------------------------------------------------------|---------------------------------------|------------------------------|--------------|-------------------|----------------------|
| 01.     | Fixed Integrated<br>Crushing (Cone<br>Crusher)       | Puzzlona/Sandvic/Extec/<br>Thysenkrup | 300                          | 01           | 0-100 mm          | -100 mm              |
| 02.     | Mobile Integrated<br>Crusher Plant (Cone<br>Crusher) | Puzzlona/Sandvic/Extec                | 200                          | 2            | 0-100 mm          | -100 mm              |

## 3.3.3: Tertiary Crushing:

| Sl. No. | Type of<br>Crusher | Make   | Capacity of Crusher<br>(tph) | Feed Size<br>(mm) | Product<br>Size (mm) |
|---------|--------------------|--------|------------------------------|-------------------|----------------------|
| <br>01. |                    | Not Ap | plicable                     |                   |                      |





Rantha Iron Ore Mine

**Odisha Mining Corporation Ltd** 

3.4: Grinding Section: Not Applicable.

3.4.1: Dry Grinding:

| SI. No          | Type of Mill | Stages | Make of<br>the<br>mill | Feed Flow<br>Rate<br>(tph) | Feed<br>Size(m<br>m) | Product Size Mill Type of Discharge(mm) screen |  |  |  |
|-----------------|--------------|--------|------------------------|----------------------------|----------------------|------------------------------------------------|--|--|--|
| Not Applicable. |              |        |                        |                            |                      |                                                |  |  |  |

Table continued.....

|     |                 | Aperture Size of         |                                  |                                 |  |  |  |  |  |
|-----|-----------------|--------------------------|----------------------------------|---------------------------------|--|--|--|--|--|
| SI. |                 | Screen/Classifier(mm),if | Classifier/Screen undersize(tph) | Classifier/Screen oversize(tph) |  |  |  |  |  |
| No  | Make            | applicable               |                                  |                                 |  |  |  |  |  |
|     | Not Applicable. |                          |                                  |                                 |  |  |  |  |  |

## 3.4.2: Wet Grinding: Not Applicable.

| SI.<br>No | Type of<br>Mill | Stages | Make of<br>the<br>mill | Feed Flow<br>Rate<br>(tph) | Feed<br>Size(mm) | Product<br>Size(mm) | Type of screen/<br>Classifier |  |  |  |
|-----------|-----------------|--------|------------------------|----------------------------|------------------|---------------------|-------------------------------|--|--|--|
|           | Not Applicable. |        |                        |                            |                  |                     |                               |  |  |  |

## Table continued.....

| SI.<br>No. | Aperture Size of Screen/Cl assifier (mm), if applicable | Classifier/Scr<br>een<br>undersize(tph) | Classifier/Sc<br>reen<br>oversize(tph) | WaterRequire<br>ment(I/h) | FreshWaterRequire<br>ment(I/h) | RecirculatedWat<br>er(I/h) |  |  |  |  |
|------------|---------------------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------|--------------------------------|----------------------------|--|--|--|--|
|            | Not Applicable.                                         |                                         |                                        |                           |                                |                            |  |  |  |  |

## 3.5: Dry Processing:

## 3.5.1: Screening and Classification: Screening

| SI. No | Type of                                   |        |                                           |                  | Aperture Size of                    |                                 |                                                   | Product quality |
|--------|-------------------------------------------|--------|-------------------------------------------|------------------|-------------------------------------|---------------------------------|---------------------------------------------------|-----------------|
|        | screen/                                   | Stages | Make                                      | Capacity(tph)    | Screen/Classifier                   | Feed Size(mm)                   | Product Size(mm)                                  | (if applicable) |
|        | classifiers                               |        |                                           |                  | (mm),if                             |                                 |                                                   |                 |
| 01.    | Fixed<br>Integrated<br>Screening<br>Plant | 01     | Puzzlona/Sand<br>vic/Extec/<br>Thysenkrup | 350              | 0-10 mm,10-40 mm,<br>5-18mm & +40mm | -100 mm                         | 0-10 mm,10-40<br>mm,5-18 mm,0-5 mm<br>& 40-100 mm | Fe % > 45%      |
| 02.    | Mobile Puzzlona/Sand                      |        | 250                                       | 0-10 mm,10-40 mm | -100 mm                             | 0-10 mm,10-40 mm &<br>40-100 mm | Fe % > 45%                                        |                 |

## 3.5.2: Other Operations: Not Applicable.

| S.N | Type of equipment /operation | Stages, if applicable | Make | Capacity(tph) | Feed<br>Size(mm) | Product<br>Size(mm) | Product-Mid<br>(tph),if<br>available | Product-<br>Tail<br>(tph) |  |  |
|-----|------------------------------|-----------------------|------|---------------|------------------|---------------------|--------------------------------------|---------------------------|--|--|
|     | Not Applicable.              |                       |      |               |                  |                     |                                      |                           |  |  |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

## 3.5.3: Product Quality:

| Products    | Wt%         | In tonnes       | Size(range)mm         | complete * Chemital Analysis                                                                 |
|-------------|-------------|-----------------|-----------------------|----------------------------------------------------------------------------------------------|
| Concentrate |             | 1 60            |                       |                                                                                              |
| Sub-grade   | Fe% 45 ~ 55 | 23,70,000       | 0-10 mm & 10-40<br>mm | The mine has been non-<br>operational since long                                             |
| Rejects     |             | Not Applicable. |                       | time. The complete chemical analysis will be carried out after the resume of mine operation. |

3.6: Wet Processing: Not Applicable.

3.6.1: Scrubbing / Washing: Not Applicable.

| 3.0.1. | JUI 4 DO 111 B / 111 |            |      |          |          |          | 7                   |  |  |  |
|--------|----------------------|------------|------|----------|----------|----------|---------------------|--|--|--|
| SI.    | Type of              | Stages, if | Make | Capacity | Feed     | Product  | Product quality (if |  |  |  |
| No     | Scrubbers            | applicable |      | (tph)    | Size(mm) | Size(mm) | applicable)         |  |  |  |
|        | /washers             |            |      |          |          |          |                     |  |  |  |
|        | Not Applicable.      |            |      |          |          |          |                     |  |  |  |

Table continued...

| Sl. No | Water Requirement(I/h) | Fresh Water Requirement | Re-circulated water(I/h) |
|--------|------------------------|-------------------------|--------------------------|
|        |                        | (l/h)                   |                          |
|        | N                      | ot Applicable.          |                          |

### 3.6.2: Screening and Classification: Not Applicable.

| SI.<br>No | Type of screen/classifiers | Stages, if applicable | Make |  | Aperture Size<br>of<br>Screen/Classifier<br>(mm),if applicable | Feed<br>Size(mm) | Product<br>Size(mm) |  |
|-----------|----------------------------|-----------------------|------|--|----------------------------------------------------------------|------------------|---------------------|--|
|           | Not Applicable.            |                       |      |  |                                                                |                  |                     |  |

Table continued.....

| SI | . No | Product quality(if applicable) | Water Requirement | Fresh Water | Re-circulated water(I/h) |
|----|------|--------------------------------|-------------------|-------------|--------------------------|
|    |      |                                | (I/h)             | Requirement |                          |
| -  |      |                                |                   | (I/h)       |                          |
|    |      |                                | Not Applicab      | e.          |                          |

3.6.3: Gravity Separation: Not Applicable.

| SI. | Туре            | of    | Stages, if      | Make | Capacity(tph) | Feed     | Product | Product-    |
|-----|-----------------|-------|-----------------|------|---------------|----------|---------|-------------|
| No  | separators      |       | applicable      |      |               | Size(mm) | (Conc)  | Mid(tph),if |
|     | (jig, t         | able, |                 |      |               |          | (tph)   | available   |
|     | spiral,         |       | de una minerale |      | :             |          |         |             |
|     | Not Applicable. |       |                 |      |               |          |         |             |

Table continued...

| S.N | Product-Tail (tph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water Requirement<br>(I/h) | Fresh Water<br>Requirement<br>(I/h) | Re-circulated water(I/h) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|--------------------------|
|     | 1975 A 47-100 (1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 | Not App                    | olicable.                           |                          |





**Review of Mining Plan & Progressive Mine Closure Plan** 2027-28) Odisha Mining Corporation Ltd of MINES (2023-24 to 2027-28)

Rantha Iron Ore Mine

## 3.6.4: Magnetic Separation: Not Applicable.

| SI.<br>No | Type of magnetic separators (magnetic intensity) | Stages, if applicable | Make | Capacity(tph) | Feed<br>Size(mm) | Product-<br>Mag (tph) | Product-Miditiph), if available |
|-----------|--------------------------------------------------|-----------------------|------|---------------|------------------|-----------------------|---------------------------------|
|           |                                                  |                       |      |               |                  |                       | 77                              |

Table continued....

| SI. | Product non-Mag (tph) | Water Requirement | Fresh Water | Re-circulated water(I/h) |
|-----|-----------------------|-------------------|-------------|--------------------------|
| No. |                       |                   | Requirement |                          |
|     |                       | (I/h)             | (I/h)       |                          |
|     |                       | Not Applicabl     | e.          |                          |

3.6.5: Flotation: Not Applicable.

| -    | Type of      | Stages(roughe |      |              |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|--------------|---------------|------|--------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SI.N | flotation    | r/cleaner     |      |              |          |             | To deliver the second s |
| 0    | equipment(fr | ,etc),        | Make | Capacity     | Feed     | Product-    | Product non-Float                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | oth/column)  | if applicable | Make | (tph)        | Size(mm) | Float (tph) | (tph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |              |               |      | Not Applicab | e.       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table continued....

| SI. No | Water Requirement(I/h) | Fresh Water Requirement (I/h) | Re-circulated water(I/h) |
|--------|------------------------|-------------------------------|--------------------------|
|        | N                      | lot Applicable.               |                          |

## 3.6.6: Other Operations: Not Applicable.

| SI.<br>No | Type of<br>equipment<br>/operation | Stages, if applicable | Make | Capacity<br>(tph) | Feed<br>Size(mm) | Product-Conc<br>(tph) | Product-Mid<br>(tph),if<br>available |  |
|-----------|------------------------------------|-----------------------|------|-------------------|------------------|-----------------------|--------------------------------------|--|
|           | Not Applicable.                    |                       |      |                   |                  |                       |                                      |  |

Table continued....

| SI. No | Product-Tail (tph) | Water Requirement<br>(I/h) | Fresh Water Requirement (I/h) | Re-circulated water(I/h) |
|--------|--------------------|----------------------------|-------------------------------|--------------------------|
|        |                    | Not A                      | pplicable.                    |                          |

3.6.7: Product Quality (wet processing): Not Applicable.

| Products    | Wt% | In tonnes | Size(range)mm   | Complete |
|-------------|-----|-----------|-----------------|----------|
|             |     |           |                 | chemical |
| Concentrate |     |           |                 |          |
| Sub-grade   |     | 1         | Not Applicable. |          |
| Rejects     |     |           |                 |          |

## 3.7: Overall Product Quality (Dry cum Wet Processing): Not Applicable.

| Products    | Wt % | In tonnes | Size (range) mm | Complete chemical analysis |
|-------------|------|-----------|-----------------|----------------------------|
| Concentrate |      |           |                 |                            |
| Sub-grade   |      |           | Not Applicable. |                            |
| Rejects     |      |           |                 |                            |





## Odisha Mining Corporation Ltd Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)

Rantha Iron Ore Mine



| a) Explain the disposal method for tailing or reject from processing plant with detail chemical / mineral analysis of tailing | Not Applicable ਨੇ ਸ |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------|
| b) Size and capacity of tailing pond, toxic effect of such tailings, process adopted to neutralize its effect (if any)        | Not Applicable.     |
| c) Any other data (if available)                                                                                              | Not Applicable.     |

## 3.9: Overall water requirement of mining and mineral processing:

| Indicate quantity, source of supply, disposal of water and extent of | 232 m³/day.            |  |
|----------------------------------------------------------------------|------------------------|--|
| recycling and chemical analysis of water                             | Attach at Annexure No: |  |
| recycling and chemical analysis of water                             | 29.                    |  |

## 3.10: Flow sheets and charts:

| Material balance chart of mineral processing plant(s) (each stage of process). | Attached at Annexure<br>No: 30. |
|--------------------------------------------------------------------------------|---------------------------------|
| Attach flow sheet of beneficiation of plant(s)                                 | Attached at Annexure<br>No:30   |
| Any other data (if applicable)                                                 | Not Applicable                  |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

## **Chapter 4: MINING OPERATIONS**

4.1: MINING METHOD (Opencast): Opencast.

4.1.1: Existing Method of Mining- Mechanized.

Specify in the space below:

HEMM with deep hole drilling with Combination of loaders and tippers.

**4.1.2: Proposed Method of Mining:** Mechanized.

Specify in the space below:

HEMM with deep hole drilling with Combination of loaders and tippers.

Reasons for proposed changes: Not Applicable.

4.2: Operational Parameters:

4.2.1: Inventory of Existing Pits & Dumps:

4.2.1.1: Pits as on 30.06.2022.

| Sl. No. | Pit ID   | Pit    | Area Covered by Pit | Pit Dimension     |
|---------|----------|--------|---------------------|-------------------|
|         |          | Status | (Ha)                | (m x m x m )      |
| 01.     | Quarry-l | Active | 2.442               | 274.44 x 89.0 x 6 |

## 4.2.1.2: Dumps & Stack:

4.2.1.2.1: Dump Details as on 30.06.2022:

| SI. Dump Dump o<br>No. ID Status Dur | f Dump<br>Quantity | Area covered Height by Dump (m) | Location |
|--------------------------------------|--------------------|---------------------------------|----------|
|--------------------------------------|--------------------|---------------------------------|----------|

The mine has been non-operational since long period, so there is no existing dump present with in the ML area.

### 4.2.1.2.2: Stack Details as on 30.06.2022:

| SI. | Stack | Type of Stack | Total Stack  | Area covered  | Height (m)  |
|-----|-------|---------------|--------------|---------------|-------------|
| No. | ID    | Type of Stack | Quantity (t) | by Stack (Ha) | rieight (m) |

The mine has been non-operational since long period, so there is no existing stacks present with in the ML area.

4.2.1.3: Details of Stabilized Dumps:

| SI.<br>No. | Dump<br>ID | Number of<br>Terraces | Average<br>Height of<br>Terraces<br>(m) | Length<br>of Toe<br>Wall<br>(m) | Length of<br>Garland<br>Drain (m) | Area<br>Stabilized<br>(ha) | Method of<br>Stabilization |
|------------|------------|-----------------------|-----------------------------------------|---------------------------------|-----------------------------------|----------------------------|----------------------------|
|            | Т          | here is no stabilize  | ed dump presen                          | t within the                    | ML area as on o                   | late 30.06.2022            | ••                         |



Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

4.2.2: Opencast Mining:

4.2.2.1: Bench Parameters:

| P                                                                       |             |             |             |             |             |
|-------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|
| Year-Wise<br>Development<br>& Production<br>Section                     | Plate No-7A | Plate No-7B | Plate No-7C | Plate No-7D | Plate No-7E |
| Year-Wise<br>Development &<br>Production Plan                           | Plate No-6A | Plate No-6B | Plate No-6C | Plate No-6D | Plate No-6E |
| Max<br>Slope<br>Angle<br>of Haul<br>Roads<br>(1 in)                     | 16          | 16          | 16          | 16          | 16          |
| Depth of<br>Water<br>Table<br>(m)                                       |             | <b>I</b>    | 813 mRL     |             |             |
| Max<br>Depth of<br>Workings<br>(m)                                      | 30          | 54          | 36          | 54          | 36          |
| Number<br>of<br>Benches<br>in<br>Mineral                                | 02          | 04          | 04          | 03          | 05          |
| Number<br>of<br>Benches<br>in Over<br>Burden                            | 03          | 02          | 01          | 02          | 01          |
| Number<br>of<br>of<br>Benches<br>in Top<br>Soil                         | Ó           | 0           | 0           | 0           | 0           |
| Overall<br>Slope of<br>Pit<br>(degree)                                  | 38          | 25          | 25          | 37          | 34          |
| Slope of<br>the<br>Bench in<br>Mineral<br>(degree)                      | 70-80       | 70-80       | 70-80       | 70-80       | 70-80       |
| Minimum<br>Width of<br>the<br>Benches in<br>Mineral<br>(m)              | 12          | 12          | 12          | 12          | 12          |
| Max<br>Height of<br>the<br>Benches<br>in<br>Mineral<br>(m)              | 9           | 9           | 9           | 9           | 9           |
| Slope of<br>the Bench<br>in Over<br>Burden<br>(degree)                  | 70-80       | 70-80       | 70-80       | 70-80       | 70-80       |
| Min<br>Width of<br>the<br>Benches<br>in Over<br>Burden<br>(m)           | 12          | 12          | 12          | 12          | 12          |
| Max<br>Heigh<br>t of<br>the<br>Bench<br>es in<br>Over<br>Burde<br>n (m) | 9           | 9           | 9           | 9           | 9           |
| Year                                                                    | 2023-24     | 2024-25     | 2025-26     | 2026-27     | 2027-28     |
| Pit id                                                                  | Quarry-1    | Quarry-1    | Quarry-1    | Quarry-1    | Quarry-1    |



Page **91** of **137** 

PRADIP Digitally signed by FRADIP KUMAR KUMAR SAHOO Date: 2022.08.19



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

# 4.2.2.2: Year wise Opencast Development:

|                                                            | ***************************************      |                                              |                                              |                                              |                                              |
|------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| OB to Ore Ratio<br>(ton/m3)                                | 1:0.15                                       | 1:0.17                                       | 1:0.31                                       | 1:0,70                                       | 1:0.20                                       |
| Location of<br>Advancement                                 | 2407688N-<br>2407988N<br>308050E-<br>308438E | 2407786N-<br>2408055N<br>308033E-<br>308338E | 2407539N-<br>2408055N<br>308032E-<br>308438E | 2407539N-<br>2408055N<br>307993E-<br>308438E | 2407900N-<br>2408278N<br>308209E-<br>308575F |
| Production<br>Associated (t)                               | 0                                            | 0                                            | 0                                            | 0                                            | 0                                            |
| Production Main (t)                                        | 4,80,000                                     | 000'06'9                                     | 4,10,000                                     | 4,70,000                                     | 5,80,000                                     |
| Mineral Reject/Sub-<br>Grade (t)                           | 5,20,000                                     | 3,10,000                                     | 2,90,000                                     | 5,30,000                                     | 4,20,000                                     |
| Recovery                                                   | Production<br>Main- 48% 5,20,000<br>& SG-52% | Production<br>Main- 69%<br>& SG-31%          | Production<br>Main- 41%<br>& SG-59%          | Production<br>Main- 47%<br>& SG-53%          | Production<br>Main- 58% 4,20,000<br>& SG-42% |
| ROM Quantity (t)                                           | 10,00,000                                    | 10,00,000                                    | 10,00,000                                    | 10,00,000                                    | 10,00,000                                    |
| ROM Volume<br>(Length x Width x<br>Height) (m3)            | 3,52,593                                     | 3,44,815                                     | 3,55,186                                     | 3,52,963                                     | 3,48,889                                     |
| Over Burden<br>Quantity (t)                                | 3,00,000                                     | 3,40,000                                     | 6,20,000                                     | 14,00,000                                    | 4,00,000                                     |
| Over Burden<br>Volume (Length x<br>Width x Height)<br>(m3) | 1,50,000                                     | 1,70,000                                     | 3,10,000                                     | 7,00,000                                     | 2,00,000                                     |
| Top Soil Volume<br>(Length x Width x<br>Height) (m3)       | 0                                            | a                                            | 0                                            | 0                                            | 0                                            |
| Bulk Density of<br>Mineral (BD2)<br>(tonn/m3)              |                                              | Avg. Bulk<br>Density of<br>Ore: 3.00 &       | Sub-Grade<br>Ore/ MR<br>:2.7                 |                                              |                                              |
| Bulk Density of<br>Overburden (BD1)<br>(ton/m3)            |                                              | Ç                                            | 0.7                                          |                                              |                                              |
| Direction                                                  | South-<br>East                               | North-<br>West                               | South-<br>East                               | North-<br>West                               | North-<br>East                               |
| Bench                                                      | 940 mRL<br>910 mRL                           | Quarry-1 886 mRL                             | Quarry-1 904 mRL                             | 904 mRL<br>880 mRL                           | 898 mRL<br>862 mRL                           |
| Pit ID                                                     | Quarry-1                                     | Quarry-1                                     | Quarry-1                                     | Quarry-1                                     | Quarry-1                                     |
| Year                                                       | 2023                                         | 2024                                         | 2025                                         | 2026<br>-27                                  | 2027                                         |
| Sr.<br>No                                                  | 01.                                          | 02.                                          | 03.                                          | 04,                                          | 05.                                          |

Details of section wise calculation of ROM, Salable Ore, Mineral Reject & waste for the Review of mining Plan period i.e. FY 2023-24 to 2027-28 is enclosed at Annexure-31. Recovery Factor of production main with respect to ROM has been considered for calculation of production.

Average Bulk Density of Different Ore Types

|                      | Ore (Fe > 55%) | Sub Grade Ore                  | Waste |
|----------------------|----------------|--------------------------------|-------|
| Ore Type             |                | Sub Grade Ore (45 % to 55% Fe) |       |
| Bulk Density, t/cu.m | 3.00           | 2.70                           | 2.0   |



RABINDRA by RABINDRA MOHANTY DARE: 2022, 08, 19 10.48,43,405.30 Digitally signed

Page **92** of **137** 

PRADIP Digitally signed by PRADIP KUMAR KUMAR SAHOO DATE: 2022.08.19
SAHOO 10.48.18 +05'30'



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

Note: The mine has been non-operational since long period, so average bulk density of waste material not available. Average bulk density of material to be derived after resume of mining operation. So for the time being average bulk density of waste material has been taken from nearby mines i.e. Kurmitar Iron & Mn. Ore Mines.

| NO NO | OI+IQ    | Total Tonsoil Volume (m³) | Total Over Burden | Total Over Burden | Total ROM Volume | Total ROM Volume Total ROM Quantity |
|-------|----------|---------------------------|-------------------|-------------------|------------------|-------------------------------------|
|       | ;<br>j   |                           | Volume (m³)       | Quantity (t)      | (m²)             | (1)                                 |
| 01.   | Quarry-1 | 0                         | 15,30,000         | 30,60,000         | 17,54,446        | 50,00,000                           |
| G. 1  | G. Total | 0                         | 15,30,000         | 30,00,000         | 17,54,446        | 50,00,000                           |



10,48:43 +05'30

Page **93** of **137** 

by PRADIP KUMAR SAHOO Date: 202208.19 10.48.18 +05'30' PRADIP Digitally signed KUMAR SAHOO



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

# 4.2.2.3: Transportation & Hauling Equipment:

| L |           |                         |               |                   |
|---|-----------|-------------------------|---------------|-------------------|
|   | Туре      | Make                    | Capacity (m³) | No. of Equipments |
|   | Hauling   | Volvo/Bharat            | 10            | 7.7               |
|   | Equipment | Benz/Eicher/ Tata Prima | CT .          | 77                |
|   | Hauling   | Volvo/Bharat            | 77            |                   |
|   | Equipment | Benz/Eicher/ Tata Prima | <b>†</b>      | CT                |

4.3: Material Handling Summary:

4.3.1: Studies Undertaken:

| ומכן נמונכון:                              |     |                                    |
|--------------------------------------------|-----|------------------------------------|
| Slope Stability Study Report               |     | Slope Stability Study will be      |
|                                            | No  | conduct after Resume of Mining     |
|                                            |     | Operation.                         |
| Recovery Study Report                      | Yes | Attached in Annexure No:28         |
| Hydrological Study Report                  |     | Hydrological Study will be conduct |
|                                            | No  | after Resume of Mining Operation.  |
| Mineral Beneficiation Study Report         | 1   | NA                                 |
| Underground Rock Displacement Study Report | 1   | NA                                 |
| Subsidence Study Report                    | 1   | NA                                 |
| Geotechnical Study Report                  | 1   | NA                                 |
| Blast Induced ground Vibration Study       |     | Blast Induced ground Vibration     |
|                                            | No  | Study will be conduct after Resume |
|                                            |     | of Mining Operation.               |
| Bulk Density Study Report                  | Yes | Attached in Annexure No:26         |

Page **94** of **137** 

PRADIP Digitally signed by PRADIP KUMAR KUMAR SAHOO Date: 2022.08.19 SAHOO

RABINDRA by RABINDRA MOHANTY Date, 2022.08.19
10.48.43 + 65.30



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

## 4.3.2: Insitu Mining:

|     |         |          |                |                |                  |              | ROM             | OB to Ore        |                                       |
|-----|---------|----------|----------------|----------------|------------------|--------------|-----------------|------------------|---------------------------------------|
| . ( |         |          | :<br>:         |                |                  | ROM Quantity | Quantity        | Ratio (Waste     |                                       |
|     | Year    | Pit ID   | lotal Handling | waste Quantity | ROM Quantity (t) | Saleable     | Mineral         | Quantity /       | Grade Range (%)                       |
| No. |         |          | (t)            | (1)            |                  | Mineral (t)  | Reject/ Sub-    | ROM              |                                       |
|     |         |          |                |                |                  |              | Grade (t)       | Quantity)        |                                       |
| 01. | 2023-24 | Quarry-1 | 13,00,000      | 3,00,000       | 10,00,000        | 4,80,000     | 5,20,000        | 1:0.3            | Fe >55 %                              |
| 02. | 2024-25 | Quarry-1 | 13,40,000      | 3,40,000       | 10,00,000        | 000'06'9     | 3,10,000        | 1:0.34           | Fe >55 %                              |
| 03. | 2025-26 | Quarry-1 | 16,20,000      | 6,20,000       | 10,00,000        | 4,10,000     | 5,90,000        | 1:0.62           | Fe >55 %                              |
| 04. | 2026-27 | Quarry-1 | 24,00,000      | 14,00,000      | 10,00,000        | 4,70,000     | 5,30,000        | 1:1.4            | Fe >55 %                              |
| 05. | 2027-28 | Quarry-1 | 14,00,000      | 4,00,000       | 10,00,000        | 5,80,000     | 4,20,000        | 1:0.4            | Fe >55 %                              |
|     | G-Total |          | 80,60,000      | 30,60,000      | 50,00,000        | 26,30,000    | 23,70,000       | 1:0.61           | Fe >55 %                              |
| -   |         |          | 0 0 0 0 0      |                |                  |              | , c the LV 2022 | to 90 7000 0+ 10 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

Details of section wise calculation of ROM, Salable Ore, Mineral Reject & waste for the period i.e. for the FY 2023-24 to 2027-28 of the Review of Mining Plan period is enclosed at Annexure-31.

## 4.3.3: Dump workings:

| Justification                                            |                                                                   |
|----------------------------------------------------------|-------------------------------------------------------------------|
| Grade Range<br>(%)                                       |                                                                   |
| Proposed<br>Waste<br>Quantity<br>(t) (A-B)               |                                                                   |
| Proposed<br>Recovery<br>of Saleable<br>Mineral<br>(t)(B) | :0 2027-28.                                                       |
| Proposed Dump Handling Quantity (t) (A)                  | or dump working during the RMP period i.e. FY 2023-24 to 2027-28. |
| Total<br>Dump<br>Quantity<br>(t)                         | RMP period                                                        |
| Volume<br>(m³)                                           | ng during the                                                     |
| Avg<br>Height<br>of Dump<br>(m)                          | dump worki                                                        |
| Area<br>(m²)                                             | -                                                                 |
| Location<br>Longitude                                    | There is no proposal                                              |
| Location<br>Latitude                                     |                                                                   |
| Dump                                                     |                                                                   |
| Year                                                     |                                                                   |
| z.<br>S.                                                 |                                                                   |

Regional Controller of Mines भारतीय खान व्युरो Indian Bureau of Mines भुवनेश्वर/ Bhubaneswar

Page 95 of 137

RABINDRA by RABINDRA MOHANTY MOHANTY Date: 2022:08.19

10,48:43 +05'30'

by PRADIP KUMAR SAHOO Date: 2022.08.19 PRADIP Digitally signed KUMAR SAHOO

10:48:18 +05'30'



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

## 4.3.4: Calculation Summary:

| Year                                              | 2023-24   | 2024-25   | 2025-26   | 2026-27   | 2027-28   | Total     |
|---------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| (A) Total ROM quantity (t)                        | 10,00,000 | 10,00,000 | 10,00,000 | 10,00,000 | 10,00,000 | 50,00,000 |
| (B) Saleable ore from ROM (t)                     | 4,80,000  | 000'06'9  | 4,10,000  | 4,70,000  | 5,80,000  | 26,30,000 |
| (C ) Proposed Dump Handling<br>Quantity (t)       | 0         | 0         | 0         | 0         | 0         | 0         |
| (D) Saleable Ore recovered from dump workings (t) | 0         | 0         | 0         | 0         | 0         | 0         |
| (E ) Total Saleable Ore (t)<br>(=B+D)             | 4,80,000  | 6,90,000  | 4,10,000  | 4,70,000  | 5,80,000  | 26,30,000 |
| (F) Total Quantity Handled (t) (=A+C)             | 10,00,000 | 10,00,000 | 10,00,000 | 10,00,000 | 10,00,000 | 50,00,000 |
|                                                   |           |           |           |           |           |           |

## 4.4: Machine Calculation:

# 4.4.1: Machine Requirement Summary:

| Number of Average Working Days in One Year (A)                      | 300   |
|---------------------------------------------------------------------|-------|
| Number of Shifts per Day (B)                                        | 3     |
| Material Handling Required per Day (t) ((D)=Largest of (Q1,Q5)/(A)) | 8,000 |
| Material to be Handled per Shift (t) ((E)=(D)/(B))                  | 2667  |
| Handling Required per Hour (t) ((F)=(E)/6 hours)                    | 445   |
| Effective Shift Time                                                | 6 hr  |
|                                                                     |       |



Page **96** of **137** 

Digitally signed by PRADIP KUMAR SAHOO Date: 2022.08.19 10:48:18 +05:30" PRADIP KUMAR

SAHOO

6 Hrs

00 min

Odisha Mining Corporation Ltd

Review of Mining Plan & Progressive Mine Closure Plan

(2023-24 to 2027-28)

Rantha Iron Ore Mine

| Standby excavator (L)                                                                        | -         |           |
|----------------------------------------------------------------------------------------------|-----------|-----------|
| Number of excavator machines required (K) = $(J / I)$                                        | 2         | 2         |
| Maximum handling of the material by this machine during the block period (t) (J)             | 24,00,000 | 24,00,000 |
| Yearly handling by one Excavator<br>(t) (I)=(G x H)                                          | 17,38,800 | 12,42,000 |
| Total Hours (H) =Number of<br>working days x Number of<br>shifts/day x Effective shift hours | 5400      | 5400      |
| (G) TPH =TPH (G) =((3600 x A x B x C x D x E x U ) / F)/10000                                | 322       | 230       |
| Cycle time (sec) (F)                                                                         | 50        | 50        |
| Efficiency (%) (E)                                                                           | %08       | %08       |
| Machine Utilization Factor (%) (U)                                                           | %08       | %08       |
| Tonnage Factor (m³/t) (D)                                                                    | 2.5       | 2.5       |
| Swell Factor (C)                                                                             | Т         | Н         |
| Bucket Fill Factor (B)                                                                       | 0.8       | 0.8       |
| Bucket Capacity (m³)(A)                                                                      | 3.5       | 2.5       |
| Туре                                                                                         | Excavator | Excavator |

SI. No.

01.

02.



Digitally signed by PRADIP KUMAR SAHOO Date: 2022.08.19 10.48.18 +05'30' PRADIP KUMAR SAHOO

Page **97** of **137** 



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

## 4.4.3: Dumper Requirement:

|                       |                                                                                                                          |                         | I        |               | γ             |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|---------------|---------------|
|                       | Plus<br>Standby<br>dumper<br>(xii)                                                                                       | 2                       | က        | 2             | 2             |
|                       | Number<br>of<br>dumpers<br>will be<br>(xi) =( x /<br>ix)                                                                 | 5                       | 7        | æ             | ю             |
|                       | Maximum handling of the Number material of by this dumpers machine will be during the (xi) = (x/block ix) (x)            | 4,72,50 24,00,00<br>0 0 | 24,00,00 | 10,00,00<br>0 | 10,00,00<br>0 |
|                       | Yearly<br>handling<br>by one<br>dumper<br>(ix) = A x<br>TPH                                                              | 4,72,50<br>0            | 3,37,50  | 4,72,50<br>0  | 3,37,50<br>0  |
|                       | Total<br>transport<br>ation per<br>hour (viii)<br>=( B X vii)                                                            | 87.5                    | 62.5     | 87.5          | 62.5          |
| 00 mins               | No. of<br>Trips /<br>hr (vii)<br>= (60 /<br>vi)                                                                          | 2.5                     | 2.5      | 2.5           | 2.5           |
| )                     | Total Time to complete one trip(vi) = (iii + iv + v )                                                                    | 24                      | 24       | 24            | 24            |
| 6.00 Hrs              | Queuing,<br>Unloadin<br>g Time<br>during<br>unloading<br>(min) (v)                                                       | 3                       | 3        | 3             | 3             |
|                       | Queuing,<br>Loading<br>Time at<br>Shovel<br>(min) (iv)                                                                   | 3                       | 3        | 3             | 3             |
|                       | Time taken to cover distance in minutes(ii i) = (ii/i) x 60                                                              | 18                      | 18       | 18            | 18            |
| 6.                    | Lead<br>Distanc<br>e (KM)<br>(ii)                                                                                        | 9                       | 9        | 9             | 9             |
|                       | Speed<br>of the<br>dumper<br>(KMPH)                                                                                      | 20                      | 20       | 20            | 20            |
| me:                   | Capacit<br>y of<br>Dumper<br>s (t) (B)                                                                                   | 35                      | 25       | 35            | 25            |
| Effective Shift Time: | Total Hours=Nu mber of working days (W)x Number of shifts/day x Effective shift hours (Machine Requireme nt Summary) (A) | 5400                    | 5400     | 5400          | 5400          |
|                       | SI.<br>No                                                                                                                | 01.                     | 02.      | 03.           | 04.           |

Page **98** of **137** 

PRADIP Digitally signed by PRADIP KUMAR KUMAR SAHOO Date: 2022.08.19 SAHOO

WINES OF THE PARTY Pingitally sloned CE Digitally sloned CE MOHANIY MOHANIY MOHANIY Date: 2022.08.19 10A8.43 +0530



Rantha Iron Ore Mine O

Odisha Mining Corporation Ltd

# 4.4.4: Drill Machine Requirement:

|                       | Stand<br>by<br>Drill                                        | Н             |
|-----------------------|-------------------------------------------------------------|---------------|
|                       | Required<br>Number<br>of Drills<br>(m/c)                    | 4             |
|                       | Rate of Drilling per Hours (m/hr)                           | 20            |
|                       | Drilling<br>Requiremen<br>t per Shift<br>(m)                | 99            |
| S                     | Drilling<br>Requiremen<br>t per Day<br>(m)                  | 198           |
| 0 mins                | Annual<br>Target<br>Known<br>(t)                            | 16,80,0<br>00 |
|                       | Yield<br>per<br>Mete<br>r<br>(t/m)                          | 31.5          |
|                       | Yiel<br>d<br>per<br>Hole<br>(t)                             | 189           |
|                       | Bulk<br>Density<br>of<br>Minera<br>I (t/m³)                 | 3             |
| 6.00 hrs              | Bulk<br>Densit<br>y of<br>Waste<br>(t/m³)                   | 2.0           |
| 90.9                  | Burde<br>n (m)                                              | 3             |
|                       | Spacin<br>g (m)                                             | 3.5           |
| t Time:               | Depth of Hole(including Spacin Sub-grade g (m) Drilling (m) | 6.6           |
| Effective Shift Time: | 01. Mechanical                                              |               |
|                       | SI.<br>No Type of Drill                                     | 01.           |

70% with respect to the total excavation have been required blasting.



Page **99** of **137** 

PRADIP Digitally signed by PRADIP KUMAR SAHOO Date, 2022,08,19
SAHOO 10-48:18 + 05:30\*



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

## 4.4.5: Machine Deployment Details:

## 4.4.5.1: Excavator & Loading Equipment:

| Sl. No. | Type      | Make                                  | Capacity (m³) | No. of Equipments |  |
|---------|-----------|---------------------------------------|---------------|-------------------|--|
| 01.     | Excavator | Tata Hitachi/ Volvo/<br>Kobelco/ Sany | 3.5           | 3                 |  |
| 02.     | Excavator | Tata Hitachi/ Volvo/<br>Kobelco/ Sany | 2.5           | 3                 |  |

## 4.4.5.2: Dozers Details:

| Sl. No. | Туре  | Make                  | Capacity (HP) | No. of Equipments |
|---------|-------|-----------------------|---------------|-------------------|
| 01.     | Dozer | BEML/Komatsu/CASE/L&T | 324 HP        | 02                |

### 4.4.5.3: Drilling Details:

| SI. N | о. | Туре          | Make                         | Capacity (t) | Diameter of Hole (mm) |
|-------|----|---------------|------------------------------|--------------|-----------------------|
| 01    | •  | Drill Machine | INDUS/Atlas<br>Copco/Sandvik | 450          | 115-150 mm            |

## 4.4.5.4: Auxiliary Mining Equipment:

| SI. No. | Туре                     | Make                                        | Capacity    | No. of<br>Equipments |
|---------|--------------------------|---------------------------------------------|-------------|----------------------|
| 01.     | Exacvator                | · Tata Hitachi/ Volvo/<br>Kobelco/ Sany     | 0.9-2.7 CuM | 04                   |
| 02.     | Loader                   | SDLG/LIUGONG/Volvo/Tata                     | 4.5-3.5 CuM | 3/4                  |
| 03.     | Loader                   | HM2021/Volvo                                | 1.5/2CuM    | 2/2                  |
| 04.     | Diesel Tanker            | TATA/Eicher                                 | 12KL        | 1                    |
| 05.     | Water Sprinkler          | TATA/Eicher                                 | 10KL        | 3                    |
| 06.     | Motor Grader             | Hidromek/ LIUGONG                           | 140HP       | 1                    |
| 07.     | Explosive Van            | TATA/Ashok Leyland                          | 2 ton       | 1                    |
| 08.     | Pick up Van              | Mahindra                                    |             | 3                    |
| 09.     | Rock Breaker             | Atlascopco/Volvo                            | 120 ton     | 1                    |
| 10.     | Portable Tower<br>lights | Kirloskar/Catterpillar /Atlas<br>Copco/Koel |             | 10                   |
| 11.     | Mobile Service Van       | TATA/Eicher                                 |             | 1                    |
| 12.     | Crane                    | Volvo/L&T/Hitachi                           | 100 ton     | 1                    |
| 13.     | Tyre Handler             |                                             |             | 1                    |

The proposed equipment shall be sufficient for smooth operation of the Mine for the proposed capacity of 1.0 MTPA of ROM ore during the Review of Mining Plan period. However, exact specification, capacity & numbers of HEMMs proposed may vary as per exact requirement.





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd



## 4.5.1 Blasting & Explosive Requirement in Waste/Development:

| S.N. | Drill          | Burde | Numbe  | Yield             |   | 1                     | _    | Charge | Explosive   | Powder     | Depth |
|------|----------------|-------|--------|-------------------|---|-----------------------|------|--------|-------------|------------|-------|
|      | Patte          | n of  | rof    | per               |   | Number of             | •    | per    | Requiremen  | Factor in  | Of    |
|      | rn/            | Holes | Rows / | Holes             | 1 | Holes                 | Hole | Round  | t Per Month | Developme  | Hole  |
|      | Spaci<br>ng of | (m)   | Rings  | in<br>Waste       | 1 | Blasted in a<br>Round | (kg) | (kg)   | in          | nt / Waste |       |
|      | Hole           |       |        | (m <sup>3</sup> ) |   | Nound                 |      |        | Developmen  | (kg/t)     |       |
|      | s (m)          |       |        | ( , , ,           |   |                       |      |        | t (kg)      |            |       |
|      | Stag           |       |        |                   |   |                       |      |        |             |            |       |
| 01.  | gere           | 3     | 3      | 63                | 3 | 55                    | 30   | 1,680  | 19,000      | 5          | 6     |
|      |                | _     |        |                   |   |                       |      | 2,000  | 13,000      | 3          |       |
|      | d/<br>3.5      |       |        |                   |   |                       | 30   | 1,000  | 13,000      | ,          |       |

Blasting has been carried out by third party agency.

## 4.5.2 Blasting & Explosive Requirement in Mineral / Ore:


| Type of Explosive                            | Type of Explosives used / to be Used                     |
|----------------------------------------------|----------------------------------------------------------|
| Emulsion, Slurry, SME.                       | Emulsion, Slurry, SME.                                   |
| Initiation by NONEL/Detonating Fuse/Electric | Initiation by NONEL/Detonating Fuse/ Electric Detonator. |
| Detonator.                                   |                                                          |

| SI. No. | Total      | Total ROM  | Spacing  | Burden   | Number  | Yield | Frequency                               | Maximum    | No of   | Charge |
|---------|------------|------------|----------|----------|---------|-------|-----------------------------------------|------------|---------|--------|
|         | ROM        | proposed   | of Holes | of Holes | of Rows | per   | of Blasting                             | Number     | Holes   | per    |
|         | proposed   | to be      | (m)      | (m)      |         | Holes | in a Week                               | of Holes   | Require | Hole   |
|         | to be      | handled in |          |          |         | in    |                                         | Blasted in | d to be | (kg)   |
|         | handled in | CUM/ day   |          |          |         | ROM   |                                         | a Round    | Blasted |        |
|         | CUM/ann    |            |          |          |         | Zone  | *************************************** |            | per     |        |
|         | um         |            |          |          |         | (m³)  |                                         |            | Round   |        |
| 01      | 2,48,630   | 829        | 3.5      | 3        | 3       | 63    | 3                                       | 30         | 36      | 36     |

Table continued....

| SI. | Charge | Explosive     | Powder | Pop       | Plaster   | Use of  | Capacity | Secondary    | Depth Of |
|-----|--------|---------------|--------|-----------|-----------|---------|----------|--------------|----------|
| No. | per    | Requirement   | Factor | Shooting  | Shooting  | Rock    |          | Blasting     | Hole     |
|     | Round  | Per Month     | in Ore | (no of    | (no of    | breaker |          | Requirements |          |
|     | (kg)   | for ROM       | (t/kg) | Boulders) | Boulders) |         |          |              |          |
|     |        | Zone          |        |           |           |         |          |              |          |
|     |        | Blasting (kg) |        |           |           |         |          |              |          |
| -   |        |               |        |           |           |         |          |              |          |
| 01. | 1,080  | 12,960        | 6.5    | NA        | NA        | yes     | 120 ton  | Not Required | 6        |
|     |        |               |        |           |           |         |          |              |          |







Rantha Iron Ore Mine

2027-28)
Odisha Mining Corporation Ltd of Milliage

## 4.6: Man Power Deployment:

## 4.6.1: Managerial:

| Sr. No | Particulars                      | Number of<br>Persons in<br>Shift 1 | Number of<br>Persons in<br>Shift 2 | Number of<br>Persons in<br>Shift 3 | Number<br>of Persons<br>in General<br>Shift | Total No. of<br>Persons per<br>day |
|--------|----------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------------------|------------------------------------|
| 1      | 1st Class                        | 0                                  | 0                                  | 0                                  | 2                                           | 2                                  |
| 2      | 2 <sup>nd</sup> class<br>Manager | 1                                  | 1                                  | 1                                  | 2                                           | 5                                  |
| 3      | Mining<br>Engineer               | 0                                  | 0                                  | 0                                  | 1                                           | 1                                  |
| 4      | Geologist                        | 1                                  | 0                                  | 0                                  | 1                                           | 2                                  |
| 5      | Mechanical<br>Engineer           | 0                                  | 0                                  | 0                                  | 1                                           | 1                                  |
| 6      | Electrical<br>Engineer           | 0                                  | 0                                  | 0                                  | 1                                           | 1                                  |
| 7      | Others                           | 0                                  | 0                                  | 0                                  | 10                                          | 10                                 |
|        | Total                            | 2                                  | 1                                  | 1                                  | 18                                          | 22                                 |

## 4.6.2: Supervisory:

| Sl. No. | Particulars                 | Number of<br>Person in Shift 1 | Number of<br>Person in<br>Shift 2 | Number of<br>Person in<br>Shift 3 | Number of<br>Person in<br>General<br>Shift | Total<br>Number of<br>Person per<br>Day |
|---------|-----------------------------|--------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------------|
| 1.      | Mines Foreman               | 2                              | 2                                 | 2                                 | 2                                          | 8                                       |
| 2.      | Mechanical<br>Foreman & JEE | 1                              | 1                                 | 0                                 | 1                                          | 3                                       |
| 3.      | Electrical<br>Foreman & JEE | 1                              | 0                                 | 0                                 | 1                                          | 2                                       |
| 4.      | JEE Civil                   | 0                              | 0                                 | 0                                 | 1                                          | 1                                       |
| 5.      | Mine mate                   | 3                              | 3                                 | 3                                 | 3                                          | 12                                      |
| 6.      | Blaster                     | 0                              | 0                                 | 0                                 | 1                                          | 1                                       |
| 7.      | Surveyor                    | 0                              | 0                                 | 0                                 | 2                                          | 2                                       |
| 8.      | Others                      | 0                              | 0                                 | 0                                 | 35                                         | 35                                      |
|         | Total                       | 7                              | 6                                 | 5                                 | 46                                         | 64                                      |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd 7 6777

4.6.3: Skilled Workers / Operators:

| Number of Number of Number of Stat No. of |                           |                                    |                                    |                                    |                                             |                                 |  |  |
|-------------------------------------------|---------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------------------|---------------------------------|--|--|
| Sr. No                                    | Particulars               | Number of<br>Persons in Shift<br>1 | Number of<br>Persons in<br>Shift 2 | Number of<br>Persons in<br>Shift 3 | Number of<br>Persons in<br>General<br>Shift | Total No of<br>Persons personal |  |  |
| 01.                                       | Excavator<br>Operator     | 7                                  | 7                                  | 7                                  | 3                                           | 24                              |  |  |
| 02.                                       | Dumper<br>Operator        | 15                                 | 15                                 | 15                                 | 7                                           | 52                              |  |  |
| 03.                                       | Loader<br>Operator        | 4                                  | 4                                  | 4                                  | 2                                           | 14                              |  |  |
| 04.                                       | Diesel tanker<br>Operator | 1                                  | 1                                  | 1                                  | 1                                           | 4                               |  |  |
| 05.                                       | Water Tanker<br>Operator  | 3                                  | 3                                  | 3                                  | 0                                           | 9                               |  |  |
| 06.                                       | Dozer Operator            | 2                                  | 2                                  | 2                                  | 0                                           | 6                               |  |  |
| 07.                                       | Grader<br>Operator        | 1                                  | 1                                  | 0                                  | 0                                           | 2                               |  |  |
| 09.                                       | Service Van<br>Operator   | 1                                  | 1                                  | 1                                  | 0                                           | 3                               |  |  |
| 10.                                       | Crane Operator            | 1                                  | 1                                  | О                                  | 0                                           | 2                               |  |  |
| 11.                                       | Explosive Van<br>Driver   | 1                                  | 1                                  | 0                                  | 0                                           | 2                               |  |  |
| 12.                                       | Drill Operator            | 2                                  | 2                                  | 2                                  | 0                                           | 6                               |  |  |
| 13.                                       | Work Shop<br>Mechanic     | 6                                  | 6                                  | 6                                  | 0                                           | , 18                            |  |  |
|                                           | Total                     | 44                                 | 44                                 | 41                                 | 13                                          | 142                             |  |  |

## 4.6.4: Semi-skilled Workers:

| SI. No | Number of          | Number of          | Number of          | Number of Persons | Total No. of Persons |
|--------|--------------------|--------------------|--------------------|-------------------|----------------------|
|        | Persons in Shift 1 | Persons in Shift 2 | Persons in Shift 3 | in General Shift  | per day              |
| 01.    | 40                 | 40                 | 40                 | 37                | 157                  |

## 4.6.5: Unskilled Workers:

| SI. No | Number of          | Number of          | Number of          | Number of Persons | Total No. of Persons |
|--------|--------------------|--------------------|--------------------|-------------------|----------------------|
|        | Persons in Shift 1 | Persons in Shift 2 | Persons in Shift 3 | in General Shift  | per day              |
| 01.    | 12                 | 12                 | 12                 | 18                | 54                   |





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

## 4.6.6: No of Persons Engaged Per Day:

| Number of Persons in<br>Shift 1 | Number of Persons<br>in Shift 2 | Number of<br>Persons in Shift<br>3 | Number of<br>Persons in<br>General Shift | Total No. of Control Persons per day |
|---------------------------------|---------------------------------|------------------------------------|------------------------------------------|--------------------------------------|
| 105                             | 103                             | 99                                 | 132                                      | 439                                  |

| No of Shifts per Day ((A) = Machine Requirement Summary (B))                      | 3 shifts |
|-----------------------------------------------------------------------------------|----------|
| Average Daily Employment per Shift ((B) = (Total Number of Person per Day) / (A)) | 146      |
| Material to be Handled per Shift ((C) = Machine Requirement Summary (E))          | 2,667    |

### 4.6.7: Supervision:

| SI.<br>No. | Particulars         | Qualification         | Requirement /<br>Proposed | In Position /<br>Existing<br>Strength | (-) Shortage /<br>(+) Excess | Remarks                                                                                                       |
|------------|---------------------|-----------------------|---------------------------|---------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------|
| 01.        | Excavation<br>Point | 10 <sup>th</sup> pass | 8                         | 0                                     | Shortage                     | After Resume of Mine                                                                                          |
| 02.        | Loading<br>Point    | 10 <sup>th</sup> pass | 6                         | 0                                     | Shortage                     | operation all the                                                                                             |
| 03.        | Dumping<br>Point    | 10 <sup>th</sup> pass | 6                         | 0                                     | Shortage                     | supervision staff appointed and they will work under Mining Mate / Mines Foreman as per statutory Guidelines. |

## 4.7: Waste Management:

## 4.7.1: Existing Dump as on 30.06.2022:

| Sl. No.                                                                                                        | Year | Dump ld | Type of<br>Dump | Proposed<br>Area (ha) | Height<br>(m) | Total Dump<br>Quantity<br>(m³) | Existing Dump<br>Location |  |
|----------------------------------------------------------------------------------------------------------------|------|---------|-----------------|-----------------------|---------------|--------------------------------|---------------------------|--|
| The mine has been non-operational since long period, so there is no existing dump present with in the ML area. |      |         |                 |                       |               |                                |                           |  |

## 4.7.2: New Dump:

| SI.<br>No. | Year    | Dump ld | Type of<br>Dump | Proposed<br>Area (ha) | Height<br>(m) | Total Dump<br>Quantity<br>(m³) | New Dump<br>Location                             |
|------------|---------|---------|-----------------|-----------------------|---------------|--------------------------------|--------------------------------------------------|
| 01.        | 2023-24 | WD-1    | Waste<br>Dump   | 16.464                | 70            | 16,000,00                      | 2408194N to<br>2408703N<br>308267E to<br>308734E |

The waste generated during the Review of Mining Plan Period i.e. FY 2023-24 to 2027-28 is proposed to be dumped over waste dump WD-1. The waste dump WD-1 will be operated during the RMP period i.e. FY 2023-24 to 2027-28.





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

## 4.7.3: Existing Stack as on 30.06.2022.:

| SI.<br>No. | Year       | Stack ID     | Type of<br>Stack | Proposed Area<br>(ha) | Height (m)    | Total Stack<br>Quantity<br>(m³) | Existing Stack-Location |  |
|------------|------------|--------------|------------------|-----------------------|---------------|---------------------------------|-------------------------|--|
| The r      | nine has b | een non-oper | ational since    | long period, so t     | here is no ex | disting stack p                 | resent with in the ML   |  |
| area.      |            |              |                  |                       |               |                                 |                         |  |

### 4.7.4: New Stack

| SI.<br>No. | Year    | Stack ID | Type of<br>Stack | Proposed Area<br>(ha) | Height (m) | Total Stack<br>Quantity (m³) | New Stack Location                         |
|------------|---------|----------|------------------|-----------------------|------------|------------------------------|--------------------------------------------|
| 01.        |         | ST-1     | Processed<br>Ore | 1.174                 | 10         | 80,000                       | 247965N-2408152N<br>to<br>307953E-308094E  |
| 02.        | 2023-24 | ST-2     | Processed<br>Ore | 1.622                 | 20         | 1,50,000                     | 2408202N-2408436N<br>to<br>307914E-308106E |
| 03.        |         | ST-3     | Sub-Grade<br>Ore | 6.598                 | 40         | 6,00,000                     | 2408060N-2408380N<br>to<br>307685E-308066E |

All the above Stack yard have been developed during the FY 202324 of RMP period and all these Stack yard will be operated during the RMP period i.e. FY 2023-24 to 2027-28.

4.8: Mineral Waste Handling To Utilize As Minor Mineral: Not Applicable.

| Sl.<br>No.                                                                                                               | Year | Dump<br>Id | Type of<br>Dump | Proposed<br>Area (ha) | Quantity<br>Handled<br>(t) | Quantity<br>Recovered<br>(t) | Name<br>Of<br>Minor<br>Mineral | Alternative<br>Waste<br>Utilization<br>(m³) |
|--------------------------------------------------------------------------------------------------------------------------|------|------------|-----------------|-----------------------|----------------------------|------------------------------|--------------------------------|---------------------------------------------|
| There is no mineral waste generate for utilizing as minor mineral during the RMP period i.e. from FY 2023-24 to 2027-28. |      |            |                 |                       |                            |                              |                                |                                             |

### 4.9: Use of Minerals:

| SI.<br>No. | Proposed Use Of Mineral                                                          | Name Of<br>Mineral | Relevant Use<br>Of Mineral            | Physical<br>Specifications       | Chemical<br>Specifications                   |
|------------|----------------------------------------------------------------------------------|--------------------|---------------------------------------|----------------------------------|----------------------------------------------|
| 1          | Direct Selling to prospective buyers                                             | Iron Ore           | Steel Plant &<br>Spong Iron<br>Plants | 0-10 mm,5-18<br>mm & 10-40<br>mm | Fe > 55%<br>SiO <sub>2</sub> - 2% (Max.)     |
| 2          | Direct Selling to prospective<br>buyers in case of demand<br>for Subgrade Ore/MR | Iron Ore           | Steel Plant &<br>Spong Iron<br>Plants | 0-10 mm,5-18<br>mm & 10-40<br>mm | Fe 45% ~ 55%<br>SiO <sub>2</sub> - 2% (Max.) |





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

SOUT OF INUIN

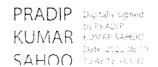
## **Chapter 5: SUSTAINABLE MINING**

5.1: Sustainable Mining and SDF Implementations in Compliance of Rule 35 of MCDR'2017-

Odisha Mining Corporation (OMC), incorporated in 1956 as a joint venture between Government of India and the Government of Odisha to harness untapped mineral wealth of the state, is now a Gold category State PSU and a wholly state-owned corporation, with head office at Bhubaneswar.

OMC aspires to become a market leader in the metals & mining industry in India with state-of-the-art infrastructure and world-class operational facilities. At present, OMC focuses its operations on Iron, Chrome, Bauxite and Manganese, but there are plans on expanding the business into coal mining domain as well. OMC believe that high governance standards are imperative to deliver corporate success, and to strategically align business policies with it's long-term goals and targets. OMC operates on principles of equality, fairness, transparency and accountability, that helps strengthen it's relationships with employees, their unions and all stakeholders. These principles also ensures integrated development of not just the organization, but also it's employees and surrounding local communities.

OMC has a vision to become a world class organization with mining as its core activities by providing the best of services in terms of quality, productivity, profitability, customer satisfaction and environmental sustainability


OMC envisions to attain the global leader position in metals and mining industry through sustainable growth and knowledge excellence. It's focus is to contribute to the national and local economy by ensuring good quality mineral production while simultaneously reducing the impacts on the ecosystem, generating employment opportunities for the local communities and fulfilling societal needs.

Odisha Mining Corporation Limited, create values for all stakeholders in a manner that is responsible, transparent and respects the rights of all. This is carried out consciously and responsibly across the life cycle of the projects that drives long-term growth and profitability through the inclusion of environmental, social and corporate governance aspects co-creating harmony between development and ecosystem. Sustainable Development is integral to the company's ethos and OMC is committed to excel on Triple Bottom Line performance.

The Company as per guidelines of Government of India has set its own target to achieve of 5 Star Rating under Sustainable Development Framework as per the provisions of Mineral Conservation and Development Rules, 2017(MCDR).

As per Rule 35 of MCDR 2021, OMC has considered relevant aspects of environmental, economic and social taken into account for sustainable development in the mining lease area. Also OMC have a dedicated cell which looks comparative performance on sustainable development with initiative & implementation for achieving environmental and social goals.

OMC is committed for improvement of its SDF status on a continuous basis. Some of the major initiatives taken on SDF are as follows:








Rantha Iron Ore Mine

Odisha Mining Corporation Ltd



- · Induction of modern equipment.
- Erection of Crated Boulder Wall and construction of concrete garland drains with settling ponds to arrest wash offs from waste dumps / subgrade stacks
- Plantation of tall seedings through Odisha Forest Development Corporation (OFDC) ensuring at least 90% survival and faster growth.
- · Efforts undertaken for Rain water harvesting
- Certification of International Standards and its periodical renewal
- Developing New Park and renovating park at different leases of OMC.
- Green energy initiatives
- · Converting waste to wealth by drum/vermi/continuous composting
- Quality Circle for innovations

Compliance of Vishakha Committee Guidelines for prevention of women harassment at workplace:

Implemented.

#### 5.2: CSR Initiatives:

| 5.2.1: 2023-24                                                                       |                                          |
|--------------------------------------------------------------------------------------|------------------------------------------|
| Details of Work Proposed during the Year / Measures Planned for the Affected Segment | Cumulative Work done /<br>Measures Taken |
| 5.2.1.1: Area to be Developed for Recreation                                         |                                          |
| Area (Ha)                                                                            | Area (Ha)                                |
| 0.2                                                                                  | 0.2                                      |
| 5.2.1.2: Area for Water Storage & Recharge Facility                                  |                                          |
| Area (Ha)                                                                            | Area (Ha)                                |
| 0                                                                                    | 0                                        |
| 5.2.1.3: Efforts Made towards Housing for Local Communities                          |                                          |
| Number of Houses                                                                     | Number of Houses                         |
| 5                                                                                    | 5                                        |
| 5.2.1.4: Efforts Made towards Providing Transport to Local Commun                    | ities                                    |
| Number of Beneficiaries                                                              | Number of Beneficiaries                  |
| 100                                                                                  | 100                                      |
| 5.2.1.5: Efforts Made towards Providing Healthcare to Local Commu                    | nities                                   |
| Number of Beneficiaries                                                              | Number of Beneficiaries                  |
| 100                                                                                  | 100                                      |
| 5.2.1.6: Efforts Made towards Providing Hygiene & Sanitation to Loc                  | al Communities                           |
| Number of Beneficiaries                                                              | Number of Beneficiaries                  |
| 100                                                                                  | 100                                      |
| 5.2.1.7: Efforts Made towards Skill Development Programs to Local                    | Communities                              |
| Number of Beneficiaries                                                              | Number of Beneficiaries                  |
| 10                                                                                   | 10                                       |
| 5.2.1.8: Efforts Made to Promote Education & Knowledge Based Init                    | iatives                                  |
| Number of Beneficiaries                                                              | Number of Beneficiaries                  |
|                                                                                      |                                          |







Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| 10                                             | 10                                      |                               |
|------------------------------------------------|-----------------------------------------|-------------------------------|
| 5.2.1.9: Communication Facilities Pro          | TOF IND                                 |                               |
| Number of Ber                                  | neficiaries                             | Number of Beneficiaries       |
| 100                                            |                                         | 100                           |
| 5.2.1.10: Any Other Steps Taken for            | Improving the Socio-Economic S          | standard of Local Communities |
| Number of Ber                                  | neficiaries                             | Number of Beneficiaries       |
| 10                                             |                                         | 10                            |
| 5.2.1.11: Adoption of ODF                      |                                         |                               |
| Number of Toilets Built inside the Lease Area: |                                         |                               |
| 2                                              | 5                                       | 50                            |
| 5.2.1.12: Awareness Program among              | g Mine Workers for Swatchata            |                               |
| Number of Swatchata Pro                        | Number of Swatchata<br>Programmes Held: |                               |
| 01                                             |                                         | 0                             |
| 5.2.1.13: Efforts for green energy             |                                         |                               |
| Total energy consumption (KWh)                 | Green energy consumption (% of total)   |                               |
| 120000 5                                       |                                         |                               |
| 5.2.1.14: Water & recycled use                 |                                         |                               |
| Total water consumption (KLD)                  |                                         |                               |
| 232                                            | 10                                      |                               |
|                                                |                                         |                               |

| 5.2.2: 2024-25                                                                       |                                          |  |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|
| Details of Work Proposed during the Year / Measures Planned for the Affected Segment | Cumulative Work done /<br>Measures Taken |  |  |  |  |
| 5.2.2.1: Area to be Developed for Recreation                                         |                                          |  |  |  |  |
| Area (Ha)                                                                            | Area (Ha)                                |  |  |  |  |
| 0.2                                                                                  | 0.4                                      |  |  |  |  |
| 5.2.2.2: Area for Water Storage & Recharge Facility                                  |                                          |  |  |  |  |
| Area (Ha)                                                                            | Area (Ha)                                |  |  |  |  |
| 0                                                                                    | 0                                        |  |  |  |  |
| 5.2.2.3: Efforts Made towards Housing for Local Communities                          |                                          |  |  |  |  |
| Number of Houses                                                                     | Number of Houses                         |  |  |  |  |
| 5                                                                                    | 10                                       |  |  |  |  |
| 5.2.2.4: Efforts Made towards Providing Transport to Local Communi                   | ties                                     |  |  |  |  |
| Number of Beneficiaries                                                              | Number of Beneficiaries                  |  |  |  |  |
| 100                                                                                  | 200                                      |  |  |  |  |
| 5.2.2.5: Efforts Made towards Providing Healthcare to Local Commun                   | nities                                   |  |  |  |  |
| Number of Beneficiaries                                                              | Number of Beneficiaries                  |  |  |  |  |
| 100 200                                                                              |                                          |  |  |  |  |
| 5.2.2.6: Efforts Made towards Providing Hygiene & Sanitation to Local                | al Communities                           |  |  |  |  |





| OMG ODISHA NEW OPPORTUNITIES                                          | Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)  Rantha Iron Ore Mine Odisha Mining Corporation Ltd |                               |                         |  |  |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|--|--|
| Numbe                                                                 | Number of Beneficiaries                                                                                                        |                               |                         |  |  |
|                                                                       | 100                                                                                                                            |                               | 200° CONT. OF INDIA     |  |  |
| 5.2.2.7: Efforts Made toward                                          | s Skill D                                                                                                                      | evelopment Programs to Local  |                         |  |  |
|                                                                       |                                                                                                                                | eficiaries                    | Number of Beneficiaries |  |  |
|                                                                       | 10                                                                                                                             |                               | 20                      |  |  |
| 5.2.2.8: Efforts Made to Pron                                         | note Ed                                                                                                                        | ucation & Knowledge Based Ini | tiatives                |  |  |
| Numbe                                                                 | r of Ber                                                                                                                       | eficiaries                    | Number of Beneficiaries |  |  |
|                                                                       | 10                                                                                                                             |                               | 20                      |  |  |
| 5.2.2.9: Communication Facil                                          | ities Pr                                                                                                                       | ovided to Local Communities   |                         |  |  |
| Numbe                                                                 | r of Ber                                                                                                                       | eficiaries                    | Number of Beneficiaries |  |  |
|                                                                       | 100                                                                                                                            |                               | 200                     |  |  |
|                                                                       | Standard of Local Communities                                                                                                  |                               |                         |  |  |
| Numbe                                                                 | r of Ber                                                                                                                       | neficiaries                   | Number of Beneficiaries |  |  |
|                                                                       | 10                                                                                                                             |                               | 20                      |  |  |
| 5.2.2.11: Adoption of ODF                                             |                                                                                                                                |                               |                         |  |  |
| Number of Toilets Built inside<br>Lease Area:                         | Number of Toilets Built inside the Lease Area: Number of Toilets Built outside the Lease Area:                                 |                               | Number of Beneficiaries |  |  |
| 0                                                                     |                                                                                                                                | 5                             | 50                      |  |  |
| 5.2.2.12: Awareness Program                                           | amon                                                                                                                           | g Mine Workers for Swatchata  |                         |  |  |
| Number of Swatch                                                      | Number of Swatchata<br>Programmes Held:                                                                                        |                               |                         |  |  |
|                                                                       | 0                                                                                                                              |                               |                         |  |  |
| 5.2.2.13: Efforts for green en                                        |                                                                                                                                |                               |                         |  |  |
| Total energy consumption (KWh)  Green energy consumption (% of total) |                                                                                                                                |                               |                         |  |  |
| 120000                                                                | 120000 5                                                                                                                       |                               |                         |  |  |
| 5.2.2.14: Water & recycled us                                         | se                                                                                                                             |                               |                         |  |  |
| Total water consumption (KLI                                          | 1                                                                                                                              |                               |                         |  |  |
| 232                                                                   |                                                                                                                                | 10                            |                         |  |  |

| 5.2.3: 2025-26                                                                       |                                          |
|--------------------------------------------------------------------------------------|------------------------------------------|
| Details of Work Proposed during the Year / Measures Planned for the Affected Segment | Cumulative Work done /<br>Measures Taken |
| 5.2.3.1: Area to be Developed for Recreation                                         |                                          |
| Area (Ha)                                                                            | Area (Ha)                                |
| 0.2                                                                                  | 0.6                                      |
| 5.2.3.2: Area for Water Storage & Recharge Facility                                  |                                          |
| Area (Ha)                                                                            | Area (Ha)                                |
| 0                                                                                    | 0                                        |
| 5.2.3.3: Efforts Made towards Housing for Local Communities                          |                                          |
| Number of Houses                                                                     | Number of Houses                         |
| 5                                                                                    | 15                                       |





|                                              | Section 1985                            |                                                 |                                  |
|----------------------------------------------|-----------------------------------------|-------------------------------------------------|----------------------------------|
| OMC ODISHA                                   | F                                       | leview of Mining Plan & Pro<br>(2023-24 to 2    |                                  |
| HEW OPPORTUNITIES                            | !                                       |                                                 | Odisha Mining Corporation Ltd    |
|                                              |                                         |                                                 | 1/C 3/ 38% / \$ IV               |
|                                              |                                         | ding Transport to Local Comr                    | 10.67 6389 15                    |
| Numb                                         | er of Ber                               | neficiaries                                     | Number of Beneficiaries          |
|                                              | 100                                     |                                                 | 300. 7 THE                       |
|                                              |                                         | ding Healthcare to Local Com                    |                                  |
| Numb                                         |                                         | neficiaries                                     | Number of Beneficiaries          |
|                                              | 100                                     |                                                 | 300                              |
|                                              |                                         | ding Hygiene & Sanitation to                    |                                  |
| Numb                                         |                                         | neficiaries                                     | Number of Beneficiaries          |
| F 2 2 7. Fff B4                              | 100                                     |                                                 | 300                              |
|                                              |                                         | Development Programs to Loc                     |                                  |
| Numb                                         |                                         | neficiaries                                     | Number of Beneficiaries          |
| 5 2 2 % Efforts Made to Dre                  | 10                                      | usation 8 Knowledge Deced                       | 30                               |
|                                              | ·····                                   | ucation & Knowledge Based                       |                                  |
| Nump                                         | er of Ber<br>10                         | ieficiaries                                     | Number of Beneficiaries          |
| 5 2 3 9: Communication Fac                   |                                         | ovided to Local Communities                     | 30                               |
|                                              |                                         | neficiaries                                     |                                  |
| INUITID                                      | 100                                     | ienciaries                                      | Number of Beneficiaries          |
| 5.2.3.10: Any Other Stens Ta                 |                                         | Improving the Socia-Foonom                      | ic Standard of Local Communities |
|                                              |                                         | neficiaries                                     | Number of Beneficiaries          |
| Rumb                                         | 10                                      | ichciai ics                                     |                                  |
| 5.2.3.11: Adoption of ODF                    | 10                                      |                                                 | 30                               |
| Number of Toilets Built insid<br>Lease Area: | e the                                   | Number of Toilets Built outside the Lease Area: | Number of Beneficiaries          |
| 2                                            |                                         | 5                                               | 50                               |
| 5.2.3.12: Awareness Program                  | n amon                                  | Mine Workers for Swatchat                       |                                  |
| Number of Swatc                              | Number of Swatchata<br>Programmes Held: |                                                 |                                  |
|                                              | 0                                       |                                                 |                                  |
| 5.2.3.13: Efforts for green er               | nergy                                   |                                                 |                                  |
| Total energy consumption (KWh)               |                                         | Green energy consumption (% of total)           |                                  |
| 120000                                       |                                         | 5                                               |                                  |
| 5.2.3.14: Water & recycled u                 | ıse                                     |                                                 |                                  |
| Total water consumption (KL                  | .D)                                     | Water recycled (% of total)                     | <del> </del>                     |
| 232                                          | -,                                      | 10                                              |                                  |
|                                              |                                         |                                                 |                                  |






### rogressive Mine Closure Plan 2027-28) Odisha Mining Corporation Ltd Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)

Rantha Iron Ore Mine

| Details of Work Proposed during the      | Year / Measures Planned for     | Cumulative Work done                  |  |  |
|------------------------------------------|---------------------------------|---------------------------------------|--|--|
| the Affected S                           | Measures Taken                  |                                       |  |  |
| 5.2.4.1: Area to be Developed for Re     | creation                        | · · · · · · · · · · · · · · · · · · · |  |  |
| Area (Ha                                 | a)                              | Area (Ha)                             |  |  |
| 0.2                                      | 0.8                             |                                       |  |  |
| 5.2.4.2: Area for Water Storage & Re     | charge Facility                 |                                       |  |  |
| Area (Ha                                 | Area (Ha)                       |                                       |  |  |
| 0                                        |                                 | 0                                     |  |  |
| 5.2.4.3: Efforts Made towards Housin     | ng for Local Communities        |                                       |  |  |
| Number of H                              | louses                          | Number of Houses                      |  |  |
| 5                                        |                                 | √20                                   |  |  |
| 5.2.4.4: Efforts Made towards Provid     | ing Transport to Local Commun   | ities                                 |  |  |
| Number of Ben                            | eficiaries                      | Number of Beneficiaries               |  |  |
| 100                                      |                                 | 400                                   |  |  |
| 5.2.4.5: Efforts Made towards Provid     | ling Healthcare to Local Commu  | nities                                |  |  |
| Number of Ben                            | eficiaries                      | Number of Beneficiaries               |  |  |
| 100                                      |                                 | 400                                   |  |  |
| 5.2.4.6: Efforts Made towards Providence | ing Hygiene & Sanitation to Loc | al Communities                        |  |  |
| Number of Ben                            | eficiaries                      | Number of Beneficiaries               |  |  |
| 100                                      |                                 | 400                                   |  |  |
| 5.2.4.7: Efforts Made towards Skill D    | evelopment Programs to Local C  | Communities                           |  |  |
| Number of Ben                            | eficiaries                      | Number of Beneficiaries               |  |  |
| 10                                       | 40                              |                                       |  |  |
| 5.2.4.8: Efforts Made to Promote Ed      | ucation & Knowledge Based Initi | iatives                               |  |  |
| Number of Ben                            | eficiaries                      | Number of Beneficiaries               |  |  |
| 10                                       |                                 | 40                                    |  |  |
| 5.2.4.9: Communication Facilities Pro    | ovided to Local Communities     |                                       |  |  |
| Number of Ben                            | eficiaries                      | Number of Beneficiaries               |  |  |
| 100                                      |                                 | 400                                   |  |  |
| 5.2.4.10: Any Other Steps Taken for      | Improving the Socio-Economic S  | tandard of Local Communities          |  |  |
| Number of Ben                            | eficiaries                      | Number of Beneficiaries               |  |  |
| 10                                       |                                 | 40                                    |  |  |
| 5.2.4.11: Adoption of ODF                |                                 |                                       |  |  |
| Number of Toilets Built inside the       | Number of Toilets Built         | Number of Beneficiaries               |  |  |
| Lease Area: outside the Lease Area:      |                                 |                                       |  |  |
| 0                                        | 5                               | 50                                    |  |  |
| 5.2.4.12: Awareness Program among        | Mine Workers for Swatchata      |                                       |  |  |
| Number of Swatchata Pro                  | grammes proposed:               | Number of Swatchata                   |  |  |
|                                          | · 1                             | Programmes Held:                      |  |  |
| 01                                       |                                 | 0                                     |  |  |





5.2.4.13: Efforts for green energy

### Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)

Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| 5.2.4.13: Efforts for green energy             | ^                                     | 16 E E GEORGE V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total energy consumption (KWh)                 | Green energy consumption (% of total) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 120000                                         | E GOVI OF INDIA                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.2.4.14: Water & recycled use                 | रेत्र सार्वा                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total water consumption (KLD)                  | Water recycled (% of total)           | The same and the s |
| 232                                            | 10                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.2.5: 2027-28                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Details of Work Proposed during th             | ne Year / Measures Planned for        | Cumulative Work done /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| the Affected                                   | Segment                               | Measures Taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.2.5.1: Area to be Developed for Ro           | ecreation                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Area (F                                        | la)                                   | Area (Ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.2                                            |                                       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.2.5.2: Area for Water Storage & R            | echarge Facility                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Area (F                                        | la)                                   | Area (Ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0                                              |                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.2.5.3: Efforts Made towards Hous             | ing for Local Communities             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number of                                      | Houses                                | Number of Houses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5                                              |                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.2.5.4: Efforts Made towards Provi            | ding Transport to Local Commun        | ities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number of Be                                   | neficiaries                           | Number of Beneficiaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 100                                            | 500                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.2.5.5: Efforts Made towards Provi            | iding Healthcare to Local Commu       | nities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Number of Be                                   | Number of Beneficiaries               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100                                            | 500                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.2.5.6: Efforts Made towards Provi            | iding Hygiene & Sanitation to Loc     | al Communities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Number of Be                                   | neficiaries                           | Number of Beneficiaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 100                                            |                                       | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.2.5.7: Efforts Made towards Skill            | Development Programs to Local         | Communities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Number of Be                                   | neficiaries                           | Number of Beneficiaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10                                             |                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.2.5.8: Efforts Made to Promote Ed            | ducation & Knowledge Based Init       | iatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Number of Be                                   | neficiaries                           | Number of Beneficiaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10                                             |                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.2.5.9: Communication Facilities P            | rovided to Local Communities          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number of Be                                   | Number of Beneficiaries               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100                                            | 500                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.2.5.10: Any Other Steps Taken for            | r Improving the Socio-Economic S      | Standard of Local Communities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Number of Be                                   | neficiaries                           | Number of Beneficiaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10                                             |                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.2.5.11: Adoption of ODF                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number of Toilets Built inside the Lease Area: | Number of Beneficiaries               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| 0                                                                     | 5                                    | 50 |  |  |
|-----------------------------------------------------------------------|--------------------------------------|----|--|--|
| 5.2.5.12: Awareness Program among                                     | 50                                   |    |  |  |
| Number of Swatchata Pro                                               | Number of Swatchata Programmes Held: |    |  |  |
| 01                                                                    | 01                                   |    |  |  |
| 5.2.5.13: Efforts for green energy                                    |                                      |    |  |  |
| Total energy consumption (KWh)  Green energy consumption (% of total) |                                      |    |  |  |
| 120000                                                                |                                      |    |  |  |
| 5.2.5.14: Water & recycled use                                        |                                      |    |  |  |
| Total water consumption (KLD) Water recycled (% of total)             |                                      |    |  |  |
| 232 10                                                                |                                      |    |  |  |

#### 5.3: Rehabilitation & Resettlement of Affected Persons:

| Particular                                                                        | 2023-24 | 2024-25 | 2025-26 | 2026-27 | 2027-28 |
|-----------------------------------------------------------------------------------|---------|---------|---------|---------|---------|
| Proposed Number of Project Affected Persons(PAP)                                  | Nil     | Nil     | Nil     | Nil     | Nil     |
| Proposed Number of Person for Alternate<br>Arrangement for Sustainable Livelihood | Nil     | Nil     | Nil     | Nil     | Nil     |
| Proposed Number of Person for Skill Training                                      | Nil     | Nil     | Nil     | Nil     | Nil     |
| Proposed Number of Person Likely to get Direct<br>Employment                      | Nil     | Nil     | Nil     | Nil     | Nil     |
| Proposed Number of Person Likely to get Indirect<br>Employment                    | Nil     | Nil     | Nil     | Nil     | Nil     |
| Proposed Project Affected Families Skilled and<br>Absorbed                        | Nil     | Nil     | Nil     | Nil     | Nil     |
| Proposed Number of Project Affected Families                                      | Nil     | Nil     | Nil     | Nil     | Nil     |





Rantha Iron Ore Mine

Odisha Mining Corporation 1td

### Chapter 6: PROGRESSIVE MINE CLOSURE PLAN

#### 6.1: Status of Land:

| Total Area Degraded                                      |        | Total mir                          | ned out area Rec<br>Rehabilitated                | laimed and                                  | Other Areas Ro<br>and Rehabil                                           |                                                                                 |                                                                              |                                                        |                                                       |
|----------------------------------------------------------|--------|------------------------------------|--------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| Total area excavation lease  Area under mining operation | in the | Area<br>under<br>Dumps(in<br>hect) | Area<br>under<br>utility<br>services(in<br>hect) | Area<br>under<br>Stack<br>yards(in<br>hect) | Mined out<br>Area<br>Reclaimed<br>but not<br>rehabilitated<br>(in hect) | Mined out<br>Area fully<br>Rehabilitated<br>from<br>Reclaimed<br>area (in hect) | Area under<br>Water<br>Reservoir<br>considered<br>Rehabilitated<br>(in hect) | Stabilized<br>Waste dump<br>Rehabilitated<br>(in hect) | Virgin<br>area<br>under<br>Green<br>Belt (in<br>hect) |
| 2.857                                                    | 0.00   | 0.00                               | 4.524                                            | 0.00                                        | 0.00                                                                    | 0.00                                                                            | 0.00                                                                         | 0.00                                                   | 13.126                                                |

#### **6.2: Progressive Reclamation and Rehabilitation Plan:**

#### 6.2.1: Backfilling:

| Quantity of Waste / Fill N | 0 |
|----------------------------|---|
| Availability of Top        | 0 |
| Spread                     | 0 |

|                                                                                         |                                                                                     |  | Year Wise Pr | oposal |  |  |  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--------------|--------|--|--|--|
| SI. No                                                                                  | SI. No Year Pit ID Co-ordinates Area (m²) Top RL Bottom Estimated Expenditure (INR) |  |              |        |  |  |  |
| There is no proposal for back filling during the RMP period i.e. FY 2023-24 to 2027-28. |                                                                                     |  |              |        |  |  |  |

#### 6.2.2: Water Reservoir:

| Average Rainfall of The Area (mm) | 1269.1 |
|-----------------------------------|--------|
| Proposed Area under Water Storage | 0      |

#### **6.2.2.1:** Preparations for Ground Water Recharging:

| 6.2.2.1.1: Drilling Holes |                                    |  |  |  |  |
|---------------------------|------------------------------------|--|--|--|--|
| Year                      | Proposed no of Holes to be Drilled |  |  |  |  |
| 2023-24                   | 01                                 |  |  |  |  |
| 2024-25                   | 01                                 |  |  |  |  |
| 2025-26                   | 01                                 |  |  |  |  |
| 2026-27                   | 01                                 |  |  |  |  |
| 2027-28                   | 01                                 |  |  |  |  |

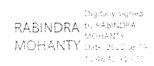


Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| 6.2.2.1.2:Preparation of Course Gravel Bed: | THE S                      |          |
|---------------------------------------------|----------------------------|----------|
| Year                                        | Proposed Area of Bed (LxW) |          |
| 2023-24                                     | Nil * Z                    |          |
| 2024-25                                     | Nil                        | OF MOUNT |
| 2025-26                                     | Nil                        |          |
| 2026-27                                     | Nil                        |          |
| 2027-28                                     | Nil                        |          |

Please specify, if others: Not Applicable.


#### 6.2.2.2: Protective measures (Please specify running meter)

| 6.2.2.1: Fencing | g:                          |                   |                  |
|------------------|-----------------------------|-------------------|------------------|
| Year             | Proposed Fencing Length (m) | Co-ordinates from | Co-ordinates to  |
| 2023-24          | 850 (MLP E1 to G1)          | 2406717N,308551E  | 2407366N,308743E |
| 2024-25          | 900 (MLP G1 to G4)          | 2407366N,308743E  | 2408263N,308735E |
| 2025-26          | 900(MLP G4 to G7)           | 2408263N,308735E  | 2409158N,308727E |
| 2026-27          | 900(MLP G7 to A1)           | 2409158N,308727E  | 2409714N,308509E |
| 2027-28          | 1200(MLP A1 to B)           | 2409714N,308509E  | 2408520N,308526E |

| 6.2.2.2: Retaining Wall: |                          |                     |                     |  |  |  |  |
|--------------------------|--------------------------|---------------------|---------------------|--|--|--|--|
| Year                     | Proposed Wall Length (m) | Co-ordinates from   | Co-ordinates to     |  |  |  |  |
| 2022.24                  | 440                      | 2408506N to 308520E | 2408698N to 308725E |  |  |  |  |
| 2023-24                  | 440                      | Along the OB Dump   | Along the OB Dump   |  |  |  |  |
| 2024.25                  | 250                      | 2408698N to 308725E | 2408348N to 308725E |  |  |  |  |
| 2024-25                  | 350                      | Along the OB Dump   | Along the OB Dump   |  |  |  |  |
| 0005.05                  | 100                      | 2408505N to 308447E | 2408299N to 308327E |  |  |  |  |
| 2025-26                  | 400                      | Along the OB Dump   | Along the OB Dump   |  |  |  |  |
|                          |                          | 2408299N to 308327E | 2408348N to 308725E |  |  |  |  |
| 2026-27                  | 520                      | Along the OB Dump   | Along the OB Dump   |  |  |  |  |
| 2027-28                  | Maintenance              |                     |                     |  |  |  |  |
| 6 2 2 2 2 Carland D      | roine.                   |                     |                     |  |  |  |  |

| 6.2.2.2.3: Garland Drains: |                      |                     |                     |  |  |
|----------------------------|----------------------|---------------------|---------------------|--|--|
| Year                       | Proposed Bund Length | Co-ordinates from   | Co-ordinates to     |  |  |
|                            | (m)                  |                     |                     |  |  |
| 2022.24                    | 440                  | 2408511N to 308520E | 2408703N to 308725E |  |  |
| 2023-24                    | 440                  | Along the OB Dump   | Along the OB Dump   |  |  |
| 2024.25                    | 250                  | 2408703N to 308725E | 2408348N to 308730E |  |  |
| 2024-25                    | 350                  | Along the OB Dump   | Along the OB Dump   |  |  |
|                            |                      | 2408509N to 308447E | 2408296N to 308323E |  |  |
| 2025-26                    | 400                  | Along the OB Dump   | Along the OB Dump   |  |  |
|                            |                      | 2408296N to 308323E | 2408348N to 308730E |  |  |
| 2026-27                    | 520                  | Along the OB Dump   | Along the OB Dump   |  |  |
| 2027-28                    | Maintenance          |                     |                     |  |  |







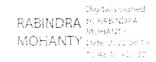
Rantha Iron Ore Mine

Odisha Mining Corporation (td् ें

#### 6.2.3: Green Belt Development: As on 30.06.2022

| 6.2.3.1: Cumulativ | e work done (Up to end                                 | d of previous bloc   | ck of five years)   | [2] [2] [2]      |
|--------------------|--------------------------------------------------------|----------------------|---------------------|------------------|
| Sr. No             | Total Expenditure<br>Incurred up to Last<br>Year (INR) | Area Covered<br>(Ha) | Number of<br>Plants | Survival Rate 40 |

The mine has been non-operational since long period due to want of forest clearance, so there is no plantation have been carried out up to end of previous block period.


| 6.2.3.2: Year Wise Proposal: |         |                                                                         |                                           |                                 |                                  |                                   |  |
|------------------------------|---------|-------------------------------------------------------------------------|-------------------------------------------|---------------------------------|----------------------------------|-----------------------------------|--|
| SI. No                       | Year    | Green Belt<br>Location (s)                                              | Area<br>Proposed to<br>be Covered<br>(Ha) | Number of<br>Plants<br>Proposed | Expected<br>Survival<br>Rate (%) | Estimated<br>Expenditure<br>(INR) |  |
| 01.                          | 2023-24 | Between ML Pillar<br>MLP -E to MLP – G4<br>(Boundary Safety<br>zone)    | 1.3                                       | 1560                            | 70                               | 4,19,640                          |  |
| 02.                          | 2024-25 | Between ML Pillar<br>MLP-G4 to MLP-A1.<br>(Boundary Safety<br>zone)     | 1.3                                       | 1560                            | 70                               | 4,19,640                          |  |
| 03.                          | 2025-26 | Between ML Pillar<br>MLP-A1 to MLP-<br>B4/M. (Boundary<br>Safety zone)  | 1.5                                       | 1800                            | 70                               | 4,84,200                          |  |
| 04.                          | 2026-27 | Between ML Pillar<br>MLP- B4/M to MLP-<br>O3. (Boundary Safety<br>zone) | 1.3                                       | 1560                            | 70                               | 4,19,640                          |  |
| 05.                          | 2027-28 | Between ML Pillar<br>MLP-O3 to MLP-E.<br>(Boundary Safety<br>zone)      | 1.3                                       | 1560                            | 70                               | 4,19,640                          |  |

6.2.4: Use of shallow pits: Not Applicable

| 6.2.4.1: Cumulative work done (up to end of previous block of five years) |        |           |                   |                                                                     |  |
|---------------------------------------------------------------------------|--------|-----------|-------------------|---------------------------------------------------------------------|--|
| SI. No                                                                    | Pit ID | Work Done | Area covered (m²) | Total Expenditure<br>Incurred (up to last<br>five year block) (INR) |  |
| Not Applicable                                                            |        |           |                   |                                                                     |  |

| 6.2.4.2   | 6.2.4.2: Year Wise Proposal: |        |                       |                                       |                   |                                       |                                           |                 |         |
|-----------|------------------------------|--------|-----------------------|---------------------------------------|-------------------|---------------------------------------|-------------------------------------------|-----------------|---------|
| SI.<br>No | Year                         | Pit ID | Total<br>Area<br>(Ha) | Area<br>Proposed<br>for Crops<br>(Ha) | Suitable<br>Crops | Area<br>Proposed<br>for Grass<br>(Ha) | Total<br>Proposed<br>Expenditure<br>(INR) | Location<br>(s) | Remarks |
|           |                              |        |                       | No                                    | ot Applicabl      | е                                     |                                           |                 |         |







#### Review of Mining Plan & Progressive Mine Closure Plan 2027-28) Odisha Mining Corporation Ltd of Mines (2023-24 to 2027-28)

Rantha Iron Ore Mine

#### 6.2.5: Pisciculture: Not Applicable

| 6.2.5.1: Total Expenditure incurred as on Date (INR) |                      |                | Not Applicable Port OF INST |
|------------------------------------------------------|----------------------|----------------|-----------------------------|
| 6.2.5.2: Cumulative v                                | ork done as on Date: | Not Applicable | ते सार्                     |
| Sl. No                                               | Pit ID               | Area (m²)      | Expenditure (INR)           |
|                                                      | No                   | ot Applicable. |                             |

| 6.2.5.3: Year Wise Proposal: Not Applicable |      |        |           |                                |  |  |
|---------------------------------------------|------|--------|-----------|--------------------------------|--|--|
| SI. No                                      | Year | Pit ID | Area (m²) | Estimated<br>Expenditure (INR) |  |  |
| Not Applicable.                             |      |        |           |                                |  |  |

| 6.2.5.4: Source of Water for Pisciculture                             | Not Applicable. |
|-----------------------------------------------------------------------|-----------------|
| 6.2.5.5: Whether the quality of water has been assessed & found to be | Not Applicable  |
| suitable for Pisciculture                                             | Not Applicable. |

#### 6.2.6: Recreational Facility:

| 6.2.6.1: Total Expenditure Incurred (up to last five year block) (INR) | Nil |
|------------------------------------------------------------------------|-----|
|------------------------------------------------------------------------|-----|

| 6.2.6.2: Cumulative work done as on Date 30.06.2022. |                                                                                                                                                                                   |           |                   |  |  |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|--|--|--|--|--|
| SI. No                                               | Pit ID                                                                                                                                                                            | Area (m²) | Expenditure (INR) |  |  |  |  |  |
|                                                      | The mine has been non-operational since long period due to want of forest clearance, so there is no recreational facility have been developed up to end of previous block period. |           |                   |  |  |  |  |  |

| Sl. No | Year    | Type of Recreational<br>Facility | Area Covered (Ha) | Location            | Estimated<br>Expenditure (INR) |
|--------|---------|----------------------------------|-------------------|---------------------|--------------------------------|
| 01.    | 2023-24 | Park                             | 0.2               | 2408000N<br>307843E | 10,00,000                      |
| 02.    | 2024-25 | Park                             | 0.2               | 2408012N<br>307819E | 10,00,000                      |
| 03.    | 2025-26 | Park                             | 0.2               | 2408047N<br>307840E | 10,00,000                      |
| 04.    | 2026-27 | Park                             | 0.2               | 2408035N<br>307778E | 10,00,000                      |
| 05.    | 2027-28 | Park                             | 0.2               | 2408074N<br>307800E | 10,00,000                      |



# Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine Odisha Mining Corporation Ltd

| 6.2.7     | : Dump Are | (\$ g   | 1 660             | ) g a l                              |                           |                                   |                            |                         |                    |                        |
|-----------|------------|---------|-------------------|--------------------------------------|---------------------------|-----------------------------------|----------------------------|-------------------------|--------------------|------------------------|
| SI.<br>No | Year       | Dump ID | No of<br>Terraces | Average<br>Height of<br>Terraces (m) | Length of Toe<br>Wall (m) | Length of<br>Garland<br>Drain (m) | Area<br>Stabilized<br>(Ha) | Method of Stabilization | ZExpenditure (IMR) | No of<br>Check<br>Dams |
| 01.       | 2023-24    |         | 2                 | 20                                   | 440                       | 440                               | Nil                        | NA                      | 62,47,200          | 01                     |
| 02.       | 2024-25    | Waste   | 2                 | 20                                   | 350                       | 350                               | Nil                        | NA                      | 55,83,000          | 01                     |
| 03.       | 2025-26    | Dump    | 2                 | 20                                   | 400                       | 400                               | Nil                        | NA                      | 29,52,000          | 0                      |
| 04.       | 2026-27    | WD-1    | 1                 | 20                                   | 520                       | 520                               | Nil                        | NA                      | 38,37,600          | 0                      |
| 05        | 2027-28    |         | 1                 | 20                                   |                           |                                   | Nil                        | NA                      | 0                  | 0                      |

#### 6.2.8: Other Form of Reclaiming the Area

| 6.2.8.1: Cumulative work done as on Date 30.06.2022. |                                             |           |  |  |  |
|------------------------------------------------------|---------------------------------------------|-----------|--|--|--|
| Sl. No                                               | Total Expenditure incurred as on Date (INR) | Work Done |  |  |  |
| 01.                                                  | Nil                                         | Nil       |  |  |  |

| 6.2.8.2: Year Wise Proposal: |         |                |                             |  |  |  |  |  |
|------------------------------|---------|----------------|-----------------------------|--|--|--|--|--|
| SI. No                       | Year    | Work Proposals | Estimated Expenditure (INR) |  |  |  |  |  |
| 01.                          | 2023-24 | Nil            | Nil                         |  |  |  |  |  |
| 02.                          | 2024-25 | Nil            | Nil                         |  |  |  |  |  |
| 03.                          | 2025-26 | Nil            | Nil                         |  |  |  |  |  |
| 04.                          | 2026-27 | Nil            | Nil                         |  |  |  |  |  |
| 05.                          | 2027-28 | Nil            | Nil                         |  |  |  |  |  |

#### 6.2.9: Topsoil Management:

| 6.2.9.1: Cumulative Work Done as on Date 30.06.2022 |                                  |                              |                              |                                           |  |  |  |  |
|-----------------------------------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------------------|--|--|--|--|
| SI. No.                                             | Top Soil Generate<br>(m³)        | td Top Soil Utilized<br>(m³) | Topsoil Stored (m³)          | Total expenditure incurred as on date (₹) |  |  |  |  |
|                                                     |                                  | Nil.                         |                              |                                           |  |  |  |  |
| 6.2.9.2: Year Wi                                    | ise Proposal:                    |                              | X - 1100 d.m.                |                                           |  |  |  |  |
| Year                                                | Topsoil<br>Generated (m³)<br>(A) | Topsoil Utilized<br>(m³) (B) | Topsoil Stored<br>(m³) (A-B) | Estimated Expenditure<br>(INR)            |  |  |  |  |
| 2023-24                                             | 0                                | 0                            | 0                            | 0                                         |  |  |  |  |
| 2024-25                                             | 0                                | 0                            | 0                            | 0                                         |  |  |  |  |
| 2025-26                                             | 0                                | 0                            | 0                            | 0                                         |  |  |  |  |
| 2026-27                                             | 0                                | 0                            | 0                            | 0                                         |  |  |  |  |
| 2027-28                                             | 0                                | 0                            | 0                            | 0                                         |  |  |  |  |





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

#### 6.2.10: Tailings Dam Management: Not Applicable

| Year           | Yearly<br>generation<br>of Tailing<br>(m³) (A) | Total<br>capacity of<br>Tailing<br>Pond (m³) | Measures Proposed for Periodic Desilting | Yearly<br>Utilization<br>of Tailing<br>(m³) (B) | Disposal of<br>Tailing to<br>Tailing Pond<br>(m³) (A-B) | Tailing Structural Stability Dam Stability Design Figure Studies |  |  |  |
|----------------|------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--|--|--|
| Not Applicable |                                                |                                              |                                          |                                                 |                                                         |                                                                  |  |  |  |

6.2.11 Land Use Of Lease Area at the Expiry of Lease Period (Conceptual Stage):

| o.z.11 Lan                  | u ose oi                  | Lease                      | : Area at ti                         | ne Expiry Oi            | Lease Fellou                                               | (Conceptu                                                          | ai Stage).                                                       |                                                    |                                           | १ ह्य                                                | The second |
|-----------------------------|---------------------------|----------------------------|--------------------------------------|-------------------------|------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|------------------------------------------------------|------------|
| Т                           | Total Area Degraded       |                            |                                      | Non<br>Degraded<br>area |                                                            | l out area Recl<br>Rehabilitated                                   | aimed and                                                        | Othe                                               | er Areas Reclaii<br>/Repabilitate         | ned and                                              |            |
| Mined Out area in the lease | Area under Dumps(in hect) | Area under the Tailing Dam | Area under utility services(in hect) | Area undisturbed/virgin | Mined out Area Reclaimed but not<br>rehabilitated(in hect) | Mined out Area fully Rehabilitated<br>from Reclaimed area(in hect) | Area under Water Reservoir<br>considered Rehabilitated (in hect) | Stabililized Waste dump<br>Rehabilitated (in hect) | Virgin area under Green Belt (in wheet) ( | Rehabilitated Area under Stilling Services (in hect) | FE G       |
| 166.555 Ha.                 | 53.343<br>Ha.             | 0.00                       | 35.579Ha.                            | 13.363 Ha.              | 0.00 Ha.                                                   | 0.00 Ha.                                                           | 0.00 Ha                                                          | 0.00 Ha.                                           | 13.126 Ha.                                | 0.00                                                 | 0.00       |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd.

# Chapter 7: FINANCIAL ASSURANCE/ PERFORMANCE SURETY

#### (AREA PUT TO USE)

#### 7.1 YEAR (2023-24 to 2027-28) (Separate form for each year as below)

Financial assurance calculation as per Rule 27(1) of MCDR 2021 is given in the table below:

| Sl. No. | Particular                                                         | Area put to     | Additional       | Total (ha) (C = A + B) |  |
|---------|--------------------------------------------------------------------|-----------------|------------------|------------------------|--|
|         |                                                                    | use at Start of | Requirement (ha) |                        |  |
|         |                                                                    | Year (ha) (A)*  | (B)*             |                        |  |
| 1       | Area under Mining                                                  | 2.857           | 21.024           | 23.881                 |  |
| 2       | Topsoil stacking                                                   | 0.00            | 0.00             | 0.00                   |  |
| 3       | Overburden/Waste Dumping                                           | 0.00            | 16.464           | 16.464                 |  |
| 4       | Mineral Storage                                                    | 0.00            | 9.394            | 9.394                  |  |
| 5       | Infrastructure (Workshop,<br>Administrative Building etc.)         | 0.345           | 5.206            | 5.551                  |  |
| 6       | Roads                                                              | 1.547           | 3.535            | 5.082                  |  |
| 7       | Railways                                                           | 0.00            | 0.00             | 0.00                   |  |
| 8       | Tailing Pond                                                       | 0.00            | 0.00             | 0.00                   |  |
| 9       | Effluent Treatment Plant                                           | 0.00            | 0.00             | 0.00                   |  |
| 10      | Mineral Separation Plant                                           | 0.00            | 5.195            | 5.195                  |  |
| 11      | Township Area                                                      | 0.00            | 0.00             | 0.00                   |  |
| 12      | Others to Specify (Conveyor<br>Corridor & Encroachment<br>Hutment) | 2.632           | 1.967            | 4.599                  |  |
|         | TOTAL                                                              | 7.381           | 62.785           | 70.166                 |  |
|         | GRAND TOTAL                                                        |                 |                  |                        |  |

| 2023-24         |                                                             |                                            |                                        |                        |
|-----------------|-------------------------------------------------------------|--------------------------------------------|----------------------------------------|------------------------|
| Consolidated Vi | ew of Financial Assurance                                   |                                            |                                        |                        |
| Sl. No.         | Particular                                                  | Area put to use at Start of Year (ha) (A)* | Additional<br>Requirement<br>(ha) (B)* | Total (ha) (C = A + B) |
| 1               | Area under Mining                                           | 2.857                                      | 6.401                                  | 9.258                  |
| 2               | Topsoil stacking                                            | 0.00                                       | 0.00                                   | 0.00                   |
| 3               | Overburden/Waste Dumping                                    | 0.00                                       | 16.464                                 | 16.464                 |
| 4               | Mineral Storage                                             | 0.00                                       | 9.394                                  | 9.394                  |
| 5               | Infrastructure (Workshop, Administrative Building etc.)     | 0.345                                      | 5.206                                  | 5.551                  |
| 6               | Roads                                                       | 1.547                                      | 3.535                                  | 5.082                  |
| 7               | Railways                                                    | 0.00                                       | 0.00                                   | 0.00                   |
| 8               | Tailing Pond                                                | 0.00                                       | 0.00                                   | 0.00                   |
| 9               | Effluent Treatment Plant                                    | 0.00                                       | 0.00                                   | 0.00                   |
| 10              | Mineral Separation Plant                                    | 0.00                                       | 5.195                                  | 5.195                  |
| 11              | Township Area                                               | 0.00                                       | 0.00                                   | 0.00                   |
| 12              | Others to Specify(Conveyor Corridor & Encroachment Hutment) | 2.632                                      | 1.967                                  | 4.599                  |
|                 | Total                                                       | 7.381                                      | 48.162                                 | 55.543                 |



| and the second seco |                           |                                        |                                                                |                                         |                     |
|----------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------|
| TO DICLIA                                                                                                      |                           |                                        | <b>Plan &amp; Progressive 023-24 to 2027-28)</b> Mine Odisha M | Mine Closure                            |                     |
| 2024-25                                                                                                        |                           |                                        |                                                                |                                         |                     |
| Consolidated View of Financial Assurance                                                                       |                           |                                        |                                                                |                                         |                     |
| Sl. No.                                                                                                        | Particular                |                                        | Area put to use at<br>Start of Year (ha)<br>(A)*               | Additional<br>Requiremen<br>t (ha) (B)* | total (ha) (EA + Br |
| 1                                                                                                              | Area unde                 | r Mining                               | 9.258                                                          | 1.00                                    | 10.258              |
| 2                                                                                                              | Topsoil sta               | icking                                 | 0.00                                                           | 0.00                                    | 0.00                |
| 3                                                                                                              | Overburde                 | en/Waste Dumping                       | 16.464                                                         | 0.00                                    | 16.464              |
| 4                                                                                                              | Mineral St                | orage                                  | 9.394                                                          | 0.00                                    | 9.394               |
| 5                                                                                                              | Infrastruct<br>Administra | ure (Workshop,<br>ative Building etc.) | 5.551                                                          | 0.00                                    | 5.551               |
| 6                                                                                                              | Roads                     |                                        | 5.082                                                          | 0.00                                    | 5.082               |
| 7                                                                                                              | Railways                  |                                        | 0.00                                                           | 0.00                                    | 0.00                |
| 8                                                                                                              | Tailing Por               | nd                                     | 0.00                                                           | 0.00                                    | 0.00                |
| 9                                                                                                              | Effluent Tr               | eatment Plant                          | 0.00                                                           | 0.00                                    | 0.00                |
| 10                                                                                                             | Mineral Se                | paration Plant                         | 5.195                                                          | 0.00                                    | 5.195               |
| 11                                                                                                             | Township                  | Area                                   | 0.00                                                           | 0.00                                    | 0.00                |
| 12                                                                                                             | Others to                 | Specify                                | 4.599                                                          | 0.00                                    | 4.599               |
|                                                                                                                | Tot                       | al                                     | 55.543                                                         | 1.00                                    | 56.543              |
|                                                                                                                |                           |                                        |                                                                |                                         |                     |

#### 2025-26

| Consolidated Vie | Consolidated View of Financial Assurance                |                                                  |                                         |                        |  |  |  |
|------------------|---------------------------------------------------------|--------------------------------------------------|-----------------------------------------|------------------------|--|--|--|
| SI. No.          | Particular                                              | Area put to use at<br>Start of Year (ha)<br>(A)* | Additional<br>Requiremen<br>t (ha) (B)* | Total (ha) (C = A + B) |  |  |  |
| 1                | Area under Mining                                       | 10.258                                           | 5.255                                   | 15.513                 |  |  |  |
| 2                | Topsoil stacking                                        | 0.00                                             | 0.00                                    | 0.00                   |  |  |  |
| 3                | Overburden/Waste Dumping                                | 16.464                                           | 0.00                                    | 16.464                 |  |  |  |
| 4                | Mineral Storage                                         | 9.394                                            | 0.00                                    | 9.394                  |  |  |  |
| 5                | Infrastructure (Workshop, Administrative Building etc.) | 5.551                                            | 0.00                                    | 5.551                  |  |  |  |
| 6                | Roads                                                   | 5.082                                            | 0.00                                    | 5.082                  |  |  |  |
| 7                | Railways                                                | 0.00                                             | 0.00                                    | 0.00                   |  |  |  |
| 8                | Tailing Pond                                            | 0.00                                             | 0.00                                    | 0.00                   |  |  |  |
| 9                | Effluent Treatment Plant                                | 0.00                                             | 0.00                                    | 0.00                   |  |  |  |
| 10               | Mineral Separation Plant                                | 5.195                                            | 0.00                                    | 5.195                  |  |  |  |
| 11               | Township Area                                           | 0.00                                             | 0.00                                    | 0.00                   |  |  |  |
| 12               | Others to Specify                                       | 4.599                                            | 0.00                                    | 4.599                  |  |  |  |
|                  | Total                                                   | 56.543                                           | 5.255                                   | 61.798                 |  |  |  |



#### Review of Mining Plan & Progressive Mine Closure Plan 2027-28) Odisha Mining Corporation Ltd. of Mines (2023-24 to 2027-28)

Rantha Iron Ore Mine

|                  |                               |                    | 1/ / 0           | 2/ 都級時 / 5 四                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------|-------------------------------|--------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2026-27          |                               |                    | l house          | BY WE THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Consolidated Vie | w of Financial Assurance      |                    | 000              | 到 ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sl. No.          | Particular                    | Area put to use at | Additional       | Total (ha) (C = A + B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                               | Start of Year (ha) | Requirement (ha) | ेत सार्वा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  |                               | (A)*               | (B)*             | The second secon |
| 1                | Area under Mining             | 15.513             | 1.978            | 17.491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                | Topsoil stacking              | 0.00               | 0.00             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3                | Overburden/Waste Dumping      | 16.464             | 0.00             | 16.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4                | Mineral Storage               | 9.394              | 0.00             | 9.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5                | Infrastructure (Workshop,     | F FF4              | 0.00             | F FF4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | Administrative Building etc.) | 5.551              | 0.00             | 5.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6                | Roads                         | 5.082              | 0.00             | 5.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7                | Railways                      | 0.00               | 0.00             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8                | Tailing Pond                  | 0.00               | 0.00             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9                | Effluent Treatment Plant      | 0.00               | 0.00             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10               | Mineral Separation Plant      | 5.195              | 0.00             | 5.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11               | Township Area                 | 0.00               | 0.00             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12               | Others to Specify             | 4.599              | 0.00             | 4.599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | Total                         | 61.798             | 1.978            | 63.776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 2027-28         |                                                         |                                            |                                        |                        |
|-----------------|---------------------------------------------------------|--------------------------------------------|----------------------------------------|------------------------|
| Consolidated Vi | ew of Financial Assurance                               |                                            |                                        |                        |
| Sl. No.         | Particular                                              | Area put to use at Start of Year (ha) (A)* | Additional<br>Requirement (ha)<br>(B)* | Total (ha) (C = A + B) |
| 1,              | Area under Mining                                       | 17.491                                     | 6.390                                  | 23.881                 |
| 2               | Topsoil stacking                                        | 0.00                                       | 0.00                                   | 0.00                   |
| 3               | Overburden/Waste Dumping                                | 16.464                                     | 0.00                                   | 16.464                 |
| 4               | Mineral Storage                                         | 9.394                                      | 0.00                                   | 9.394                  |
| 5               | Infrastructure (Workshop, Administrative Building etc.) | 5.551                                      | 0.00                                   | 5.551                  |
| 6               | Roads                                                   | 5.082                                      | 0.00                                   | 5.082                  |
| 7               | Railways                                                | 0.00                                       | 0.00                                   | 0.00                   |
| 8               | Tailing Pond                                            | 0.00                                       | 0.00                                   | 0.00                   |
| 9               | Effluent Treatment Plant                                | 0.00                                       | 0.00                                   | 0.00                   |
| 10              | Mineral Separation Plant                                | 5.195                                      | 0.00                                   | 5.195                  |
| 11              | Township Area                                           | 0.00                                       | 0.00                                   | 0.00                   |
| 12              | Others to Specify                                       | 4.599                                      | 0.00                                   | 4.599                  |
|                 | Total                                                   | 213163.776ADDD                             | 6.390                                  | 70.166                 |

क्षेत्रीय खान नियंत्रक Regional Controller of Mines भारतीय खान व्युरो Indian Bureau of Mines भुवनेरवर/Bhubaneswar



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

#### 7.2 Financial Assurance:

#### **Category-A Mining Lease:**

| Total Area Proposed to be put to use in Hact i.e. from FY 2023-24 to FY 2027-28. | Amount of<br>Bank<br>Guarantee(Lac<br>INR) | Valid till<br>(dd/mm/yyyy) | Upload copy of Bank Guarantee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------|--------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 70.166 Ha.                                                                       | Rs.<br>350.83Lakhs                         | 31.03.2028                 | Total Financial Assurance payable till the end of plan period as per rule 27(1) of MCDR 2021, i.e. up to 31.03.2028 is calculated to be Rs. 3, 50, 83,000/-(Rupees Three Corers Fifty Lakhs Eighty Three Thousand Only) for Category-A fully mechanized mines calculated at Rs. 5, 00,000/-per hectare for an area of 70.166 Ha of ML area put to use. The amount of Rs. 3, 50, 83,000/-(Rupees Three Corers Fifty Lakhs Eighty Three Thousand Only) in shape of Bank Guarantee no. 57500IGL0003022 Valid up to 31.03.2028 has been attached in Annexure-38. |

#### 7.3 Performance Security:

|   | Lease<br>Category<br>(A/B) | Total Resources in tonnes<br>for calculation of<br>Performance Surety* | Existing<br>Performance<br>surety amount in<br>Rs | Valid till<br>(dd/mm/yyyy) | Upload copy<br>of existing<br>Performance<br>Security |  |
|---|----------------------------|------------------------------------------------------------------------|---------------------------------------------------|----------------------------|-------------------------------------------------------|--|
| Γ | Not Applicable.            |                                                                        |                                                   |                            |                                                       |  |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

### **Chapter 8: Review of Previous Proposals**

(Not applicable for fresh grant)

#### 8.1: General:

#### 8.1.1: Lease Area Utilization:

|            | Lease Area Ottil                                                 |                                              |                              |                                             | ित र            | Reasons            |
|------------|------------------------------------------------------------------|----------------------------------------------|------------------------------|---------------------------------------------|-----------------|--------------------|
| SI.<br>No. | Type of land<br>use (in ha)                                      | Area at the beginning of the proposal period | Area proposed under activity | Actual Area utilized in the proposal period | Deviation       | for deviation      |
| 1          | Mining                                                           | 3.612                                        | 10.356                       | 2.857                                       |                 |                    |
| 2          | Mineral storage                                                  | 0.00                                         | 7.811                        | 0.00                                        |                 |                    |
| 3          | Mineral<br>Beneficiation<br>plant                                | 0.00                                         | 1.400                        | 0.00                                        |                 |                    |
| 4          | Township                                                         | 0.00                                         | 0.00                         | 0.00                                        |                 |                    |
| 5          | Tailing Pond                                                     | 0                                            | 0                            | 0.00                                        |                 |                    |
| 6          | Railways                                                         | 0                                            | 0                            | 0.00                                        |                 |                    |
| 7          | Roads                                                            | 1.257                                        | 3.087                        | 1.547                                       |                 |                    |
| 8          | Infrastructure<br>(Workshop,<br>administrative<br>building etc.) | 3.404                                        | 6.602                        | 0.345                                       |                 |                    |
| 9          | OB/waste<br>dump                                                 | 0.434                                        | 2.922                        | 0.00                                        |                 | Not<br>Applicable. |
| 10         | Top soil preservation                                            | 0.00                                         | 0.342                        | 0.00                                        | No<br>Deviation | , tppmedzie.       |
| 11         | Conveyor<br>Corridor                                             | 0.00                                         | 4.020                        | 0.00                                        | Deviation       |                    |
| 12         | Others<br>(Encroachment<br>Hutment                               | 0.00                                         | 0.00                         | 2.632                                       |                 |                    |
| 13         | Others (Safety<br>Zone)                                          | 13.126                                       | 13.126                       | 13.126                                      |                 |                    |
| 14         | Total area put<br>to use                                         | 8.707                                        | 36.54                        | 7.381                                       |                 |                    |
| 15         | Excavated area reclaimed                                         | 0                                            | 0                            | 0                                           |                 |                    |
| 16         | Waste dump<br>area reclaimed                                     | 0                                            | 0                            | 0                                           |                 |                    |
| 17         | Undisturbed<br>Area                                              | 260.133                                      | 232.300                      | 261.459                                     |                 |                    |
|            | Total                                                            | 268.84                                       | 268.84                       | 268.84                                      |                 |                    |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd.

NOT MENES



| 8.1.2: 3DF and C3K Expenditures:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | >                                                      |             |                 |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|-------------|-----------------|-----------------------------|
| Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Proposals                       |                                                        | Achievement | Deviation       | Reasons<br>for<br>deviation |
| Total expenditure incurred for implementation of SDF at mine level including - Environment Protection - CSR & other welfare activities in peripheral area (Explanation: Expenditure is not over and above the statutory levies imposed by the Government; However, THIS EXCLUDES CONTRIBUTION TO DMF & NMET and is over and above the statutory levies imposed by the Government.)  CSR (Corporate Social Responsibility) spending at the mine level in Proposal Period (as per Companies Act, 2013 or otherwise) | 10% of<br>Royalty<br>(a)<br>Nil | Total Expenditure for SDF & CSR implementation (b) Nil | Nil         | No<br>Deviation | Not<br>Applicable.          |

#### 8.2: Technical Details:

#### 8.2.1: Exploration: As on 30.06.2022.

| Particulars                                                                           | Proposals | Achievement | Deviation | Reasons for deviation                                                |
|---------------------------------------------------------------------------------------|-----------|-------------|-----------|----------------------------------------------------------------------|
| Number of Boreholes/ Pits/ Trenches                                                   | 192       | 0           | Deviation | Total 192 number of bore holes have been                             |
| Boreholes Meterage (If Boreholes selected in first row) (m)                           | 19,200    | 0           | Deviation | proposed in the FY 2018-<br>19 to 2022-23. No bore                   |
| Grid                                                                                  | 100 X 100 | 0           | Deviation | holes have been drilled                                              |
| G Axis up gradation during Proposal<br>Period as per guidelines of MEMC<br>Rule 2015) | 100       | 0           | Deviation | during the period from 2018-19 to 2022-23 (As on 30.06.2022) because |
| Area converted under G1 from G2/G3                                                    | 57.651    | 0           | Deviation | of non-availability of forest clearance.                             |

Remark: The proposal have been given for 5-year period for the F.Y 2018-19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23(As on 30.06.2022).

#### 8.2.2: Mine Development (Opencast/ Dump Mining): As on 30.06.2022.

| Particulars                              | Proposed  | Actual | Deviation  | Reasons for deviation                              |
|------------------------------------------|-----------|--------|------------|----------------------------------------------------|
| 8.2.2.1: Generation of Ore/Waste While D |           |        |            |                                                    |
| Ore (Tonnes)                             | 2,273,700 | 0      |            | The development                                    |
| Waste (Cubic Meters)                     | 1,24,400  | 0      |            | proposal have been given for 5-year period for the |
| Generated Waste while ROM recovery       | 0         | . 0    | Deviation. | F.Y 2018-19 to 2022-23                             |
| Dumping Site (For Surface)               | 2.922     | 0      |            | and review have been                               |
| Removal of waste/ over burden in cubic   | 1,24,400  | 0      |            | carried out for the F.Y                            |





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd Services

#### 8.2.3: Mining operation: Dump Mining: As on 30.06.2022.

| Particulars                   | Proposals                                                   | Achievement | Deviation | Reasons for deviation |  |
|-------------------------------|-------------------------------------------------------------|-------------|-----------|-----------------------|--|
| Handling of Material          |                                                             |             |           |                       |  |
| Waste Generated post recovery | No dump mining has been proposed during the Modification of |             |           |                       |  |
| Dumping site for waste        | Mining Plan period from 2018-19 to 2022-23.                 |             |           |                       |  |

#### 8.2.4: Zero Waste Mining: As on 30.06.2022.

| Particulars                                                        | Proposals | Achievement | Deviation  | Reasons for deviation |
|--------------------------------------------------------------------|-----------|-------------|------------|-----------------------|
| Alternative use / Disposal of Waste Generated (excluding top soil) |           | Not A       | pplicable. |                       |

#### 8.2.5: Backfilling: As on 30.06.2022.

| Particulars                                                        | Proposals | Achievement | Deviation        | Reasons for deviation |
|--------------------------------------------------------------------|-----------|-------------|------------------|-----------------------|
| Site (Co-ordinates)                                                | 0         | 0           |                  |                       |
| Area                                                               | 0         | 0           |                  |                       |
| Depth                                                              | 0         | 0           |                  |                       |
| Volume Backfilled (CuM)                                            | 0         | 0           |                  |                       |
| Backfilled Area available for<br>Reclamation and<br>Rehabilitation | 0         | 0           | No<br>Deviation. | Not Applicable.       |
| Backfilled Area Reclaimed and Rehabilitated                        | 0         | 0           |                  |                       |
| Balance Backfilled Area                                            | 0         | 0           |                  |                       |

Remark: The proposal have been given for 5-year period for the F.Y 2018-19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23(As on 30.06.2022).

#### 8.2.6: Production of Mineral(s): As on 30.06.2022.

| Particulars                   | Proposals | Achievement | Deviation | Reasons for deviation                                                              |
|-------------------------------|-----------|-------------|-----------|------------------------------------------------------------------------------------|
| 8.2.6.1: ROM (to              | nnes)     |             |           |                                                                                    |
| Opencast                      | 3,829,710 | 0           | Deviation | The Production proposal have been given for                                        |
| 8.2.6.2: Cleaned Ore (Tonnes) |           |             |           | 5-year period for the F.Y 2018-19 to 2022-23                                       |
| Opencast                      | 2,273,700 | 0           |           | and review have been carried out for the F.Y 2018-19 to 2022-23(As on 30.06.2022). |
| Dump Mining                   | 0         | 0           | Deviation | The Production of ROM could not be achieved                                        |
| Recovery from                 | 0         | 0           | Deviation | as per proposal due to non-availability of                                         |
| Mineral Rejects               | U         |             |           | forest clearance & other statutory clearances.                                     |





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| or Tailings |           |   |
|-------------|-----------|---|
| Total       | 40,10,000 | 0 |

The mine has been non-operational since long period due to want of forest clearance other statutory clearances.

Remark: The proposal have been given for 5-year period for the F.Y 2018-19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23 (As on 30.06.2022).

#### 8.2.7: Handling of Mineral Rejects/ Sub-Grade: As on 30.06.2022.

| Particulars                            | Proposals | Achievement | Deviation | Reasons for deviation                          |                                                                                        |
|----------------------------------------|-----------|-------------|-----------|------------------------------------------------|----------------------------------------------------------------------------------------|
| Generation of mineral rejects (Tonnes) |           |             |           | The Production proposal have been given for    |                                                                                        |
| Opencast                               | 1,556,010 | 0           |           | 5-year period for the F.Y 2018-19 to 2022-23   |                                                                                        |
| Dump mining                            | 0         | 0           | Deviation | Deviation                                      | and review have been carried out for the F.Y 2018-19 to 2022-23(As on 30.06.2022). The |
| Other recovery                         | 0         | 0           |           | Production of mineral reject could not be      |                                                                                        |
|                                        |           |             |           | achieved as per proposal due to non-           |                                                                                        |
| Stacking of mineral                    |           |             |           | availability of forest clearance & other       |                                                                                        |
| rejects/ sub-grade                     | 0         | 0           |           | statutory clearances. The mine has been non-   |                                                                                        |
| mineral                                |           |             | Deviation | operational since long period due to want of   |                                                                                        |
| Blending of mineral                    | 1 556 010 | 0           |           | forest clearance & other statutory clearances. |                                                                                        |
| reject / Sub-grade.                    | 1,556,010 | 0           |           |                                                |                                                                                        |

Remark: The proposal have been given for 5-year period for the F.Y 2018-19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23(As on 30.06.2022).

#### 8.2.8: Environment Compliances: As on 30.06.2022.

| Particulars                     | Proposals       | Achievement       | Deviation        | Reasons for deviation                                                                                                                                                                                        |
|---------------------------------|-----------------|-------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.2.8.1: Top soil (Cum.)        |                 |                   |                  |                                                                                                                                                                                                              |
| Generation                      | 10,261          | 0                 |                  | The mine has been non-operational since long period                                                                                                                                                          |
| Utilization                     | 0               | 0                 | Deviation        | due to want of forest clearance & other statutory                                                                                                                                                            |
| Stacking (Dump Id)              | 10,261          | 0                 |                  | clearances.                                                                                                                                                                                                  |
|                                 |                 |                   |                  |                                                                                                                                                                                                              |
| Reclamation                     | 0               | 0                 | No               | N A I' I I                                                                                                                                                                                                   |
| Rehabilitation                  | 0               | 0                 | Deviation        | Not Applicable.                                                                                                                                                                                              |
| 8.2.8.2: Afforestation (D       | umps/Benche     | s/Backfilled Area | etc.) As on 30.0 | 6.2022.                                                                                                                                                                                                      |
| 2018-19                         | 0               | 0                 |                  | The mine has been non-operational since long period                                                                                                                                                          |
| 2019-20                         | 0               | 0                 |                  | due to want of forest clearance & other statutory                                                                                                                                                            |
| 2020-21                         | 500             | 0                 | Deviation        | clearances.                                                                                                                                                                                                  |
| 2021-22                         | 625             | 0                 |                  |                                                                                                                                                                                                              |
| 2022-23                         | 750             | 0                 |                  |                                                                                                                                                                                                              |
| 8.2.8.3: Afforestation (6       | ireen Belt): As | on 30.06.2022.    |                  |                                                                                                                                                                                                              |
| 2018-19                         | 0               | 0                 |                  |                                                                                                                                                                                                              |
| 2019-20                         | 0               | 0                 | 1                |                                                                                                                                                                                                              |
| 2020-21                         | 0               | 0                 | No               | Not Applicable.                                                                                                                                                                                              |
| 2021-22                         | 0               | 0                 | Deviation        |                                                                                                                                                                                                              |
| 2022-23                         | 0               | 0                 |                  |                                                                                                                                                                                                              |
| Construction of check dams      | 1               | 0                 |                  | The proposal for check dams, Garland Drain & Retaining wall have been given for 5-year period for the F.Y 2018-                                                                                              |
| Construction of garland drains  | 460             | 0                 | Deviation        | 19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23 (as on 30.06.2022). As per                                                                                                     |
| Construction of retaining walls | 580             | 0                 | Deviation        | proposal there is no construction of check dams, Garland Drain & Retaining wall because of the mine has been non-operational since long period due to want of forest clearance & other statutory clearances. |
| 8.2.8.4: Tailings: As on 3      | 0.06.2022       |                   |                  |                                                                                                                                                                                                              |
| Generation                      | Not Applicable. |                   |                  |                                                                                                                                                                                                              |



Odisha Mining Corporation (td )

Utilization (Auto fill from production)
Disposal

Remark: The proposal have been given for 5-year period for the F.Y 2018-19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23 (As on 30.06.2022).

#### 8.3: Socio-Economic Review as on 30.06.2022.

| 8.3.1: Rehabilitation & Resettlement for Pro                                                                                                | ject Affected Pe   | eople as on 30. | 06.2022.         |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|------------------|-----------------------|
| Particulars                                                                                                                                 | Proposals          | Actual          | Deviation        | Reasons for deviation |
| No. of Project Affected People (PAP)                                                                                                        | Nil                | Nil             |                  |                       |
| %age of PAP for whom alternate arrangements made for sustained livelihood                                                                   | Nil                | Nil             |                  |                       |
| % of project affected families given employment                                                                                             | Nil                | Nil             | No<br>Deviation  | Not Applicable.       |
| % of project affected families who have<br>been skilled by the lessee and absorbed (%<br>of total employment given to affected<br>families) | Nil                | Nil             |                  |                       |
| 8.3.2: Grievance Redressal as on 30.06.2022.                                                                                                |                    | 2018-19         | to 2022-23       |                       |
| Grievances Received                                                                                                                         |                    |                 | 0                |                       |
| Grievances Redressed                                                                                                                        |                    | 34-3            | 0                |                       |
| 8.3.3: Welfare and socio-economic developr                                                                                                  | nent programs      | for local comm  | unities as on 30 | 0.06.2022.            |
| 8.3.3.1: Support for Drinking Water & Agriculture as on 30.06.2022.                                                                         | 2018-19 to 2022-23 |                 |                  |                       |
| No. of Water Storage Tanks constructed                                                                                                      | 0                  |                 |                  |                       |
| Drinking Water Facilities provided (Bore wells/ Pumps etc.)                                                                                 | 0                  |                 |                  |                       |
| Irrigation Support provided (Canals/ Pumps etc.)                                                                                            | 0                  |                 |                  |                       |
| No. of Water tanks De-silted                                                                                                                | 0                  |                 |                  |                       |
| Water Treatment facilities provided (A/NA)                                                                                                  |                    |                 | VA               |                       |
| Amount of Water treated (in kL) (if selected A in above)                                                                                    |                    | 1               | NA               | -                     |
| 8.3.3.2: Support to Health & Medical Services as on 30.06.2022.                                                                             | 2018-19 to 2022-23 |                 |                  |                       |
| No. of persons identified from<br>Occupational health diseases                                                                              | 0                  |                 |                  |                       |
| No. of Health Camps/ Medicine Camps<br>Organized                                                                                            | 0                  |                 |                  |                       |
| 8.3.3.3: Support to Skill development & Educ                                                                                                | cation as on 30.0  | 06.2022.        |                  |                       |
| Vocational Training Provided/ Support<br>Provided as on 30.06.2022.                                                                         | 2018-19 to 2022-23 |                 |                  |                       |
| No. of employees undergone Vocational training                                                                                              | 0                  |                 |                  |                       |



4

#### Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)

Rantha Iron Ore Mine Odisha Mining Corporation Ltd 5477

|                                                                                | OF MINES           |
|--------------------------------------------------------------------------------|--------------------|
| No. of other persons undergone Vocational training                             | O LE CONTRACTOR O  |
| Number of Literacy & Education Camps<br>held/ Supported                        | O E CONT OF MOUNT  |
| 8.3.3.4: Support to Transportation Services & Infrastructure as on 30.06.2022. | 2018-19 to 2022-23 |
| Expenditure on Transportation Services & Infrastructure in Lakhs               | 0                  |
| Road development (m) in the peripheral area (not lease area)                   | 0                  |
| No. of Public transport support provided (Ambulance/Buses/ School Vans etc)    | 0                  |
| 0.2.2.5.0                                                                      |                    |

### 8.3.3.5: Swatchata Programs: Creating/providing sanitation and healthy condition in and around the mine area as on 30.06.2022.

| The Little of the College Land |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Adoption of ODF within mining lease area as on 30.06.2022.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2018-19 to 2022-23 |
| No. of Toilets built in the Lease Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                  |
| Adoption of ODF in nearby villages as on 30.06.2022.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2018-19 to 2022-23 |
| No. Of Toilets built in the villages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                  |
| Provision for green age recreational facility (Within Lease Area/ Outside) as on 30.06.2022.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2018-19 to 2022-23 |
| Recreational Area Type (Picnic Spot/<br>tracks/Park Etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                  |
| Area covered (For within Lease Area only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                  |
| Awareness program among Mine workers for Swatchata as on 30.06.2022.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2018-19 to 2022-23 |
| No. of Swatchchta Programmes held                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                  |



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

### Chapter 9: IMPACT ASSESSMENT (for fresh grant): Not Applicable

#### 9.1: Baseline Information:

|                                                        | // * - / wearan / 'a |
|--------------------------------------------------------|----------------------|
| Whether Area falls under Forest                        | YES OF HOLD          |
| Whether Area falls under Wildlife Sanctuary            | NO तसर               |
| Whether Area falls under Coastal Regulation Zone (CRZ) | NO                   |
| Whether Area falls under Defence Land                  | NO                   |
| Any Other Clearance (specify)                          | NA                   |

Any Significant Objections from any Agency Involved in Stakeholder's Consultation -

#### 9.2: Environment Parameters:

9.2.1: Environment Monitoring:

Monitoring Activity

9.2.1.1: Ambient Air Quality:

|     | Core Zone (Quarterly Monitoring Planned)   | YES |
|-----|--------------------------------------------|-----|
|     | Buffer Zone (Quarterly Monitoring Planned) | YES |
| 2 1 | 2. Weter Ovelity                           |     |

9.2.1.2: Water Quality:

| Core Zone (Quarterly Monitoring Planned)   | YES |  |
|--------------------------------------------|-----|--|
| Buffer Zone (Quarterly Monitoring Planned) | YES |  |

9.2.1.3: Noise Level:

| Core Zone (Quarterly Monitoring Planned)   | YES |
|--------------------------------------------|-----|
| Buffer Zone (Quarterly Monitoring Planned) | YES |

#### 9.3: Impact Assessment:

#### 9.3.2: Land Environment:

| 9.3.2.1: BASE / PRESENT STATUS                                                                                     |            |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| Pre Mining Use                                                                                                     | AREA (Ha)  |  |  |  |  |  |
| Barren / Waste land with small bushes & shrubs                                                                     | 0          |  |  |  |  |  |
| Land under Agriculture / Crops                                                                                     | 0          |  |  |  |  |  |
| Land covered with Plants                                                                                           | 0          |  |  |  |  |  |
| Land under Grass Cover                                                                                             | 0          |  |  |  |  |  |
| Land under Public Infrastructure / Utilities (water bodies, roads, railways, electric lines, telephone lines etc.) | 0          |  |  |  |  |  |
| Land under Habitation                                                                                              | 0          |  |  |  |  |  |
| Land under Monuments & places of Historical Importance                                                             | 0          |  |  |  |  |  |
| Degraded by Pits & Excavation                                                                                      | 2.442      |  |  |  |  |  |
| Degraded by Dumps & Material Staking                                                                               | 0          |  |  |  |  |  |
| Covered under Mine Infrastructure (plants, shades, buildings etc.)                                                 | 6.443      |  |  |  |  |  |
| Land under Forest                                                                                                  | 268.84     |  |  |  |  |  |
| Historically, Culturally & Ecologically Important Places                                                           | 0          |  |  |  |  |  |
| Any Other, please specify below                                                                                    | 0          |  |  |  |  |  |
| Date of Observation                                                                                                | 30.06.2022 |  |  |  |  |  |

PRADIP Digitally signed by FBADIP KUMAR KUMAR SAHOO Date, OUT 08 118 SAHOO 10 48 18 40 85



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

| 9.3.2.2: ANTICIPATED IMPACT                             | विव खान व्य           |
|---------------------------------------------------------|-----------------------|
| Post Mining Use                                         | AREA (Ha)             |
| Degradation by Excavation                               | 166.555               |
| Degradation by Dumps & Material Staking                 | 66:839                |
| Covered under Plants, Shades & Buildings                | 11.622 OF MODEL STORY |
| Covered by Roads & Approaches                           | 10.461                |
| Any Other, please specify below (Undisturbed Virgin SZ) | 13.363                |

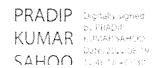
#### 9.3.2.3: Mitigation Measures:

- 9.3.2.3.1: Backfilling: The mined out area of 65.337Ha. have been envisaged for back filling. The back filled area will be re-grassed after end of the lease period.
- 9.3.2.3.2: Area proposed to be covered by Plantation in Backfilled Area: The mined out area of 65.337 Ha. have been envisaged for back filling.
- 9.3.2.3.3: Proposed Area under Agriculture: Nil
- 9.3.2.3.4: Proposed Area to be converted to Grazing Land: The area covered under mineral separation plant & mineral stacking area of 11.622 Ha. shall be converted to grazing land after end of the lease period.
- 9.3.2.3.5: Ground Water Recharging: Nil.
- 9.3.2.3.6: Green Belt Development \*: The green belt will be developed over the area covered under dumps, and backfilled area of mined out area and virgin area under safety zone.
- 9.3.2.3.7: Agriculture \*: No Proposal for agriculture.

#### 9.3.3: Air Environment:

9.3.3.1: Climate & Meteorology (Please provide average of 10 years):

| Temperature (°C) |         | Relative Humidity (%) | Average Rainfall (mm) |
|------------------|---------|-----------------------|-----------------------|
| Maximum          | Minimum | 76                    | 1269.1                |
| 42               | 8       | 70                    | 1209.1                |


9.3.3.2: Air Quality Details for Base line Information / Present Status: The Air Quality base line data has been given in environmental monitoring report. Same has been attached as Annexure-32.

| Sr.<br>No | Statio<br>n<br>Name | Seaso<br>n | PM10<br>(μg/m3<br>) | PM10<br>Excess<br>(μg/m3)<br>2 | PM2.5<br>(μg/m3<br>) | PM2.5<br>Excess<br>(μg/m3)<br>2 | SO₂<br>Value<br>(μg/m3<br>) | SO₂<br>Excess<br>(µg/m3<br>) | NOx<br>Value<br>(μg/m3<br>) | NO <sub>x</sub><br>Excess<br>(μg/m3<br>) | Date of<br>Observatio<br>n | Actio<br>n |
|-----------|---------------------|------------|---------------------|--------------------------------|----------------------|---------------------------------|-----------------------------|------------------------------|-----------------------------|------------------------------------------|----------------------------|------------|
|           |                     |            |                     |                                |                      |                                 |                             |                              |                             |                                          |                            |            |
|           |                     |            |                     |                                |                      |                                 |                             |                              |                             |                                          |                            |            |

- 9.3.3.3: Impact Assessment & Mitigation Measures:
- 9.3.3.3.1: Anticipated Impact (Give details on Prediction of fugitive dust emissions due to mining activities, crushing & cleaning plants, loading & unloading, transportation by rail, road or conveyor)

There will be generation of dust during hauling of both ore and over burden to stackyard, during transportation of finished ore and during blasting.

9.3.3.3.2: Mitigation Measure Give details on measures to reduce the emissions of pollutants during mining, loading, unloading, transportation, drilling, blasting, crushing etc. to maintain the air quality:





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

खान

Following measures are proposed for management of air quality: -

- ✓ Water sprinkling on haul roads at regular intervals.
- ✓ Installing of permanent water sprinklers at strategic places.
- Dense plantation along the safety zone/avenue plantation.
- ✓ No overloading of tippers/ Dumpers.
- ✓ Ore shall be covered with tarpaulin during transportation from stockyard to outwards.\(\frac{1}{2}\)
- ✓ Provision of dust extractors with the drill machines/ wet drilling practices.
- ✓ Water spraying in the dump hopper of crusher.
- Provisions of dust masks to the persons exposed to dust.
  - 9.3.4: Water Environment:

Depending upon the drainage pattern of the area where the dump area is located, retaining walls, garland drain with settling tanks will be provided. The garland drains will be dug around 1 m beneath the adjoining contour level at the lower peripheral areas of the dump. The width of the drains shall be around 1.5 m. A series of settling pits along with a main settling tank of 15 m length at the outlet of the garland drains will be provided to arrest the wash-off solid particles. The settling tank will be provided with three compartments each of around 5m width to arrest the suspended solids followed with the chamber to arrest any oil particles. The last chamber shall contain the clean water which will be ultimately discharged. The retaining walls will be of 1.5m height and 1.2 m width at the top and around 1.5m at the base. 9.3.4.1: Rain Water:

9.3.4.1.1: Base / Present Status (Details of Rivers, Springs, Lakes, Reservoirs & Drains up to First Order in Study Area)

The area falls within the watershed area of the Baitarani River. No water/waste water is discharged in to the river.

During rains, the runoff passes through garland drain and series of settling pits before draining into water harvesting pond.

9.3.4.1.2: Anticipated Impact (Impact on Surface Water Bodies / Groundwater Table Regime / Streams / Lake / Springs due to Mining, to be Assessed from Hydro-geological Study Give details about impact on vegetation)

The surface water is not contaminated from the mining waste, as the working quarries is situated far away from any nala and the rain water is usually absorbed in the sub soil before reaching the nala.

9.3.4.1.3: Mitigation Measure (Possibilities of Rain Water Harvesting & Artificial Recharge with in the Mining Lease)

Water harvesting and artificial recharge is done in the form of ponds developed and maintained within the Mining Lease.

9.3.4.2: Water Body:

9.3.4.2.1: Base / Present Status\*(Water Bodies Existing & Water Bodies likely to be created due to Mining Activities & their Water Holding Capacity)

The baseline data of water quality has been given in environmental monitoring report. Same has been attached as Annexure-32.

9.3.4.2.2: Anticipated Impact (Ingress of Sea Water, Particularly for Mining Projects in Coastal Areas)



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

OF MINES

Not Applicable.

9.3.4.2.3: Mitigation Measure (Steps to Minimize Impact on Water Table if Mining Intercepts Ground Regime)

During the conceptual period mining intercepts Groundwater Regime, for minimize Impact on Water table the following steps to be proposed.

- Ground water recharge by bore holes.
- Frequent analysis of ground water.

9.3.4.3: Water Balance:

9.3.4.3.1: Base / Present Status (Water Balance (Withdrawal of Surface Water & Release of Mine Drainage Water) Water Requirement & Waste Water Generation from various Activities of Mine, Including Beneficiation)

Water Balance chart attached as Annexure-29.

9.3.4.3.2: Anticipated Impact(Impact of Water Drawl on Surface & Groundwater Resources Impact on Surface & Groundwater Quality due to Discharges from Mining, Tailings Pond, Workshop, Township, & Leach ate from Solid Waste Dumps etc)

There will not be any impact of water drawl on surface as well as ground water resources due to mining activities.

The surface water is not contaminated from the mining waste, as the working quarries is situated far away from any nala and the rain water is usually absorbed in the sub soil before reaching the perennial nala.

9.3.4.3.3: Mitigation Measure (Construction of Check Dams, Sedimentation Ponds, Settling Tanks, Retaining Walls etc. with Design & Site Features for Control of run-off Mine Water Treatment for Meeting the Prescribed Standard Waste Water Treatment for Township Sewage, Workshop(s), Tailing Pond Overflow etc)

The surface runoff shall be diverted through garland drains of around 1 m beneath the adjoining contour level at the lower peripheral areas of the dump. The width of the drains shall be around 1.5 m. A series of settling pits along with a main settling tank of 15 m length at the outlet of the garland drains will be provided to arrest the wash-off solid particles. The settling tank will be provided with three compartments each of around 5m width to arrest the suspended solids followed with the chamber to arrest any oil particles. The last chamber shall contain the clean water which will be ultimately discharged. The retaining walls will be of 1.5m height and 1.2 m width at the top and around 1.5m at the base.

9.3.5: NOISE

9.3.5.1: Critical Locations Identified within Lease Area \*

Details of noise monitoring has been given in environmental monitoring report. Same has been attached as Annexure-32.

9.3.5.2: Give Detail about Prediction of Noise Level by using Mathematical Modeling at Different Locations Identified  $^{*}$ 

Due to operation of the HEMM & plant, ambient noise level is likely to increase but the same will be managed through proper maintenance of the plant & machineries & use of personal protective equipment.

- 9.3.5.3: Measures to Minimize the Impact on Receiving Environment \*
- Regular maintenance of vehicles, machinery and other equipment is being done.
- Silencers and mufflers are provided in the exhaust.





Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

- Limiting time exposure of workers to excessive noise.
- PPEs such as ear muffs, ear plugs have been provided to workers.
- Control blasting limits noise generation.

9.3.5.4: Noise Details for Base / Present Status

The copy of noise level baseline data has been given in environmental monitoring report Same has been attached as Annexure-32.

| Noise Standards |                  |           |            |  |  |  |  |  |
|-----------------|------------------|-----------|------------|--|--|--|--|--|
| Area Code       | Category of Area | Limits in | n dB(A)Leq |  |  |  |  |  |
| 71100 0000      | category or rica | Day Time  | Night Time |  |  |  |  |  |
| А               | Industrial Area  | 75        | 70         |  |  |  |  |  |
| В               | Commercial Area  | 65        | 55         |  |  |  |  |  |
| С               | Residential Area | 55        | 45         |  |  |  |  |  |
| D               | Silence Area     | 50        | 40         |  |  |  |  |  |

| Sl. No. | Station<br>Name | Season | Type of<br>Area | Noise At<br>Day Time: | Excess Noise<br>At Day | Noise At Night<br>Time: | Excess<br>Noise at<br>Night | Date of<br>Observa<br>tion |
|---------|-----------------|--------|-----------------|-----------------------|------------------------|-------------------------|-----------------------------|----------------------------|
|         |                 |        |                 |                       |                        |                         |                             |                            |

9.3.5.5: Impact Assessment & Mitigation Measures:

9.3.5.5.1: Anticipated Impact (Give details on impact on ambient noise level due to rock excavation, transportation, processing equipment's & ancillaries):

The impact of noise on the workers due to rock excavation, transportation, processing equipment is very low.

- 9.3.5.5.2: Mitigation Measure (Give details on measures for noise abatement including point source & line source)
- 9.3.6: Vibration:
- 9.3.6.1: Vibration Details for Base / Present Status

The blast induced ground Vibration Study shall be carried out after resume of mining operation.

| Sl. No | Station | Season | Distance from    | Peak Particle    | Air over     | Frequency | Date of     |
|--------|---------|--------|------------------|------------------|--------------|-----------|-------------|
|        |         |        | Blasting Site(m) | Velocity(mm/sec) | Pressure(DB) | (Hz)      | Observation |
|        |         |        |                  |                  |              |           |             |

9.3.6.2.1: Anticipated Impact (Give details on impact of vibrations including damage to materials/structures due to blasting)

The residential houses/structures were located far away from the present workings. Thus no impact of blasting. Further control blasting as per the ground vibration study limits the vibration level.



Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

OF MINIES

CONT. OF INDIV

9.3.6.2.2: Mitigation Measure (Give details on measures for noise abatement including point source & line source)

The blast induced ground vibrations will be controlled through limiting the charge per delay and use of in-hole delay by NONEL means of initiation. The blast induced ground Vibration Study shall be carried out after resume of mining operation.

9.3.7: Socio-Economic Environment:

9.3.7.1: Demographic Profile: The demographic data attached as Annexure-35.

| Sl. No.                                       | Type of Area | Name of<br>Village | Total<br>Population | Male to<br>Female Ratio | Literacy<br>Rate (%) | Employment<br>Rate (%) |  |  |
|-----------------------------------------------|--------------|--------------------|---------------------|-------------------------|----------------------|------------------------|--|--|
| The demographic data attached as Annexure-35. |              |                    |                     |                         |                      |                        |  |  |

9.3.7.1.1: Anticipated Impact (Give details about impact on the cropping pattern & crop productivity in the core zone)

There shall be no impact on the cropping pattern & crop productivity in the core zone as the ore-bearing zone contains mainly shrub forest.

9.3.7.1.2: Mitigation Measure (Give details about compensation for loss of land & crops)

The compensatory afforestation plan will be implemented by the Forest Department.

9.3.7.2: Traditional Skills & Source of Livelihood-

9.3.7.2.1: Base / Present Status (Give details about present status on traditional skills & source of livelihood)

The mining employment has greatly increased the income levels of the natives. In addition, creation of comparatively well-paid jobs in the area has generated not only sizeable trade in household supplies (including vegetables, milk, food, textile, etc) but also some household employment. It has also generated demand for tertiary services like transport and repair shops. The impact of mining operations in the area on socio-economic has been a positive one. The infrastructure of the area roads, public transport and electricity supply, has also improved after the advent of mining operation in the area.

9.3.7.2.2: Anticipated Impact (Give details about positive & negative impacts on present status of livelihood in the area)

There will be no impact on the lively hood in the area.

9.3.7.2.3: Mitigation Measure (Give details about training to locals for employment in the project training for making them self-employable or elsewhere)

Employment generation in mining, transporting activities will be sustainable for the lively hood of nearby area.

9.3.7.3: Economic Profile of the Population in Core & Buffer Zone

9.3.7.3.1: Base / Present Status (Give details about economic profile of the population in core & buffer zone)

Occupational structure of the people of the study area reveals that about 14% have cultivation as primary source of income. Majority of them are engaged in service (28%). Substantial portion of the respondents have private business (14%). Wage labours constitute 44%.

- 9.3.7.3.2: Anticipated Impact (Give details about impact on community resources such as grazing land) There is no impact on community resources such as grazing land due to mining activity.
  - 9.3.7.3.3: Mitigation Measure (Give details about employment opportunities & access to other amenities such as education, health care facilities to be extended to locals, addressing local unemployment, tourism or recreation opportunities, efforts for sustainable development of the local community)

During the phase of mine expansion, substantial amount of employment and income are going to be created. A large portion of these is likely to trickle down to the local people. Besides this it is expected that for yearly







Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

operation of the project local people will get employment in various mining activities in accordance with their qualification, skill and experience. Besides direct employment, the project is expected to generate substantial indirect employment in semi-skilled labour, casual labour as also skilled labour in other sectors e.g. in the small scale industrial units and service centers etc. which are existing at present and also expected to come in the vicinity of the Projects. The indirect employment and income effects are likely to be much larger than the direct effects of the project. Overall assessment of the employment and income effects indicates that the project has strong positive direct as well as indirect impact on employment and income generation.

- 9.3.7.4: Human Settlement in Core & Buffer Zone
- 9.3.7.4.1: Base / Present Status\*(Give details about human settlement in core & buffer zone) Only Rantha, KhandadharR.F villages have been found in the 500 m buffer zone of the area.
- 9.3.7.4.2: Anticipated Impact \*(Give details about any displacement of human settlements during the life of the mine)

There shall be no displacement of any human settlement during the life of the mine.

9.3.7.4.3: Mitigation Measure \*(Give details about rehabilitation & resettlement of land ousters & displaced people)

There shall be no displacement of any human settlement during the life of the mine.

- 9.3.7.5: Health Profile of Population in Core & Buffer Zone
- 9.3.7.5.1: Base / Present Status\* (Give details about health profile of population in core & buffer zone)

Occupational safety and health is very closely related to productivity and good employer-employee relationship. The factors of occupational health for the project are mainly dust, siltation etc. Safety of employees during operation and maintenance etc. shall be as per mines rules and regulations. To avoid any adverse effects on the health of workers due to various pollutants, sufficient measures have already been addressed in this chapter. The following measures relating to safety and health shall also be practiced:

- Provision of rest shelters for mine workers with amenities like drinking water etc.
- All safety measures like use of safety appliances, safety awards, posters, slogans related to safety etc.
- > Training of employees for use of safety appliances and first aid.
- > Regular maintenance and testing of all equipment as per manufacturers' guidelines.
- Periodical Medical Examination (PME) of all workers by a medical specialist so that any adverse effect may be detected in its early stage.
- First Aid organization in mines including training and retraining of First Aiders.
- Close surveillance of the factors in working environment and work practices, which may affect environment and worker's health. Monitoring of the values of various factors which may lead to occupational health hazards.
- Working of mine as per approved mining and environmental plans.
  - 9.3.7.5.2: Anticipated Impact \*(Give details about any adverse impact on the general health condition of the population in core & buffer zone)

The population in core and buffer will not have any adverse impact on the general health condition as the mining site is far away.







Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

9.3.7.5.3: Mitigation Measure \*(Give details about avenues like dispensaries, hospitals, maternity-homes like dispensaries)

Not Applicable.

9.3.7.6: Historically, Culturally & Ecologically Important Places in Core & Buffer Zone-

9.3.7.6.1: Base / Present Status\*(Give details about historically, culturally & ecologically important places in core & buffer zone)

There is no historically, culturally & ecologically important places in core & buffer zone of the lease. 9.3.7.6.2: Anticipated Impact \*(Give details about risk profiling).

Not Applicable.

9.3.7.6.3: Mitigation Measure \*(Give details about public health benefits (e.g. clean water to an aboriginal community), measure for safeguard against damage etc.)

Not Applicable.

