RANTHA IRON ORE MINES

REVIEW OF MINING PLAN

Mining Plan/Review of Mining Plan/Modified in Approved Mining Plan of Rantha Iron Ore Mine/Deposit over an area of **268.84** Ha as per ROR and **268.84** Ha as per DGPS submitted under Rule $\frac{16(1)*}{17(2)*}$ of Minerals (Other than Atomic and Hydro-Carbons Energy Minerals) Concession Rules, 2016.

TEXT

Mine/Deposit Name	Rantha Iron Ore Mine
Mining Lease no-	698
Mine Code-	300RI13058
In Villages-	Rantha (Khandadhar P.R.F) & Khandadhar R.F
Tehsil-	Lahunipara
District-	Sundargarh
State	Odisha
Total-Lease area	268.84 Ha as per DGPS
Forest Area	268.84 Ha.
Non-Forest area	0.00 На.
Lease Execution Date	31.12.1968
Lease period-	70 years from 31.12.1968 to 30.12.2038
Mineral-	Iron Ore
Proposed category of Mine-	A-Mechanized
Mining plan period-	2023-24 to 2027-28
Working proposal period-	2023-24 to 2027-28
Applicant/lessee	Odisha Mining Corporation Ltd
IBM Registration no-	IBM/4269/2011
Address-	OMC House, Bhubaneswar - 751001,
Address-	District: Khurda, State: Odisha
Phone-	Tel: 0674-2377400 & 2377401,
Phone-	Fax No: (0674) 2580145/020
Email-	info@odishamining.in
Prepared by-	
Qualified Person Name-	1.Sri Pradip Kumar Sahoo, B. Tech in Mining Engineering
Qualified Person Nume-	2. Sri Rabindra Mohanty, M. Sc in Geology
Address-	OMC House, Bhubaneswar - 751001,
Auuress	District: Khurda, State: Odisha
Phone-	9439277649,7978567771
Email-	pksahoo2@odishamining.in, rmohanty@odishamining.in

Odisha Mining Corporation Limited

OMC House, Bhubaneswar - 751001, District: Khurda, State: Odisha

CONSENT LETTER / UNDERTAKING / CERTIFICATE FROM THE LESSEE

 The Review of Mining Plan in respect of Rantha IronOre Mine of Odisha Mining Corporation Limited over an area of 268.84 Ha in Village Rantha (Khandadhar P.R.F) and Khandadhar R.F in TahasilLahunipara, Bonai sub-division of Sundargarh district of Odisha state submitted under Rule 17(2) of Minerals (Other than Atomic and Hydro Carbons Energy Minerals) Concession Rule, 2016 has been prepared by following Qualified Persons namely Sri Pradip Kumar Sahoo, Manager (Mining) & Sri RabindraMohanty, Sr. Manager (Geology) of OMC Ltd Jointly.

This is to request the Regional Controller of Mines, Indian Bureau of Mines, Bhubaneswar, to make any further correspondence regarding any correction of the Review of Mining Plan with the said qualified person at their addresses below.

Sri Pradip Kumar Sahoo, Manager (Mining),	Sri RabindraMohanty, Sr. Manager (Geology),
OMC House, Post Box No 34,	OMC House, Post Box No 34,
Bhubaneswar, Odisha - 751001	Bhubaneswar, Odisha - 751001
Phone: (0674), 2399950	Phone: (0674), 2399950
Fax: (0674) 2391629, 2396889,	Fax: (0674) 2391629, 2396889,
Email: pksahoo2@odishamining.in	Email: rmohanty@odishamining.in

We hereby undertake that all modifications / updating as made in the said Review of Mining Plan by the said qualified persons be deemed to have been made with our knowledge and consent and shall be acceptable on us and binding in all respects.

- 2. It is certified that the **CCOM's Circular no. 2/2010** related to DGPS survey of the lease area has already been implemented by ORSAC an authorized agency approved by the State Government.
- 3. It is certified that the Progressive Mine Closure Plan prepared under Rule 23 of MCDR, 2017 of Ranthalron Ore Mine of Odisha Mining Corporation Ltd over an area of 268.84 Ha complies with all statutory rules, regulations, orders made by the Central or State Government, statutory organization, court etc. which have been taken into consideration and wherever any specific permission is required the lessee will approach the concerned authorities.

The information furnished in the **Progressive Mine Closure Plan** is true and correct to the best of our knowledge and records.

4. The provisions of Mines Act, Rules and Regulations made there under have been observed in the Review of Mining Plan of Ranthalron Ore Mine over an area of 268.84 Ha in Sundargarh district of Odisha state belonging to Odisha Mining Corporation Limited and where specific permissions are required, the applicant will approach the DGMS. Further, standards prescribed by DGMS in respect of miner's health will be strictly implemented.

Place: Bhubaneswar

Date:

Managing Director & Nominated Owner Odisha Mining Corporation Limited OMC House, Bhubaneswar

CERTIFICATE FROM THE QUALIFIED PERSONS

The provisions of the Mineral Conservation and Development Rules, 2017 have been observed in the preparation of Review of Mining Plan for Rantha Iron Ore Mines over an area of 268.84 Ha(as per DGPS) in Village Rantha (Khandadhar P.R.F) and Khandadhar R.F in LahuniparaTahasilBonaisub-division of Sundargarh district of Odishastate and whenever specific permissions are required, the applicant will approach the concerned authorities of Indian Bureau of Mines.

The information furnished in the Mining Plan is true and correct to the best of our knowledge.

Qualified Person

Qualified Person

Place: Bhubaneswar

Date:

INRODUCTORY NOTE:

Rantha Iron Ore Mines is owned by M/s Odisha Mining Corporation Limited, a Govt. of Odisha Undertaking. Rantha Iron Ore Lease of M/s Odisha Mining Corporation is located in village Rantha & Khandadhar Reserved Forest Lahunipara Tahsil and Bonai sub-division of Sundargarh district of Odisha state between latitude 21°45′12.45558″N– 21°46′54.64380″N & longitude 85°08′11.37095″E – 85°08′52.12745′′E and is covered by survey of India topo-sheet no. F45N1 (73G/1).

STATUS OF LEASE:

Lease deed for Rantha lease was executed on 31.12.1968 for a lease area of 408.8731 Ha (As per RoR) & 408.832 Ha (as per DGPS) for a period of 50 years. Copy of lease deed for Rantha lease is enclosed at annexure 7. Subsequently, State Government order that in terms of rule 3(1) of Mineral (Mining by Government Company) Rules 2015 dated 03.12.2015, the period of the original lease is deemed to be granted for 50 years i.e. from 31.12.1968 to 30.12.2018. Further in terms of rule 3(2) and 3(3) of said rules, the validity period of the lease is extended for a further period of 20 years from 31.12.2018 to 30.12.2038 vide letter no: III(B) SM-25/2012/203/SM. Bhubaneswar Dated. 09.02.2016 over retained area of 268.84 Ha. Copy of lease extension letter from state Govt. is enclosed as annexure 8. The ML area granted at different points of time in chronological order is given in the table below:-

SI. No	Event with justification, if any	Remarks
	Lease deed for Rantha was executed on	
1	31.12.1968 for a lease area of 408.8731	Lease Period : 31.12.1968 to 30.12.2018
	Ha for a period of 50 years.	
	The validity of the lease is extended for a	
	further period of 20 years vide letter no:	
2	III(B)SM-25/2012/203/SM.	Extended period : 31.12.2018 to 30.12.2038
	Bhubaneswar Dated. 09.02.2016 over	
	retained area of 268.84 Ha.	

STATUS OF ENVIRONMENT CLEARANCE:

Environment clearance for the lease has been granted by MoEF vide letter no. J-11015/1085/2007-IA. II (M) dated 11.06.2008 for a rated iron ore production capacity of 1.0 million tonnes per annum. A copy of the same is enclosed as Annexure- 17.

STATUS OF FOREST CLEARANCE:

The Stage- I & II forest clearance over the forest area of 268.84 Ha. have not been obtained from MoEF & CC. Application for Stage-I forest clearance have been applied to MoEF & CC vide letter No. 2917/OMC/F&E/2020 dated 20.02.2020. A copy of the same is enclosed as Annexure-15.

STATUS OF CONSENTS FROM SPCB:

Consent to establish for 1 MTPA has been granted by State Pollution Control Board vide Consent Order No: 9547/IND-II-NOC-4584 on dated 26.04.2007. Consent to Establish is enclosed as Annexure-18.Consent to operate to be obtained after getting all statutory clearances.

STATUS OF SURFACE RIGHT:

Permission for surface operation over 408.7730 Ha. out of 408.8731 hectares original M.L area was obtained by Lessee from the office of the Collector, Sundargarh vide letter No.XII-92/73-1193 dated 21.07.1973. M.L area applied for retaining over 268.84 Ha is a part of 408.7730 Ha in the originally executed M.L area over 408.8731 Ha. Hence, surface right of the retained area of 268.84 Ha. has been obtained.

Copy of letter of grant of surface right permission is given in Annexure - 16. Copy of land schedule is given at annexure 10.

	REVIEW OF MINING	PLAN AT A (GLANCE				
1	Name of the Applicant /lessee	Odisha Mi	ning Corpo	ration Limit	ed		
2	IBM Registration no	IBM/4269/2011					
3	Address of Applicant	OMC House, Bhubaneswar - 751001,					
	· · ·	District: Kl	nurda, State	e: Odisha.			
4	Name of Mine	Rantha Iron Ore Mine					
5	Mine Code	300RI13058					
6	Lease area in hects.	268.84 Ha. (As per DGPS).					
7	Forest area	268.84 Ha.					
8	Name of Mineral	IRON.			2040		
9	Lease period from to			968 to 30.12 o 30.12.203			
10	Plan proposal period		2027-28.	0 30.12.20			
11	Mineral Reserve (111, 121 & 122) in tonnes	111-Nil.					
		121-2977	8279.				
		122-41138	3733				
			9,17,012 toi				
12	Mineral Resources (211, 221,222, 331, 332, 333 &	221- 17654					
	334) in tonnes	Total: 86,4	13,538 tonn	es			
13	Total (Reserve/ Resource) in tonnes	7,09,17,01	2 tonnes				
14	Reserve Estimated as on	30.06.202					
15	Explored Area in Ha.			65.724 Ha.,			
16	Evaluration Dranacal of hara halos for Five Vear	Explored & 192 nos.	& found No	n-Mineraliz	ed- 20 F	la.(G	2)
16	Exploration Proposal of bore holes for Five Year.					-	
		In Situ (Year w	vico)	From Du (Year w	•		otal ear wise)
17	Production proposal Iron Ore in tonnes year wise i.e.		-		visej		-
	FY 2023-24 to 2027-28	10,00),000	0		10,	00,000
18	OB/Waste handling proposal in CUM year wise i.e.	2023-24	2024-25	2025-26	2026-	27	2027-28
	FY 2023-24 to 2027-28	1,50,000	1,70,000	3,10,000	7,00,0	000	2,00,000
19	Present EC permission in tonnes (Mineral or ROM).	10,00,000	tonnes	1			
20	Plantation proposal in Five years in numbers	8040 Nos.					
21	Plantation area proposal in Five year (ha).	6.7 Ha.					
22	Back filling proposal in Five year (ha).	No Propos	al During tl	ne RMP Per	iod i.e.	2023	-24 to 2027-
22	Charle David and in Streament	28.					
23	Check Dams numbers in Five year	02 Nos.					
24	Garland drain in meters in Five year	1710 mtr.					
25	Retaining wall in meters in Five year	1710 mtr					
26	Settling ponds (Numbers) in Five year	0 Nos.					
27	Area put to use at end of five year in ha	70.078 Ha					
28	Bank Guarantee Amount Rs	Rs. 3,50,3	9,000/-				
29	Validity of BG upto	31.03.202					
30	Any other important information	Not Applic					
	Dereentage of revenue charing hid in eace of	Not Applic	abla				
31	Percentage of revenue sharing bid in case of auction grant of block	Not Applic	able.				

PART: A Index

CHAPTER	PARTICULARS	PAGE NO.
CHAPTER 1	GENERAL INFORMATION	09-13
CHAPTER 2	GEOLOGY & EXPLORATION	14-89
CHAPTER 3	MINERAL PROCESSING	90-94
CHAPTER 4	MINING OPERATIONS	95-110
CHAPTER 5	SUISTAINABLE MINING	111-118
CHAPTER 6	PROGRESSIVE MINE CLOUSER PLAN	119-124
CHAPTER 7	FINANCIAL ASSURANCE/ PERFORMANCE SURETY	125-128
CHAPTER 8	REVIEW OF PREVIOUS PROPOSALS	129-134
CHAPTER 9	IMPACT ASSESSMENT	135-142

<u>PART-B</u> List of Annexure (in pdf format):

Annexure No	Description	Page No
Annexure - 1	Copy of List of Board of Directors	1-1
Annexure - 2	Copy of Board resolution on appointment of nominated owner	2-2
Annexure - 3	Copy of Photo Id & Address proof of the Nominated Owner	3-5
Annexure - 4	Copy of Certificate of Incorporation	6-6
Annexure - 5	Copy of Qualification & Experience Certificates of Qualified Persons	7-19
Annexure - 6	Copy of initial Grant order	20-21
Annexure - 7	Copy of Lease Deed	22-61
Annexure - 8	Copy of letter dated 09.02.2016 from Steel and Mines Govt. of Odisha extension of mining lease up to 30.12.2038	62-65
Annexure - 9	Copy of Letter dated 25.04.2018 form Director of Mines authenticated precise area map	66-66
Annexure - 10	Land Schedule of the part area over 268.84 ha. applied for retaining.	67-67
Annexure - 11	Land schedule of the FMCP approved part surrendered accepted area over 139.992 ha.	68-68
Annexure - 12	FMCP approval letter of surrendered area over 139.992 ha. dt. 25.10.2018 and certificate from IBM with regard to its implantation	69-71
Annexure - 13	Acceptance of the part surrendered area over 139.992 ha. by the State Govt. dated 22.07.2019	72-74
Annexure -14	Copy of Stage-II forest clearance letter for self-conveyor route	75-78
Annexure - 15	Proposal for diversion of 268.84 ha of Forest land within the Rantha Iron Ore Mines.	79-80
Annexure - 16	Copy of Permission for surface operation from the Collector, Sundargarh	81-81
Annexure - 17	Copy of Environmental Clearance	82-90
Annexure - 18	Copy of CTE order from SPCB,	91-94
Annexure - 19	Copy of Approval letter of last Mining Plan	95-96
Annexure - 20	Copy of Work order for core drilling	97-104
Annexure -21	Copy of Form-J, the notice of sinking boreholes	105-105
Annexure -22	Bore hole Drilled details	106-109
Annexure -23	Copy of Form-K along with details of borehole logs	110-256
Annexure -24	Copy of Chemical Analysis Certificate of drill core sample of iron ore	257-395
Annexure-25	Copy of NABL accreditation M/s Superintendence Company fof India Pvt. Ltd. who has carried out chemical analysis of drilled core/litho logs	396-398
Annexure-26	Copy of Bulk density test report of Iron ore and mineral reject	399-399
Annexure -27	Copy of NABL certificate Ms. Mitra S.K who has carried out bulk density test	400-402
Annexure -28	Copy of Recovery Test Report of Iron ore and mineral reject with NABL certificate Ms Earth & Environment who has carried out recovery test	403-404
Annexure -29	Water Balance Chart	405-406
Annexure -30	Material balance chart & Process flow diagram	407-408
Annexure- 31	Calculation of production of Ore, mineral reject & waste for the financial year	409-413
Annexure- 32	Environment Monitoring Report	414-517
Annexure -33	Surveyor certificate	518-518
Annexure -34	Conceptual planning	519-525
Annexure- 35	Copy of Demographic profile data	526-528
Annexure -36	Pre-feasibility report	529-556
Annexure- 37	Photographs	557-558
Annexure- 38	Copy of Processing fees acknowledgement	558-559

PART-C

List of Plates (Geometry type: Polygon, Datum: WGS 84)

SI. No	Plan	Scale	Plate No.	Format
01.	Key Plan	1:50000	Plate No. 01	PDF
02.	Lease Plan	1:3960	Plate No. 02	PDF
03.	DGPS Plan	1:3960	Plate No. 02A	PDF
04.	Surface Plan	1:4000	Plate No. 03	.KML
05.	Geological Plan	1:4000	Plate No. 04	.KML
06.	Geological Sections	1:4000	Plate No. 05A-05B	PDF
07.	Development Plan 2023-24 to 2027-28	1:2000	Plate No. 06A-06E	.KML
08.	Development Sections 2023-24 to 2027-28	1:2000	Plate No. 07A-07E	PDF
09.	Conceptual Plan	1:4000	Plate No. 08	.KML
10.	Conceptual Sections	1:4000	Plate No. 09	PDF
11.	Environment Plan	1:5000	Plate No. 10	.KML
12.	Progressive Mine Closure Plan	1:4000	Plate No. 11	.KML
13.	Progressive Mine Closure Section	1:4000	Plate No. 12	PDF
14.	Financial Assurance Plan	1:4000	Plate No. 13	.KML
15.	Plan Showing Conveyor corridor.		Plate No. 14	PDF

Chapter 1: GENERAL INFORMATION

1.1: Lease Details:

1.1.1:

IBM Registration Number:	IBM/4269/2011		
Lease Code:	698		
Mine Code:	300RI13058		
Name of Lessee:	ODISHA MINING CORPORATION LIMITED		
Address of Lessee:	OMC House, Post Box I	No.34, Bh	ubaneswar-
	751001, Odisha.		
Type of Lessee :	PSU		
Name of Mining Lease:	RANTHA IRON ORE MINE		
State:	ODISHA		
District:	SUNDARGARH		
Tehsil/ Taluk/ Mandal:	LAHUNIPARA		
Village:	RANTHA,KHANDADHAR P.R.F & KHANDADHAR R.F		
Lease Area (Ha):	268.84		
Forest Area (Ha):	268.84		
Name of Minerals:	IRON.		
Name of associated minerals:	NA		
Туре:	EXISTING LEASE		
Five Year Block (Financial Year)	2023-24	TO	2027-28
Type of working:	OPENCAST		
Nature of Use:	NON-CAPTIVE		
Category of Mine:	A-MECHANIZED		

Initial/subsequent Lease grants details:

Grant	From	То	Lease deed execution date	Lease Registration Date
Initial grant	31.12.1968	30.12.2018	31.12.1968	22.11.1968
1 st RML	31.12.2018	30.12.2038	31.12.1968	22.11.1968

Lease Deed attached as Annexure-7 & Extension of Validity of lease attached as Annexure- 8. Supplementary lease deed with the State Government is yet to be executed.

1.1.2: Mining Plan Submission Criteria Details:

Type of document	Review of Mining Plan for the period from 2023-24 to 2027-28.
Reason/s for modification	NA
Period for which modification is proposed	NA
LOI Number:	NA
Date:	NA

1.2: Land Ownership Details:

S.N.	Village	Taluka	Area (Ha)	Plot no/	Type of	Nature of Land
5.IN.	village	Taluka	Alea (na)	Khasra No	Land	Nature of Land
1	Khandadhar R.F	Lahunipada	199.814		Forest Land	Government Waste Land
2	Rantha	Lahunipada	0.862684	110,40	Forest Land	Government Waste Land
3	Rantha	Lahunipada	4.78544	111,40	Forest Land	Government Waste Land
4	Rantha	Lahunipada	2.49948	117,40	Forest Land	Government Waste Land
5	Rantha	Lahunipada	4.38695	118,40	Forest Land	Government Waste Land
6	Rantha	Lahunipada	4.49366	121,40	Forest Land	Government Waste Land
7	Rantha	Lahunipada	2.40576	122,40	Forest Land	Government Waste Land
8	Rantha	Lahunipada	8.37509	186,40	Forest Land	Government Waste Land
9	Rantha	Lahunipada	7.3943	188,40	Forest Land	Government Waste Land
10	Rantha	Lahunipada	1.59105	18940	Forest Land	Government Waste Land
11	Rantha	Lahunipada	1.82661	192,40	Forest Land	Government Waste Land
12	Rantha	Lahunipada	16.0595	193,40	Forest Land	Government Waste Land
13	Rantha	Lahunipada	7.42079	194,40	Forest Land	Government Waste Land
14	Rantha	Lahunipada	6.0563	195,40	Forest Land	Government Waste Land
15	Rantha	Lahunipada	0.867978	197,40	Forest Land	Government Waste Land

1.3: Existing Lease:

Date of Execution	31.12.1968
-------------------	------------

1.3.1: Approval of earlier Mining Plan & Its Subsequent Review in Chronological Order:

SI. No	Letter no.	Data	Perio	Type of Approved	
51. 100	Letter no.	Date	From	То	Document
1	314(3)98/MCCM©MP-2	13.10.1998			Mining Plan
2	314(3)2006-MCCM(CZ)/S-1	23.10.2006	2003-2004	2007-2008	Scheme of Mining Plan
3	314(3)2008-MCCM(CZ)/MS-26	05.03.2009	2008-2009	2012-2013	Scheme of Mining Plan
4	FMCP/FM/43-ORI/BHU	25.10.2018			Final Mine Closure Plan
5	MPM/FMM/06-ORI/BHU/2019- 20	01.10.2019	2018-19	2022-23	Modification of Mining Plan

1.3.2: Partial Surrendered Area during Stages of Operations in Chronological Order:

SI. No.	Date	Supplementary Surrender order Letter Number	Supplementary Lease Deed Date	Final Retained Area over which current Mining Plan is Prepared (ha)
01.	22.07.2019	<u>5252</u> /S&M, Bhubaneswar III (B) SM-25/2012.	Supplementary lease deed with the State Government is yet to be executed.	268.84 Ha.

1.3.3: Transfer of Lease Area Subsequent to Grant:

					block transferred	
SI. No.	Transfer of lease deed Number	Date of execution of Transfer lease deed	Name of Transferor	Granted through auction	other than through auction for captive use	
	Not Applicable.					

1.3.4: Statutory Compliances:

1.3.4.1: Environment Clearance:

Applicable	Yes
Letter No	J-11015/1085/2007-IA.II(M)
Date	11.06.2008
Validity	30.12.2038
ROM Mineral in tonnes	1000000

1.3.4.2: SPCB Approvals:

Letter No	9547/IND-II-NOC-4584
Approval of	Consent to Establish
Date	26.04.2007
Validity	30.12.2038
ROM Mineral in tonnes	1000000

Consent to operate to be obtained after getting all statutory clearances.

1.3.4.3: Forest Clearance:

The Stage- I & II forest clearance over the forest area of 268.84 Ha. have not been obtained from MoEF & CC application for Stage-I forest clearance have been applied to MoEF & CC vide letter No. 2917/OMC/F&E/2020 dated 20.02.2020. A copy of the same is enclosed as Annexure-15.

Applicable	Yes
Letter No	Not Available.
Date	Not Available
Validity	Not Available
Area (Ha)	268.84 Ha.

1.3.4.4: Land Acquisition Details:

Total Area acquired/purchased so far	Nil
Total Amount Paid (INR)	Nil

1.3.5: Mine Location Details:

Tanachaat Numbaru	F45N1 (73G/1),
Toposheet Number:	Attached Key Plan as Plate no-1

1.3.5.1: Location of Boundary Pillars–(add additional Row for subsequent pillars):

SI. No.	Pillar No.	Pillar Latitude (dd:mm:ss.ss)	Pillar Longitude (dd:mm:ss.ss)	Easting	Northing
1	M L-A	21°46'54.64380"	85°08'52.12745"	308500.348121	2409829.48622
2	ML-A1	21°46'50.89922"	85°08'52.23212"	308501.973067	2409714.2781
3	ML-A2	21°46'43.02926"	85°08'52.45199"	308505.385	2409472.146
4	ML-A3	21°46'35.47052"	85°08'52.66297"	308508.657	2409239.589
5	ML-A4	21°46'27.55031"	85°08'52.88401"	308512.085	2408995.911
6	ML-A5	21°46'19.78416"	85°08'53.10071"	308515.445597	2408756.97295
7	ML-B	21°46'12.07986"	85°08'53.31592"	308518.786696	2408519.93778
8	ML-B1	21°46'11.90736"	85°08'48.19212"	308371.519197	2408516.39827
9	ML-B2	21°46'11.76661"	85°08'43.99557"	308250.90274	2408513.51663
10	ML-B3	21°46'11.42757"	85°08'33.88464"	307960.295762	2408506.57945
11	M L-B4/M	21°46'11.10132"	85°08'24.14307"	307680.304163	2408499.9131
12	M jD3	21°45'12.52483"	85°08'17.18929"	307458.811498	2406700.67926
13	ML-D4	21°45'12.64531"	85°08'27.29882"	307749.331131	2406700.88809
14	ML-D5	21°45'12.76646"	85°08'37.51892"	308043.027818	2406701.08448
15	ML-D6	21°45'12.88968"	85°08'47.80550"	308338.634774	2406701.32679
16	M L-E	21°45'13.26966"	85°08'55.47307"	308559.084627	2406710.37327
17	ML-E1	21°45'23.12839"	85°08'55.34083"	308558.917614	2407013.64281
18	ML-F	21°45'31.12078"	85°08'55.23496"	308558.82126	2407259.50057
19	M L-G	21°45'31.19763"	85°09'01.95777"	308752.006914	2407259.55096
20	ML-G1	21°45'34.66136"	85°09'01.88196"	308751.104007	2407366.11076
21	ML-G2	21°45'44.25862"	85°09'01.66485"	308748.399957	2407661.36753
22	ML-G3	21°45'54.26981"	85°09'01.43829"	308745.577537	2407969.359
23	ML-G4	21°46'03.81409"	85°09'01.22287"	308742.903695	2408262.98586
24	ML-G5	21°46'13.36836"	85°09'01.00819"	308740.255624	2408556.91976
25	ML-G6	21°46'23.21792"	85°09'00.78701"	308737.530282	2408859.93822
26	ML-G7	21°46'32.92000"	85°09'00.56876"	308734.835454	2409158.4198
27	ML-G8	21°46'42.61844"	85009'00.35035"	308732.135332	2409456.78978
28	ML-H	21°46'51.75200"	85°09'00.14520"	308729.608467	2409737.78093
29	ML-M1	21°46'05.19006"	85°08'24.20928"	307680.016709	2408318.07739
30	ML-N	21°46'00.53083"	85°08'24.26422"	307679.869313	2408174.75418
31	ML-N1	21°46'00.39278"	85°08'16.98060"	307470.558777	2408173.02919
32	ML-0	21°46'00.26986"	85°08'10.43142"	307282.353775	2408171.51793
33	ML-01	21°45'51.10107"	85°08'10.61172"	307284.131315	2407889.45001
34	M L-02	21°45'35.75736"	85°08'10.91281"	307287.088635	2407417.4177

SI. No.	Pillar No.	Pillar Latitude (dd:mm:ss.ss)	Pillar Longitude (dd:mm:ss.ss)	Easting	Northing
35	ML-03	21°45'27.91478"	85°08'11.06680"	307288.603548	24071769.14968
36	ML-04	21°45'20.31110"	85°08'11.21574"	307290.062412	2406942.23095
37	ML-P	21°45'12.45558"	85°08'11.37095"	307291.608513	2406700.56428

1.3.6: Owner/Nominated Owner Details:

Name	PAN of Nominated Owner	Address of Nominated Owner	Mobile Number	E-mail	Please attach Minutes of Board Resolution in case of Nominated Owner
BALWANT SINGH, IAS	BFMPS6439D	Managing Director OMC HOUSE,POST BOX NO-34,BHUBANESWAR ODISHA-751001	9777355594	info@odishamining.in, md@orissamining.com	Attached in Annexure-2

1.3.7: Qualified Person Details as per M (OAHCEM) CR, 2016:

Sr. No	Prefix	Name	PAN of QP	Address	Mobile no.	Qualification	Experience in years as prescribed under the rule	Email
01.	Mr.	PRADIP KUMAR SAHOO	BPMPS0920K	OMC HOUSE,POST BOX NO- 34,BHUBANESWAR ODISHA-751001	9439277649	B.TECH IN MINING ENGINEERING	14	pksahoo2@ odishamining.in pmc@ odishamining.in
02.	Mr.	RABINDRA MOHANTY	BFOPM2802N	OMC HOUSE,POST BOX NO- 34,BHUBANESWAR ODISHA-751001	7978567771	M.SC IN GEOLOGY	16	rmohanty@ odishamining.in pmc@ odishamining.in

Chapter 2

GEOLOGY & EXPLORATION

2.1: GEOLOGY:

2.1.1: Topography:

Terrain	Undulating
IEIIaiii	Ununating

Relief:

Highest Level (m) from MSL	Lowest Level (m) from MSL	Average Level (m) from MSL	
1015	715	300	

Drainage Pattern	Order of Stream	Minimum Distance of Stream from Lease Area (m)
Dendritic	Order 1	2500metre (Khandadhar)

2.1.2: Details of Physiographic features and Infrastructures available in and around the lease/ block area:

Description	Location if existing Within the lease/block area.	Distance from boundary periphery in kms, if existing outside the lease/block area. (within 5.00Kms)	Remark if any
River/Nallah/Reservoir	Khandadhar Nala	The drainage system of the area is mostly influenced by a perennial nala known as Khandadhar nala which flows due north and lies 2.5 km west of the lease area which is the tributary of Kurarhi nadi.	
Public roads (Tar road, cart road)	There is no public road within the lease area.	The lease area is accessible from Barbil through NH-215 covering a distance of 38 km up to Koira and 18 km after Koira.	
Railway track	There is no railway line within the lease area.		
Human settlements	Rantha	Tilkuda, Usukuda, Sareikal	

	Location if	Distance from boundary	
Description	existing Within	periphery in kms, if existing	Remark if
Description	the lease/block	outside the lease/block area.	any
	area.	(within 5.00Kms)	
Archaeological monuments/			
places of worships/public utilities	Nil	Nil	
etc.			
Wild life sanctuaries/ national	Nil	Nil	
parks	INII		
Coastal Regulation Zone (CRZ)	Nil	Nil	
Power transmission	N.'1	A.11	
lines/telephone lines	Nil	Nil	
Firing range	Nil	Nil	
Ordinance factory	Nil	Nil	
grazing land/ burial ground or	NII		
cremation ground	Nil	Nil	
Any other specify	Nil	Nil	

Particulars	Distance from lease boundary in kms			
Nearby village	Tilkuda, Usukuda, Sareikal, Rantha			
Nearest Railway station	Barsuan (Rourkela-Barsuan route) at a			
Nearest Kallway station	distance of about 18 km from lease area.			
Nearest Port	Pradeep (300 kms distance from lease			
Nearest Fort	area)			
Distance of SH/NH from lease	NH-215 (about 18kms distance from lease			
area	area)			

2.1.3: Regional Geology:

Geology of the M.L area is a part and parcel of the Singhbhum – Sudargarh – Bonai iron ore belt, also known as the Jamda – Koira valley and is represented by a narrow NNE plunging folded synclinorium of 60 Km long and 25 Km in width. The Precambrian horse-shoe shaped belt is well known for its large reserves of iron and manganese ore. The general strike is northeast to northerly and dips are moderate to the west. The western limb of the synclinorium is slightly overturned.

The Precambrian rocks of this region comprising of basic lava, tuffs, banded iron formation (BIF), shales, conglomerates and sandstones etc. were mapped for the first time by Jones (1934). The stratigraphic succession established by Jones has largely been modified later by Dunn (1940). Based on detailed mapping in the northern parts of the belt, Dunn recognized a new group lying unconformable over the Iron Ore

Group, which he named as the "Kolhan Group". The rock types of the area belonging to the Kolhan Group lies to the north of Nuamundi in Bihar.

The most acceptable litho – stratigraphic succession for the belt was proposed by Murthy and Acharya (1975). They identified different depositional facies and proposed a more detailed stratigraphic succession. They also proposed a new name the "Koira Group" to the rocks of Bonai-Sundargarh belt. The stratigraphy suggested by Murthy and Acharya (1975) has been given in the table below:

Kolhan Group	Sandstone, Conglomerate –
	Breccia

----- Unconformity -----

Mixed Formation	Facies	Basic Lava, tuffs and tuffites of Volcanic facies iron, manganese, lenses of iron formation, chert, small lenses of sandy and silty shale of clastic facies
Banded	Shale	Banded shale member
Formation		Black shale member
		Black shale-chert member
Koira Group	C	
Banded	Iron	Finely banded Jaspilite member
Formation		Coarsely banded Jaspilite member
		Tuffaceous shale
		Basic lava
Volcanic		Basal sandstone, Gritty sandstone,
Formation		Quartzite Conglomeratic at places with inter-bedded lava at top
		Unconformity
Cinghhhum	Cranita	with analyzes of older meta basis and meta codimentary reals

Singhbhum Granite with enclaves of older meta-basic and meta-sedimentary rocks.

2.1.4: Local Geology & Structure:

2.1.4.1: Local Geological Set-Up:

M.L area applied for retaining displays an undulated topography with hillocks and valleys. Lithounits such as Laterite, BHJ / BHQ / Chert and Shale are found to occur in the area.

Nalas flowing in the area are structurally controlled. Both E-W and N-S folding are prominent with plunging direction uniformly towards N100E or S100W. In general, reversal of plunge is occasionally noted. The axial plane cleavages of the mega folds have acted uniformly as a prominent passage for stream flow. Folds of micro and mega scale are very common. Major fault is not seen in the area. Joints are numerous and developed due to competency of the rock.

The lithological succession as observed within the lease area is as follows:

	Soil & alluvium
Recent	Laterite
Iron Ore Group	Iron Ore
	BHJ / BHQ / Chert Shale

2.1.4.2: Structure:

The structural study of the area is very well achieved while taking traverse along the nala. All along, the BHJ is exposed. The nala is fully structurally controlled. Both E-W and N-S folding is very prominent with plunge direction uniformly towards N10°E to N10°W. Reversal of plunge is occasional marked. The axial plane cleavage of the mega folds has acted uniformly as a prominent Passage for stream flow. Once it follows the axial plane, it passes through the bedding plane making an obtuse kink in the flow direction. Because of very tight folding the overall appearance of the nala is very straight. Similar parallel streams have been formed as a result of the structure only. The general strike of the litho units, particularly BHJ, varies from N20°W to N15°E with dip varying from 20° to 60° towards east and west respectively.

Folds of both micro and mega scale are very common and book examples of various types of folds are very common. Faults of major scale are rarely seen. Joints are numerous and developed due to competency of the rock.

The structure has helped to decipher the stratigraphic sequence of the area. But at places the gradational contact caused difficulty in delineating the top and bottom criteria. However the Shale exposed in the area bears a gradational contact with the Iron ore bodies. Sometimes BHJ occur as undigested patches within the Iron ore bodies.

2.1.4.3: Lithology, Petrographic & Mineralogical Description for Major, Associated & Indicator Minerals: The different litho units of Rantha Iron Ore Mine has been given below:

BHJ: The most fascinating structural imprints are very well reflected in the BHJ units exposed all along the Nala sections where the top formations have been eroded out. Because of the folded structure BHJ has been observed at the crest of the mounds at place. Iron ore bodies overlie the BHJ in the east and to the west ferruginous shale overlies the BHJ.

Shale: The shale occurring to the west of the leasehold area is ferruginous in nature and bears a gradational contract with Iron ore bodies at places. The Northern part is latertised. The colour varies from brown, black, yellow, lomonitic and at places pinkish white due to presence of talc. At depth grayish white and hard sometimes confused with hard chert are also observed. Tufaceous shale of light green colour is also seen in the lease hold.

Iron Ore Bodies: Mostly soft laminated Iron ore occur above the BHJ and at it times it also bears a gradational relationship with the BHJ, along the nala sections due to crestal part of the fold have been

easily ended out giving a deep cutting. Soft laminated ore mostly occupies the crestal part of the mounds. Hard massive ore have not been encountered so far. The friable nature of ore and undigested BHJ chunks in them devalue the deposit for its exploitation. On the surface either it is covered by soil or at places lateritised with lot of lemonite in it.

Type of ores

Based on the field visa-a-vise macroscopic characters the iron ore in this area are classified as:

- i. Laminated or biscuity ore
- ii. Powdery ore or blue dust iii.
- iii. Conga ore
- iv. Recemented ore and
- v. Lateritic ore

The origin of different varieties of iron ore such as lamininated, biscuity, shaly ore and conga area the products of secondary enrichment in BHQ and BHJ group of rocks .The process is brought out by three ways.

1. Leaching of silica in solution and its removal causing enrichment of iron oxide in the process. 2. Segregation of iron ore oxide at favorable areas by sub-surface water to fill in the voids created by removal of silica.

3. Partial replacement of silica by Jasper and iron oxide from the mineralized solution.

Different types of ore were produced due to varying degree of leaching, enrichment and replacement that took place in BHQ and BHJ formation with the aid of underground meteoric water.

2.1.4.4: Mode of Occurrence& Controls of Mineralization:

Numerous large deposits of rich Iron Ores in the Bonai-Keonjhor belt occur predominantly in association with iron formation and with adjoining ferruginous shale/chert. The iron ore deposits are generally exposed at the surface occupying hilltop and valley slope region. The ore bodies occur in the form of regular and continuous beds. These beds are conformably disposed in relation to other members of the sequence and show remarkable structural concordance. The ore bodies nevertheless occur as detached masses separated by barren saddles with irregular boundaries.

The deposits largely composed of hematite while the other distinct type of deposit occurs nearly towards the base of the banded iron formation around Rantha area comprising of hematite, magnetite and martite. The ore bodies proceed downwards into lower grade ores and finally into the original bedrock (BHJ).

The iron ore resources in this belt are associated either directly or indirectly with the bedded rocks, chemically precipitated banded iron formation (BIF) and fine clastic (tuffaceous shale). This region is well endowed with resource base of iron ore both in terms of quantity and quality.

The iron ore bodies mostly occur as detached masses with irregular boundaries towards the top of the banded iron formation and shale. The occurrence of detached masses may be due to cross fold or cross-faulted natures of the formations in the region.

The deposits are confined to hilltops often extending some considerable distance along the flanks as well. The other types less widely distributed are the laminated and biscuity ore at the outskirt of the banded iron formation or ferruginous shale horizon. These ore bodies in fact are mostly confined to the crest and trough zones of the folds. It is often observed that conglomeratic conga ore is uniformly distributed as blankets over this laminated variety in some areas. The powdery ore known as blue dust is traced as pockets within the other ore bodies. The recemented ore another important zone, however, runs for more than lkm in length has been observed.

2.1.4.5: Extent of Weathering/ Alteration:

It is difficult to inherent that banded iron-formation (BIF) to produce representative information. The qualitative effects of weathering in BIF, and the progressive stages that lead to iron enrichment are not hard to follow, but to establish even semi-quantitative data is difficult. In general, the range of minerals found in BIF is not large. Even with the variation imposed by metamorphism, it is possible to limit discussion to a handful of mineral groups—silica, iron oxides and silicates.

2.1.4.6: Nature/Form of Mineral:

The nature/ form of mineral of the Rantha Iron ore lease areas are Lump, Fines and Friable.

2.1.4.7: Extent of Mineralization:

The different litho units of Rantha Iron Ore lease is given below:

Iron ore is associated with the following litho units and covers about 65-70% area. The rocks bearing iron ore are of various types are as follows,

a. Lateritic Iron Ore:

Lateritic iron ore in the ML is the lateritised product of hard/ soft laminated iron ore. Thus, the same structures as found in the parent rocks could also be seen in this rock types.

b. Soft Laminated Ore (SLO):

It is found in most of the quarries. It is overlain by ferruginous shale, laterite/soil and iron ore float. Considerable thickness of SLO has been encountered in the boreholes drilled in the area.

c. Hard Massive Ore (HMO)/Hard Laminated Ore (HLO):

HMO in the ML area is highly jointed and has moderate dip towards north-west direction. Two smaller in-situ HLO patches are found within the Laterised HLO exposures in the NW quadrant of the ML. the HLO blocks have moderate dip towards the directions of north.

d. Blue Dust:

It occurs at some selective patches in the area. The only silica available has been leached out leaving behind hematite grains to give rise to blue dust.

2.1.4.8: Deposit Type (as per MEMC Rule):

As per Mineral (Evidence and Content) Rule'2015, the Rantha Iron Ore Mine is Bedded Stratiform and tabular deposit of regular habit.

Strike / Trend of the Ore Body	: N20 ⁰ W to N 15 ⁰ E
Amount of dip of Orebody	: 20 ⁰ to 60 ⁰ E and West
Dip Direction of the Ore Body	: Westerly and Easterly
Plunge of Mineral Body (degree) (if any)	: Nil
Direction of plunge	: NA

2.2: Exploration:

2.2.1: Summary of the Previous Exploration (for fresh grant) / During Last Plan Period (For existing leases):

Due to want of forest clearance permission the exploration proposal has not been initiated.

2.2.1.1: Geological Mapping:

SI. No	Year	Scale	Area Covered
1	2018-19	Nil	Nil
2	2019-20	Nil	Nil
3	2020-21	Nil	Nil
4	2021-22	Nil	Nil
5	2022-23(As on 30.06.2022)	Nil	Nil

2.2.1.2: Airborne Geophysical Survey: Nil.

					La	titude	Lon	gitude
SI. No.	Type of Survey	Spacing (m)	Total line (km)	Area Covered (Ha/km²)	То	From	То	From
	Nil.							

2.2.1.3: Ground Geophysical Survey: Nil

					La	atitude	Lo	ngitude		
Sl. No.	Type of Survey	Spacing (m)	Total line (km)	Area Covered (Ha/km2)	То	From	То	From		
	NIL.									

2.2.1.4: Geochemical Survey: Nil.

				Area Covered				
SI. No.	Type of Sample	No of Samples	Analysisreport	(Ha/km²)				
	Nil.							

2.2.1.5: Pitting: Nil.

	-
Number of pits *	Nil.

2.2.1.6: Trenching: Nil.

SI. No.	Year	Pit ID	Length of Pit (m)	Width of Pit (m)	Depth of Pit (m)	Depth (from)	Depth(to)	Running meters	Litho units exposed	Name of the radical	Av. Grade (in %)	Latitude	Longitue
							Nil.						
	No. of trenches				Nil	Nil.							
221													

2.2.1.6.1: Spacing: NA

			Min (m) Max (m) A			Avg (n	า)								
									Nil.						
SI. No.	Year	Trench ID	Length of Trench (m)	Width of Trench (m)	Depth of Trench (m)	Depth(from)	Depth(to)	Running meters	Litho units exposed	Name of the radical	Av.grade	Latitude(fro m)	Longitude (from)	Latitude(to)	Longitude (to)
	Nil.														

2.2.1.7 Exploratory Drilling (Core/non-Core): Nil

			Core holes		Non-core (RC/DTH)		Grand total		Attach sheet of	log
SI. No	Year	Exploration agency	Number of boreholes drilled	Total meter	Number of boreholes drilled	Total mteres	Total boreholes	Total meters	borehole csv/excel format.	in
	Nil.									

2.2.1.8: Exploratory Mining: Nil.

Sl. No.	Pit/Adit ID	Length in Mtr	Width in Mtr	Depth in mtrs	Volume (m³)
		NII.			

2.2.1.9: Sampling:

		Number	Number of	Loca					
SI. No.	Type of Sample	of Samples Collected	samples analyzed	Latitude	Longitude	Remarks if any			
	Nil.								

2.2.1.10: Chemical Analysis:

SI. No.	Sample ID	Minerals	Radical with grade in %	Name of Agency	Type of agency	Attachment
			Nil.			

2.2.1.11: Petrology & Mineralogical Studies: Nil.

Sl. No.	Type of	Number of	Number of	Petrographic Study				
51. INU.	Sample	Sample Drawn	Sample Analyzed	Report				
	Nil							

2.2.1.12: Beneficiation Studies: Not Applicable.

Sl. No.	Type of Beneficiation	Number of Samples	Attach
		Nil.	

2.2.1.13: Bulk Density Study as per M (EMC) Rules, 2016 and SOP of CGPB:

Method adopted for calculating bulk density of ore and waste:

The bulk Density has been determined by M/s SUPCO India (Pvt). Ltd., a NABL accredited laboratory.

1. Scope:

The international standard specifies two methods of determining the bulk density of Iron ore.

Method 1 is applicable to natural Iron ore and processed Iron ore having a nominal size of -100micron. to 150 micron.

Method 2 is applicable to a natural Ironore and processed ores, regardless of size.

2. Principle:

A test is introduced into a container of known volume until surface is level. The bulk density calculated as the ratio of the sample to the internal volume of the container.

Note 1 Constant mass is achieved when the difference in mass between two subsequent measurements become less than 0.05% of the initial mass the test sample.

In the case of method 2, the test sample shall have a minimum mass of 35 tonnes, the recommended mass being 50 tonnes.

Note 2 A test sample of mass 35 tonnes has a volume of approximately 14 m³ to 23.6 m³, according to the material.

3. Apparatus:

General: The test apparatus shall comprise

- a) Ordinary laboratory equipment, such as hand tools and safety equipment.
- b) Small container,
- c) Large container, and
- d) A weighing device.

Method 1:

Small container, made of metal, cylindrical in form, and having an internal diameter of 400 mm ±2mm and an internal height of 400 mm ± 2mm (inner volume: approximately 0.05 m3). The container wall and bottom shall have sufficient thickness to ensure their rigidity during the test. The container shall be reinforced by a steel band around the outside periphery at the top, and shall have two handles, 1800 apart, attached to the outer surface by welding. A carriage or other suitable device may be provided to facilitate its transportation within the laboratory. The volume of the container shall be determined with a precision of 0, 1 using potable water of known density.

Weighing device, capable of weighing the test sample and test portions and having a sensitivity of 1/1000 or better.

Method: 2:

Large container, such as truck or railway wagon, of regular geometrical shape, with smooth inner surface of the walls and bottom, and in good general condition, the container shall have sufficient capacity to hold. When filled, a minimum of 10 t of test shall be 10 times the maximum particle size of the test portion.

Weighing device, preferably of platform type, capable of weighing the mass to be determined to a sensitivity of 1/200

Density determination

Method 1 – Small container:

Weigh the dried container and record the mass (mO) to the nearest 0.2 kg.

Fill the container with the sample of as-received, air dried material, using a proper shovel. Empty the shovel from a height not exceeding 50 mm above the surface of the material in the container. Fill the container carefully, in order to prevent evident segregation.

After filling the container to over flowing, draw a straight-edge across the top of the container to make the heaped surface level.

Transfer the filled container to the weighing device without loss of sample from the container, weigh the filled container and record the mass (m1) to the nearest 0.2 kg.

Method 2 – Large containers:

Measure the length, width and height of the container with a precision of ± 0.5 % and then calculate and record its volume (V). Weigh the empty container and record the mass (mO).

With the container on a level surface, discharge the sample into it manually or by mechanical means, taking care to avoid breakages or segregation of particles. Level off the upper surface across the top of the container, verifying by visual inspection and removing or pushing down any particles which would appear to obstruct the passage of a straight-edge if it were pulled across the top of the container.

Weigh the filled container and record the mass (m1).

Expression of Result

Calculation of the bulk density (Pap)

The bulk density, (Pap), expressed in kg/m³, is calculated from the following formula:

(Pap) = -----

V

Where

mO is the mass, in kilograms, of the empty container;

m1 is the mass, in kilograms, of the container plus sample;

V is the volume, in cubic meters, of the container.

The bulk density of the individual ore types as given below were taken as the in-situ densities of the respective ore type. It has been derived from the exploration report of Rantha Iron Ore Mines.

Average Bulk Density of Different Ore Types

SI. No.	Nature of Ore/OB	Mineral	Number of samples	Bulk Density Established (t/m ³)
01		Ore (Fe > 55%)	1	3.00
02	Iron Ore (Hematite)	Mineral Reject/Subgrade (Fe between 45 – 55 %)	1	2.7

Copy of report of bulk density test carried out by Mitra S.K, a NABL accredited lab is enclosed as Annexure 26.

2.2.1.14: Area Covered under Exploration:

Level of	Area i	n Ha	Total
exploration	Forest	Non-	area in
exploration	Forest	forest	Ha.
G-1	39.632	0	39.362
G-2	165.724	0	165.724
G-3	0	0	0
G-4	63.484	0	63.484
Area proved as Non- mineralized	20	0	20.00
Area to be explored	0	0	0
Total	268.84	0	268.84

2.2.2: Summary of the Previous Exploration (Before Last Plan Period):

- (A) M/s Mining Associates Pvt. Limited (MAPL),
 - Atwal Nagar, S.B. Gorai Road,
 - Asansol 713-301 West Bengal.
- (iii)E mail addresses and phone no.
 - M/s Mining Associates Pvt. Limited (MAPL) -
 - Phone (0341) 2220757, 2220758, 2205765

2.2.2.1: Geological Mapping:

Sl. No.	Year	Scale	Area Covered (ha)
01.	Prior to 2018-19	1: 4000	268.84

2.2.2.2: Airborne Geophysical Survey: Not Applicable.

SI.	Type of	Spacing	Total line	Area Covered	Latitude	Longitudo				
No.	Survey	(m)	(km)	(ha)	Latitude	Longitude				
	Not Applicable.									

2.2.2.3: Ground Geophysical Survey: Not Applicable.

Sl. No.	Type of Survey	Spacing (m)	Total line Area (km) Covered (h		Latitude	Longitude
		No	t Applicable.			

2.2.2.4: Geochemical Survey: Not Applicable.

Sl. No.	Type of Sample	No of Samples
	Not Applicable.	

2.2.2.5: Pitting:

SI. No.	Pit ID	Length of Pit (m)	Width of Pit (m)	Depth of Pit (m)	Litho Unit Expose d	Litho Unit From (m)	Litho Unit To (m)	Average Grade	Running Meters (m)	Latitude	Longi tude
					N	ot Applic	ahle				

2.2.2.6: Trenching:

		Spacing		
Number of Trenches	Min (m) Max (m) Avg (m			
Ν	ot Applicable.			

Area Covered Under Trenching:

Co-ordinates:

Latitude	Longitude
Not Ap	oplicable.

SI. No.	Trench ID	Length of Trench (m)	Width of Trench (m)	Depth of Trench (m)	Litho Unit Exposed	Average Grade (%)	Running Meters (m)	From Longitude	From Latitude	To Latitude	To Longitude
		Not Applicable.									

2.2.2.7: Exploratory Drilling:

2.2.2.7.1:Core/Non-core Drilling:

			Core	holes	Non-core	(RC/DTH)	Grand total	
SI. No	Year	Exploration agency	Number of Core boreholes drilled	Total meter	Number of DTH boreholes drilled	Total mtrs	Total boreholes	Attach log sheet of each borehole in csv/excel format.
1	2007- 08	(i)M/s Mining Associates Pvt. Limited (MAPL), Atwal Nagar, S.B.	26	1003.55	Nil	Nil	26	Bore Hole Log sheet of collar, survey,
2	2009-	Gorai Road,	29	852.85	Nil	Nil	29	assay and

	•	Progressive Mine Closure Plan to 2027-28)
NEW OPPORTUNITIES	Rantha Iron Ore Mine	Odisha Mining Corporation Ltd

	10	Asansol - 713301						geology files are
3	2010- 11	West Bengal.	22	630.55	Nil	Nil	22	Attached
	Grand Total		77	2486.95	Nil	Nil	77	Annexure- 23.

The details of all the bore holes explored at Rantha Iron Ore Mines as on 30.06.2022 have been attached in Annexure-23.

2.2.2.8: Exploratory Mining: Not Applicable.

SI. No.	Pit ID	Volume (m ³)			
Not Applicable.					

2.2.2.9: Sampling:

SI. No.	Type of Sample	Number of Samples	Area Covered (ha)	Latitude	Longitude	Remarks
1	Drill core	31	1	2407888.014	308366.794	
2	Drill core	44	1	2407988.049	308366.806	
3	Drill core	36	1	2408088.049	308266.806	
4	Drill core	31	1	2408088.014	308166.793	
5	Drill core	38	1	2407885.137	308266.806	
6	Drill core	18	1	2407988.049	308266.806	
7	Drill core	41	1	2407788.014	308364.708	
8	Drill core	42	1	2407988.049	308166.806	
9	Drill core	21	1	2407888.014	308166.794	
10	Drill core	15	1	2407788.014	308266.794	
11	Drill core	31	1	2407685.809	308362.699	
12	Drill core	30	1	2407688.014	308466.794	
13	Drill core	25	1	2407788.014	308466.794	
14	Drill core	42	1	2407688.05	308569.911	
15	Drill core	25	1	2407588.049	308466.806	
16	Drill core	21	1	2407588.049	308366.794	
17	Drill core	56	1	2407588.014	308566.876	
18	Drill core	35	1	2407488.014	308466.794	
19	Drill core	32	1	2407508.176	308366.794	
20	Drill core	49	1	2407588.015	308666.794	
21	Drill core	49	1	2407488.014	308562.107	
22	Drill core	47	1	2407488.015	308664.823	
23	Drill core	39	1	2407688.015	308666.794	
24	Drill core	64	1	2407888.049	308466.806	
25	Drill core	44	1	2407988.049	308468.451	
26	Drill core	22	1	2407788.05	308555.806	
27	Drill core	29	1	2407866.373	307768.947	
28	Drill core	40	1	2407670.049	307772.794	
29	Drill core	38	1	2407677.013	307579.794	
30	Drill core	47	1	2407466.571	307537.528	

SI. No.	Type of Sample	Number of Samples	Area Covered (ha)	Latitude	Longitude	Remarks
31	Drill core	40	1	2407868.746	307560.646	
32	Drill core	37	1	2407388.049	307928.807	
33	Drill core		1	2407278.618	307528.274	
34	Drill core	22	1	2407233.049	307724.807	
35	Drill core	19	1	2407426.049	307737.807	
36	Drill core	13	1	2407286.704	307967.804	
37	Drill core	24	1	2407088.013	307366.815	
38	Drill core	13	1	2407905.727	307409.648	
39	Drill core	17	4	2407262.199	307348.815	
40	Drill core	20	4	2407288.049	308166.807	
41	Drill core	36	4	2407700.049	308168.806	
42	Drill core	19	4	2407088.013	307566.795	
43	Drill core	11	4	2407088.013	307767.199	
44	Drill core	26	4	2407088.014	307966.795	
45	Drill core	54	4	2407343.165	308128.802	
46	Drill core	14	4	2407088.014	308166.795	
47	Drill core	20	4	2407288.174	308367.664	
48	Drill core	14	4	2407502.013	307335.794	
49	Drill core	15	4	2407869.122	308072.485	
50	Drill core	16	4	2407088.014	308366.795	
51	Drill core	24	4	2407088.014	308550.705	
52	Drill core	29	4	2407288.014	308566.849	
53	Drill core	8	4	2407670.266	307377.881	
54	Drill core	12	4	2407765.014	308088.794	
55	Drill core	36	4	2407291.343	308717.016	
56	Drill core	23	4	2406888.049	308366.807	
57	Drill core	8	4	2407976.049	308065.806	
58	Drill core	40	4	2406888.014	308550.686	
59	Drill core	40	4	2407883.049	307968.806	
60	Drill core	51	4	2407891.05	308565.806	
61	Drill core	43	4	2407783.487	308658.096	
62	Drill core	14	4	2406888.014	308166.795	
63	Drill core	43	4	2407888.05	308666.806	
64	Drill core	6	4	2408251.014	307998.793	
65	Drill core	44	4	2406709.937	308369.171	
66	Drill core	22	4	2406888.049	307966.807	
67	Drill core	6	4	2408306.014	308399.793	
68	Drill core	42	4	2408401.143	308183.914	
69	Drill core	10	4	2408230.049	307798.806	
70	Drill core	3	4	2408089.05	308576.806	
71	Drill core	12	4	2408485.049	307964.805	
72	Drill core	5	4	2408495.049	308355.805	
73	Drill core	11	4	2408090.049	308471.806	

Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine Odisha Mining Corporation Ltd

SI. No.	Type of	Number of	Area	Latitude	Longitude	Remarks
	Sample	Samples	Covered			
			(ha)			
74	Drill core	12	4	2406708.362	308164.088	
75	Drill core	17	4	2408498.049	308141.805	
76	Drill core	28	4	2408106.143	308384.718	
77	Drill core	16	4	2407988.014	308574.766	

2.2.2.10: Chemical Analysis:

SI. No.	Sample ID	Minerals	Radical Analysis	("Fe" range in %)
1	RNT01/1 to 31	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 50.68	to 63.62
			SIO ₂ : 0.37 to 7.73	Al2O3: 3.07 to 16
			P: 0.031 to 0.059	S: 0.029 to
			0.0	05
2	RNT02/1 to 44	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 21.78	s to 64.58
			SIO₂: 0.2 to 60.21	Al2O3: 1 to 14.9
			P: 0.025 to 0.059	S: 0.025 to
			0.0)59
3	RNT03/1 to 36	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 30.37	' to 63.56
			SIO₂: 1.88 to 44.88	Al2O3: 2 to 27.01
			P: 0.029 to 0.089	S: 0.027 to
			0.0)65
4	RNT04/1 to 31	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 30.4	to 60.73
			SIO ₂ : 1.29 to 50.6	Al2O3: 3.5 to 21.5
			P: 0.031 to 0.53	S: 0.029 to
			0.0)48
5	RNT05/1 to 38	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 46.95	to 64.53
			SIO ₂ : 0.4 to 19.97	Al2O3: 1.6 to 44.4
			P: 0.022 to 0.048	S: 0.029 to
)47
6	RNT06/1 to 18	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S		to 64.68
			SIO ₂ : 1.08 to 47.26	Al2O3: 2.4 to 11.2
			P: 0.036 to 0.048	S: 0.029 to
			0.048	
7	RNT07/1 to 41	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S		to 63.36
			SIO ₂ : 1.05 to 33.71	Al2O3: 1.55 to 15
			P: 0.029 to 0.138	S: 0.022 to
)42
8	RNT08/1 to 42	Fe ,SiO ₂ , Al ₂ O ₃ ,P,S		to 62.56
			SIO ₂ : 2.24 to 35.88	Al2O3: 2.6 to 21.9
			P: 0.031 to 0.045	S: 0.027 to
)48
9	RNT09/1 to 21	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S		9 to 61.8
			SIO ₂ : 3.87 to 22.6	Al2O3: 3.6 to 25.7
			P: 0.029 to 0.048	S: 0.023 to
10			0.0	
10	RNT10/1 to 15	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S		O ₂ : 1.28 to 48.64
			Al2O3:4 to 17	P: 0.03 to 0.047

Sl. No.	Sample ID	Minerals	Radical Analysi	s ("Fe" range in %)
			S: 0.02	27 to 0.05
11	RNT11/1 to 31	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S		48 to 61.59
			SIO ₂ : 1.52 to 38.79	Al2O3: 4 to 19.1
			P: 0.029 to 0.045	S: 0.024 to
			0	.048
12	RNT12/1 to 30	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 26.0	08 to 62.43
			SIO₂: 0.57 to 53.84	Al2O3: 1.8 to 27
			P: 0.028 to 0.046	S: 0.027 to
			0	0.042
13	RNT13/1 to 25	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 37.2	28 to 62.34
				Al2O3: 2.33 to
			22.3	
				15 to 0.025
14	RNT14/1 to 42	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S		56 to 65.42
14	KN114/1 (0 42	Fe, 5102, Al203, F, 5	SIO ₂ : 1.08 to 13.06	Al2O3: 2.64 to
				P: 0.045 to 0.05
			24.84	
4.5				8 to 0.028
15	RNT15/1 to 25	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S		08 to 61.71
			_	Al2O3: 1.23 to
			19.81	P: 0.046 to 0.05
			S: 0.016 to 0.025	
16	RNT16/1 to 21	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 42.72 to 61.32	
			SIO₂: 3.32 to 13.78	Al2O3: 3.14 to
			17.65	P: 0.046 to 0.049
			S: 0.016 to 0.021	
17	RNT17/1 to 56	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 16.81 to 66.23	
			SIO ₂ : 1.28 to 27.66	Al2O3: 0.17 to
			34.63	P: 0.046 to 0.058
			S: 0.01	6 to 0.029
18	RNT18/1 to 35	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 31.03 to 67.25	
			SIO ₂ : 0.5 to 42.77	Al2O3: 2.1 to 14.4
			P: 0.031 to 0.048	S: 0.031 to 0.049
19	RNT19/1 to 32	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 36.2	16 to 58.05
		, _,, ,	SIO ₂ : 8 to 20	Al2O3: 4 to 10
			P: 0.035 to 0.045	S: 0.01 to 0.014
20	RNT20/1 to 49	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S		22 to 64.31
20			SIO ₂ : 3. to 18	Al2O3: 2.5 to 7.5
			P: 0.033 to 0.043	S: 0.004 to 0.014
21	RNT21/1 to 49	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S		26 to 67.55
21	111121/1 (0 45		SIO ₂ : 0.55 to 67.3	Al2O3: 0.69 to
			19.34	P: 0.027 to 0.054
22	RNT22/1 to 47		S: 0.006 to 0.034 Fe:31.52 to 29.44	
22	RIVI 22/1 LU 47	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S		
			SIO ₂ : 0.3 to 24	Al2O3: 0.041 to 20.75
			P: 0.041 to 20.75	S: 0.007 to 0.0.034
23	RNT23/1 to 39	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S		58 to 65.06
			SIO ₂ : 1 to 40.5	Al2O3: 2.33 to 26.45
			P: 0.037 to 0.54	S: 0.007 to 0.34

SI. No.	Sample ID	Minerals	Radical Analysis ("Fe" range in %)	
24	RNT24/1 to 64	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 64.39 to 66.29	
			SIO ₂ : 0.51 yo 27.6 Al2O 1.83 to 14.2	
			P: 0.029 to 0.054 S:0.004 to 0.034	
25	RNT25/1 to 44	Fe ,SiO ₂ ,Al ₂ O ₃ ,P	Fe: 25.88 to 66.93	
		, , , , , ,	SIO ₂ :1 to 15.06 Al2O31.09 to 23.2	
			P: 0.045 to 0.05	
26	RNT26/1 to 44	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 34.25 to 66.93	
	····· ································		SIO ₂ : 1 to 10.2 Al2O3: 1.09 to 25.3	
			P: 0.045 to 0.05 S: 0.013 to 0.05	
27	RNT27/1 to 29	Fe ,SiO ₂ ,Al ₂ O ₃ ,P,S	Fe: 29.72 to 64.22	
27	11112//1025		SIO ₂ : 2.81 to 46.99 Al2O3:2.3 to 12.6	
28	RNT28/1 to 40	Fe ,SiO ₂ ,Al ₂ O ₃	Fe:4.96 to 60.08	
20	111120/110 40	10,502,71203	SIO ₂ :2.58 to 55.56	
			Al2O3: 1.95 to 38.99	
20	DNT20/1 to 29			
29	RNT29/1 to 38	Fe ,SiO₂,Al₂O₃	Fe: 15.2 to 58.02	
			SIO₂: 3.92 to 20.21 AI2O3: 0.34 to 59.7	
20	DNT22 /4 ++ 47			
30	RNT32/1 to 47	Fe ,SiO₂,Al₂O₃	Fe: 25.52 to 67.97	
			SIO ₂ : 1.3 to 46.48	
- 21			Al2O3: 0.26 to 26.79	
31	RNT33/1 to 40	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 4.79 to 67.52	
			SIO₂: 0.63 to 47.52	
			Al2O3: 0.66 to 30.95	
32	RNT35/1 to 37	Fe ,SiO₂,Al₂O₃	Fe: 13.47 to 51.46	
			SIO₂: 9.18 to 59.45	
			Al2O3: 0.3 to 29.65	
33	RNT37/1 to 2	Fe ,SiO₂,Al₂O₃	NA	
34	RNT41/1 to 22	Fe ,SiO₂,Al₂O₃	Fe: 26.1 to 65.25	
			SIO ₂ : 2.08 to 55.84	
			Al2O3:1.86 to 17.7	
35	RNT42/1 to 19	Fe ,SiO₂,Al₂O₃	Fe: 28.37 to 54.24	
			SIO ₂ : 2.76 to 48.88	
			Al2O3: 2.16 to 17.21	
36	RNT44/1 to 13	Fe ,SiO₂,Al₂O₃	Fe: 27.34 to 57.41	
	,	, _,	SIO ₂ : 5.08 to 0.56	
			Al2O3: 1.19 to 24.94	
37	RNT45/1 to 25	Fe ,SiO₂	Fe: 31.3 to 49.72	
			SIO ₂ : 8.97 to 44.51	
38	RNT46/1 to 12	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 42.57 to 47.29	
		. = ,0.02,, 1203	SIO ₂ : 7.94 to 14.61	
			Al2O3: 10.03 to 14.76	
39	RNT47/1 to 17	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 29.17 to 56.59	
			SIO ₂ : 11.38 to 54.64	
			Al2O3: 1.31 to 11.81	
40	RNT49/1 to 21	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 32.5 to 65.95	
40	NN 143/1 LU 21	1 C ,SIU2,AI2U3	SIO ₂ : 1.32 to 46.9	
A1	DNITE1 /1 +- 20		Al2O3: 1.82 to 18.85	
41	RNT51/1 to 38	Fe ,SiO₂,Al₂O₃	Fe: 45.25 to 57.72	
			SIO ₂ :4.23 17.75	

Sl. No.	Sample ID	Minerals	Radical Analysis ("Fe" range in %)
			Al2O3: 9.96 to 15.33
42	RNT52/1 to 20	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 37 to 62.84
			SIO ₂ : 3.48 to 13.69
			Al2O3: 4.18 to 24.14
43	RNT54/1 to 11	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 35.66 to 51.99
	- ,	- / 2/ 2 - 5	SIO ₂ : 9.86 to 47.7
			Al2O3: 0.36 to 11.1
44	RNT56/1 to 17	Fe ,SiO ₂ ,Al ₂ O ₃	Fe:47 to 28 to 59.66
			SIO ₂ : 6.39 to 22.82
			Al2O3: 3.04 to 11.21
45	RNT57/1 to 30	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 46.51 to 65.19
75		10,5102,71203	SIO ₂ : 0.52 to 19.15
			Al2O3: 2.26 to 12.92
46	RNT58/1 to 15	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 51.14 to 66.88
40	KN130/1 (U 13	Fe, 3102, A1203	
			SIO ₂ : 2.28 to 15.83 Al2O3: 0.49 to 12.73
47			
47	RNT59/1 to 20	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 46.36 to 66.07
			SIO ₂ : 0.79 to 10.85
10			Al2O3: 2.07 to 18.32
48	RNT60/1 to 15	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 7.26 to 37.48
			SIO ₂ :16.67 to 39.8
			Al2O3: 15.9 to 30.84
49	RNT61/1 to 15	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 28.66 to 54.06
			SIO ₂ : 9.32 to 54.86
			Al2O3:0.86 to 12.91
50	RNT63/1 to 17	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 46.51 to 64.78
			SIO ₂ : 1.35 to 12
			Al2O3: 2.15 to 12.32
51	RNT64/1 to 18	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 39.86 to 52.26
			SIO ₂ :7.74 to 28.04
			Al2O3: 2.67 to 14.27
52	RNT65/1 to 30	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 49 to 67.04
			SIO ₂ : 0.89 to 10.75
			Al2O3:1.06 to 14.14
53	RNT66/1 to 10	Fe ,SiO₂,Al₂O₃	Fe:24.58 to 33.88
			SIO ₂ : 5.87 to 17.56
			Al2O3: 18.69 to 39.45
54	RNT68/1 to 12	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 35.34 to 51.57
			SIO ₂ : 10.06 to 45.83
			Al2O3: 1.83 to 16.28
55	RNT69/1 to 19	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 46.77 to 64.56
			SIO ₂ : 1.6 to 7.15
			Al2O3: 2.32 to 14.41
56	RNT70/1 to 25	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 34.11 to 59.88
	-,	- ,,	SIO ₂ : 6.07 to 35.7
			Al2O3: 0.61 to 25.51
57	RNT71/1 to 8	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 32.01 to 62.85
57			SIO ₂ : 3.48 to 49.69
			Al2O3: 0.69 to 9.36

SI. No.	Sample ID	Minerals	Radical Analysis ("Fe" range in %)
58	RNT72/1 to 41	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 44.12 to 56.91
			SIO ₂ : 3.24 to 12.75
			Al2O3: 5.02 to 13.54
59	RNT74/1 to 24	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 41.98 to 62.9
			SIO ₂ : 2.38 to 17
			Al2O3: 2.2 to 17.25
60	RNT75/1 to 36	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 19.94 to 65.08
			SIO ₂ : 2 to 28.6
			Al2O3: 1.35 to 22.11
61	RNT76/1 to 43	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 33.02 to 64.55
		, _,	SIO ₂ : 1.77 to 45.35
			Al2O3: 0.35 to 14.23
62	RNT77/1 to 14	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 32.58 to 52.98
-			SIO ₂ : 5.91 to 47.76
			Al2O3: 2.8 to 12.83
63	RNT78/1 to 44	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 38.19 to 63.14
00			SIO ₂ : 0.8 to 15.8
			Al2O3: 1.22 to 17.32
64	RNT79/1 to 6	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 25.8 to 38.52
01			SIO ₂ : 23.94 to 53.7
			Al2O3: 1.92 to 14.88
65	RNT80/1 to 45	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 46.32 to 67.64
0.5	111100/110 45	1 C , 5102, A1203	SIO ₂ : 0.67 to 9.65
			Al2O3: 0.5 to 14.26
66	RNT81/1 to 22	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 29.82 to 61.61
00	KN101/1 (0 22	1 C , 3102, A1203	SIO ₂ : 1.43 to 52.49
			Al2O3: 2.97 to 13.51
67	RNT82/1 to 11	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 38.54 to 42.27
07	KN102/1 (0 11	1 C , 3102, A1203	SIO ₂ : 11.53 to 21.77
			Al2O3: 11.68 to 19.95
68	RNT83/1 to 42	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 24.63 to 66.23
08	11103/11042	1 C , 3102, A1203	SIO ₂ : 0.96 to 55.92
			Al2O3: 0.92 to 42.17
69	RNT84/1 to 16	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 27.88 to 41.35
09	KN104/1 (0 10	Fe, 3102, A1203	SIO ₂ : 13.8 to 21.7
			Al2O3: 11.67 to 24.64
70	RNT85/1 to 3		Fe: 34.28 to 52.96
70	KN185/1103	Fe ,SiO ₂ ,Al ₂ O ₃	
			SIO ₂ : 4.92 to 41.9
71			Al2O3: 2.2 to 13.49
71	RNT86/1 to 15	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 13.72 to 48.47
			SIO ₂ : 0.32 to 26.06
72			Al2O3: 19.41 to 41.7
72	RNT88/1 to 5	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 25.74 to 40.77
			SIO ₂ : 18.01 to 53.4
			Al2O3: 1.94 to 16.63
73	RNT89/1 to 11	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 25.27 to 50.88
			SIO ₂ : 8.64 to 53.72
			Al2O3: 4.03 to 25.19
74	RNT91/1 to 12	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 30.01 to 55.3

Sl. No.	Sample ID	Minerals	Radical Analysis ("Fe" range in %)
			SIO ₂ : 3.74 to 47.75
			Al2O3: 0.77 to 23.28
75	RNT92/1 to 17	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 16.02 to 47.24
			SIO ₂ : 1.01 to 50.81
			Al2O3: 2.76 to 38.11
76	RNT93/1 to 28	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 33.09 to 63
			SIO ₂ : 4.13 to 47.65
			Al2O3: 1 to 17.77
77	RNT96/1 to 9	Fe ,SiO ₂ ,Al ₂ O ₃	Fe: 47.18 to 52.39
			SIO ₂ : 3.15 to 9
			Al2O3: 6.94 to 14.35

Chemical analysis report from NABL accredited Lab of bore holes are attached in Annexure-24.

2.2.2.11: Petrology & Mineralogical Studies: NIL

Sl. No.	Type of Sample	Number of Sample Drawn	Number of Sample Analyzed	Petrographic Study Report	
NIL					

2.2.2.12: Beneficiation Test: Not Applicable.

Sl. No.	Type of Beneficiation	Number of Samples			
Not Applicable.					

2.2.2.13: Bulk Density:

Method adopted for calculating bulk density of ore and waste:

The bulk Density has been determined by M/s Mitra SK (Pvt). Ltd., a NABL accredited laboratory.

1. Scope:

The international standard specifies two methods of determining the bulk density of Iron ore.

Method 1 is applicable to natural Iron ore and processed Iron ore having a nominal size of -100micron. to 150 micron. Method 2 is applicable to a natural Iron ore and processed ores, regardless of size.

2. Principle:

A test is introduced into a container of known volume until surface is level. The bulk density calculated as the ratio of the sample to the internal volume of the container.

Note 1 Constant mass is achieved when the difference in mass between two subsequent measurements become less than 0.05% of the initial mass the test sample.

In the case of method 2, the test sample shall have a minimum mass of 35 tonnes, the recommended mass being 50 tonnes.

Note 2 A test sample of mass 35 tonnes has a volume of approximately 14 m³ to 23.6 m³, according to the material.

3. Apparatus:

General: The test apparatus shall comprise

a) Ordinary laboratory equipment, such as hand tools and safety equipment.

b) Small container,

c) Large container, and

d) A weighing device.

Method 1:

Small container, made of metal, cylindrical in form, and having an internal diameter of 400 mm ±2mm and an internal height of 400 mm ± 2mm (inner volume: approximately 0.05 m3). The container wall and bottom shall have sufficient thickness to ensure their rigidity during the test. The container shall be reinforced by a steel band around the outside periphery at the top, and shall have two handles, 1800 apart, attached to the outer surface by welding. A carriage or other suitable device may be provided to facilitate its transportation within the laboratory. The volume of the container shall be determined with a precision of 0, 1 using potable water of known density.

Weighing device, capable of weighing the test sample and test portions and having a sensitivity of 1/1000 or better. Method: 2:

Large container, such as truck or railway wagon, of regular geometrical shape, with smooth inner surface of the walls and bottom, and in good general condition, the container shall have sufficient capacity to hold. When filled, a minimum of 10 t of test shall be 10 times the maximum particle size of the test portion.

Weighing device, preferably of platform type, capable of weighing the mass to be determined to a sensitivity of 1/200 Density determination

Method 1 – Small container:

Weigh the dried container and record the mass (mO) to the nearest 0.2 kg.

Fill the container with the sample of as-received, air dried material, using a proper shovel. Empty the shovel from a height not exceeding 50 mm above the surface of the material in the container. Fill the container carefully, in order to prevent evident segregation.

After filling the container to over flowing, draw a straight-edge across the top of the container to make the heaped surface level.

Transfer the filled container to the weighing device without loss of sample from the container, weigh the filled container and record the mass (m1) to the nearest 0.2 kg.

Method 2 – Large containers:

Measure the length, width and height of the container with a precision of ±0.5 % and then calculate and record its volume (V). Weigh the empty container and record the mass (mO).

With the container on a level surface, discharge the sample into it manually or by mechanical means, taking care to avoid breakages or segregation of particles. Level off the upper surface across the top of the container, verifying by visual inspection and removing or pushing down any particles which would appear to obstruct the passage of a straight-edge if it were pulled across the top of the container.

Weigh the filled container and record the mass (m1).

Expression of Result

Calculation of the bulk density (Pap)

The bulk density, (Pap), expressed in kg/m^3 , is calculated from the following formula:

m1 - m0 (Pap) = V

Where

mO is the mass, in kilograms, of the empty container;

- m1 is the mass, in kilograms, of the container plus sample;
- V is the volume, in cubic meters, of the container.

The bulk density of the individual ore types as given below were taken as the in-situ densities of the respective ore type. It has been derived from the exploration report of Rantha Iron Ore Mines.

Average Bulk Density of Different Ore Types

SI. No.	Nature of Ore/OB	Mineral	Number of samples	Bulk Density Established (t/m³)
01	Iron Ore	Ore (Fe > 55%)	1	3.00
02	(Hematite)	Mineral Reject/Subgrade (Fe between 45 – 55 %)	3	2.70

Copy of report of bulk density test carried out by Mitra S.K, a NABL accredited lab is enclosed as Annexure 26.

2.2.2.14: Area Covered under Exploration:

As per the approved Mod. Of Mining Plan vide letter no. MPM/FM/06-ORI/BHU/2019-20, dtd.01.10.2019 the details are given below;

G1 (Ha)	39.632
G 2 (Ha)	165.724
G3 (Ha)	0.00
G4 (Ha)	63.484
G1+G2+G3+G4 (Ha)	268.84

Since the mine has not been working from the approval of the earlier mining plan, so, no exploration work has been carried out during approved period, so the explored area as per approved Mining Plan.

Year	Area converted to G1 from G2, G3 & G4	% increase in G-1 Area	Remaining Area % in G2	Remaining Area % in G3	Remaining Area % in G4	Remaining Area in G2	Remaining Area in G3	Remaining Area in G4
2017	39.632	Nil	61.64	Nil	23.61	165.724	Nil	63.484

2.2.3: Ore Body Geometry & Grade:

Sl.No.	Name of the ore	General Strike /	Dip Of Mineral	Averag e Strike Length (m)	ke Width th (m)	Name of the radical				
	band	Trend	Body			Average Depth (m)	Name of the radical	Min Grade (Fe %)	Max Grade (Fe %)	Avg. Grade (Fe %)
01.	Iron Ore	N200 W to N 150E	200 to 600 E and West	1600	60	30	Fe	47.51	64.76	55.8

2.2.4: Reserve / Resource Estimation Method:

2.2.4.1: Methodology:

Resource / Reserve Estimation Method	Sectional Method		
Resource / Reserve Estimation Method	Software Used (SURPAC&AUTOCAD)		

Geological Resource as on 02.06.2019

Reserve/ resources	Туре	UNFC Code	Iron Ore Quantity (Mt)	Grade
Reserves	Proved	111		
		121	19.176 (+55% Fe)	59.5% Fe
	Probable	121	13.586 (+45-55% Fe)	50.3% Fe
	Probable	122	28.635 (+55% Fe)	59.5% Fe
		122	26.790 (+45-55% Fe)	50.3% Fe
Sub-Total (a)			88.187	
Remaining	Feasibility	211		
resources	Pre-feasibility	221		
		222	0.964 (+55% Fe)	59.5% Fe
			0.990 (+45-55% Fe)	50.3% Fe
	Measured	331		
	Indicated	332		
	Inferred	333		
	Reconnaissance	334		
Sub-Total (b)			1.954	
Total (a + b)			90.141	

Re-estimation has been carried out considering Mineral (Evidence & Content) Rule'2015. The details are given below.

Methodology:

Keeping in view the re-draw of geological plan & sections based on the outcomes of 77 boreholes, mineral resources has been re-estimated in the Review of Mining plan considering Mineral (Evidence & Content)Rule' 2015. As per Minerals (Evidence of Mineral Contents) Rule 2015, lateral extension of the mineral continuity shall be limited to a distance of 50% of the borehole spacing & depth continuity of G1 & detailed G2 category mineral resource shall be limited up to the depth of evidence of established mineral evidence. Accordingly, geological cross-sections have been modified & re-assessment of the balance geological & balance mineable reserve has been carried out considering above factors. A fresh estimate has been made on the basis of all the boreholes drilled till date using state of the art

mining software i.e. 'SURPAC' at 45% Fe cut off and the resources/ reserves figures have been established as per the guidelines of UNFC.

Parameters considered for estimation of Mineral Resources

- (a) The threshold value has been considered as per the IBM guidelines is 45% Fe.
- (b) The Cutoff grade considered for estimation of resource/reserve is 55 % Fe.
- (c) Updated pit position as on 30.06.2022.
- (d) Borehole collar, survey, assay & litho data from exploration.
- (e) Pit exposures data & Ultimate Pit.
- (f) The influence of the ore body has been taken @50 mtrs on either side of the grid along the strike of the bore hole drilled. No extrapolation of the ore section has been done beyond 50mtrs.
- (g) The depth continuity of mineralization has been considered limited to the depth up to which direct evidence of mineralization is established.
- (h) The lateral extension has been considered for resource assessment depending on geological continuity by mapping and has not been more than 50 mtrs of the probe point.
- (i) Entire data has been transferred to create a geological database in an ore body modeling software namely 'SURPAC'.
- (j) Bulk density of individual ore types & OB has been used as a tonnage conversion factor (TCF) in this document. The bulk density considered in this report has been taken from the exploration report of OMC & carried out by NABL accredited Laboratory. The copy of Bulk Density report by NABL Accredited laboratory is attached in Annexure-26.
- (k) The Recovery Factor of100 % for Saleable Ore (+55 % Fe) & Mineral Rejects (+45 % Fe to -55 % Fe) for assessment of Ore resource/reserve has been taken in to consideration. The copy of the recovery test report by NABL accredited laboratory has been attached at Annexure-28.
- (I) In total, 12 nos. of cross sections from 00E to 1200E have been prepared for estimations of resource.
- (m) Grid spacing 100m x 100m (max) bore holes on G1 category and 200m x 200m (max) bore holes on G2 category has been taken to calculate reserve as per MEMC Rule'2015.

Preparation of Database

Four basic files namely collar, survey, assay and litho files are required in Comma Separated Value (CSV) format for further processing by SURPAC Software. Ore type-wise litho codes used for database preparation is given below.

Ore Type-wise Litho Codes Used for Database Preparation

Litho Type	Litho code
Lateritic Iron Ore (LIO)	7A
Soft Laminated Ore (SLO) / Friable Ore	7C
Hard Laminated Ore (HLO)/Hard Massive Ore (HMO)	7B
Blue Dust (BD)/ Powdery Ore	7D
BHJ/ BHQ/ BMQ	9
Lateritic/ Ferg. Shale Ore (Mineral Rejects) (45 % to	4
55% Fe)	4
Waste (Shale, Soil Cover etc.)	5

Delineation of Ore Geometry and Construction of Ore Body

Preparation of Transverse Sections

Boreholes were displayed in SURPAC graphics window along with litho, Fe%, SiO₂% & Al₂O₃%. 12 nos. of transverse sections at 100 m & 200 m interval were extracted from 00E to 1200E .The envelopes of ore (Fe% >= 55%), Mineral Rejects (45%<=Fe%<55%) & Waste (Fe%<45%) were delineated at each section considering the continuity of mineralization, lithology and other geological features. Lateral extent of mineralization has been limited up to 50% of borehole spacing & vertical extent of mineralization has been limited up to the depth of evidence of established mineral evidence in the boreholes.

Preparation of Digital Terrain Model (DTM) of Surface Topography

The digitized contour of updated surface plan with Z values have been transformed into digital terrain model (DTM) utilizing the principle of triangulation and wire framing of points with X, Y and Z co-ordinates. Digital terrain model is the most effective way of representing a surface in three-dimensional computerized form. It is an important tool to calculate volume between two or more surfaces.

<u>3-D Solid Modeling of Ore Body</u>

The respective envelopes of ore lithology, Mineral Rejects & waste of the respective transverse cross sections have been connected/ joined to form respective solid ore body models. 3-D solid model of Rantha Iron Ore Mine

Block Modeling

The entire deposit is divided into no. of judiciously chosen sub-blocks for proper estimation of grade and quantity, keeping in view of the structural discontinuity of the deposit, extent etc. The estimated blocks in the block model has been used for optimum pit generation, mine planning and production scheduling.

<u>Selection of Block Size</u>

Considering the accuracy desired, borehole spacing and mining constraints, a unit block of 10 m x 10 m x 2.5 m has been selected for block wise grade estimation.

<u>Development of Block Model</u>

In order to cover the entire extent of Rantha Iron Ore Mine. Ore Mines in three dimensions, a dummy block model with unit block sizes as indicated above have been generated.

Addition of Attributes

Attributes are the properties of individual block such as Fe, SiO₂, Al₂O₃, specific gravity, litho code etc. These attributes were added in the dummy block model using suitable technique.

Application of Constraints

Constraints are the logical combination of spatial operators and objects such as DTM of surface contour, solid model of ore zone, block etc. with which the block model can be enveloped/ intersected with respect to inside/ outside and above/ below their spatial position. The block model developed for Rantha Iron Ore Mine. Ore Mines has been constrained with the surface DTM with updated pit positions, mining lease boundary, statutory safety barriers, individual quarry boundaries as well as ore type-wise 3-D solid models as developed and discussed in the preceding paragraphs. In this way, the blocks have been enveloped within ore zone boundary and surface topography for the purpose of grade interpolation and reserves estimation. Constrained block model is given below.

Block model estimation

Block model estimation parameters such as anisotropic ratio, search distances etc. were derived from the results of variogram analysis discussed in previous para. Rantha Iron Ore Mine. ore deposit is uniform in mineralization. It is not erratic in behavior. The coefficient of variation of grades in all the ores are low in the range of 0.03 - 0.1 indicating uniform grade distribution and the deposit has also been explored at almost uniform grid of 50 m x 50m both along dip and strike direction, the globally accepted technique of Inverse Square Distance (ISD) method has been used for ore reserve estimation for different ore types. The parameters for reserve estimation have been derived from the statistical and geo-statistical analysis done previously. A search ellipsoid as indicated below has been used to select samples for assigning grade to the blocks. The axial parameters and its search orientation were derived from the results of geo-statistical analysis.

The bulk density of the individual ore types as given below were taken as the in-situ densities of the respective ore type. Same has been derived from the exploration report of Rantha Iron Ore Mine.

SI. No.	Ore Type	Bulk Density, t/cu.m
1	Iron Ore >55% Fe	3.00
2	Mineral Reject (45 % Fe to 55% Fe)	2.7

Average Bulk Density of Different Ore Types

Copy of report of bulk density test carried out by NABL accredited lab is enclosed as Annexure 26.

For estimation resources the following parameters have been considered:

Measured resources: -

The entire exploratory drill holes with grid spacing of 100m X 100m has been considered as G1 category and has been categorized under 331 as per UNFC code.
Indicated resources: -

The entire exploratory drill hole with grid spacing at more than 100m X 100m and less than 200m x 200m grid interval and where the borehole density is quite low has been considered as G2 category and has been categorized under 332 as per UNFC code.

2.2.4.2: Resource Calculation:

Section-wise Reserve/Resource:

The details of the resources established based on level of exploration as on 30.06.2022 under different sections at a cut off of 45% Fe are tabulated below.

SI. No.	Cross section/Block	Sectional Area/Block area (sq mtr)	Influence (m)	Depth in mtr	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	Level of Exploration	Type of Land	Name of the radical	Grade (%)	Method used for resource estimation
1	X1_Y1/MINERAL REJECT	1355	200	540 to 560	270905	2.7	731444	G2	Forest	Fe	47.51	Inverse Square Distance Method
2	X2_Y2/SLO	7321	200	540 to 560	1464272	3	4392816	G2	Forest	Fe	58.34	Inverse Square Distance Method
3	X2_Y2/MINERAL REJECT	3761	200	540 to 560	752140	3	2030778	G2	Forest	Fe	51.34	Inverse Square Distance Method
4	X2_Y2/BLUE DUST	8011	200	540 to 560	1602124	3	4806372	G2	Forest	Fe	64.76	Inverse Square Distance Method
5	X3_Y3/MINERAL REJECT	12129	200	540 to 560	2425737	2.7	6549490	G2	Forest	Fe	48.04	Inverse Square Distance Method
6	X3_Y3/SLO	8653	200	540 to 560	1730654	3	5191963	G2	Forest	Fe	57.59	Inverse Square Distance Method

SI. No.	Cross section/Block	Sectional Area/Block area (sq mtr)	Influence (m)	Depth in mtr	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	Level of Exploration	Type of Land	Name of the radical	Grade (%)	Method used for resource estimation
7	X3_Y3/HLO/HMO	200	200	540 to 560	40085	3	120254	G2	Forest	Fe	56.74	Inverse Square Distance Method
8	X3_Y3/LIO	463	200	540 to 560	92581	3	277742	G2	Forest	Fe	56.55	Inverse Square Distance Method
9	X4_Y4/MINERAL REJECT	3956	150	540 to 560	593333	2.7	1601998	G2	Forest	Fe	50.07	Inverse Square Distance Method
10	X4_Y4/SLO	3572	150	540 to 560	535842	3	1607526	G2	Forest	Fe	58.33	Inverse Square Distance Method
11	X4_Y4/LIO	150	150	540 to 560	22472	3	67417	G2	Forest	Fe	56.06	Inverse Square Distance Method
12	X5_Y5/MINERAL REJECT	3683	100	540 to 560	368343	2.7	994526	G1	Forest	Fe	50.85	Inverse Square Distance Method
13	X5_Y5/SLO	5271	100	540 to 560	527110	3	1581330	G1	Forest	Fe	58.47	Inverse Square Distance Method

SI. No.	Cross section/Block	Sectional Area/Block area (sq mtr)	Influence (m)	Depth in mtr	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	Level of Exploration	Type of Land	Name of the radical	Grade (%)	Method used for resource estimation
14	X5_Y5/LIO	133	100	540 to 560	13307	3	39920	G1	Forest	Fe	56.06	Inverse Square Distance Method
15	X6_Y6/SLO	15973	100	540 to 560	1597300	3	4791901	G1	Forest	Fe	58.44	Inverse Square Distance Method
16	X6_Y6/MINERAL REJECT	15609	100	540 to 560	1560930	2.7	4214511	G1	Forest	Fe	50.08	Inverse Square Distance Method
17	X6_Y6/HLO/HMO	833	100	540 to 560	83342	3	250026	G1	Forest	Fe	57.63	Inverse Square Distance Method
18	X7_Y7/SLO	12827	100	540 to 560	1282742	3	3848226	G1	Forest	Fe	59.57	Inverse Square Distance Method
19	X7_Y7/MINERAL REJECT	5332	100	540 to 560	533237	2.7	1439739	G1	Forest	Fe	50.38	Inverse Square Distance Method
20	X7_Y7/LIO	206	100	540 to 560	20615	3	61845	G1	Forest	Fe	57.93	Inverse Square Distance Method

SI. No.	Cross section/Block	Sectional Area/Block area (sq mtr)	Influence (m)	Depth in mtr	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	Level of Exploration	Type of Land	Name of the radical	Grade (%)	Method used for resource estimation
21	X8_Y8/SLO	22578	100	540 to 560	2257816	3	6773448	G1	Forest	Fe	59.36	Inverse Square Distance Method
22	X8_Y8/MINERAL REJECT	10952	100	540 to 560	1095201	2.7	2957043	G1	Forest	Fe	49.58	Inverse Square Distance Method
23	X8_Y8/LIO	623	100	540 to 560	62286	3	186858	G1	Forest	Fe	57.86	Inverse Square Distance Method
24	X9_Y9/SLO	17670	100	540 to 560	1767012	3	5301037	G1	Forest	Fe	59.6	Inverse Square Distance Method
25	X9_Y9/MINERAL REJECT	10038	100	540 to 560	1003826	2.7	2710329	G1	Forest	Fe	48.79	Inverse Square Distance Method
26	X9_Y9/LIO	2289	100	540 to 560	228913	3	686738	G1	Forest	Fe	56.8	Inverse Square Distance Method
27	X9_Y9/HLO/HMO	2923	100	540 to 560	292280	3	876840	G1	Forest	Fe	61.98	Inverse Square Distance Method

SI. No.	Cross section/Block	Sectional Area/Block area (sq mtr)	Influence (m)	Depth in mtr	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	Level of Exploration	Type of Land	Name of the radical	Grade (%)	Method used for resource estimation
28	X10_Y10/SLO	20391	100	540 to 560	2039077	3	6117231	G1	Forest	Fe	58.71	Inverse Square Distance Method
29	X10_Y10/MINERAL REJECT	8387	100	540 to 560	838694	2.7	2264473	G1	Forest	Fe	48.85	Inverse Square Distance Method
30	X10_Y10/LIO	1085	100	540 to 560	108513	3	325540	G1	Forest	Fe	56.61	Inverse Square Distance Method
31	X10_Y10/HLO/HMO	413	100	540 to 560	41250	3	123750	G1	Forest	Fe	61.24	Inverse Square Distance Method
32	X11_Y11/MINERAL REJECT	5131	100	540 to 560	513144	2.7	1385488	G1	Forest	Fe	50.08	Inverse Square Distance Method
33	X11_Y11/SLO	15310	100	540 to 560	1530964	3	4592892	G1	Forest	Fe	57.67	Inverse Square Distance Method
34	X11_Y11/HLO/HMO	1130	100	540 to 560	112974	3	338923	G1	Forest	Fe	63.63	Inverse Square Distance Method

Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine Odisha Mining Corporation Ltd

Sectional Method Resource Bulk Type Name SI. Area/Block Influence Volume Level of Grade used for Depth Cross section/Block of the Density Quantity of (m³) Exploration No. area (m) in mtr (%) resource (t/m³) (t) Land radical estimation (sq mtr) Inverse 540 to Square 35 616 61607 3 184822 G1 55.68 X11 Y11/LIO 100 Forest Fe Distance 560 Method Inverse X12 Y12/MINERAL 540 to Square 36 302 100 30188 2.7 81501 G1 Forest Fe 51.95 REJECT 560 Distance Method Inverse 540 to Square X12 Y12/SLO 37 179 100 17938 3 53813 G1 Forest Fe 62.9 560 Distance Method Total 79560550 55.8

2.2.4.3: Mineral Resource Estimate for Conversion to Mineral Reserve:

Mineral reserve has been calculated deducting the reserve that would be blocked under the pit slope and within the safety zone inclusive of the safety zone of the existing nala.

The Parameters of Reserves calculation by Cross Sectional Method are:

Detailed calculation has been carried out in the lease area through coring boreholes, reserves have been estimated based upon the extension of the ore body, specific gravity and the percentage of ore recovery. Surface data, structural interpretation and observation made in the nearby quarries have also been taken into consideration. As per the direction of dip and strike, an attempt was made to construct cross-section across the strike for calculation of reserves. 12 nos. of such sections have been drawn.

With a view to estimate the reserves of iron ore available in the deposit, the following parameters have been considered.

- 1. Cut-off Grade
- 2. Length of influence
- 3. Bulk density
- 4. Recovery factor -100%
- 1. Cut-off Grade:

Based on marketability, the cut-off grade of iron ore has been considered at +55% fe. The Sub-grade ore considered 45 to 55% fe.

2. Length of Influence:

The ore zones are generally flat and tabular in nature. The same have been penetrated by vertical drill holes at a closed spaced grid spacing 200m and 100m interval. Depending on the drill holes spacing at specific grid interval, the length of influence has been considered on either side of the sections and taken in to consideration for computation of ore reserves.

3. Bulk Density:

The bulk density of iron ore has been considered as per actual determined by the authenticated NABL accredited laboratory. The copy of the same is attached as annexure-26.

Recovery Factor:

Recovery factor plays a vital role for estimation of reserve. The factor is considered as per actual determination carried out by an NABL acredited laboratory. In the lease area recovery factors has been considered as 100%.

Method of Reserve Estimation:

Systematic geological cross sections are constructed with the surveyed ground profile on which the drill hole inputs and average grade-wise analytical result of different ore zones is plotted and accordingly, the correlation of ore zones are interpreted with respect to grade.

The entire system is calculated through "SURPAC "software. The computed geological reserve is summarized in the table 2.2.4.2

2.2.4.4: Threshold value & Cut off Parameters:

- a. The threshold value has been considered as per the IBM guidelines is 45% Fe.
- b. The Cutoff grade considered for estimation of resource/reserve is >55 % Fe.
- c. The Fe % raised between >45% to <55% is considered as Mineral Reject.

2.2.4.5: Mining Factors or Assumptions:

The mine is not operated since a long back due to want of forest clearance. The various mining operations such as drilling & blasting, excavation & loading and transportation were practiced in this Rantha Opencast Iron Ore Mine after execution of mining lease over 408.8731 hectares on 31.12.1968. Mining was carried out by manual means on single shift basis with the use of pick axe, crow bars, spades, chisels, hammers and baskets etc. for loosening, excavation and loading and 10t capacity tippers for transportation of ore. ROM iron ore produced from the mine was broken, sized, sorted and blended manually. Finally, saleable materials was loaded manually by head load and transported to the consuming industries.

2.2.4.6: Metallurgical Factors or Assumptions:

The average grade of Iron ore produced from Rantha Iron Ore Mines is above 55.8% Fe. The mine is supposed to produce calibrated lump ore (+10 to -40mm) size fraction and fines ore (-10mm) size fraction. The entire ore production including lumps and fines produced from Rantha iron Ore Mines will be consumed in neighbouring steel plant/sponge iron plant of Odisha.

2.2.4.7: Cost & Revenue Factors:

ECONOMIC EVALUATION

The entire ore production including lumps and fines produced from Rantha Iron Ore Mine will be sold to iron ore consumers of Odisha and nearby states. To meet market demand with about 60 % Fe the ore produced can be sold after processing i.e. sizing and sorting. To meet market demand with 60% Fe, both ore and mineral reject produces are proposed to be blended

2.2.4.8: Market Assessment:

The entire ore production including lumps and fines produced from Rantha Iron Ore Mine will be consumed in neighboring steel plants/sponge iron plants of Odisha and nearby states. To meet market demand with about 60 % Fe the ore produced can be sold after processing i.e. sizing and sorting.

The Cash Flow analysis, NPV and IRR for the project has been shown in the pre-feasibility report. As NPV is positive and IRR is 33% so the project is an economic viable proposition.

2.2.4.9: Other Modifying Factors:

Public acceptance:

The mining project has been well accepted by the general public of the surrounding villages as evident from no litigation, agitation or complain by general public have so far been recorded by the lessee.

Socio-economic impact studies:

The mining activity in the area has already created direct employment opportunity for the local people both directly and indirectly. Workmen to mines, supervisory staff, mining engineers, geologists, surveyors, engineers etc. are employed in the mine. In addition,

it will facilitate in developing indirect employment opportunities in transport sector and work shop facilities in the surrounding areas. The lessee will extends its help and supports to welfare measures like free health check up camps, provision of bore wells, road repairing, provision of drinking water etc. The continuation of mining work has also augmented the educational status, communication facilities, health & sanitation and overall economic condition of the people of nearby villages. The lessee contributes regularly for peripheral development of the area.

Government factors

All the valid rights, approvals, clearances, licensees has been available in favour of Odisha Mining Corporation Limited. **National Park**

There is no National Park within 10 km radius of the ML area.

2.2.4.10: Classification:

PROBABLE MINERAL RESERVE (121)

Detailed exploration has been carried out by core boreholes, surface exposures have been found, number of pits were opened which later on were converted into one big quarry. The proved reserve has been estimated based on the area covered by drill holes and the existing quarry. Laterally, the proved zone has been extended 50m beyond the quarry limit as per UNFC. Thus geological axis for such estimated reserves can be brought under G1 category. As regards feasibility, it stated that the mining plan was prepared and approved and thus recoveries and efficiencies have been estimated. Manpower and requirement of machineries have been estimated based on actual need. Infrastructure resources are already available. The forest clearance is available, however tree falling permission from Divisional Forest Office is yet to be materialized. Thus, the resources can be brought under F2 category. On economic front, the materials have already been dispatched to the various consuming industries in past and accordingly the grade of the ore is acceptable to the marked demand, Land use pattern, working plan is already known and designed. Thus the reserves can be brought under El category. In view of the above considerations, the reserves can be classified under 121 category.

PROBABLE MINERAL RESERVE (122)

Based on the information gathered from the DTH boreholes, the ore zone has been extended laterally beyond proved zone as per UNFC. This lateral extension of the ore body is kept under probable category due to non-confirmation of grade. Thus, the geological axis can be brought under G2 category. On feasibility axis, mining plan was prepared and approved and thus recoveries and efficiencies estimated. Manpower & machine requirement have been estimated based on actual need. Infrastructure resources are already available. However, the forest clearance is yet to be obtained. Thus, the resources can be brought under F2 category. On economic front, the materials have already been dispatched to the various consuming industries in past. Accordingly the grade of the ore is suitable for meeting the market demands. Land use pattern, working plan is already known or designed. Therefore, the reserves can be brought under El category. In view of the above considerations, reserves can be classified under 122 category.

PREFEASIBLE MINERAL RESOURCES (221 & 222)

The ore which will be blocked and cannot be extracted due to pit slope or safety zone has been put under this category. Probable reserve which cannot be extracted has been categorized as 221 and 222.

2.2.4.11: Calculation of blocked resources: >45% Fe to <55% Fe (221)

SI. No.	Reserves blocked due to	Cross section/Blo ck	Sectiona I area/ block area (in Sq mrt)	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	UNFC code	Type of Land	Name of the radical	Grade (%)	Method used for resource estimation
1	Ultimate Pit Limit	X7-Y7 /MR	177.27	100	880 to 890 mRL	17727	2.7	47862	221	Forest	Fe	47.93	Inverse Square Distance Method
2	Ultimate Pit Limit	X8-Y8 /MR	56.65	100	880 to 890 mRL	5665	2.7	15296	221	Forest	Fe	49.69	Inverse Square Distance Method
3	Ultimate Pit Limit	X10- Y10/MR	347.91	100	880 to 890 mRL	34791	2.7	93935	221	Forest	Fe	48.97	Inverse Square Distance Method
4	Ultimate Pit Limit	X11- Y11/MR	510.07	100	880 to 890 mRL	51007	2.7	137718	221	Forest	Fe	50.6	Inverse Square Distance Method
			Total					294811	221	Forest	Fe	49.6	

Calculation of blocked resources: > 55% Fe (221)

SI. No.	Reserves blocked due to	Cross section/Blo ck	Sectiona I area/ block area (in Sq mrt)	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	UNFC code	Type of Land	Name of the radical	Grade (%)	Method used for resource estimation
1	Ultimate Pit Limit	X6_Y6/SLO	5.62	100	880 to 890 mRL	562	3	1685	221	Forest	Fe	56.31	Inverse Square Distance Method
2	Ultimate Pit Limit	X8_Y8/SLO	147.88	100	881 to 890 mRL	14788	3	44364	221	Forest	Fe	58.42	Inverse Square Distance Method
3	Ultimate Pit Limit	X9_Y9/SLO	76.47	100	882 to 890 mRL	7647	3	22942	221	Forest	Fe	61.29	Inverse Square Distance Method
4	Ultimate Pit Limit	X10_Y10/S LO	26.79	100	883 to 890 mRL	2679	3	8036	221	Forest	Fe	57.41	Inverse Square Distance Method
5	Ultimate Pit Limit	X11_Y11/S LO	4044.15	100	884 to 890 mRL	404415	3	1213246	221	Forest	Fe	57.58	Inverse Square Distance Method
6	Ultimate Pit Limit	X11_Y11/H LO/HMO	443.28	100	885 to 890 mRL	44328	3	132985	221	Forest	Fe	65.62	Inverse Square Distance Method
7	Ultimate Pit Limit	X11_Y11/LI O	157.94	100	886 to 890 mRL	15794	3	47381	221	Forest	Fe	55.63	Inverse Square Distance Method
1	Ultimate	X6_Y6/SLO	5.62	100	880 to	562	3	1685	221	Forest	Fe	56.31	Inverse

Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

SI. No.	Reserves blocked due to	Cross section/Blo ck	Sectiona I area/ block area (in Sq mrt)	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	UNFC code	Type of Land	Name of the radical	Grade (%)	Method used for resource estimation
	Pit Limit				890 mRL								Square Distance Method
			Total					1470639	221	Forest	Fe	58.32	

Calculation of blocked resources: >45% Fe to <55 % Fe (222)

SI. No.	Reserves blocked due to	Cross section/Bl ock	Sectional area/ block area (in Sq mrt)	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	UNFC code	Type of Land	Name of the radical	Grade (%)	Method used for resource estimatio n
1	Ultimate Pit limit	X2_Y2/M R	72.8	200	880 to 890 mRL	14560	2.7	39313	222	Forest	Fe	51.97	Inverse Square Distance Method
2	Ultimate Pit limit	X1_Y1/M R	377.455	200	880 to 890 mRL	75491	2.7	203827	222	Forest	Fe	47.74	Inverse Square Distance Method
3	Ultimate Pit limit	X3_Y3/M R	220.63	200	880 to 890 mRL	44126	2.7	119140	222	Forest	Fe	48.3	Inverse Square Distance Method
4	Ultimate Pit limit	X4_Y4/M R	140.9	150	880 to 890 mRL	21135	2.7	57064	222	Forest	Fe	50.34	Inverse Square Distance Method

SI. No.	Reserves blocked due to	Cross section/Bl ock	Sectional area/ block area (in Sq mrt)	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	UNFC code	Type of Land	Name of the radical	Grade (%)	Method used for resource estimatio n
5	Ultimate Pit limit	X5_Y5/M R	171.4	100	880 to 890 mRL	17140	2.7	46278	222	Forest	Fe	50.92	Inverse Square Distance Method
6	Ultimate Pit limit	X6_Y6/M R	226.85	100	880 to 890 mRL	22685	2.7	61250	222	Forest	Fe	49.73	Inverse Square Distance Method
7	Ultimate Pit limit	X7_Y7/M R	101.52	100	880 to 890 mRL	10152	2.7	27410	222	Forest	Fe	50.16	Inverse Square Distance Method
8	Ultimate Pit limit	X8_Y8/M R	321.48	100	880 to 890 mRL	32148	2.7	86801	222	Forest	Fe	49.03	Inverse Square Distance Method
9	Ultimate Pit limit	X9_Y9/M R	1362.08	100	880 to 890 mRL	136208	2.7	367761	222	Forest	Fe	50.22	Inverse Square Distance Method
10	Ultimate Pit limit	X10_Y10/ MR	2053.29	100	880 to 890 mRL	205329	2.7	554388	222	Forest	Fe	49.34	Inverse Square Distance Method
11	Ultimate Pit limit	X11_Y11/ MR	683.94	100	880 to 890 mRL	68394	2.7	184663	222	Forest	Fe	51.59	Inverse Square Distance Method
12	Ultimate Pit limit	X12_Y12/ MR	211.72	100	880 to 890 mRL	21172	2.7	57164	222	Forest	Fe	51.96	Inverse Square Distance Method

SI. No.	Reserves blocked due to	Cross section/Bl ock	Sectional area/ block area (in Sq mrt)	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	UNFC code	Type of Land	Name of the radical	Grade (%)	Method used for resource estimatio n
13	Safety Zone	X1_Y1/M R	32.9	200	881 to 890 mRL	6580	2.7	17765	222	Forest	Fe	47.85	Inverse Square Distance Method
14	Safety Zone	X3_Y3/M R	368.8	200	882 to 890 mRL	73760	2.7	199151	222	Forest	Fe	49.06	Inverse Square Distance Method
15	Safety Zone	X4_Y4/M R	52.1733 3	150	883 to 890 mRL	7826	2.7	21131	222	Forest	Fe	48.63	Inverse Square Distance Method
16	Safety Zone	X6_Y6/M R	26.04	100	884 to 890 mRL	2604	2.7	7031	222	Forest	Fe	47.2	Inverse Square Distance Method
17	Safety Zone	X7_Y7/M R	8.89	101	885 to 890 mRL	898	2.7	2423	223	Forest	Fe	49.02	Inverse Square Distance Method
18	Safety Zone	X8_Y8/M R	61.88	100	885 to 890 mRL	6188	2.7	16706	222	Forest	Fe	48.77	Inverse Square Distance Method
19	Safety Zone	X9_Y9/M R	31.76	100	886 to 890 mRL	3176	2.7	8575	222	Forest	Fe	48.68	Inverse Square Distance Method
20	Safety Zone	X10_Y10/ MR	552.66	100	887 to 890 mRL	55266	2.7	149219	222	Forest	Fe	48.69	Inverse Square Distance Method

SI. No.	Reserves blocked due to	Cross section/Bl ock	Sectional area/ block area (in Sq mrt)	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	UNFC code	Type of Land	Name of the radical	Grade (%)	Method used for resource estimatio n
21	Safety Zone	X11_Y11/ MR	69.6	100	888 to 890 mRL	6960	2.7	18793	222	Forest	Fe	51.44	Inverse Square Distance Method
22	Safety Zone	X12_Y12/ MR	90.16	100	889 to 890 mRL	9016	2.7	24342	222	Forest	Fe	51.94	Inverse Square Distance Method
		Т	otal					2270195	222	Forest	Fe	49.59	

Calculation of blocked resources: >55% Fe (222)

SI. No.	Reserves blocked due to	Cross section/Bl ock	Sectional area/ block area (in Sq mrt)	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	UNFC code	Type of Land	Name of the radical	Grade (%)	Method used for resource estimatio n
1	Ultimate Pit Limit	X2_Y2/SL O	149.37	200	884 to 890 mRL	29874	3	89621	222	Forest	Fe	59.47	Inverse Square Distance Method
2	Ultimate Pit Limit	X2_Y2/BL UE DUST	67.71	200	885 to 890 mRL	13542	3	40625	222	Forest	Fe	65.05	Inverse Square Distance Method
3	Ultimate Pit Limit	X3_Y3/SL O	250.67	200	886 to 890 mRL	50134	3	150403	222	Forest	Fe	59.65	Inverse Square Distance Method
4	Ultimate Pit Limit	X3_Y3/HL O/HMO	34.985	200	887 to 890 mRL	6997	3	20991	222	Forest	Fe	56.74	Inverse Square Distance Method
5	Safety Zone	X3_Y3/SL O	552.105	200	888 to 890 mRL	110421	3	331262	222	Forest	Fe	58.44	Inverse Square Distance Method
6	Ultimate Pit Limit	X4_Y4/SL O	68.56	150	889 to 890 mRL	10284	3	30852	222	Forest	Fe	58.26	Inverse Square Distance Method
7	Safety Zone	X4_Y4/SL O	67.4466 7	150	890 to 890 mRL	10117	3	30352	222	Forest	Fe	58.5	Inverse Square Distance Method

SI. No.	Reserves blocked due to	Cross section/Bl ock	Sectional area/ block area (in Sq mrt)	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	UNFC code	Type of Land	Name of the radical	Grade (%)	Method used for resource estimatio n
8	Ultimate Pit Limit	X5_Y5/SL O	171.85	100	891 to 890 mRL	17185	3	51556	222	Forest	Fe	59.32	Inverse Square Distance Method
9	Safety Zone	X5_Y5/SL O	1.11	100	892 to 890 mRL	111	3	334	222	Forest	Fe	57.39	Inverse Square Distance Method
10	Ultimate Pit Limit	X6_Y6/SL O	457.95	100	893 to 890 mRL	45795	3	137385	222	Forest	Fe	59.67	Inverse Square Distance Method
11	Safety Zone	X6_Y6/SL O	7.42	100	894 to 890 mRL	742	3	2227	222	Forest	Fe	57.48	Inverse Square Distance Method
12	Ultimate Pit Limit	X7_Y7/SL O	814.38	100	895 to 890 mRL	81438	3	244313	222	Forest	Fe	62.85	Inverse Square Distance Method
13	Safety Zone	X7_Y7/SL O	136.48	100	896 to 890 mRL	13648	3	40945	222	Forest	Fe	63.75	Inverse Square Distance Method
14	Safety Zone	X8_Y8/SL O	288.59	100	897 to 890 mRL	28859	3	86578	222	Forest	Fe	63.49	Inverse Square Distance Method
15	Ultimate Pit Limit	X8_Y8/SL O	2965.01	100	898 to 890 mRL	296501	3	889503	222	Forest	Fe	62.26	Inverse Square Distance Method

SI. No.	Reserves blocked due to	Cross section/Bl ock	Sectional area/ block area (in Sq mrt)	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	UNFC code	Type of Land	Name of the radical	Grade (%)	Method used for resource estimatio n
16	Safety Zone	X9_Y9/SL O	147.08	100	899 to 890 mRL	14708	3	44124	222	Forest	Fe	63.47	Inverse Square Distance Method
17	Ultimate Pit Limit	X9_Y9/SL O	3379.63	100	900 to 890 mRL	337963	3	1013889	222	Forest	Fe	60.82	Inverse Square Distance Method
18	Ultimate Pit Limit	X10_Y10/ SLO	2687.34	100	901 to 890 mRL	268734	3	806203	222	Forest	Fe	58.08	Inverse Square Distance Method
19	Ultimate Pit Limit	X10_Y10/ LIO	36.23	100	902 to 890 mRL	3623	3	10869	222	Forest	Fe	55.03	Inverse Square Distance Method
20	Safety Zone	X10_Y10/ SLO	499.46	100	903 to 890 mRL	49946	3	149837	222	Forest	Fe	57.04	Inverse Square Distance Method
21	Safety Zone	X10_Y10/ LIO	48.69	100	904 to 890 mRL	4869	3	14607	222	Forest	Fe	55.03	Inverse Square Distance Method
22	Safety Zone	X11_Y11/ SLO	46	100	905 to 890 mRL	4600	3	13799	222	Forest	Fe	61.87	Inverse Square Distance Method
23	Ultimate Pit Limit	X11_Y11/ SLO	1084.5	100	906 to 890 mRL	108450	3	325350	222	Forest	Fe	61.33	Inverse Square Distance Method

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

SI. No.	Reserves blocked due to	Cross section/Bl ock	Sectional area/ block area (in Sq mrt)	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Resource Quantity (t)	UNFC code	Type of Land	Name of the radical	Grade (%)	Method used for resource estimatio n
24	Ultimate Pit Limit	X11_Y11/ LIO	34.85	100	907 to 890 mRL	3485	3	10456	222	Forest	Fe	55.63	Inverse Square Distance Method
25	Ultimate Pit Limit	X11_Y11/ HLO/HM O	60	100	908 to 890 mRL	6000	3	17999	222	Forest	Fe	63.01	Inverse Square Distance Method
26	Safety Zone	X12_Y12/ SLO	50.16	100	909 to 890 mRL	5016	3	15047	222	Forest	Fe	62.88	Inverse Square Distance Method
27	Ultimate Pit Limit	X12_Y12/ SLO	129.22	100	910 to 890 mRL	12922	3	38766	222	Forest	Fe	62.91	Inverse Square Distance Method
			Total					4607893	222	Forest	Fe	60.43	

2.2.4.12: Calculation of Reserves: > 45% Fe to <55 %Fe (121)

SI. No.	Cross Sectinon/Block	Sectional area/block area in Sq mtr	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Reserves Quantity (t)	UNFC code	Type of Land	Name of the of radical	Grade (%)	Method used for resource estimation
1	X4_Y4/MR	522	150	910 to 890 mRL	78241	2.7	211251	121	Forest	Fe	48.57	Inverse Square Distance Method

SI. No.	Cross Sectinon/Block	Sectional area/block area in Sq mtr	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Reserves Quantity (t)	UNFC code	Type of Land	Name of the of radical	Grade (%)	Method used for resource estimation
2	X5_Y5/MR	603	100	910 to 890 mRL	60315	2.7	162850	121	Forest	Fe	49.92	Inverse Square Distance Method
3	X6_Y6/MR	8860	100	910 to 890 mRL	885997	2.7	2392193	121	Forest	Fe	49.67	Inverse Square Distance Method
4	X7_Y7/MR	2059	100	910 to 890 mRL	205868	2.7	555842	121	Forest	Fe	49.55	Inverse Square Distance Method
5	X8_Y8/MR	6807	100	910 to 890 mRL	680715	2.7	1837929	121	Forest	Fe	49.86	Inverse Square Distance Method
6	X9_Y9/MR	4853	100	910 to 890 mRL	485280	2.7	1310257	121	Forest	Fe	49.01	Inverse Square Distance Method
7	X10_Y10/MR	4224	100	910 to 890 mRL	422367	2.7	1140390	121	Forest	Fe	48.7	Inverse Square Distance Method
8	X11_Y11/MR	3783	100	910 to 890 mRL	378275	2.7	1021343	121	Forest	Fe	49.68	Inverse Square Distance Method

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

SI. No.	Cross Sectinon/Block	Sectional area/block area in Sq mtr	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Reserves Quantity (t)	UNFC code	Type of Land	Name of the of radical	Grade (%)	Method used for resource estimation
				Total			8632055	121	Forest	Fe	49.45	

Calculation of Reserves: > 55% Fe (121)

SI. No.	Cross Sectinon/Block	Sectional area/block area in Sq mtr	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Reserves Quantity (t)	UNFC code	Type of Land	Name of the of radical	Grade (%)	Method used for resource estimation
1	X4_Y4/SLO	878.4867	150	910 to 890 mrl	131773	3	395318	121	Forest	Fe	58.55	Inverse Square Distance Method
2	X5_Y5/SLO	404.22	100	911 to 890 mrl	40422	3	121267	121	Forest	Fe	57.07	Inverse Square Distance Method
3	X7_Y7/SLO	6269.14	100	911 to 890 mrl	626914	3	1880743	121	Forest	Fe	58.7	Inverse Square Distance Method
4	X7_Y7/LIO	192.87	100	911 to 890 mrl	19287	3	57860	121	Forest	Fe	57.93	Inverse Square Distance Method
5	X7_Y7/SLO	93.75	100	911 to 890 mrl	9375	3	28124	121	Forest	Fe	58.53	Inverse Square Distance Method

SI. No.	Cross Sectinon/Block	Sectional area/block area in Sq mtr	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Reserves Quantity (t)	UNFC code	Type of Land	Name of the of radical	Grade (%)	Method used for resource estimation
6	X6_Y6/SLO	5879.42	100	912 to 890 mrl	587942	3	1763827	121	Forest	Fe	57.42	Inverse Square Distance Method
7	X8_Y8/SLO	13237.5	100	913 to 890 mrl	1323750	3	3971250	121	Forest	Fe	58.4	Inverse Square Distance Method
8	X8_Y8/LIO	622.86	100	914 to 890 mrl	62286	3	186858	121	Forest	Fe	57.86	Inverse Square Distance Method
9	X9_Y9/SLO	9856.7	100	915 to 890 mrl	985670	3	2957009	121	Forest	Fe	59.92	Inverse Square Distance Method
10	X9_Y9/HLO/H MO	2922.8	100	916 to 890 mrl	292280	3	876840	121	Forest	Fe	61.98	Inverse Square Distance Method
11	X9_Y9/LIO	1983.42	100	917 to 890 mrl	198342	3	595027	121	Forest	Fe	57.08	Inverse Square Distance Method
12	X10_Y10/SLO	15474.05	100	918 to 890 mrl	1547405	3	4642215	121	Forest	Fe	58.66	Inverse Square Distance Method

SI. No.	Cross Sectinon/Block	Sectional area/block area in Sq mtr	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Reserves Quantity (t)	UNFC code	Type of Land	Name of the of radical	Grade (%)	Method used for resource estimation
13	X10_Y10/HLO/ HMO	412.5	100	919 to 890 mrl	41250	3	123750	121	Forest	Fe	61.24	Inverse Square Distance Method
14	X10_Y10/LIO	809.21	100	920 to 890 mrl	80921	3	242764	121	Forest	Fe	57.15	Inverse Square Distance Method
15	X11_Y11/SLO	9970.79	100	921 to 890 mrl	997079	3	2991238	121	Forest	Fe	57.26	Inverse Square Distance Method
16	X11_Y11/HLO/ HMO	620.48	100	922 to 890 mrl	62048	3	186143	121	Forest	Fe	62.32	Inverse Square Distance Method
17	X11_Y11/LIO	419.97	100	923 to 890 mrl	41997	3	125991	121	Forest	Fe	55.7	Inverse Square Distance Method
	Total						21146224			·	58.57	

Calculation of Reserves: > 45% Fe to <55 %Fe (122)

SI. No.	Cross Sectinon/Block	Sectional area/block area in Sq mtr	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Reserves Quantity (t)	UNFC code	Type of Land	Name of the of radical	Grade (%)	Method used for resource estimation
1	X2_Y2/MR	3687.9	200	910 to 890 mRL	737580	2.7	1991465	122	Forest	Fe	51.33	Inverse Square Distance Method
2	X1_Y1/MR	944.17	200	910 to 890 mRL	188834	2.7	509852	122	Forest	Fe	47.41	Inverse Square Distance Method
3	X3_Y3/MR	11539.26	200	910 to 890 mRL	2307851	2.7	6231198	122	Forest	Fe	48	Inverse Square Distance Method
4	X4_Y4/MR	3240.867	150	910 to 890 mRL	486130	2.7	1312552	122	Forest	Fe	50.32	Inverse Square Distance Method
5	X5_Y5/MR	2908.88	100	910 to 890 mRL	290888	2.7	785397	122	Forest	Fe	51.04	Inverse Square Distance Method
6	X6_Y6/MR	6496.43	100	910 to 890 mRL	649643	2.7	1754037	122	Forest	Fe	50.67	Inverse Square Distance Method
7	X7_Y7/MR	2985.93	100	910 to 890 mRL	298593	2.7	806202	122	Forest	Fe	51.11	Inverse Square Distance Method

SI. No.	Cross Sectinon/Block	Sectional area/block area in Sq mtr	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Reserves Quantity (t)	UNFC code	Type of Land	Name of the of radical	Grade (%)	Method used for resource estimation
8	X8_Y8/MR	3704.86	100	910 to 890 mRL	370486	2.7	1000311	122	Forest	Fe	49.13	Inverse Square Distance Method
9	X9_Y9/MR	3791.62	100	910 to 890 mRL	379162	2.7	1023737	122	Forest	Fe	48	Inverse Square Distance Method
10	X10_Y10/MR	1209.41	100	910 to 890 mRL	120941	2.7	326542	122	Forest	Fe	48.54	Inverse Square Distance Method
11	X11_Y11/MR	85.08	100	910 to 890 mRL	8508	2.7	22971	122	Forest	Fe	51.11	Inverse Square Distance Method
				Total			15764264	122	Forest	Fe	49.29	

Calculation of Reserves: > 55% Fe (122)

SI. No.	Cross Sectinon/Block	Sectional area/block area in Sq mtr	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Reserves Quantity (t)	UNFC code	Type of Land	Name of the of radical	Grade (%)	Method used for resource estimation
1	X2_Y2/SLO	7171.99	200		1434398	3	4303195	122	Forest	Fe	58.32	Inverse Square Distance Method
2	X2_Y2/BLUE DUST	7942.91	200		1588582	3	4765746	123	Forest	Fe	64.75	Inverse Square Distance Method
3	X3_Y3/SLO	7850.495	200		1570099	3	4710297	124	Forest	Fe	57.46	Inverse Square Distance Method
4	X3_Y3/HLO/H MO	165.44	200		33088	3	99263	125	Forest	Fe	56.74	Inverse Square Distance Method
5	X3_Y3/LIO	462.905	200		92581	3	277742	126	Forest	Fe	56.55	Inverse Square Distance Method
6	X4_Y4/SLO	2557.787	150		383668	3	1151003	127	Forest	Fe	58.25	Inverse Square Distance Method
7	X4_Y4/LIO	149.8133	150		22472	3	67417	128	Forest	Fe	56.06	Inverse Square Distance Method

SI. No.	Cross Sectinon/Block	Sectional area/block area in Sq mtr	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Reserves Quantity (t)	UNFC code	Type of Land	Name of the of radical	Grade (%)	Method used for resource estimation
8	X5_Y5/SLO	4693.91	100		469391	3	1408173	129	Forest	Fe	58.56	Inverse Square Distance Method
9	X5_Y5/LIO	133.07	100		13307	3	39920	130	Forest	Fe	56.06	Inverse Square Distance Method
10	X6_Y6/SLO	9622.59	100		962259	3	2886777	131	Forest	Fe	59	Inverse Square Distance Method
11	X6_Y6/HLO/H MO	833.42	100		83342	3	250026	132	Forest	Fe	57.63	Inverse Square Distance Method
12	X7_Y7/SLO	5513.67	100		551367	3	1654101	133	Forest	Fe	59.98	Inverse Square Distance Method
13	X7_Y7/LIO	13.28	100		1328	3	3984	134	Forest	Fe	57.87	Inverse Square Distance Method
14	X8_Y8/SLO	5939.17	100		593917	3	1781752	135	Forest	Fe	59.88	Inverse Square Distance Method

Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

SI. No.	Cross Sectinon/Block	Sectional area/block area in Sq mtr	Influence (m)	Depth (m)	Volume (m³)	Bulk Density (t/m³)	Reserves Quantity (t)	UNFC code	Type of Land	Name of the of radical	Grade (%)	Method used for resource estimation
15	X9_Y9/SLO	4210.24	100		421024	3	1263072	136	Forest	Fe	57.72	
16	X9_Y9/LIO	305.7	100		30570	3	91711	137	Forest	Fe	55.03	
17	X10_Y10/SLO	1703.14	100		170314	3	510941	138	Forest	Fe	60.72	
18	X10_Y10/LIO	191	100		19100	3	57299	139	Forest	Fe	55.03	
19	X11_Y11/SLO	164.2	100		16420	3	49259	140	Forest	Fe	60.1	
20	X11_Y11/LIO	3.32	100		332	3	995	141	Forest	Fe	55.62	
21	X11_Y11/HLO/ HMO	5.99	100		599	3	1796	142	Forest	Fe	57.76	
			Total				25374469				59.63	

2.2.4.13:

Mineral	Hematite (Iron Ore)
Reserves/ Resources estimated as on	30/06/2022
UNIT of estimation	Metric Ton

Classification	Code				Quantity	,						Grade			
Classification	C	For	est	Non-F	orest	То	tal	Grand Total	Fore	est	Non-F	orest	Tot	al	G. Total
		а	b	с	d	e=(a+c)	f=(b+d)	g=(e+f)	a %	b %	c %	d %	e %	f %	g %
A. Mineral Reserve		Fe>45% to <55%	Fe>55%	Fe>45% to <55%	Fe>55%	Fe>45% to <55%	Fe>55%	Fe>45%	Fe>45% to <55%	Fe >55%	Fe>45% to <55%	Fe >55%	Fe>45% to <55%	Fe >55%	Fe >45%
1. Proved Mineral Reserve (A)	111	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
2. Probable Mineral Reserve (A)	121	8632055	21146224	Nil	Nil	8632055	21146224	29778279	49.45	58.57	Nil	Nil	49.45	58.56	55.73
3. Probable Mineral Reserve (A)	122	15764264	25374469	Nil	Nil	15764264	25374469	41138733	49.29	59.63	Nil	Nil	49.29	59.63	55.66
Total(A)		24396319	46520693	Nil	Nil	24396319	46520693	70917012	49.34	59.16	Nil	Nil	49.34	59.16	55.68
B. Remaining Resources		Fe>45% to <55%	Fe>55%	Fe>45% to <55%	Fe>55%	Fe>45% to <55%	Fe>55%	Fe>45%	Fe>45% to <55%	Fe >55%	Fe>45% to <55%	Fe >55%	Fe>45% to <55%	Fe >55%	Fe >45%

Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

Classification	Code				Quantity	,						Grade			
Classification	°C I	For	est	Non-F	orest	То	tal	Grand Total	For	est	Non-F	orest	To	tal	G. Total
		а	b	С	d	e=(a+c)	f=(b+d)	g=(e+f)	a %	b %	с %	d %	e %	f %	g %
1. Feasibility Mineral Resource (B)	211	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
2. Prefeasibility Mineral Resource (B)	221	294811	1470639	Nil	Nil	294811	1470639	1765450	49.6	58.32	Nil	Nil	49.6	58.32	56.86
3. Prefeasibility Mineral Resource (B)	222	2270195	4607893	Nil	Nil	2270195	4607893	6878088	49.59	60.43	Nil	Nil	49.59	60.43	56.85
4. Measured Mineral Resource (B)	331	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
5. Indicated Mineral Resource (B)	332	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
6. Inferred Mineral Resource (B)	333	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
7. Reconnaissance Mineral Resource (B)	334	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
Total (B)		2565006	6078532	Nil	Nil	2565006	6078532	8643538	49.59	59.92	Nil	Nil	49.59	59.92	56.85

Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28) Rantha Iron Ore Mine Odisha Mining Corporation Ltd

Classification	de				Quantity	,			Grade							
Classification	CO	For	rest	Non-Forest		То	tal	Grand Total	Fore	est	Non-F	orest	Total		G. Total	
		а	b	С	d	e=(a+c)	f=(b+d)	g=(e+f)	a %	b %	c %	d %	e %	f %	g %	
Grand Total (A + B)		26961325	52599225	Nil	Nil	26961325	52599225	79560550	49.36	59.24	Nil	Nil	49.36	59.24	55.8	

2.5: Future Exploration Proposal:

2.2.5.1: Geological Mapping:

Sl. No.	Year	Scale	Area Covered (ha)
		Nil	

2.2.5.2: Ground Geophysical Survey: Not Applicable.

 Sl. No.
 Type of Survey
 Spacing (m)
 Total line (km)
 Area Covered (ha)
 Latitude
 Longitude

 Not Applicable.
 Not Applicable.
 State of the state of the

2.2.5.3: Pitting: Not Applicable.

Number of pits Not Applicable.

SI. No.	Year	Land type	Pit ID	Length of Pit (m)	Width of Pit (m)	Depth of Pit (m)	Latitude	Longitude				
Not Applicable.												

2.2.5.4: Trenching: Not Applicable.

Number of Trenches: Not Applicable.

2.2.5.4.1: Spacing: Not Applicable.

	Spacing							
Min (m)	Min (m) Max (m) Avg (m)							
Not Applicable.								

2.2.5.4.2 Area Covered Under Trenching: Not Applicable.

Co-ordinates:

Latitude	Longitude
Not Ap	oplicable.

SI. No.	Trench ID	Length of Trench (m)	Width of Trench (m)	Depth of Trench (m)	Litho Unit Exposed	Average Grade (%)	Running Meters (m)	From Longitude	To Latitude	To Longitude		
	Not Applicable.											

2.2.5.5: Exploratory Drilling: The future exploration proposal are required only in G2 & G3 area.

2.2.5.5.1:Core/Non-core Drilling: Core Drilling

			In forest ar	ea			In N	Ion-forest				
SI. No	Year	No. of boreholes	Total mtr	Type of borehole	Grid interva I	No. of bore holes	Total mtr	Type of borehole	Grid interva I	Total borehole	Total Mtr	Attach- ment
1	2023- 24	48	Each borehole @ 100mtrs or till the end of mineralisation /discontinuatio n of ore body, whichever is earlier.	Core	100 mtr x 100 mtr	Nil	NIL	Nil	NIL	48	Each borehole @ 100mtrs or till the end of mineralisation /discontinuation of ore body, whichever is earlier.	
2	2024- 25	48	Each borehole @ 100mtrs or till the end of mineralisation /discontinuatio n of ore body, whichever is earlier.	Core	100 mtr x 100 mtr	Nil	NIL	Nil	NIL	48	Each borehole @ 100mtrs or till the end of mineralisation /discontinuation of ore body, whichever is earlier.	
3	2025- 26	48	Each borehole @ 100mtrs or till the end of mineralisation /discontinuatio n of ore body, whichever is earlier.	Core	100 mtr x 100 mtr	Nil	NIL	Nil	NIL	48	Each borehole @ 100mtrs or till the end of mineralisation /discontinuation of ore body, whichever is earlier	
4	2026- 27	48	Each borehole @ 100mtrs or till the end of mineralisation /discontinuatio n of ore body, whichever is earlier.	Core	100 mtr x 100 mtr	Nil	NIL	Nil	NIL	48	Each borehole @ 100mtrs or till the end of mineralisation /discontinuation of ore body, whichever is earlier.	
Total	4 years	192	Each borehole @ 100mtrs or till the end of mineralisation /discontinuatio n of ore body, whichever is earlier.	Core	100 mtr x 100 mtr	Nil	NIL	Nil	NIL	192	Each borehole @ 100mtrs or till the end of mineralisation /discontinuation of ore body, whichever is earlier.	

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 01	2408500	308667	826.8	Core	100	Vertical	Forest	Non- Surface Right
	РВН 02	2408500	308567	815	Core	100	Vertical	Forest	Non- Surface Right
	РВН 03	2408500	308467	811	Core	100	Vertical	Forest	Non- Surface Right
	РВН 04	2408500	308267	827	Core	100	Vertical	Forest	Non- Surface Right
	РВН 05	2408400	308267	846	Core	100	Vertical	Forest	Non- Surface Right
	РВН 06	2408400	308367	840.5	Core	100	Vertical	Forest	Non- Surface Right
1st Year 2023- 24	РВН 07	2408400	308467	825	Core	100	Vertical	Forest	Non- Surface Right
	РВН 08	2408400	308567	829	Core	100	Vertical	Forest	Non- Surface Right
	РВН 09	2408400	308667	842	Core	100	Vertical	Forest	Non- Surface Right
	РВН 10	2408300	308667	871	Core	100	Vertical	Forest	Non- Surface Right
	PBH 11	PBH 11 2408300 308567		850	Core	100	Vertical	Forest	Non- Surface Right
	PBH 12	2408300	308467	845,5	Core	100	Vertical	Forest	Non- Surface Right
	РВН 13	2408200	308467	852	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 14	2408200	308567	856.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 15	2408200	308667	894	Core	100	Vertical	Forest	Non- Surface Right
	PBH 16	2408100	308667	889	Core	100	Vertical	Forest	Non- Surface Right
	PBH 17	2408000	308667	876	Core	100	Vertical	Forest	Non- Surface Right
	PBH 18	2408500	308067	852	Core	100	Vertical	Forest	Non- Surface Right
	PBH 19	2408492	307867	855	Core	100	Vertical	Forest	Non- Surface Right
	РВН 20	2408490	307767	846.2	Core	100	Vertical	Forest	Non- Surface Right
	PBH 21	2408400	307767	850	Core	100	Vertical	Forest	Non- Surface Right
	PBH 22	2408400	307867	861	Core	100	Vertical	Forest	Non- Surface Right
	РВН 23	2408400	307967	861.6	Core	100	Vertical	Forest	Non- Surface Right
	РВН 24	2408400	308067	864.5	Core	100	Vertical	Forest	Non- Surface Right
	РВН 25	2408300	308267	870	Core	100	Vertical	Forest	Non- Surface Right
	РВН 26	2408300	308167	867.7	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	РВН 27	2408300	308067	862	Core	100	Vertical	Forest	Non- Surface Right
	РВН 28	2408300	307967	858.2	Core	100	Vertical	Forest	Non- Surface Right
	РВН 29	2408300	307867	853.5	Core	100	Vertical	Forest	Non- Surface Right
	РВН 30	2408300	307767	848.6	Core	100	Vertical	Forest	Non- Surface Right
	PBH 31	2408200	307689	818	Core	100	Vertical	Forest	Non- Surface Right
	РВН 32	2408200	307867	847	Core	100	Vertical	Forest	Non- Surface Right
	РВН 33	2408200	307967	855.3	Core	100	Vertical	Forest	Non- Surface Right
	РВН 34	2408200	308067	856	Core	100	Vertical	Forest	Non- Surface Right
	РВН 35	2408200	308167	867.7	Core	100	Vertical	Forest	Non- Surface Right
	РВН 36	2408200	308267	880	Core	100	Vertical	Forest	Non- Surface Right
	РВН 37	2408200	308367	880.5	Core	100	Vertical	Forest	Non- Surface Right
	РВН 38	2408100	308067	860	Core	100	Vertical	Forest	Non- Surface Right
	РВН 39	2408100	307967	856.5	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	РВН 40	2408100	307867	845	Core	100	Vertical	Forest	Non- Surface Right
	PBH 41	2408100	307767	829.2	Core	100	Vertical	Forest	Non- Surface Right
	РВН 42	2408100	307567	800	Core	100	Vertical	Forest	Non- Surface Right
	РВН 43	2408100	307467	792	Core	100	Vertical	Forest	Non- Surface Right
	РВН 44	2408100	307367	792.6	Core	100	Vertical	Forest	Non- Surface Right
	РВН 45	2408000	307367	801.6	Core	100	Vertical	Forest	Non- Surface Right
	РВН 46	2408000	307467	815	Core	100	Vertical	Forest	Non- Surface Right
	РВН 47	2408000	307567	824.6	Core	100	Vertical	Forest	Non- Surface Right
	РВН 48	2408000	307653	828	Core	100	Vertical	Forest	Non- Surface Right
	РВН 49	2408000	307867	841.5	Core	100	Vertical	Forest	Non- Surface Right
2nd Year	РВН 50	2408000	307967	864.3	Core	100	Vertical	Forest	Non- Surface Right
2024- 25	PBH 51	2407900	307667	845	Core	100	Vertical	Forest	Non- Surface Right
	РВН 52	2407900	307467	823.5	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 53	2407800	307367	809	Core	100	Vertical	Forest	Non- Surface Right
	РВН 54	2407800	307467	834	Core	100	Vertical	Forest	Non- Surface Right
	PBH 55	2407800	307567	850.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 56	2407800	307667	861.5	Core	100	Vertical	Forest	Non- Surface Right
	РВН 57	2407800	307767	854.3	Core	100	Vertical	Forest	Non- Surface Right
	PBH 58	2407800	307845	843	Core	100	Vertical	Forest	Non- Surface Right
	РВН 59	2407800	307967	863	Core	100	Vertical	Forest	Non- Surface Right
	РВН 60	2407800	308167	927	Core	100	Vertical	Forest	Non- Surface Right
	PBH 61	2407700	308267	939	Core	100	Vertical	Forest	Non- Surface Right
	PBH 62	2407700	308067	867.8	Core	100	Vertical	Forest	Non- Surface Right
	PBH 63	2407700	307867	859	Core	100	Vertical	Forest	Non- Surface Right
	PBH 64	2407700	307667	874	Core	100	Vertical	Forest	Non- Surface Right
	РВН 65	2407700	307467	842	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 66	2407600	307367	844.7	Core	100	Vertical	Forest	Non- Surface Right
	PBH 67	2407600	307467	850	Core	100	Vertical	Forest	Non- Surface Right
	PBH 68	2407600	307567	864.4	Core	100	Vertical	Forest	Non- Surface Right
	РВН 69	2407600	307667	881	Core	100	Vertical	Forest	Non- Surface Right
	РВН 70	2407600	307767	893.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 71	2407600	307867	890	Core	100	Vertical	Forest	Non- Surface Right
	РВН 72	2407600	307967	881.4	Core	100	Vertical	Forest	Non- Surface Right
	РВН 73	2407600	308067	872.8	Core	100	Vertical	Forest	Non- Surface Right
	РВН 74	2407600	308167	887	Core	100	Vertical	Forest	Non- Surface Right
	РВН 75	2407600	308267	920	Core	100	Vertical	Forest	Non- Surface Right
	РВН 76	2407500	308267	887	Core	100	Vertical	Forest	Non- Surface Right
	РВН 77	2407500	308167	885.6	Core	100	Vertical	Forest	Non- Surface Right
	РВН 78	2407500	308067	905	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	РВН 79	2407500	307967	916.4	Core	100	Vertical	Forest	Non- Surface Right
	PBH 80	2407500	307867	913.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 81	2407500	307767	94.6	Core	100	Vertical	Forest	Non- Surface Right
	PBH 82	2407500	307667	870	Core	100	Vertical	Forest	Non- Surface Right
	PBH 83	2407500	307467	850	Core	100	Vertical	Forest	Non- Surface Right
	PBH 84	2407400	307367	839	Core	100	Vertical	Forest	Non- Surface Right
	PBH 85	2407400	307467	845	Core	100	Vertical	Forest	Non- Surface Right
	PBH 86	2407400	307567	846.7	Core	100	Vertical	Forest	Non- Surface Right
	PBH 87	2407400	307667	850	Core	100	Vertical	Forest	Non- Surface Right
	PBH 88	2407400	307867	909	Core	100	Vertical	Forest	Non- Surface Right
	PBH 89	2407400	308067	927.6	Core	100	Vertical	Forest	Non- Surface Right
	РВН 90	2407400	308167	907.7	Core	100	Vertical	Forest	Non- Surface Right
	PBH 91	2407400	308267	896	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 92	2407400	308367	900.5	Core	100	Vertical	Forest	Non- Surface Right
	РВН 93	2407400	308467	900	Core	100	Vertical	Forest	Non- Surface Right
	РВН 94	2407400	308567	914	Core	100	Vertical	Forest	Non- Surface Right
	РВН 95	2407400	308667	939	Core	100	Vertical	Forest	Non- Surface Right
	РВН 96	2407300	308467	930	Core	100	Vertical	Forest	Non- Surface Right
	РВН 97	2407300	308267	926	Core	100	Vertical	Forest	Non- Surface Right
	РВН 98	2407300	308067	932	Core	100	Vertical	Forest	Non- Surface Right
	РВН 99	2407300	307867	894.5	Core	100	Vertical	Forest	Non- Surface Right
3rd Year	PBH 100	2407300	307767	855	Core	100	Vertical	Forest	Non- Surface Right
2025- 26	PBH 101	2407300	307667	838	Core	100	Vertical	Forest	Non- Surface Right
	PBH 102	2407300	307467	831	Core	100	Vertical	Forest	Non- Surface Right
	PBH 103	2407200	307367	807.6	Core	100	Vertical	Forest	Non- Surface Right
	PBH 104	2407200	307467	826	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 105	2407200	307567	831.6	Core	100	Vertical	Forest	Non- Surface Right
	PBH 106	2407200	307667	844	Core	100	Vertical	Forest	Non- Surface Right
	PBH 107	2407200	307767	868.4	Core	100	Vertical	Forest	Non- Surface Right
	PBH 108	2407200	307867	901	Core	100	Vertical	Forest	Non- Surface Right
	PBH 109	2407200	307967	926.4	Core	100	Vertical	Forest	Non- Surface Right
	PBH 110	2407200	308067	951	Core	100	Vertical	Forest	Non- Surface Right
	PBH 111	2407200	308167	954.6	Core	100	Vertical	Forest	Non- Surface Right
	PBH 112	2407200	308267	960	Core	100	Vertical	Forest	Non- Surface Right
	PBH 113	2407200	308367	969	Core	100	Vertical	Forest	Non- Surface Right
	PBH 114	2407200	308467	974	Core	100	Vertical	Forest	Non- Surface Right
	PBH 115	2407200	308549	968	Core	100	Vertical	Forest	Non- Surface Right
	PBH 116	2407100	308467	1002.6	Core	100	Vertical	Forest	Non- Surface Right
	PBH 117	2407100	308267	982	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 118	2407100	308067	965.4	Core	100	Vertical	Forest	Non- Surface Right
	PBH 119	2407100	307867	922	Core	100	Vertical	Forest	Non- Surface Right
	PBH 120	2407100	307667	855	Core	100	Vertical	Forest	Non- Surface Right
	PBH 121	2407100	307467	835	Core	100	Vertical	Forest	Non- Surface Right
	PBH 122	2407000	307367	809.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 123	2407000	307467	829	Core	100	Vertical	Forest	Non- Surface Right
	PBH 124	2407000	307567	847.6	Core	100	Vertical	Forest	Non- Surface Right
	PBH 125	2407000	307667	867	Core	100	Vertical	Forest	Non- Surface Right
	PBH 126	2407000	307767	885	Core	100	Vertical	Forest	Non- Surface Right
	PBH 127	2407000	307867	857.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 128	2407000	307967	935.9	Core	100	Vertical	Forest	Non- Surface Right
	PBH 129	2407000	308067	952.8	Core	100	Vertical	Forest	Non- Surface Right
	PBH 130	2407000	308167	971	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 131	2407000	308267	990	Core	100	Vertical	Forest	Non- Surface Right
	PBH 132	2407000	308367	1004.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 133	2407000	308467	1017	Core	100	Vertical	Forest	Non- Surface Right
	PBH 134	2407000	308549	1012.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 135	2406900	308467	1010	Core	100	Vertical	Forest	Non- Surface Right
	PBH 136	2406900	308267	967	Core	100	Vertical	Forest	Non- Surface Right
	PBH 137	2406900	308064	922	Core	100	Vertical	Forest	Non- Surface Right
	PBH 138	2406900	307867	881	Core	100	Vertical	Forest	Non- Surface Right
	PBH 139	2406900	307767	861.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 140	2406900	307667	852	Core	100	Vertical	Forest	Non- Surface Right
	PBH 141	2406900	307567	832.3	Core	100	Vertical	Forest	Non- Surface Right
	PBH 142	2406900	307467	819	Core	100	Vertical	Forest	Non- Surface Right
	PBH 143	2406900	307367	820.5	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 144	2406800	307367	840	Core	100	Vertical	Forest	Non- Surface Right
	PBH 145	2406800	307467	833.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 146	2406800	307567	838.3	Core	100	Vertical	Forest	Non- Surface Right
	PBH 147	2406800	307667	846	Core	100	Vertical	Forest	Non- Surface Right
	PBH 148	2406800	307767	848.6	Core	100	Vertical	Forest	Non- Surface Right
	PBH 149	2406800	307867	857	Core	100	Vertical	Forest	Non- Surface Right
4th Year	PBH 150	2406800	307967	869,7	Core	100	Vertical	Forest	Non- Surface Right
2026- 27	PBH 151	2406800	308067	889	Core	100	Vertical	Forest	Non- Surface Right
	PBH 152	2406800	308167	907.7	Core	100	Vertical	Forest	Non- Surface Right
	PBH 153	2406800	308267	926	Core	100	Vertical	Forest	Non- Surface Right
	PBH 154	2406800	308367	962	Core	100	Vertical	Forest	Non- Surface Right
	PBH 155	2406800	308467	996	Core	100	Vertical	Forest	Non- Surface Right
	PBH 156	2406800	308550	1013	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 157	2406722	308547	1012	Core	100	Vertical	Forest	Non- Surface Right
	PBH 158	2406717	308467	990	Core	100	Vertical	Forest	Non- Surface Right
	PBH 159	2406713	308267	948	Core	100	Vertical	Forest	Non- Surface Right
	PBH 160	2406713	308067	908.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 161	2406713	307967	898.8	Core	100	Vertical	Forest	Non- Surface Right
	PBH 162	2406712	307867	879	Core	100	Vertical	Forest	Non- Surface Right
	PBH 163	2406712	307767	877	Core	100	Vertical	Forest	Non- Surface Right
	PBH 164	2406711	307667	880	Core	100	Vertical	Forest	Non- Surface Right
	PBH 165	2406711	307567	867.7	Core	100	Vertical	Forest	Non- Surface Right
	PBH 166	2406711	307467	850	Core	100	Vertical	Forest	Non- Surface Right
	PBH 167	2406710	307367	838	Core	100	Vertical	Forest	Non- Surface Right
	PBH 168	2408600	308667	824	Core	100	Vertical	Forest	Non- Surface Right
	PBH 169	2408600	308567	806.6	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 170	2408700	308567	795.7	Core	100	Vertical	Forest	Non- Surface Right
	PBH 171	2408700	308667	823	Core	100	Vertical	Forest	Non- Surface Right
	PBH 172	2408800	308667	820.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 173	2408800	308567	794	Core	100	Vertical	Forest	Non- Surface Right
	PBH 174	2408900	308567	767	Core	100	Vertical	Forest	Non- Surface Right
	PBH 175	2408900	308667	802	Core	100	Vertical	Forest	Non- Surface Right
	PBH 176	2409000	308667	793	Core	100	Vertical	Forest	Non- Surface Right
	PBH 177	2409000	308567	789	Core	100	Vertical	Forest	Non- Surface Right
	PBH 178	2409100	308567	786	Core	100	Vertical	Forest	Non- Surface Right
	PBH 179	2409100	308667	812	Core	100	Vertical	Forest	Non- Surface Right
	PBH 180	2409200	308667	795.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 181	2409200	308567	777	Core	100	Vertical	Forest	Non- Surface Right
	PBH 182	2409300	308567	773	Core	100	Vertical	Forest	Non- Surface Right

Year of drilling	Proposed BH No	Northing	Easting	Collar RL	Core/RC /DTH	Proposed Depth (In Mtr)	Inclination	Forest/Non Forest- diverted/Non Diverted	Surface Right/Non surface right area
	PBH 183	2409300	308667	765	Core	100	Vertical	Forest	Non- Surface Right
	PBH 184	2409400	308667	750	Core	100	Vertical	Forest	Non- Surface Right
	PBH 185	2409400	308567	765	Core	100	Vertical	Forest	Non- Surface Right
	PBH 186	2409500	308567	742.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 187	2409500	308667	749	Core	100	Vertical	Forest	Non- Surface Right
	PBH 188	2409600	308667	739	Core	100	Vertical	Forest	Non- Surface Right
	PBH 189	2409600	308567	730	Core	100	Vertical	Forest	Non- Surface Right
	PBH 190	2409700	308567	743	Core	100	Vertical	Forest	Non- Surface Right
	PBH 191	2409700	308667	720.5	Core	100	Vertical	Forest	Non- Surface Right
	PBH 192	2409792	308567	758	Core	100	Vertical	Forest	Non- Surface Right

- a. The locations are spaced suitably (in a grid pattern to the extent possible and may be modified depending on structural complexity) for establishing existence of the ore body and its lateral and vertical continuity.
- b. *100 each borehole drilled @ 100mtrs or till the end of mineralization /discontinuation of ore body, whichever is earlier.

2.2.5.6: Exploratory Mining: Not Applicable.

SI. No.	year	Pit ID	Length in mtrs	Width in mtrs	Depth in mtrs	Volume (m ³)
			No	ot Applicable.		

2.2.5.7: Sampling:

SI. No.	Type of Sample	Number of Samples proposed	Area Covered (ha)	Latitude	Longitude
01	Core	One Sample/Mtr	G2 and G3	As per location of the borehole.	As per location of the borehole.

• The Mineralized portions will sample every one meter or less as per requirement. If the outcome of the boreholes will found non-potential in nature or the borehole drilled in non-mineralized area, then the no of samples will be reduced.

2.2.5.8: Petrology & Mineralogical Studies: Not Applicable.

SI. No.	Type of Sample	Number of Sample proposed							
	Not Applicable.								

Chapter 3: MINERAL BENEFICIATION / PROCESSING

	Name of The One (NAin and	lucu Oue (Illemetite	
	Name of The Ore/Mineral	Iron Ore / Hematite	
- 1			

3.1: Mineralogy of the ROM ore/ Mineral:

S. No.	Valuable Mineral Name	Approx. Mineral %	Gangue Mineral/s Name	Approx. Gangue Mineral %
		Not Available		

3.2: Complete Chemical Analysis of the ROM Ore/Mineral:

Sl. No.	Radicals	Wt %	Wt %	Wt %	Wt %
01.		N	ot Available.		

The mine has been non-operational since long time so Complete chemical analysis of the ROM Ore / Mineral will be carried out after resume of mining operation.

3.3: Crushing Section:

SI. No.	Type of Crusher	Make	Capacity of Crusher (tph)	No. Of Units.	Feed Size (mm)	Product Size (mm)
01.	Fixed Integrated Crushing & Screening Plant	Puzzlona/Sandvic/Extec/ Thysenkrup	350	01	0-600 mm	0-10 mm,10- 40 mm , 5-18 mm & 0-5 mm
02.	Mobile integrated Crushing & Screen Plant	Puzzlona/Sandvic/Extec/ Power Screen/Fintec	250	02	0-300 mm	0-10 mm, 10-40 mm,5- 18 mm & 0-5 mm

3.3.1: Primary Crushing:

SI. No.	Type of Crusher	Make	Capacity of Crusher (tph)	No.of Units.	Feed Size (mm)	Product Size (mm)
01.	Fixed Integrated Crushing (Jaw Crusher)	Puzzlona/Sandvic/Extec/ Thysenkrup	350	01	0-600 mm	0-100 mm
02.	Mobile Integrated		250	02	0-300 mm	0-100 mm

3.3.2: Secondary Crushing:

SI. No.	Type of Crusher	Make	Capacity of Crusher (tph)	No.of Units.	Feed Size (mm)	Product Size (mm)
01.	Fixed Integrated Crushing (Cone Crusher)	Puzzlona/Sandvic/Extec/ Thysenkrup	300	01	0-100 mm	-100 mm
02.	Mobile Integrated		200	2	0-100 mm	-100 mm

3.3.3: Tertiary Crushing:

SI. No.	Type of Crusher	Make	Capacity of Crusher (tph)	Feed Size (mm)	Product Size (mm)
01.			Not Applicable		

3.4: Grinding Section: Not Applicable.

3.4.1: Dry Grinding:

SI. No	Type of Mill	Stages	Make of the mill	Data	Feed Size(m m)	Product Size Mill Discharge(mm)	Type o screen		
Not Applicable.									
Not Applicable.									

Table continued.....

SI. No	Make	Aperture Size of Screen/Classifier(mm),if applicable	Classifier/Screen undersize(tph)	Classifier/Screen oversize(tph)							
	Not Applicable.										

3.4.2: Wet Grinding: Not Applicable.

SI. No	Type of Mill	Stages	Make of the mill	Feed Flow Rate (tph)	Feed Size(mm)	Product Size(mm)	Type of screen/ Classifier			
	Not Applicable.									

Table continued.....

SI. No.	Aperture Size of Screen/Cl assifier (mm), if applicable	Classifier/Scr een undersize(tph)	Classifier/Sc reen oversize(tph)	WaterRequire ment(l/h)	FreshWaterRequire ment(l/h)	RecirculatedWat er(l/h)				
	Not Applicable.									

3.5: Dry Processing:

3.5.1: Screening and Classification: Screening

Sl. No	Type of screen/ classifiers	Stages	Make	Capacity(tph)	Aperture Size of Screen/Classifier (mm),if	Feed Size(mm)	Product Size(mm)	Product quality (if applicable)
01.	Fixed Integrated Screening Plant	01	Puzzlona/Sand vic/Extec/ Thysenkrup	350	0-10 mm,10-40 mm, 5-18mm & +40mm	-100 mm	0-10 mm,10-40 mm,5-18 mm,0-5 mm & 40-100 mm	Fe % > 45%
02.	Mobile Integrated Crushing & Screen Plant	03	Puzzlona/Sand vic/Extec/ Power Screen/Fintec	250	0-10 mm,10-40 mm	-100 mm	0-10 mm,10-40 mm & 40-100 mm	Fe % > 45%

3.5.2: Other Operations: Not Applicable.

S.N	Type of equipment /operation	Stages, if applicable	Make	Capacity(tph)	Feed Size(mm)	Product Size(mm)	Product-Mid (tph),if available	Product- Tail (tph)
	Not Applicable.							

3.5.3: Product Quality:

Products	Wt%	Wt% In tonnes Size(range)mm				
Concentrate	Not Applicable.					
Sub-grade	Fe% 45 ~ 55	The mine has been non- operational since long				
Rejects		time. The complete chemical analysis will be carried out after the resume of mine operation.				

3.6: Wet Processing: Not Applicable.

3.6.1: Scrubbing / Washing: Not Applicable.

SI. No	Type of Scrubbers /washers	Stages, if applicable	Make	Capacity (tph)	Feed Size(mm)	Product Size(mm)	Product quality (if applicable)
	Not Applicable.						

Table continued...

SI. No	Water Requirement(I/h)	Fresh Water Requirement (I/h)	Re-circulated water(l/h)					
	Not Applicable.							

3.6.2: Screening and Classification: Not Applicable.

SI. No	Type of screen/ classifiers	Stages, if applicable	Make	Capacity (tph)	Aperture Size of Screen/Classifier (mm),if applicable	Feed Size(mm)	Product Size(mm)
Not Applicable.							

Table continued.....

SI. No	Product quality(if applicable)	Water Requirement	Fresh Water	Re-circulated water(I/h)					
		(l/h)	Requirement						
	(l/h)								
	Not Applicable.								

3.6.3: Gravity Separation: Not Applicable.

SI.	Туре	of	Stages, if	Make	Capacity(tph)	Feed	Product	Product-
No	separators		applicable			Size(mm)	(Conc)	Mid(tph),if
	(jig, tal	ble,					(tph)	available
	spiral,							
	Not Applicable.							

Table continued...

S.N	Product-Tail (tph)	Water Requirement (l/h)	Fresh Water Requirement (l/h)	Re-circulated water(l/h)				
	Not Applicable.							

3.6.4: Magnetic Separation: Not Applicable.

SI. No	Type of magnetic separators (magnetic intensity)	Stages, if applicable	Make	Capacity(tph)	Feed Size(mm)	Product- Mag (tph)	Product-Mid(tph),if available

Table continued....

SI.	Product non-Mag (tph)	Water Requirement	Fresh Water	Re-circulated water(l/h)					
No.			Requirement						
	(l/h) (l/h)								
	Not Applicable.								

3.6.5: Flotation: Not Applicable.

	Type of	Stages(roughe						
SI.N	flotation	r/cleaner						
о	equipment(fr	,etc),	Maka	Capacity	Feed	Product-	Product non-Float	
	oth/column)	if applicable	Make	(tph)	Size(mm)	Float (tph)	(tph)	
	Not Applicable.							

Table continued....

SI. No	Water Requirement(l/h)	Fresh Water Requirement (I/h)	Re-circulated water(l/h)				
	Not Applicable.						

3.6.6: Other Operations: Not Applicable.

SI.Type of equipment /operationStages, if applicableMakeCapacityFee (tph)Size(n	(tph) if
---	----------

Not Applicable.

Table continued....

SI. No	Product-Tail (tph)	Water Requirement (I/h)	Fresh Water Requirement (l/h)	Re-circulated water(I/h)								
	Not Applicable.											

3.6.7: Product Quality (wet processing): Not Applicable.

Products	Wt%	In tonnes	Size(range)mm	Complete								
				chemical								
Concentrate												
Sub-grade			Not Applicable.									
Rejects												

3.7: Overall Product Quality (Dry cum Wet Processing): Not Applicable.

Products	Wt %	In tonnes	Size (range) mm	Complete chemical analysis							
Concentrate											
Sub-grade	Not Applicable.										
Rejects											

3.8: Disposal Method for tailing/ rejects: Not Applicable.

	a) Explain the disposal method for tailing or reject from processing plant with detail chemical / mineral analysis of tailing	Not Applicable.
	b) Size and capacity of tailing pond, toxic effect of such tailings, process adopted to neutralize its effect (if any)	Not Applicable.
	c) Any other data (if available)	Not Applicable.
3.9: Ove	erall water requirement of mining and mineral processing:	
	Indicate quantity, source of supply, disposal of water and extent of recycling and chemical analysis of water	232 m ³ /day. Attach at Annexure No: 29.
3.10: Flo	ow sheets and charts:	·

Material balance chart of mineral processing plant(s) (each stage of process).	Attached at Annexure No: 30.
Attach flow sheet of beneficiation of plant(s)	Attached at Annexure No:30
Any other data (if applicable)	Not Applicable

Chapter 4: MINING OPERATIONS

4.1: MINING METHOD (Opencast): Opencast.

4.1.1: Existing Method of Mining- Mechanized.

Specify in the space below:

HEMM with deep hole drilling with Combination of loaders and tippers.

4.1.2: Proposed Method of Mining: Mechanized.

Specify in the space below:

HEMM with deep hole drilling with Combination of loaders and tippers.

Reasons for proposed changes: Not Applicable.

4.2: Operational Parameters:

4.2.1: Inventory of Existing Pits & Dumps:

4.2.1.1: Pits as on 30.06.2022.

SI. No.	Pit ID	Pit Status	Area Covered by Pit (Ha)	Pit Dimension (m x m x m)
01.	Quarry-I	Active	2.442	274.44 x 89.0 x 6

4.2.1.2: Dumps & Stack:

4.2.1.2.1: Dump Details as on 30.06.2022:

SI. No.	Dump ID Status Dump		Type of Dump	Total Dump Quantity (t)	Area covered by Dump (Ha)	Height (m)	Location					
The mi	The mine has been non-operational since long period, so there is no existing dump present with in the ML area.											

4.2.1.2.2: Stack Details as on 30.06.2022:

Sl. No.	Stack ID	Type of Stack	Total Stack Quantity (t)	Area covered by Stack (Ha)	Height (m)						
The min	The mine has been non-operational since long period, so there is no existing stacks present with in the ML area.										

4.2.1.3: Details of Stabilized Dumps:

SI. No.	Dump ID	Number of Terraces	Average Height of Terraces (m)	Length of Toe Wall (m)	Length of Garland Drain (m)	Area Stabilized (ha)	Method of Stabilization				
There is no stabilized dump present within the ML area as on date 30.06.2022.											

4.2.2: Opencast Mining:

4.2.2.1: Bench Parameters:

Pit ld	Year	Max Heigh t of Bench es in Over Burde n (m)	Min Width of the Benches in Over Burden (m)	Slope of the Bench in Over Burden (degree)	Max Height of the Benches in Mineral (m)	Minimum Width of the Benches in Mineral (m)	Slope of the Bench in Mineral (degree)	Overall Slope of Pit (degree)	Number of Benches in Top Soil	Number of Benches in Over Burden	Number of Benches in Mineral	Max Depth of Workings (m)	Depth of Water Table (m)	Max Slope Angle of Haul Roads (1 in)	Year-Wise Development & Production Plan	Year-Wise Development & Production Section
Quarry-1	2023-24	6	12	70-80	6-10	10-15	70-80	20	0	03	02	30		16	Plate No-6A	Plate No-7A
Quarry-1	2024-25	6	12	70-80	6-10	10-15	70-80	20	0	02	0604	54		16	Plate No-6B	Plate No-7B
Quarry-1	2025-26	6	12	70-80	6-10	10-15	70-80	20	0	01	04	36	813 mRL	16	Plate No-6C	Plate No-7C
Quarry-1	2026-27	6	12	70-80	6-10	10-15	70-80	20	0	02	03	54		16	Plate No-6D	Plate No-7D
Quarry-1	2027-28	6	12	70-80	6-10	10-15	70-80	20	0	01	05	36		16	Plate No-6E	Plate No-7E

Rantha Iron Ore Mine

Odisha Mining Corporation Ltd

4.2.2.2: Year wise Opencast Development:

Sr. No	Year	Pit ID	Bench	Direction	Bulk Density of Overburden (BD1) (ton/m3)	Bulk Density of Mineral (BD2) (tonn/m3)	Top Soil Volume (Length x Width x Height) (m3)	Over Burden Volume (Length x Width x Height) (m3)	Over Burden Quantity (t)	ROM Volume (Length x Width x Height) (m3)	ROM Quantity (t)	Recovery	Mineral Reject (t)	Production Main (t)	Production Associated (t)	Location of Advancement	OB to Ore Ratio (ton/m3)
01.	2023 -24	$()_{1} = rrv_1$	940 mRL 910 mRL	South- East			0	1,50,000	3,00,000	3,52,593	10,00,000	Production Main- 48% & MR-52%	5,20,000	4,80,000	0	2407688N- 2407988N 308050E- 308438E	1:0.15
02.	2024 -25	()	910 mRL 886 mRL	North- West	2.0	Avg. Bulk Density of Ore: 3.00 & Sub-Grade Ore/ MR :2.7	0	1,70,000	3,40,000	3,44,815	10,00,000	Production Main- 69% & MR-31%	3,10,000	6,90,000	0	2407786N- 2408055N 308033E- 308338E	1:0.17
03.	2025 -26		940 mRL 904 mRL	South- East	2.0		0	3,10,000	6,20,000	3,55,186	10,00,000	Production Main- 41% & MR-59%	5,90,000	4,10,000	0	2407539N- 2408055N 308032E- 308438E	1:0.31
04.	2026 -27		904 mRL 880 mRL	North- West			0	7,00,000	14,00,000	3,52,963	10,00,000	Production Main- 47% & MR-53%	5,30,000	4,70,000	0	2407539N- 2408055N 307993E- 308438E	1:0.70
05.	2027 -28	()uarry-1	898 mRL 862 mRL	North- East			0	2,00,000	4,00,000	3,48,889	10,00,000	Production Main- 58% & MR-42%	4,20,000	5,80,000	0	2407900N- 2408278N 308209E- 308575E	1:0.20

Recovery Factor of production main with respect to ROM has been considered for calculation of production.

Details of section wise calculation of ROM, Salable Ore, Mineral Reject & waste for the Review of mining Plan period i.e. FY 2023-24 to 2027-28 is enclosed at Annexure-31.

Average Bulk Density of Different Ore Types

Sl. No.	Оге Туре	Bulk Density, t/cu.m
01.	Ore (Fe > 55%)	3.00
02.	Sub Grade Ore (45 % to 55% Fe)	2.70
03.	Waste	2.0

Note: The mine has been non-operational since long period, so average bulk density of waste material not available. Average bulk density of material to be derived after resume of mining operation. So for the time being average bulk density of waste material has been taken from nearby mines i.e. Kurmitar Iron & Mn. Ore Mines.

Sl. No.	Pit ID	Total Topsoil Volume (m ³)	Total Over Burden Volume (m ³)	Total Over Burden Quantity (t)	Total ROM Volume (m ³)	Total ROM Quantity (t)
01.	Quarry-1	0	15,30,000	30,60,000	17,54,446	50,00,000
G. ⁻	G. Total 0		15,30,000	30,60,000	17,54,446	50,00,000

4.2.2.3: Transportation & Hauling Equipment:

SI. No.	Туре	Make	Capacity (m ³)	No. of Equipments
01.	Hauling Equipment	Volvo/Bharat Benz/Eicher/ Tata Prima	19	12
02.	Hauling Equipment	Volvo/Bharat Benz/Eicher/ Tata Prima	14	15

4.3: Material Handling Summary:

4.3.1: Studies Undertaken:

Slope Stability Study Report	No	Slope Stability Study will be conduct after Resume of Mining Operation.
Recovery Study Report	Yes	Attached in Annexure No:28
Hydrological Study Report		Hydrological Study will be conduct
	No	after Resume of Mining Operation.
Mineral Beneficiation Study Report		NA
Underground Rock Displacement Study Report		NA
Subsidence Study Report		NA
Geotechnical Study Report		NA
Blast Induced ground Vibration Study	No	Blast Induced ground Vibration Study will be conduct after Resume of Mining Operation.
Bulk Density Study Report	Yes	Attached in Annexure No:26

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

4.3.2: Insitu Mining:

SI. No.	Year	Pit ID	Total Handling (t)	Waste Quantity (t)	ROM Quantity (t)	ROM Quantity Saleable Mineral (t)	ROM Quantity Mineral Reject (t)	OB to Ore Ratio (Waste Quantity / ROM Quantity)	Grade Range (%)
01.	2023-24	Quarry-1	13,00,000	3,00,000	10,00,000	4,80,000	5,20,000	1:0.3	Fe >55 %
02.	2024-25	Quarry-1	13,40,000	3,40,000	10,00,000	6,90,000	3,10,000	1:0.34	Fe >55 %
03.	2025-26	Quarry-1	16,20,000	6,20,000	10,00,000	4,10,000	5,90,000	1:0.62	Fe >55 %
04.	2026-27	Quarry-1	24,00,000	14,00,000	10,00,000	4,70,000	5,30,000	1:1.4	Fe >55 %
05.	2027-28	Quarry-1	14,00,000	4,00,000	10,00,000	5,80,000	4,20,000	1:0.4	Fe >55 %
	G-Total		80,60,000	30,60,000	50,00,000	26,30,000	23,70,000	1:0.61	Fe >55 %

Details of section wise calculation of ROM, Salable Ore, Mineral Reject & waste for the period i.e. for the FY 2023-24 to 2027-28 of the Review of Mining Plan period is enclosed at Annexure-31.

4.3.3: Dump workings:

S.N.	Year	Dump Id	Location Latitude	Location Longitude	Area (m²)	Avg Height of Dump (m)	Volume (m³)	Total Dump Quantity (t)	Proposed Dump Handling Quantity (t) (A)	Proposed Recovery of Saleable Mineral (t)(B)	Proposed Waste Quantity (t) (A-B)	Grade Range (%)	Justification
	There is no proposal for dump working during the RMP period i.e. FY 2023-24 to 2027-28.												

Odisha Mining Corporation Ltd Rantha Iron Ore Mine

4.3.4: Calculation Summary:

Year	2023-24	2024-25	2025-26	2026-27	2027-28	Total
(A) Total ROM quantity (t)	10,00,000	10,00,000	10,00,000	10,00,000	10,00,000	50,00,000
(B) Saleable ore from ROM (t)	4,80,000	6,90,000	4,10,000	4,70,000	5,80,000	26,30,000
(C) Proposed Dump Handling Quantity (t)	0	0	0	0	0	0
(D) Saleable Ore recovered from dump workings (t)	0	0	0	0	0	0
(E) Total Saleable Ore (t) (=B+D)	4,80,000	6,90,000	4,10,000	4,70,000	5,80,000	26,30,000
(F) Total Quantity Handled (t) (=A+C)	10,00,000	10,00,000	10,00,000	10,00,000	10,00,000	50,00,000

4.4: Machine Calculation:

4.4.1: Machine Requirement Summary:

Number of Average Working Days in One Year (A)	300
Number of Shifts per Day (B)	3
Material Handling Required per Day (t) ((D)=Largest of (Q1,Q5)/(A))	8,000
Material to be Handled per Shift (t) ((E)=(D)/(B))	2667
Handling Required per Hour (t) ((F)=(E)/6 hours)	445
Effective Shift Time	6 hr

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

4.4.2: Shovel / Excavator Requirement:

Effective Shift Time: 6 Hrs 00 min

SI. No.	Туре	Bucket Capacity (m³)(A)	Bucket Fill Factor (B)	Swell Factor (C)	Tonnage Factor (m³/t) (D)	Machine Utilization Factor (%) (U)	Efficiency (%) (E)	Cycle time (sec) (F)	(G) TPH =TPH (G) =((3600 x A x B x C x D x E x U) / F)/10000	Total Hours (H) =Number of working days x Number of shifts/day x Effective shift hours	Yearly handling by one Excavator (t) (I)=(G x H)	Maximum handling of the material by this machine during the block period (t) (J)	Number of excavator machines required (K) = (J / I)	Standby excavator (L)
01.	Excavator	3.5	0.8	0.8	2.5	80%	80%	50	258	5400	13,93,200	24,00,000	2	1
02.	Excavator	2.5	0.8	0.8	2.5	80%	80%	50	184	5400	9,93,600	24,00,000	3	1

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

4.4.3: Dumper Requirement:

	Effective Shift Ti	me:		6.0	00 Hrs			(00 mins					
SI. No	Total Hours=Nu mber of working days (W)x Number of shifts/day x Effective shift hours (Machine Requireme nt Summary) (A)	Capacit y of Dumper s (t) (B)	Speed of the dumper (KMPH) (i)	Lead Distanc e (KM) (ii)	Time taken to cover distance in minutes(ii i) =(ii/i) x 60	Queuing, Loading Time at Shovel (min) (iv)	Queuing, Unloadin g Time during unloading (min) (v)	Total Time to complete one trip(vi) = (iii + iv + v)	No. of Trips / hr (vii) = (60 / vi)	Total transport ation per hour (viii) =(B X vii)	Yearly handling by one dumper (ix) = A x TPH	Maximum handling of the material by this machine during the block period (t) (x)	Number of dumpers will be (xi) =(x / ix)	Plus Standby dumper (xii)
01.	5400	35	20	6	18	3	3	24	2.5	87.5	4,72,50 0	24,00,00 0	5	2
02.	5400	25	20	6	18	3	3	24	2.5	62.5	3,37,50 0	24,00,00 0	7	3
03.	5400	35	20	6	18	3	3	24	2.5	87.5	4,72,50 0	10,00,00 0	3	2
04.	5400	25	20	6	18	3	3	24	2.5	62.5	3,37,50 0	10,00,00 0	3	2

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

4.4.4: Drill Machine Requirement:

	Effective Shif	t Time:	6.00 hrs						0 mir	าร				
SI. No	Type of Drill	Depth of Hole(including Sub-grade Drilling (m)	Spacin g (m)	Burde n (m)	Bulk Densit y of Waste (t/m ³)	Bulk Density of Minera I (t/m ³)	Yiel d per Hole (t)	Yield per Mete r (t/m)	Annual Target Known (t)	Drilling Requiremen t per Day (m)	Drilling Requiremen t per Shift (m)	Rate of Drilling per Hours (m/hr)	Required Number of Drills (m/c)	Stand by Drill
01.	Mechanical	6.6	3.5	3	2.0	3	189	31.5	16,80,0 00	198	66	20	4	1

70% with respect to the total excavation have been required blasting.

4.4.5: Machine Deployment Details:

4.4.5.1: Excavator & Loading Equipment:

Sl. No.	Туре	Make	Capacity (m ³)	No. of Equipments
01.	Excavator	Tata Hitachi/ Volvo/ Kobelco/ Sany	3.5	3
02.	Excavator	Tata Hitachi/ Volvo/ Kobelco/ Sany	2.5	4

4.4.5.2: Dozers Details:

Sl. No.	Туре	Make	Capacity (HP)	No. of Equipments	
01.	Dozer	BEML/Komatsu/CASE/L&T	324 HP	02	

4.4.5.3: Drilling Details:

Sl. No.	Туре	Make	Capacity (t)	Diameter of Hole (mm)
01.	Drill Machine	INDUS/Atlas Copco/Sandvik	450	115-150 mm

4.4.5.4: Auxiliary Mining Equipment:

SI. No.	Туре	Make	Capacity	No. of Equipments
01.	Exacvator	Tata Hitachi/ Volvo/ Kobelco/ Sany	0.9-2.7 CuM	04
02.	Loader	SDLG/LIUGONG/Volvo/Tata	4.5-3.5 CuM	3/4
03.	Loader	HM2021/Volvo	1.5/2CuM	2/2
04.	Diesel Tanker	TATA/Eicher	12KL	1
05.	Water Sprinkler	TATA/Eicher	10KL	3
06.	Motor Grader	Hidromek/ LIUGONG	140HP	1
07.	Explosive Van	TATA/Ashok Leyland	2 ton	1
08.	Pick up Van	Mahindra		3
09.	Rock Breaker	Atlascopco/Volvo	120 ton	1
10.	Portable Tower lights	Kirloskar/Catterpillar /Atlas Copco/Koel		10
11.	Mobile Service Van	TATA/Eicher		1
12.	Crane	Volvo/L&T/Hitachi	100 ton	1
13.	Tyre Handler			1

The proposed equipment shall be sufficient for smooth operation of the Mine for the proposed capacity of 1.0 MTPA of ROM ore during the Review of Mining Plan period. However, exact specification, capacity & numbers of HEMMs proposed may vary as per exact requirement.

4.5 Blasting Requirement:

4.5.1 Blasting & Explosive Requirement in Waste/Development:

S.N.	Drill	Burde	Numbe	Yield	Frequency	Maximum	Charge	Charge	Explosive	Powder	Depth
	Patte	n of	r of	per	of Blasting	Number of	•	per	Requiremen	Factor in	Of
	rn /	Holes	Rows /	Holes		Holes	Hole	Round	t Per Month	Developme	Hole
	Spaci ng of Hole s (m)	(m)	Rings	in Waste (m³)		Blasted in a Round	(kg)	(kg)	in nt / Waste Developmen (kg/t) t (kg)		
01.	Stag gere d/ 3.5	3	3	63	3	55	30	1,680	19,000	5	6

Blasting has been carried out by third party agency.

4.5.2 Blasting & Explosive Requirement in Mineral / Ore:

Type of Explosive	Type of Explosives used / to be Used
Emulsion, Slurry, SME. Initiation by NONEL/Detonating Fuse/Electric Detonator.	Emulsion, Slurry, SME. Initiation by NONEL/Detonating Fuse/ Electric Detonator.

SI. No.	ROM proposed	to be handled in	Spacing of Holes (m)	Burden of Holes (m)	Number of Rows	Yield per Holes in ROM Zone (m ³)	Frequency of Blasting in a Week	Maximum Number of Holes Blasted in a Round	No of Holes Require d to be Blasted per Round	Charge per Hole (kg)
01	2,48,630	829	3.5	3	3	63	3	30	36	36

Table continued....

SI.	Charge	Explosive	Powder	Рор	Plaster	Use of	Capacity	Secondary	Depth Of
No.	per	Requirement	Factor	Shooting	Shooting	Rock		Blasting	Hole
	Round	Per Month	in Ore	(no of	(no of	breaker		Requirements	
	(kg)	for ROM	(t/kg)	Boulders)	Boulders)				
		Zone							
		Blasting (kg)							
01.	1,080	12,960	6.5	NA	NA	yes	120 ton	Not Required	6

4.6: Man Power Deployment:

4.6.1: Managerial:

Sr. No	Particulars	Number of Persons in Shift 1	Number of Persons in Shift 2	Number of Persons in Shift 3	Number of Persons in General Shift	Total No. of Persons per day
1	1st Class	0	0	0	2	2
2	2 nd class Manager	1	1	1	2	5
3	Mining Engineer	0	0	0	1	1
4	Geologist	1	0	0	1	2
5	Mechanical Engineer	0	0	0	1	1
6	Electrical Engineer	0	0	0	1	1
7	Others	0	0	0	10	10
Total		2	1	1	18	22

4.6.2: Supervisory:

Sl. No.	Particulars	Number of Person in Shift 1	Number of Person in Shift 2	Number of Person in Shift 3	Number of Person in General Shift	Total Number of Person per Day
1.	Mines Foreman	2	2	2	2	8
2.	Mechanical Foreman & JEE	1	1	0	1	3
3.	Electrical Foreman & JEE	1	0	0	1	2
4.	JEE Civil	0	0	0	1	1
5.	Mine mate	3	3	3	3	12
6.	Blaster	0	0	0	1	1
7.	Surveyor	0	0	0	2	2
8.	Others	0	0	0	35	35
	Total	7	6	5	46	64

4.6.3: Skilled Workers / Operators:

Sr. No	Particulars	Number of Persons in Shift 1	Number of Persons in Shift 2	Number of Persons in Shift 3	Number of Persons in General Shift	Total No. of Persons per day
01.	Excavator Operator	7	7	7	3	24
02.	Dumper Operator	15	15	15	7	52
03.	Loader Operator	4	4	4	2	14
04.	Diesel tanker Operator	1	1	1	1	4
05.	Water Tanker Operator	3	3	3	0	9
06.	Dozer Operator	2	2	2	0	6
07.	Grader Operator	1	1	0	0	2
09.	Service Van Operator	1	1	1	0	3
10.	Crane Operator	1	1	0	0	2
11.	Explosive Van Driver	1	1	0	0	2
12.	Drill Operator	2	2	2	0	6
13.	Work Shop Mechanic	6	6	6	0	18
	Total	44	44	41	13	142

4.6.4: Semi-skilled Workers:

SI. No	Number of	Number of	Number of	Number of Persons	Total No. of Persons
	Persons in Shift 1	Persons in Shift 2	Persons in Shift 3	in General Shift	per day
01.	40	40	40	37	157

4.6.5: Unskilled Workers:

SI. No	Number of Persons in Shift 1	Number of Persons in Shift 2	Number of Persons in Shift 3	Number of Persons in General Shift	Total No. of Persons per day
01.	12	12	12	18	54

4.6.6: No of Persons Engaged Per Day:

Number of Persons in Shift 1			Number of Persons in General Shift	Total No. of Persons per day
105	103	99	132	439

No of Shifts per Day ((A) = Machine Requirement Summary (B))	3 shifts
Average Daily Employment per Shift ((B) = (Total Number of Person per Day) /	(A)) 146
Material to be Handled per Shift ((C) = Machine Requirement Summary (E))	2,667

4.6.7: Supervision:

SI. No.	Particulars	Qualification	Requirement / Proposed	In Position / Existing Strength	(-) Shortage / (+) Excess	Remarks
01.	Excavation Point	10 th pass	8	0	Shortage	After Resume of Mine
02.	Loading Point	10 th pass	6	0	Shortage	operation all the
03.	Dumping Point	10 th pass	6	0	Shortage	supervision staff appointed and they will work under Mining Mate / Mines Foreman as per statutory Guidelines.

4.7: Waste Management:

4.7.1: Existing Dump as on 30.06.2022:

Sl. No.	Year	Dump ld	Type of Dump	Proposed Area (ha)	Height (m)	Total Dump Quantity (m ³)	Existing Dump Location		
The m	The mine has been non-operational since long period, so there is no existing dump present with in the ML area.								

4.7.2: New Dump:

SI. No.	Year	Dump Id	Type of Dump	Proposed Area (ha)	Height (m)	Total Dump Quantity (m³)	New Dump Location		
01.	2023-24	WD-1	Waste Dump	16.464	60	16,000,00	2408194N to 2408703N 308267E to 308734E		
	The waste generated during the Review of Mining Plan Period i.e. FY 2023-24 to 2027-28 is proposed to be dumped over waste dump WD-1. The waste dump WD-1 will be operated during the RMP period i.e. FY 2023-24 to 2027-28.								

4.7.3: Existing Stack as on 30.06.2022.:

SI. No.	Year	Stack ID	Type of Stack	Proposed Area (ha)	Height (m)	Total Stack Quantity (m³)	Existing Stack Location		
The r	The mine has been non-operational since long period, so there is no existing stack present with in the ML								
	area.								

4.7.4: New Stack

SI. No.	Year	Stack ID	Type of Stack	Proposed Area (ha)	Height (m)	Total Stack Quantity (m³)	New Stack Location	
01.		ST-1	Processed Ore	1.174	10	80,000	247965N-2408152N to 307953E-308094E	
02.	2023-24	ST-2	Processed Ore	1.622	20	1,50,000	2408202N-2408436N to 307914E-308106E	
03.	03. ST-3		Sub-Grade Ore	6.598	40	6,00,000	2408060N-2408380N to 307685E-308066E	
	All the above Stack yard have been developed during the FY 202324 of RMP period and all these Stack yard will be operated during the RMP period i.e. FY 2023-24 to 2027-28.							

4.8: Mineral Waste Handling To Utilize As Minor Mineral: Not Applicable.

SI. No.	Year	Dump Id	Type of Dump	Proposed Area (ha)	Quantity Handled (t)	Quantity Recovered (t)	Name Of Minor Mineral	Alternative Waste Utilization (m ³)
The	There is no mineral waste generate for utilizing as minor mineral during the RMP period i.e. from FY							
				2023-24 to	2027-28.			

4.9: Use of Minerals:

SI. No.	Proposed Use Of Mineral	Name Of Mineral	Relevant Use Of Mineral	Physical Specifications	Chemical Specifications
1	Direct Selling to prospective buyers	Iron Ore	Steel Plant & Spong Iron Plants	0-10 mm,5-18 mm & 10-40 mm	Fe > 55% SiO ₂ - 2% (Max.)
2	Direct Selling to prospective buyers in case of demand for Subgrade Ore/MR	Iron Ore	Steel Plant & Spong Iron Plants	0-10 mm,5-18 mm & 10-40 mm	Fe 45% ~ 55% SiO ₂ - 2% (Max.)

Chapter 5: SUSTAINABLE MINING

5.1: Sustainable Mining and SDF Implementations in Compliance of Rule 35 of MCDR'2017-

Odisha Mining Corporation (OMC), incorporated in 1956 as a joint venture between Government of India and the Government of Odisha to harness untapped mineral wealth of the state, is now a Gold category State PSU and a wholly state-owned corporation, with head office at Bhubaneswar.

OMC aspires to become a market leader in the metals & mining industry in India with state-of-the-art infrastructure and world-class operational facilities. At present, OMC focuses its operations on Iron, Chrome, Bauxite and Manganese, but there are plans on expanding the business into coal mining domain as well. OMC believe that high governance standards are imperative to deliver corporate success, and to strategically align business policies with it's long-term goals and targets. OMC operates on principles of equality, fairness, transparency and accountability, that helps strengthen it's relationships with employees, their unions and all stakeholders. These principles also ensures integrated development of not just the organization, but also it's employees and surrounding local communities.

OMC has a vision to become a world class organization with mining as its core activities by providing the best of services in terms of quality, productivity, profitability, customer satisfaction and environmental sustainability

OMC envisions to attain the global leader position in metals and mining industry through sustainable growth and knowledge excellence. It's focus is to contribute to the national and local economy by ensuring good quality mineral production while simultaneously reducing the impacts on the ecosystem, generating employment opportunities for the local communities and fulfilling societal needs.

Odisha Mining Corporation Limited, create values for all stakeholders in a manner that is responsible, transparent and respects the rights of all. This is carried out consciously and responsibly across the life cycle of the projects that drives long-term growth and profitability through the inclusion of environmental, social and corporate governance aspects co-creating harmony between development and ecosystem. Sustainable Development is integral to the company's ethos and OMC is committed to excel on Triple Bottom Line performance.

The Company as per guidelines of Government of India has set its own target to achieve of 5 Star Rating under Sustainable Development Framework as per the provisions of Mineral Conservation and Development Rules, 2017(MCDR).

As per Rule 35 of MCDR 2021, OMC has considered relevant aspects of environmental, economic and social taken into account for sustainable development in the mining lease area. Also OMC have a dedicated cell which looks comparative performance on sustainable development with initiative & implementation for achieving environmental and social goals.

OMC is committed for improvement of its SDF status on a continuous basis. Some of the major initiatives taken on SDF are as follows:

- Initiative by Apex Management to provide exposure to senior officer to visit 5 Star Mines.
- Induction of modern equipment.
- Erection of Crated Boulder Wall and construction of concrete garland drains with settling ponds to arrest wash offs from waste dumps / subgrade stacks
- Plantation of tall seedings through Odisha Forest Development Corporation (OFDC) ensuring at least 90% survival and faster growth.
- Efforts undertaken for Rain water harvesting
- Certification of International Standards and its periodical renewal
- Developing New Park and renovating park at different leases of OMC.
- Green energy initiatives
- Converting waste to wealth by drum/vermi/continuous composting
- Quality Circle for innovations

Compliance of Vishakha Committee Guidelines for prevention of women harassment at workplace:

Not Implemented.

5.2: CSR Initiatives:

5.2.1: 2023-24			
Details of Work Proposed during the Year / Measures Planned for	Cumulative Work done /		
the Affected Segment	Measures Taken		
5.2.1.1: Area to be Developed for Recreation			
Area (Ha)	Area (Ha)		
0.2	0.2		
5.2.1.2: Area for Water Storage & Recharge Facility			
Area (Ha)	Area (Ha)		
0	0		
5.2.1.3: Efforts Made towards Housing for Local Communities			
Number of Houses	Number of Houses		
0	0		
5.2.1.4: Efforts Made towards Providing Transport to Local Commun	ities		
Number of Beneficiaries	Number of Beneficiaries		
100	100		
5.2.1.5: Efforts Made towards Providing Healthcare to Local Commu	nities		
Number of Beneficiaries	Number of Beneficiaries		
100	100		
5.2.1.6: Efforts Made towards Providing Hygiene & Sanitation to Loc	al Communities		
Number of Beneficiaries	Number of Beneficiaries		
100	100		
5.2.1.7: Efforts Made towards Skill Development Programs to Local (Communities		
Number of Beneficiaries	Number of Beneficiaries		
10	10		
5.2.1.8: Efforts Made to Promote Education & Knowledge Based Init	iatives		
Number of Beneficiaries	Number of Beneficiaries		

Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

10		10	
5.2.1.9: Communication Facilities Pr	ovided to Local Communities		
Number of Ber	neficiaries	Number of Beneficiaries	
100		100	
5.2.1.10: Any Other Steps Taken for	Improving the Socio-Economic S	tandard of Local Communities	
Number of Ber	neficiaries	Number of Beneficiaries	
10		10	
5.2.1.11: Adoption of ODF			
Number of Toilets Built inside the Lease Area:	Number of Toilets Built outside the Lease Area:	Number of Beneficiaries	
0	0		
5.2.1.12: Awareness Program amon	g Mine Workers for Swatchata		
Number of Swatchata Pro	ogrammes proposed:	Number of Swatchata Programmes Held:	
01		0	
5.2.1.13: Efforts for green energy			
Total energy consumption (KWh)	Green energy consumption (% of total)		
0 0			
5.2.1.14: Water & recycled use			
Total water consumption (KLD)			
0			

5.2.2: 2024-25				
Details of Work Proposed during the Year / Measures Planned for the Affected Segment	Cumulative Work done / Measures Taken			
5.2.2.1: Area to be Developed for Recreation				
Area (Ha)	Area (Ha)			
0.2	0.4			
5.2.2.2: Area for Water Storage & Recharge Facility				
Area (Ha)	Area (Ha)			
0	0			
5.2.2.3: Efforts Made towards Housing for Local Communities				
Number of Houses	Number of Houses			
0	0			
5.2.2.4: Efforts Made towards Providing Transport to Local Communi	ities			
Number of Beneficiaries	Number of Beneficiaries			
100	200			
5.2.2.5: Efforts Made towards Providing Healthcare to Local Commun	nities			
Number of Beneficiaries	Number of Beneficiaries			
100 200				
5.2.2.6: Efforts Made towards Providing Hygiene & Sanitation to Loca	al Communities			

		1
Number of Be	Number of Beneficiaries	
100	200	
5.2.2.7: Efforts Made towards Skill I	Development Programs to Local	Communities
Number of Be	neficiaries	Number of Beneficiaries
10		20
5.2.2.8: Efforts Made to Promote Ed	lucation & Knowledge Based Init	iatives
Number of Be	neficiaries	Number of Beneficiaries
10		20
5.2.2.9: Communication Facilities Pr	rovided to Local Communities	
Number of Be	neficiaries	Number of Beneficiaries
100		200
5.2.2.10: Any Other Steps Taken for	Improving the Socio-Economic S	Standard of Local Communities
Number of Be	Number of Beneficiaries	
10	20	
5.2.2.11: Adoption of ODF		
Number of Toilets Built inside the	Number of Toilets Built	Number of Beneficiaries
Lease Area:	outside the Lease Area:	
0	0	0
5.2.2.12: Awareness Program amon	g Mine Workers for Swatchata	
Number of Swatchata Pro	ogrammes proposed:	Number of Swatchata Programmes Held:
01		0
5.2.2.13: Efforts for green energy		
Total energy consumption (KWh)	Green energy consumption (% of total)	
0	0	
5.2.2.14: Water & recycled use		
Total water consumption (KLD)	Water recycled (% of total)	1
0	0	
	4	

Details of Work Proposed during the Year / Measures Planned for the Affected Segment	Cumulative Work done / Measures Taken		
5.2.3.1: Area to be Developed for Recreation			
Area (Ha)	Area (Ha)		
0.2	0.6		
5.2.3.2: Area for Water Storage & Recharge Facility			
Area (Ha)	Area (Ha)		
0	0		
5.2.3.3: Efforts Made towards Housing for Local Communities			
Number of Houses	Number of Houses		
0	0		

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

5.2.3.4: Efforts Made towards Provid	ding Transport to Local Commur	nities
Number of Ber	neficiaries	Number of Beneficiaries
100	300	
5.2.3.5: Efforts Made towards Provid	ding Healthcare to Local Commu	inities
Number of Ber	neficiaries	Number of Beneficiaries
100		300
5.2.3.6: Efforts Made towards Provid	ding Hygiene & Sanitation to Lo	cal Communities
Number of Ber	neficiaries	Number of Beneficiaries
100		300
5.2.3.7: Efforts Made towards Skill D	Development Programs to Local	Communities
Number of Ber	neficiaries	Number of Beneficiaries
10		30
5.2.3.8: Efforts Made to Promote Ed	ucation & Knowledge Based Init	tiatives
Number of Ber	neficiaries	Number of Beneficiaries
10	30	
5.2.3.9: Communication Facilities Pr	ovided to Local Communities	
Number of Ber	Number of Beneficiaries	
100	300	
5.2.3.10: Any Other Steps Taken for	Standard of Local Communities	
Number of Ber	Number of Beneficiaries	
10		30
5.2.3.11: Adoption of ODF	1	
Number of Toilets Built inside the Lease Area:	Number of Toilets Built outside the Lease Area:	Number of Beneficiaries
0	0	0
5.2.3.12: Awareness Program among	g Mine Workers for Swatchata	
Number of Swatchata Pro	grammes proposed:	Number of Swatchata Programmes Held:
01	0	
5.2.3.13: Efforts for green energy		
Total energy consumption (KWh)	Green energy consumption (% of total)	
0		
5.2.3.14: Water & recycled use		
Total water consumption (KLD)	Water recycled (% of total)	
0		
	L	

Details of Work Proposed during the the Affected S	Cumulative Work done / Measures Taken					
5.2.4.1: Area to be Developed for Red	creation					
Area (Ha	Area (Ha)					
0.2	0.8					
5.2.4.2: Area for Water Storage & Rea	charge Facility					
Area (Ha	Area (Ha)					
0		0				
5.2.4.3: Efforts Made towards Housin	g for Local Communities					
Number of H	ouses	Number of Houses				
0		0				
5.2.4.4: Efforts Made towards Provid	ing Transport to Local Commun	ities				
Number of Bene	eficiaries	Number of Beneficiaries				
100		400				
5.2.4.5: Efforts Made towards Provid	ing Healthcare to Local Commu	nities				
Number of Bene	eficiaries	Number of Beneficiaries				
100	400					
5.2.4.6: Efforts Made towards Provid	ing Hygiene & Sanitation to Loc	al Communities				
Number of Bene	Number of Beneficiaries					
100	400					
5.2.4.7: Efforts Made towards Skill De	evelopment Programs to Local C	Communities				
Number of Bene	Number of Beneficiaries					
10	40					
5.2.4.8: Efforts Made to Promote Edu	cation & Knowledge Based Init	atives				
Number of Bene	eficiaries	Number of Beneficiaries				
10		40				
5.2.4.9: Communication Facilities Pro	vided to Local Communities					
Number of Bene	eficiaries	Number of Beneficiaries				
100		400				
5.2.4.10: Any Other Steps Taken for I	mproving the Socio-Economic S	tandard of Local Communities				
Number of Bene	eficiaries	Number of Beneficiaries				
10		40				
5.2.4.11: Adoption of ODF						
Number of Toilets Built inside the	Number of Toilets Built	Number of Beneficiaries				
Lease Area:	outside the Lease Area:					
0	0	0				
5.2.4.12: Awareness Program among	Mine Workers for Swatchata					
Number of Swatchata Prog	rammes proposed:	Number of Swatchata				
	Programmes Held:					
01	0					

5.2.4.13: Efforts for green energy Green energy consumption Total energy consumption (KWh) (% of total) 0 0 5.2.4.14: Water & recycled use Total water consumption (KLD) Water recycled (% of total) 0 0 5.2.5: 2027-28 Details of Work Proposed during the Year / Measures Planned for Cumulative Work done / the Affected Segment **Measures Taken** 5.2.5.1: Area to be Developed for Recreation Area (Ha) Area (Ha) 0.2 1.0 5.2.5.2: Area for Water Storage & Recharge Facility Area (Ha) Area (Ha) 0 0 5.2.5.3: Efforts Made towards Housing for Local Communities Number of Houses Number of Houses 0 0 5.2.5.4: Efforts Made towards Providing Transport to Local Communities Number of Beneficiaries Number of Beneficiaries 100 500 5.2.5.5: Efforts Made towards Providing Healthcare to Local Communities Number of Beneficiaries Number of Beneficiaries 100 500 5.2.5.6: Efforts Made towards Providing Hygiene & Sanitation to Local Communities Number of Beneficiaries Number of Beneficiaries 100 500 5.2.5.7: Efforts Made towards Skill Development Programs to Local Communities Number of Beneficiaries Number of Beneficiaries 10 50 5.2.5.8: Efforts Made to Promote Education & Knowledge Based Initiatives Number of Beneficiaries Number of Beneficiaries 50 10 5.2.5.9: Communication Facilities Provided to Local Communities Number of Beneficiaries Number of Beneficiaries 500 100 5.2.5.10: Any Other Steps Taken for Improving the Socio-Economic Standard of Local Communities Number of Beneficiaries Number of Beneficiaries 10 50 5.2.5.11: Adoption of ODF Number of Beneficiaries Number of Toilets Built inside the Number of Toilets Built Lease Area: outside the Lease Area:

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

0	0	0	
5.2.5.12: Awareness Program amon			
Number of Swatchata Pro	Number of Swatchata Programmes Held:		
01	0		
5.2.5.13: Efforts for green energy			
Total energy consumption (KWh) Green energy consum (% of total)			
0	0 0		
5.2.5.14: Water & recycled use			
Total water consumption (KLD)			
0			

5.3: Rehabilitation & Resettlement of Affected Persons:

Particular	2022-23
Proposed Number of Project Affected Persons(PAP)	Nil
Proposed Number of Person for Alternate Arrangement for Sustainable Livelihood	Nil
Proposed Number of Person for Skill Training	Nil
Proposed Number of Person Likely to get Direct Employment	Nil
Proposed Number of Person Likely to get Indirect Employment	Nil
Proposed Project Affected Families Skilled and Absorbed	Nil
Proposed Number of Project Affected Families	Nil

Chapter 6: PROGRESSIVE MINE CLOSURE PLAN

6.1: Status of Land:

Total Area Degr			raded		Total mined out area Reclaimed and Rehabilitated			Other Areas R and Rehabi	
Total area excavatior lease Area under mining operation	n in the	Area under Dumps(in hect)	Area under utility services(in hect)	Area under Stack yards(in hect)	Mined out Area Reclaimed but not rehabilitated (in hect)	Mined out Area fully Rehabilitated from Reclaimed area (in hect)	Area under Water Reservoir considered Rehabilitated (in hect)	Stabililized Waste dump Rehabilitated (in hect)	Virgin area under Green Belt (in hect)
2.442	0.00	0.00	6.443	0.00	0.00	0.00	0.00	0.00	13.126

6.2: Progressive Reclamation and Rehabilitation Plan:

6.2.1: Backfilling:

Quantity of Waste / Fill Material Available at Site (m ³)	0
Availability of Top Soil for Spreading (m ³)	0
Spread Area (m ²)	0

	Year Wise Proposal						
SI. No	Year	Pit ID	Co-ordinates	Area (m ²)	Top RL	Bottom RL	Estimated Expenditure (INR)
	There is no proposal for back filling during the RMP period i.e. FY 2023-24 to 2027-28.						

6.2.2: Water Reservoir:

Average Rainfall of The Area (mm)	1269.1
Proposed Area under Water Storage	0

6.2.2.1: Preparations for Ground Water Recharging:

6.2.2.1.1: Drilling Holes					
Year	Proposed no of Holes to be Drilled				
2023-24	Nil				
2024-25	Nil				
2025-26	Nil				
2026-27	Nil				
2027-28	Nil				

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

6.2.2.1.2:Preparation of Course Gravel Bed:					
Year	Proposed Area of Bed (LxW)				
2023-24	Nil				
2024-25	Nil				
2025-26	Nil				
2026-27	Nil				
2027-28	Nil				

Please specify, if others: Not Applicable.

6.2.2.2.1: Fencing:	:		
Year	Proposed Fencing Length (m)	Co-ordinates from	Co-ordinates to
2023-24	850 (MLP E1 to G1)	2406717N,308551E	2407366N,308743E
2024-25	900 (MLP G1 to G4)	2407366N,308743E	2408263N,308735E
2025-26	900(MLP G4 to G7)	2408263N,308735E	2409158N,308727E
2026-27	900(MLP G7 to A1)	2409158N,308727E	2409714N,308509E
2027-28	1200(MLP A1 to B)	2409714N,308509E	2408520N,308526E

6.2.2.2: Retaining Wall:					
Year	Proposed Wall Length (m)	Co-ordinates from	Co-ordinates to		
2023-24	440	2408506N to 308520E	2408698N to 308725E		
2023-24	440	Along the OB Dump	Along the OB Dump		
2024-25	350	2408698N to 308725E	2408348N to 308725E		
2024-25	330	Along the OB Dump	Along the OB Dump		
2025-26	400	2408505N to 308447E	2408299N to 308327E		
2025-20	400	Along the OB Dump	Along the OB Dump		
2026.27	520	2408299N to 308327E	2408348N to 308725E		
2026-27	520	Along the OB Dump	Along the OB Dump		
2027-28		Maintenance			
6.2.2.2.3: Garland Dr	ains:				
Year	Proposed Bund Length	Co-ordinates from	Co-ordinates to		
	(m)				
2023-24	440	2408511N to 308520E	2408703N to 308725E		
2023 24	-++0	Along the OB Dump	Along the OB Dump		
2024-25	350	2408703N to 308725E	2408348N to 308730E		
2024-23	330	Along the OB Dump	Along the OB Dump		
2025.20	100	2408509N to 308447E	2408296N to 308323E		
2025-26	400	Along the OB Dump	Along the OB Dump		
2026.27	F 20	2408296N to 308323E	2408348N to 308730E		
2026-27	520	Along the OB Dump	Along the OB Dump		
2027-28		Maintenance			

6.2.3: Green Belt Development: As on 30.06.2022

6.2.3.1: Cumulative work done (Up to end of previous block of five years)						
Sr. No	Total Expenditure Incurred up to Last Year (INR)	Area Covered (Ha)	Number of Plants	Survival Rate (%)		
The mine has been non-operational since long period due to want of forest clearance, so there is no						
plantation have be	plantation have been carried out up to end of previous block period.					

6.2.3.2:	6.2.3.2: Year Wise Proposal:						
Sl. No	Year	Green Belt Location (s)	Area Proposed to be Covered (Ha)	Number of Plants Proposed	Expected Survival Rate (%)	Estimated Expenditure (INR)	
01.	2023-24	Between ML Pillar MLP -E to MLP – G4 (Boundary Safety zone)	1.3	1560	70	4,19,640	
02.	2024-25	Between ML Pillar MLP-G4 to MLP-A1. (Boundary Safety zone)	1.3	1560	70	4,19,640	
03.	2025-26	Between ML Pillar MLP-A1 to MLP- B4/M. (Boundary Safety zone)	1.5	1800	70	4,84,200	
04.	2026-27	Between ML Pillar MLP- B4/M to MLP- O3. (Boundary Safety zone)	1.3	1560	70	4,19,640	
05.	2027-28	Between ML Pillar MLP-O3 to MLP-E. (Boundary Safety zone)	1.3	1560	70	4,19,640	

6.2.4: Use of shallow pits: Not Applicable

6.2.4.1: Cumulative work done (up to end of previous block of five years)						
SI. No	Pit ID	Work Done	Area covered (m ²)	Total Expenditure Incurred (up to last five year block) (INR)		
	Not Applicable					

6.2.4.2	6.2.4.2: Year Wise Proposal:								
SI. No	Year	Pit ID	Total Area (Ha)	Area Proposed for Crops (Ha)	Suitable Crops	Area Proposed for Grass (Ha)	Total Proposed Expenditure (INR)	Location (s)	Remarks
	Not Applicable								

6.2.5: Pisciculture: Not Applicable

6.2.5.1: Total Expenditure incurred as on Date (INR)			Not Applicable			
6.2.5.2: Cumulative work done as on Date: Not Applicable						
SI. No	SI. No Pit ID Area (m ²) Expenditure (INR)					
	Not Applicable.					

6.2.5.3: Year Wise Proposal: Not Applicable					
SI. No	Year	Pit ID	Area (m²)	Estimated Expenditure (INR)	
Not Applicable.					

6.2.5.4: Source of Water for Pisciculture	Not Applicable.
6.2.5.5: Whether the quality of water has been assessed & found to be suitable for Pisciculture	Not Applicable.

6.2.6: Recreational Facility:

6.2.6.1: Total Expenditure Incurred (up to last five year block) (INR)	Nil
6.2.6.1: Total Expenditure Incurred (up to last five year block) (INR)	Nil

6.2.6.2: Cumulative work done as on Date 30.06.2022.								
SI. No	Pit ID	Area (m²)	Expenditure (INR)					
The mine has been non-operational since long period due to want of forest clearance, so there is no recreational facility have been developed up to end of previous block period.								

6.2.6.3: Ye	6.2.6.3: Year Wise Proposal:									
Sl. No	Year	Type of Recreational Facility	Area Covered (Ha)	Location	Estimated Expenditure (INR)					
01.	2023-24	Park	0.2	2408000N 307843E	10,00,000					
02.	2024-25	Park	0.2	2408012N 307819E	10,00,000					
03.	2025-26	Park	0.2	2408047N 307840E	10,00,000					
04.	2026-27	Park	0.2	2408035N 307778E	10,00,000					
05.	2027-28	Park	0.2	2408074N 307800E	10,00,000					

Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

6.2.7	6.2.7: Dump Area Stabilization & Development:									
SI. No	Year	Dump ID	No of Terraces	Average Height of Terraces (m)	Length of Toe Wall (m)	Length of Garland Drain (m)	Area Stabilized (Ha)	Method of Stabilization	Estimated Expenditure (INR)	No of Check Dams
01.	2023-24		2	20	440	440	Nil	NA	62,47,200	01
02.	2024-25	Waste	2	20	350	350	Nil	NA	55,83,000	01
03.	2025-26	Dump	2	20	400	400	Nil	NA	29,52,000	0
04.	2026-27	WD-1	1	20	520	520	Nil	NA	38,37,600	0
05	2027-28		1	20			Nil	NA	0	0

6.2.8: Other Form of Reclaiming the Area

6.2.8.1: Cumulative work done as on Date 30.06.2022.						
SI. No	Total Expenditure incurred as on Date (INR)	Work Done				
01.	Nil	Nil				

6.2.8.2: Year W	6.2.8.2: Year Wise Proposal:							
SI. No	Year	Work Proposals	Estimated Expenditure (INR)					
01.	2023-24	Nil	Nil					
02.	2024-25	Nil	Nil					
03.	2025-26	Nil	Nil					
04.	2026-27	Nil	Nil					
05.	2027-28	Nil	Nil					

6.2.9: Topsoil Management:

6.2.9.1: Cumula	6.2.9.1: Cumulative Work Done as on Date 30.06.2022								
SI. No.	Top Soil Generate (m³)	d Top Soil Utilized (m ³)	l Topsoil Storec (m³)	Total expenditure incurred as on date (₹)					
		Nil.	•						
6.2.9.2: Year W	ise Proposal:								
Year	Topsoil Generated (m³) (A)	Topsoil Utilized (m³) (B)	Topsoil Stored (m³) (A-B)	Estimated Expenditure (INR)					
2023-24	0	0	0	0					
2024-25	0	0	0	0					
2025-26	0	0	0	0					
2026-27	0	0	0	0					
2027-28	0	0	0	0					

6.2.10: Tailings Dam Management: Not Applicable

Year	Yearly generation of Tailing (m³) (A)	eration capacity of ailing Tailing	Measures Proposed for Periodic Desilting	Yearly Utilization of Tailing (m³) (B)	Disposal of Tailing to Tailing Pond (m ³) (A-B)	Tailing Dam Design	Structural Stability Studies
------	--	---------------------------------------	---	---	--	--------------------------	------------------------------------

Not Applicable 6.2.11 Land Use Of Lease Area at the Expiry of Lease Period (Conceptual Stage):

Total Area Degraded			Non DegradedTotal mined out area Reclaimed and Rehabilitated			laimed and	Other Areas Reclaimed and Rehabilitated				
Mined Out area in the lease	Area under Dumps(in hect)	Area under the Tailing Dam	Area under utility services(in hect)	Area undisturbed/virgin	Mined out Area Reclaimed but not rehabilitated(in hect)	Mined out Area fully Rehabilitated from Reclaimed area(in hect)	Area under Water Reservoir considered Rehabilitated (in hect)	Stabililized Waste dump Rehabilitated (in hect)	Virgin area under Green Belt (in hect)	Rehabilitated Area under utility services(in hect)	Rehabilitated Area under Tailing dam (in hect)
166.555 Ha.	53.343 Ha.	0.00	35.579Ha.	13.363 Ha.	0.00 Ha.	0.00 Ha.	0.00 Ha	0.00 Ha.	13.126 Ha.	0.00	0.00

Chapter 7: FINANCIAL ASSURANCE/ PERFORMANCE SURETY

(AREA PUT TO USE)

7.1 YEAR (2023-24 to 2027-28) (Separate form for each year as below)

Financial assurance calculation as per Rule 27(1) of MCDR 2021 is given in the table below:

Sl. No.	Particular	Area put to use	Additional	Total (ha) (C = A + B)
		at Start of Year	Requirement (ha)	
		(ha) (A)*	(B)*	
1	Area under Mining	2.442	21.312	23.754
2	Topsoil stacking	0.00	0.00	0.00
3	Overburden/Waste Dumping	0.00	16.464	16.464
4	Mineral Storage	0.00	9.394	9.394
5	Infrastructure (Workshop, Administrative Building etc.)	2.904	5.208	8.112
6	Roads	1.572	3.576	5.148
7	Railways	0.00	0.00	0.00
8	Tailing Pond	0.00	0.00	0.00
9	Effluent Treatment Plant	0.00	0.00	0.00
10	Mineral Separation Plant	0.00	5.239	5.239
11	Township Area	0.00	0.00	0.00
12 Others to Specify (Conveyor Corridor)		1.967	0.00	1.967
	TOTAL	8.885	61.193	70.078
	GRAND TOTAL			

2023-24				
Consolidated V	iew of Financial Assurance			
Sl. No.	Particular	Area put to use at Start of Year (ha) (A)*	Additional Requirement (ha) (B)*	Total (ha) (C = A + B)
1	Area under Mining	2.442	6.690	9.132
2	Topsoil stacking	0.00	0.00	0.00
3	Overburden/Waste Dumping	0.00	16.464	16.464
4	Mineral Storage	0.00	9.394	9.394
5	Infrastructure (Workshop, Administrative Building etc.)	2.904	5.208	8.112
6	Roads	1.572	3.576	5.148
7	Railways	0.00	0.00	0.00
8	Tailing Pond	0.00	0.00	0.00
9	Effluent Treatment Plant	0.00	0.00	0.00
10	Mineral Separation Plant	0.00	5.239	5.239
11	Township Area	0.00	0.00	0.00
12	Others to Specify(Conveyor Corridor)	1.967	0.00	1.967
	Total	8.885	46.571	55.456

2024-25

Consolidated View of Financial Assurance

Sl. No.	Particular	Area put to use at	Additional	Total (ha) (C = A + B)
SI. NO.	Faiticulai	Start of Year (ha)	Requirement (ha)	10tal (lla) (C – A + B)
		(A)*	(B)*	
1	Area under Mining	9.132	1.00	10.132
2	Topsoil stacking	0.00	0.00	0.00
3	Overburden/Waste Dumping	16.464	0.00	16.464
4	Mineral Storage	9.394	0.00	9.394
5	Infrastructure (Workshop, Administrative Building etc.)	8.112	0.00	8.112
6	Roads	5.148	0.00	5.148
7	Railways	0.00	0.00	0.00
8	Tailing Pond	0.00	0.00	0.00
9	Effluent Treatment Plant	0.00	0.00	0.00
10	Mineral Separation Plant	5.239	0.00	5.239
11	Township Area	0.00	0.00	0.00
12	Others to Specify	1.967	0.00	1.967
	Total	55.456	1.00	56.456

2025-26

Consolidated View of Financial Assurance

consonaatea vi							
Sl. No.	Particular	Area put to use at	Additional	Total (ha) (C = A + B)			
		Start of Year (ha)	Requirement (ha)				
		(A)*	(B)*				
1	Area under Mining	10.132	5.255	15.387			
2	Topsoil stacking	0.00	0.00	0.00			
3	Overburden/Waste Dumping	16.464	0.00	16.464			
4	Mineral Storage	9.394	0.00	9.394			
5	Infrastructure (Workshop,	8.112	0.00	8.112			
	Administrative Building etc.)	0.112	0.00	0.112			
6	Roads	5.148	0.00	5.148			
7	Railways	0.00	0.00	0.00			
8	Tailing Pond	0.00	0.00	0.00			
9	Effluent Treatment Plant	0.00	0.00	0.00			
10	Mineral Separation Plant	5.239	0.00	5.239			
11	Township Area	0.00	0.00	0.00			
12	Others to Specify	1.967	0.00	1.967			
	Total	56.456	5.255	61.711			

2026-27				
Consolidated V	iew of Financial Assurance	1	1	
Sl. No.	Particular	Area put to use at Start of Year (ha) (A)*	Additional Requirement (ha) (B)*	Total (ha) (C = A + B)
1	Area under Mining	15.387	1.978	17.365
2	Topsoil stacking	0.00	0.00	0.00
3	Overburden/Waste Dumping	16.464	0.00	16.464
4	Mineral Storage	9.394	0.00	9.394
5	Infrastructure (Workshop, Administrative Building etc.)	8.112	0.00	8.112
6	Roads	5.148	0.00	5.148
7	Railways	0.00	0.00	0.00
8	Tailing Pond	0.00	0.00	0.00
9	Effluent Treatment Plant	0.00	0.00	0.00
10	Mineral Separation Plant	5.239	0.00	5.239
11	Township Area	0.00	0.00	0.00
12	Others to Specify	1.967	0.00	1.967
	Total	61.711	1.978	63.689

2027-28								
Consolidated View of Financial Assurance								
Sl. No.	Particular	Area put to use at Start of Year (ha) (A)*	Additional Requirement (ha) (B)*	Total (ha) (C = A + B)				
1	Area under Mining	17.365	6.389	23.754				
2	Topsoil stacking	0.00	0.00	0.00				
3	Overburden/Waste Dumping	16.464	0.00	16.464				
4	Mineral Storage	9.394	0.00	9.394				
5	Infrastructure (Workshop, Administrative Building etc.)	8.112	0.00	8.112				
6	Roads	5.148	0.00	5.148				
7	Railways	0.00	0.00	0.00				
8	Tailing Pond	0.00	0.00	0.00				
9	Effluent Treatment Plant	0.00	0.00	0.00				
10	Mineral Separation Plant	5.239	0.00	5.239				
11	Township Area	0.00	0.00	0.00				
12	Others to Specify	1.967	0.00	1.967				
	Total	63.689	6.389	70.078				

7.2 Financial Assurance:

Category-A Mining Lease:

Total Area Proposed to be put to use in Hact i.e. from FY 2023-24 to FY 2027-28.	Amount of Bank Guarantee(Lac INR)	Valid till (dd/mm/yyyy)	Upload copy of Bank Guarantee
70.078 Ha.	Rs. 350.39 Lakhs	31.03.2028	Total Financial Assurance payable till the end of plan period as per rule 27(1) of MCDR 2021, i.e. up to 31.03.2028 is calculated to be Rs. 3, 50, 39,000/-(Rupees Three Corers Fifty Lakhs Thirty Nine Thousand Only) for Category-A fully mechanized mines calculated at Rs. 5, 00,000/- per hectare for an area of 70.078 Ha of ML area put to use. The amount of Rs. 3, 50, 39,000/- (Rupees Three Corers Fifty Lakhs Thirty Nine Thousand Only) in shape of Bank Guarantee has been submitted during the final submission of the document.

7.3 Performance Security:

Lease Category (A/B)	Total Resources in tonnes for calculation of Performance Surety*	Existing Performance surety amount in Rs	Valid till (dd/mm/yyyy)	Upload copy of existing Performance Security			
	Not Applicable.						

Chapter 8: Review of Previous Proposals

(Not applicable for fresh grant)

8.1: General:

8.1.1: Lease Area Utilization:

						Reasons
SI. No.	Type of land use (in ha)	Area at the beginning of the proposal period	Area proposed under activity	Actual Area utilized in the proposal period	Deviation	for deviation
1	Mining	3.612	10.356	2.442		
2	Mineral storage	0.00	7.811	0.00		
3	Mineral Beneficiation plant	0.00	1.400	0.00		
4	Township	0.00	0.00	0.00		
5	Tailing Pond	0	0	0.00]	
6	Railways	0	0	0.00		
7	Roads	1.257	3.087	1.572		
8	Infrastructure (Workshop, administrative building etc.)	3.404	6.602	2.904		
9	OB/waste dump	0.434	2.922	0.00		
10	Top soil preservation	0.00	0.342	0.00	No Deviation	Not Applicable.
11	Conveyor Corridor	0.00	4.020	1.967		
12	Others (Safety Zone)	13.126	13.126	13.126		
13	Total area put to use	8.707	36.54	8.885		
14	Excavated area reclaimed	0	0	0		
15	Waste dump area reclaimed	0	0	0		
16	Undisturbed Area	260.133	232.300	259.955		
	Total	268.84	268.84	268.84		

8.1.2: SDF and CSR Expenditures:

Activity	Proposals		Achievement	Deviation	Reasons for deviation
Total expenditure incurred for implementation of SDF at mine level including - Environment Protection - CSR & other welfare activities in peripheral area (Explanation: Expenditure is not over and above the statutory levies imposed by the Government; However, THIS EXCLUDES CONTRIBUTION TO DMF & NMET and is over and above the statutory levies imposed by the Government.) CSR (Corporate Social Responsibility) spending at the mine level in Proposal Period (as per Companies Act, 2013 or otherwise)	10% of Royalty (a) Nil	Total Expenditure for SDF & CSR implementation (b) Nil	Nil	No Deviation	Not Applicable.

8.2: Technical Details:

8.2.1: Exploration: As on 30.06.2022.

Particulars	Proposals	Achievement	Deviation	Reasons for deviation
Number of Boreholes/ Pits/ Trenches	192	0	Deviation	Total 192 number of bore holes have been
Boreholes Meterage (If Boreholes selected in first row) (m)	19,200	0	Deviation	proposed in the FY 2018- 19 to 2022-23. No bore
Grid	100 X 100	0	Deviation	holes have been drilled
G Axis up gradation during Proposal Period as per guidelines of MEMC Rule 2015)	100	0	Deviation	during the period from 2018-19 to 2022-23 (As on 30.06.2022) because
Area converted under G1 from G2/G3	57.651	0	Deviation	of non-availability of forest clearance.

Remark: The proposal have been given for 5-year period for the F.Y 2018-19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23(As on 30.06.2022).

8.2.2: Mine Development (Opencast/ Dump Mining): As on 30.06.2022.

Particulars	Proposed	Actual	Deviation	Reasons for deviation				
8.2.2.1: Generation of Ore/Waste While Development: as on 30.06.2022.								
Ore (Tonnes)	2,273,700	0		The development				
Waste (Cubic Meters)	1,24,400	0		proposal have been given for 5-year period for the				
Generated Waste while ROM recovery	0	0		F.Y 2018-19 to 2022-23				
Dumping Site (For Surface)	2.922	0		and review have been				
Removal of waste/ over burden in cubic meters	1,24,400	0	Deviation.	carried out for the F.Y 2018-19 to 2022-23(As				
Generated Waste while ROM recovery	0	0		on 30.06.2022). The				
Dumping site of waste/ overburden	2408295N to 2408504N	0]	Production of Ore could not be achieved as per proposal due to non-				

Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

		& 308248E to			availability	of	forest
		308438E			clearance	&	other
					statutory cle	arance	es. The
8.2.2.2: Excavation as	on 30.06.2022.				mine has	been	non-
	Quarry-1	2428372 N to	2407933 N to		operational	since	e long
		2428622N,	2408147N,		period due	to w	ant of
Lateral extent		335061E to	308073E to	Deviation	forest cleara	nce 8	k other
		335271E	308358E	Deviation.	statutory clea	arance	es.
Vertical extent		940 mRL to 856	862 mRL to 878		1		
Vertical extent		mRL	mRL				

8.2.3: Mining operation: Dump Mining: As on 30.06.2022.

Particulars	Proposals	Achievement	Deviation	Reasons for deviation	
Handling of Material					
Waste Generated post recovery	 No dump mining has been proposed during the Modification Mining Plan period from 2018-19 to 2022-23. 				
Dumping site for waste					

8.2.4: Zero Waste Mining: As on 30.06.2022.

Particulars	Proposals	Achievement	Deviation	Reasons for deviation
Alternative use / Disposal of Wast Generated (excluding top soil)	ce	Not A	pplicable.	

8.2.5: Backfilling: As on 30.06.2022.

Particulars	Proposals	Achievement	Deviation	Reasons for deviation
Site (Co-ordinates)	0	0		
Area	0	0		
Depth	0	0		
Volume Backfilled (CuM)	0	0		
Backfilled Area available for Reclamation and Rehabilitation	0	0	No Deviation.	Not Applicable.
Backfilled Area Reclaimed and Rehabilitated	0	0		
Balance Backfilled Area	0	0		

Remark: The proposal have been given for 5-year period for the F.Y 2018-19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23(As on 30.06.2022).

8.2.6: Production of Mineral(s): As on 30.06.2022.

Particulars	Proposals	Achievement	Deviation	Reasons for deviation
8.2.6.1: ROM (to	nnes)			
Opencast	3,829,710	0	Deviation	The Production proposal have been given
8.2.6.2: Cleaned	Ore (Tonnes)			for 5-year period for the F.Y 2018-19 to
Opencast	2,273,700	0		2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23(As on
Dump Mining	0	0		30.06.2022). The Production of ROM could
Recovery from Mineral Rejects or Tailings	0	0	Deviation	not be achieved as per proposal due to non-availability of forest clearance & other statutory clearances. The mine has been
Total	40,10,000	0		non-operational since long period due to want of forest clearance & other statutory clearances.

Remark: The proposal have been given for 5-year period for the F.Y 2018-19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23 (As on 30.06.2022).

8.2.7: Handling of Mineral Rejects/ Sub-Grade: As on 30.06.2022.

Particulars	Proposals	Achievement	Deviation	Reasons for deviation
Generation of minera	al rejects (Ton	nes)	1	The Production proposal have been given for
Opencast	1,556,010	0		5-year period for the F.Y 2018-19 to 2022-23 and review have been carried out for the F.Y
Dump mining	0	0	Deviation	2018-19 to 2022-23(As on 30.06.2022). The
Other recovery	0	0		Production of mineral reject could not be
				achieved as per proposal due to non-
Stacking of mineral rejects/ sub-grade mineral	0	0	Deviation	availability of forest clearance & other statutory clearances. The mine has been non- operational since long period due to want of
Blending of mineral reject / Sub-grade.	1,556,010	0		forest clearance & other statutory clearances.

Remark: The proposal have been given for 5-year period for the F.Y 2018-19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23(As on 30.06.2022).

8.2.8: Environment Compliances: As on 30.06.2022.

Particulars	Proposals	Achievement	Deviation	Reasons for deviation
8.2.8.1: Top soil (Cum.)				
Generation	10,261	0		The mine has been non-operational since long period
Utilization	0	0	Deviation	due to want of forest clearance & other statutory
Stacking (Dump Id)	10,261	0		clearances.
Reclamation	0	0	No	Not Applicable
Rehabilitation	0	0	Deviation	Not Applicable.
8.2.8.2: Afforestation (Dumps/Benche	s/Backfilled Area	etc.) As on 30.0	6.2022.
2018-19	0	0	,	The mine has been non-operational since long period
2019-20	0	0	-	due to want of forest clearance & other statutory
2020-21	500	0	Deviation	clearances.
2021-22	625	0	7	
2022-23	750	0		
8.2.8.3: Afforestation (0	Green Belt): As	on 30.06.2022.		
2018-19	0	0		
2019-20	0	0	1	
2020-21	0	0	No Deviation	Not Applicable.
2021-22	0	0	Deviation	
2022-23	0	0		
Construction of check dams	1	0	Doviation	The proposal for check dams, Garland Drain & Retaining wall have been given for 5-year period for the F.Y 2018-
Construction of garland drains	460	0	 Deviation 	19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23 (as on 30.06.2022). As per
Construction of retaining walls	580	0	Deviation	proposal there is no construction of check dams, Garland Drain & Retaining wall because of the mine has been non-operational since long period due to want of forest clearance & other statutory clearances.
8.2.8.4: Tailings: As on a	80.06.2022			
Generation				
Utilization (Auto fill	1		N	lot Applicable.
from production)			IN IN	
Disposal	1			

Remark: The proposal have been given for 5-year period for the F.Y 2018-19 to 2022-23 and review have been carried out for the F.Y 2018-19 to 2022-23 (As on 30.06.2022).

8.3: Socio-Economic Review as on 30.06.2022.

8.3.1: Rehabilitation & Resettlement for Project	Affected People a	ns on 30.06.2022.		
Particulars	Proposals	Actual	Deviation	Reasons for deviation
No. of Project Affected People (PAP)	Nil	Nil		
%age of PAP for whom alternate arrangements made for sustained livelihood	Nil	Nil		
% of project affected families given employment	Nil	Nil	No Deviation	Not Applicable
% of project affected families who have been skilled by the lessee and absorbed (% of total employment given to affected families)	Nil	Nil		
8.3.2: Grievance Redressal as on 30.06.2022.		2018-19 to 2	022-23	
Grievances Received		0		
Grievances Redressed		0		
8.3.3: Welfare and socio-economic development	programs for loc	al communities as	on 30.06.202	2.
8.3.3.1: Support for Drinking Water & Agriculture as on 30.06.2022.		2018-19 to 2	2022-23	
No. of Water Storage Tanks constructed		0		
Drinking Water Facilities provided (Bore wells/ Pumps etc.)		0		
Irrigation Support provided (Canals/ Pumps etc.)		0		
No. of Water tanks De-silted		0		
Water Treatment facilities provided (A/NA)		NA		
Amount of Water treated (in kL) (if selected A in above)		NA		
8.3.3.2: Support to Health & Medical Services as on 30.06.2022.		2018-19 to 2	2022-23	
No. of persons identified from Occupational health diseases		0		
No. of Health Camps/ Medicine Camps Organized		0		
8.3.3.3: Support to Skill development & Educatio	n as on 30.06.202	22.		
Vocational Training Provided/ Support Provided as on 30.06.2022.		2018-19 to 2	2022-23	
No. of employees undergone Vocational training		0		
No. of other persons undergone Vocational training		0		
Number of Literacy & Education Camps held/ Supported		0		

Review of Mining Plan & Progressive Mine Closure Plan (2023-24 to 2027-28)

Rantha Iron Ore Mine Odisha Mining Corporation Ltd

8.3.3.4: Support to Transportation Services & Infrastructure as on 30.06.2022.	2018-19 to 2022-23
Expenditure on Transportation Services & Infrastructure in Lakhs	0
Road development (m) in the peripheral area (not lease area)	0
No. of Public transport support provided (Ambulance/Buses/ School Vans etc)	0
	ng sanitation and healthy condition in and around the mine area
as on 30.06.2022.	
Adoption of ODF within mining lease area as on 30.06.2022.	2018-19 to 2022-23
No. of Toilets built in the Lease Area	0
Adoption of ODF in nearby villages as on 30.06.2022.	2018-19 to 2022-23
No. Of Toilets built in the villages	0
Provision for green age recreational facility (Within Lease Area/ Outside) as on 30.06.2022.	2018-19 to 2022-23
Recreational Area Type (Picnic Spot/ tracks/Park Etc)	0
Area covered (For within Lease Area only)	0
Awareness program among Mine workers for Swatchata as on 30.06.2022.	2018-19 to 2022-23
No. of Swatchchta Programmes held	0

Chapter 9: IMPACT ASSESSMENT (for fresh grant): Not Applicable:

9.1: Baseline Information:

Whether Area falls under Forest	YES
Whether Area falls under Wildlife Sanctuary	NO
Whether Area falls under Coastal Regulation Zone (CRZ)	NO
Whether Area falls under Defence Land	NO
Any Other Clearance (specify)	NA

Any Significant Objections from any Agency Involved in Stakeholder's Consultation -

9.2: Environment Parameters:

9.2.1: Environment Monitoring:

Monitoring Activity

9.2.1.1: Ambient Air Quality:

	Core Zone (Quarterly Monitoring Planned)	YES
	Buffer Zone (Quarterly Monitoring Planned)	YES
9.2.1.2: W	ater Quality:	

	TLS
Buffer Zone (Quarterly Monitoring Planned)	YES
Core Zone (Quarterly Monitoring Planned)	YES

9.2.1.3: Noise Level:

Core Zone (Quarterly Monitoring Planned)	YES
Buffer Zone (Quarterly Monitoring Planned)	YES

9.3: Impact Assessment:

9.3.2: Land Environment:

Pre Mining Use	AREA (Ha)
Barren / Waste land with small bushes & shrubs	0
Land under Agriculture / Crops	0
Land covered with Plants	0
Land under Grass Cover	0
Land under Public Infrastructure / Utilities (water bodies, roads, railways, electric lines, telephone lines etc.)	0
Land under Habitation	0
Land under Monuments & places of Historical Importance	0
Degraded by Pits & Excavation	2.442
Degraded by Dumps & Material Staking	0
Covered under Mine Infrastructure (plants, shades, buildings etc.)	6.443
Land under Forest	268.84
Historically, Culturally & Ecologically Important Places	0
Any Other, please specify below	0
Date of Observation	30.06.2022

9.3.2.2: ANTICIPATED IMPACT	
Post Mining Use	AREA (Ha)
Degradation by Excavation	166.555
Degradation by Dumps & Material Staking	66.839
Covered under Plants, Shades & Buildings	11.622
Covered by Roads & Approaches	10.461
Any Other, please specify below (Undisturbed Virgin SZ)	13.363

9.3.2.3: Mitigation Measures:

9.3.2.3.1: Backfilling: The mined out area of 65.337Ha. have been envisaged for back filling. The back filled area will be re-grassed after end of the lease period.

9.3.2.3.2: Area proposed to be covered by Plantation in Backfilled Area: The mined out area of 65.337 Ha. have been envisaged for back filling.

- 9.3.2.3.3: Proposed Area under Agriculture: Nil
- 9.3.2.3.4: Proposed Area to be converted to Grazing Land: The area covered under mineral separation plant & mineral stacking area of 11.622 Ha. shall be converted to grazing land after end of the lease period.

9.3.2.3.5: Ground Water Recharging: Nil.

9.3.2.3.6: Green Belt Development *: The green belt will be developed over the area covered under dumps, and backfilled area of mined out area and virgin area under safety zone.

9.3.2.3.7: Agriculture *: No Proposal for agriculture.

9.3.3: Air Environment:

9.3.3.1: Climate & Meteorology (Please provide average of 10 years):

Temperature (°C)	Temperature (°C)		ture (°C) Relative Humidity (%)		Average Rainfall (mm)
Maximum	Minimum	76	1269.1		
42	8	70	1209.1		

9.3.3.2: Air Quality Details for Base line Information / Present Status: The Air Quality base line data has been given in environmental monitoring report. Same has been attached as Annexure-32.

Sr. No	Statio n Name	Seaso n	PM10 (μg/m3)	PM10 Excess (μg/m3) 2	PM2.5 (μg/m3)	PM2.5 Excess (μg/m3) 2	SO₂ Value (µg/m3)	SO₂ Excess (µg/m3)	NO _x Value (μg/m3)	NO _x Excess (μg/m3)	Date of Observatio n	Actio n

9.3.3.3: Impact Assessment & Mitigation Measures:

9.3.3.3.1: Anticipated Impact (*Give details on Prediction of fugitive dust emissions due to mining activities, crushing & cleaning plants, loading & unloading, transportation by rail, road or conveyor*)

There will be generation of dust during hauling of both ore and over burden to stackyard, during transportation of finished ore and during blasting.

9.3.3.3.2: Mitigation Measure Give details on measures to reduce the emissions of pollutants during mining, loading, unloading, transportation, drilling, blasting, crushing etc. to maintain the air quality:

Following measures are proposed for management of air quality: -

- ✓ Water sprinkling on haul roads at regular intervals.
- ✓ Installing of permanent water sprinklers at strategic places.
- ✓ Dense plantation along the safety zone/avenue plantation.
- ✓ No overloading of tippers/ Dumpers.
- ✓ Ore shall be covered with tarpaulin during transportation from stockyard to outwards.
- ✓ Provision of dust extractors with the drill machines/ wet drilling practices.
- ✓ Water spraying in the dump hopper of crusher.
- ✓ Provisions of dust masks to the persons exposed to dust.

9.3.4: Water Environment:

Depending upon the drainage pattern of the area where the dump area is located, retaining walls, garland drain with settling tanks will be provided. The garland drains will be dug around 1 m beneath the adjoining contour level at the lower peripheral areas of the dump. The width of the drains shall be around 1.5 m. A series of settling pits along with a main settling tank of 15 m length at the outlet of the garland drains will be provided to arrest the wash-off solid particles. The settling tank will be provided with three compartments each of around 5m width to arrest the suspended solids followed with the chamber to arrest any oil particles. The last chamber shall contain the clean water which will be ultimately discharged. The retaining walls will be of 1.5m height and 1.2 m width at the top and around 1.5m at the base.

9.3.4.1: Rain Water:

9.3.4.1.1: Base / Present Status (Details of Rivers, Springs, Lakes, Reservoirs & Drains up to First Order in Study Area)

The area falls within the watershed area of the Baitarani River. No water/waste water is discharged in to the river. During rains, the runoff passes through garland drain and series of settling pits before draining into water harvesting pond.

9.3.4.1.2: Anticipated Impact (Impact on Surface Water Bodies / Groundwater Table Regime / Streams / Lake / Springs due to Mining, to be Assessed from Hydro-geological Study Give details about impact on vegetation)

The surface water is not contaminated from the mining waste, as the working quarries is situated far away from any nala and the rain water is usually absorbed in the sub soil before reaching the nala.

9.3.4.1.3: Mitigation Measure (Possibilities of Rain Water Harvesting & Artificial Recharge with in the Mining Lease)

Water harvesting and artificial recharge is done in the form of ponds developed and maintained within the Mining Lease.

9.3.4.2: Water Body:

9.3.4.2.1: Base / Present Status* (Water Bodies Existing & Water Bodies likely to be created due to Mining Activities & their Water Holding Capacity)

The baseline data of water quality has been given in environmental monitoring report. Same has been attached as Annexure-32.

9.3.4.2.2: Anticipated Impact (Ingress of Sea Water, Particularly for Mining Projects in Coastal Areas)

Not Applicable.

9.3.4.2.3: Mitigation Measure (Steps to Minimize Impact on Water Table if Mining Intercepts Groundwater Regime)

During the conceptual period mining intercepts Groundwater Regime, for minimize Impact on Water table the following steps to be proposed.

- Ground water recharge by bore holes.
- Frequent analysis of ground water.

9.3.4.3: Water Balance:

9.3.4.3.1: Base / Present Status (Water Balance (Withdrawal of Surface Water & Release of Mine Drainage Water) Water Requirement & Waste Water Generation from various Activities of Mine, Including Beneficiation)

Water Balance chart attached as Annexure-29.

9.3.4.3.2: Anticipated Impact(Impact of Water Drawl on Surface & Groundwater Resources Impact on Surface & Groundwater Quality due to Discharges from Mining, Tailings Pond, Workshop, Township, & Leach ate from Solid Waste Dumps etc)

There will not be any impact of water drawl on surface as well as ground water resources due to mining activities. The surface water is not contaminated from the mining waste, as the working quarries is situated far away from any nala and the rain water is usually absorbed in the sub soil before reaching the perennial nala.

9.3.4.3.3: Mitigation Measure (Construction of Check Dams, Sedimentation Ponds, Settling Tanks, Retaining Walls etc. with Design & Site Features for Control of run-off Mine Water Treatment for Meeting the Prescribed Standard Waste Water Treatment for Township Sewage, Workshop(s), Tailing Pond Overflow etc)

The surface runoff shall be diverted through garland drains of around 1 m beneath the adjoining contour level at the lower peripheral areas of the dump. The width of the drains shall be around 1.5 m. A series of settling pits along with a main settling tank of 15 m length at the outlet of the garland drains will be provided to arrest the wash-off solid particles. The settling tank will be provided with three compartments each of around 5m width to arrest the suspended solids followed with the chamber to arrest any oil particles. The last chamber shall contain the clean water which will be ultimately discharged. The retaining walls will be of 1.5m height and 1.2 m width at the top and around 1.5m at the base.

9.3.5: NOISE

9.3.5.1: Critical Locations Identified within Lease Area *

Details of noise monitoring has been given in environmental monitoring report. Same has been attached as Annexure-32.

9.3.5.2: Give Detail about Prediction of Noise Level by using Mathematical Modeling at Different Locations Identified *

Due to operation of the HEMM & plant, ambient noise level is likely to increase but the same will be managed through proper maintenance of the plant & machineries & use of personal protective equipment.

9.3.5.3: Measures to Minimize the Impact on Receiving Environment *

- Regular maintenance of vehicles, machinery and other equipment is being done.
- Silencers and mufflers are provided in the exhaust.
- > Limiting time exposure of workers to excessive noise.
- > PPEs such as ear muffs, ear plugs have been provided to workers.

> Control blasting limits noise generation.

9.3.5.4: Noise Details for Base / Present Status

The copy of noise level baseline data has been given in environmental monitoring report. Same has been attached as Annexure-32.

Noise Standards						
Area Code	Category of Area	Limits in dB(A)Leq				
Alea coue	Category of Area	Day Time	Night Time			
А	Industrial Area	75	70			
В	Commercial Area	65	55			
С	Residential Area	55	45			
D	Silence Area	50	40			

Sl. No.	Station Name	Season	Type of Area	Noise At Day Time:	Excess Noise At Day	Noise At Night Time:	Excess Noise at Night	Date of Observa tion

9.3.5.5: Impact Assessment & Mitigation Measures:

9.3.5.5.1: Anticipated Impact (Give details on impact on ambient noise level due to rock excavation, transportation, processing equipment's & ancillaries):

The impact of noise on the workers due to rock excavation, transportation, processing equipment is very low.

9.3.5.5.2: Mitigation Measure (Give details on measures for noise abatement including point source & line source) 9.3.6: Vibration:

9.3.6.1: Vibration Details for Base / Present Status

The blast induced ground Vibration Study shall be carried out after resume of mining operation.

SI. No	Station	Season	Distance from	Peak Particle	Air over	Frequency	Date of
			Blasting Site(m)	Velocity(mm/sec)	Pressure(DB)	(Hz)	Observation

9.3.6.2.1: Anticipated Impact (Give details on impact of vibrations including damage to materials/structures due to blasting)

The residential houses/structures were located far away from the present workings. Thus no impact of blasting. Further control blasting as per the ground vibration study limits the vibration level.

9.3.6.2.2: Mitigation Measure (Give details on measures for noise abatement including point source & line source)

The blast induced ground vibrations will be controlled through limiting the charge per delay and use of in-hole delay by NONEL means of initiation. The blast induced ground Vibration Study shall be carried out after resume of mining operation.

9.3.7: Socio-Economic Environment:

9.3.7.1: Demographic Profile: The demographic data attached as Annexure-35.

Sl. No. Type of Area	Name of	Total	Male to	Literacy	Employment
	Village	Population	Female Ratio	Rate (%)	Rate (%)
	0	Population hic data attached a		Rate (%)	Rate (%)

9.3.7.1.1: Anticipated Impact (Give details about impact on the cropping pattern & crop productivity in the core zone)

There shall be no impact on the cropping pattern & crop productivity in the core zone as the ore-bearing zone contains mainly shrub forest.

9.3.7.1.2: Mitigation Measure (Give details about compensation for loss of land & crops)

The compensatory afforestation plan will be implemented by the Forest Department.

9.3.7.2: Traditional Skills & Source of Livelihood-

9.3.7.2.1: Base / Present Status (Give details about present status on traditional skills & source of livelihood)

The mining employment has greatly increased the income levels of the natives. In addition, creation of comparatively well-paid jobs in the area has generated not only sizeable trade in household supplies (including vegetables, milk, food, textile, etc) but also some household employment. It has also generated demand for tertiary services like transport and repair shops. The impact of mining operations in the area on socio-economic has been a positive one. The infrastructure of the area roads, public transport and electricity supply, has also improved after the advent of mining operation in the area.

9.3.7.2.2: Anticipated Impact (Give details about positive & negative impacts on present status of livelihood in the area)

There will be no impact on the lively hood in the area.

9.3.7.2.3: Mitigation Measure (Give details about training to locals for employment in the project training for making them self-employable or elsewhere)

Employment generation in mining, transporting activities will be sustainable for the lively hood of nearby area.

9.3.7.3: Economic Profile of the Population in Core & Buffer Zone

9.3.7.3.1: Base / Present Status (Give details about economic profile of the population in core & buffer zone)

Occupational structure of the people of the study area reveals that about 14% have cultivation as primary source of income. Majority of them are engaged in service (28%). Substantial portion of the respondents have private business (14%). Wage labours constitute 44%.

9.3.7.3.2: Anticipated Impact (Give details about impact on community resources such as grazing land)

There is no impact on community resources such as grazing land due to mining activity.

9.3.7.3.3: Mitigation Measure (Give details about employment opportunities & access to other amenities such as education, health care facilities to be extended to locals, addressing local unemployment, tourism or recreation opportunities, efforts for sustainable development of the local community)

During the phase of mine expansion, substantial amount of employment and income are going to be created. A large portion of these is likely to trickle down to the local people. Besides this it is expected that for yearly operation of the project local people will get employment in various mining activities in accordance with their qualification, skill and experience. Besides direct employment, the project is expected to generate substantial indirect employment in semi-skilled labour, casual labour as also skilled labour in other sectors e.g. in the small scale industrial units and service centers etc. which are existing at present and also expected to come in the vicinity of the Projects. The indirect employment and income effects are likely to be much larger than the direct effects of the project. Overall assessment of the employment and income effects indicates that the project has strong positive direct as well as indirect impact on employment and income generation.

9.3.7.4: Human Settlement in Core & Buffer Zone

9.3.7.4.1: Base / Present Status*(Give details about human settlement in core & buffer zone) Only Rantha, KhandadharR.F villages have been found in the 500 m buffer zone of the area.

9.3.7.4.2: Anticipated Impact *(Give details about any displacement of human settlements during the life of the mine)

There shall be no displacement of any human settlement during the life of the mine.

9.3.7.4.3: Mitigation Measure *(Give details about rehabilitation & resettlement of land ousters & displaced people)

There shall be no displacement of any human settlement during the life of the mine.

9.3.7.5: Health Profile of Population in Core & Buffer Zone

9.3.7.5.1: Base / Present Status*(Give details about health profile of population in core & buffer zone)

Occupational safety and health is very closely related to productivity and good employer-employee relationship. The factors of occupational health for the project are mainly dust, siltation etc. Safety of employees during operation and maintenance etc. shall be as per mines rules and regulations. To avoid any adverse effects on the health of workers due to various pollutants, sufficient measures have already been addressed in this chapter. The following measures relating to safety and health shall also be practiced:

- Provision of rest shelters for mine workers with amenities like drinking water etc.
- > All safety measures like use of safety appliances, safety awards, posters, slogans related to safety etc.
- Training of employees for use of safety appliances and first aid.
- > Regular maintenance and testing of all equipment as per manufacturers' guidelines.
- Periodical Medical Examination (PME) of all workers by a medical specialist so that any adverse effect may be detected in its early stage.
- First Aid organization in mines including training and retraining of First Aiders.
- Close surveillance of the factors in working environment and work practices, which may affect environment and worker's health. Monitoring of the values of various factors which may lead to occupational health hazards.
- > Working of mine as per approved mining and environmental plans.

9.3.7.5.2: Anticipated Impact *(Give details about any adverse impact on the general health condition of the population in core & buffer zone)

The population in core and buffer will not have any adverse impact on the general health condition as the mining site is far away.

9.3.7.5.3: Mitigation Measure *(Give details about avenues like dispensaries, hospitals, maternity homes if any to be created)

Not Applicable.

9.3.7.6: Historically, Culturally & Ecologically Important Places in Core & Buffer Zone-

9.3.7.6.1: Base / Present Status*(Give details about historically, culturally & ecologically important places in core & buffer zone)

There is no historically, culturally & ecologically important places in core & buffer zone of the lease. 9.3.7.6.2: Anticipated Impact *(Give details about risk profiling)

Not Applicable.

9.3.7.6.3: Mitigation Measure *(Give details about public health benefits (e.g. clean water to an aboriginal community), measure for safeguard against damage etc.)

Not Applicable.