

## 0.0 Executive Summary

### 0.1 Prelude

**National Highways & Infrastructure Development Corporation Ltd.**, Ministry of Road Transport & Highways, Government of India, has been assigned the work of preparation of feasibility study / DPR of road stretches/ corridors for up-gradation to two/ four laning with paved shoulder NH Configuration.

In pursuance of the above, M/S Wadia Techno Engg.Ltd in Association with M/s Zoma Engineers have been appointed as Consultants to carry consultancy services for Project Management including preparation of Detailed Project Report for Construction of 2 Lane with Paved Shoulder **Chenani – Sudhmahadev** section of NH-244 (Old NH-1B)-Phase-I in the state of Jammu and Kashmir.

### 0.2 Scope of Study

The Project must be completed in four stages as described herein below:

| <b>Stage</b> | <b>Report and Deliverables</b> |
|--------------|--------------------------------|
| 1            | Inception Report (IR)          |
| 2            | Feasibility Report (FR)        |
| 3            | Project Clearances             |
| 4            | Detailed Project Report (DPR)  |

### 0.3 Socio - Economic Profile

The details on Socio-economic parameters will include per capita income, demographic details, growth of primary, secondary and tertiary sectors of economy, GNP, NSDP, traffic growth rates, number of villages connected with the roads, density of road network and other modes of transport in the region, achievement of five-year plan outlays and sectors having more emphasis in plan outlays of the State government etc. These details will be collected for the State and project road influence area giving true picture of the socio-economic profile of the region. The details collected will be utilized for the traffic forecasting and social analysis.

### 0.4 Project Description

The entire proposed project road is in the state of Jammu and Kashmir. The state occupies a total area of 222,236 square kilometres. Jammu and Kashmir borders with the states of Himachal Pradesh and Punjab to the south. Jammu and Kashmir has an international border with China in the north and east, and the Line of Control separates it from the Pakistan. Jammu and Kashmir consists of three divisions: Jammu, Kashmir Valley and Ladakh, and is further divided into 22 districts. The **Chenani-Sudhmahadev** road section "Project Road" situated in Jammu and Kashmir is having total length of about 22.713 Kilometre. This road stretch was earlier stand alone road. The project is situated on new alignment of NH-244. The total re-aligned portion of NH-244 is of approx. 54 km length. The instant project is situated on the new alignment of NH-244 the previous alignment was passing through Kud-Patnitop-Batote-Doda and Kishtwar and ends at Khanabal. The Government declared the new alignment starting from its junction with NH-44 passing through the villages of Chenani,

Sudhmahade, Goha, Khellani and meets at Doda town on the old alignment. The NH-244 then follows the same previous alignment. A tunnel of 4.5 km length has been provisioned between Sudhmahadev and Goha village. The project road has significant influence on Jammu and Kashmir State and on the Udhampur district . It starts at Junction with NH-44, Srinagar Kanyakumari Highway and terminates in village Sudhmahadev. The project stretch is a single-lane carriageway, the width of carriageway varies from 3.75 m to 11.0 m in entire stretch. Maximum portion of the project road is single lane. The surface of the carriageway is bituminous, and the surface of shoulders is unpaved. The condition of the pavement is good (70%) and some stretches are also poor, around 30%. Cracking is prominent for about 60% and edge break is around 90% on the project road. The condition of shoulders is generally poor, it is seen that earthwork was deposited at site on shoulder. The project road passes through many villages like Batna -Madha - Kud - Chenani – Ancha – Margna – Beshti – Chylar – Bashat – Karlah – Karwalt etc.

**Table 0.1: Project Road Characteristics**

| Sr. no. | Existing Chainage |         | Length (km) | Terrain | Pavement Type | Carriageway Width |
|---------|-------------------|---------|-------------|---------|---------------|-------------------|
|         | From (km)         | To (km) |             |         |               |                   |
| 1       | 0.000             | 0.100   | 0.100       | Hilly   | BT            | 10.800            |
| 2       | 0.100             | 0.200   | 0.100       | Hilly   | BT            | 10.800            |
| 3       | 0.200             | 0.300   | 0.100       | Hilly   | BT            | 10.800            |
| 4       | 0.300             | 0.400   | 0.100       | Hilly   | BT            | 10.800            |
| 5       | 0.400             | 0.500   | 0.100       | Hilly   | BT            | 10.800            |
| 6       | 0.500             | 0.600   | 0.100       | Hilly   | BT            | 10.800            |
| 7       | 0.600             | 0.700   | 0.100       | Hilly   | BT            | 10.800            |
| 8       | 0.700             | 0.800   | 0.100       | Hilly   | BT            | 10.800            |
| 9       | 0.800             | 0.900   | 0.100       | Hilly   | BT            | 10.800            |
| 10      | 0.900             | 1.000   | 0.100       | Hilly   | BT            | 10.800            |
| 11      | 1.000             | 1.100   | 0.100       | Hilly   | BT            | 10.800            |
| 12      | 1.100             | 1.200   | 0.100       | Hilly   | BT            | 10.800            |
| 13      | 1.200             | 1.300   | 0.100       | Hilly   | BT            | 10.800            |
| 14      | 1.300             | 1.400   | 0.100       | Hilly   | BT            | 10.800            |
| 15      | 1.400             | 1.500   | 0.100       | Hilly   | BT            | 10.800            |
| 16      | 1.500             | 1.600   | 0.100       | Hilly   | BT            | 10.800            |
| 17      | 1.600             | 1.700   | 0.100       | Hilly   | BT            | 10.800            |
| 18      | 1.700             | 1.800   | 0.100       | Hilly   | BT            | 7.000             |

| Sr. no. | Existing Chainage |         | Length (km) | Terrain | Pavement Type | Carriageway Width |
|---------|-------------------|---------|-------------|---------|---------------|-------------------|
|         | From (km)         | To (km) |             |         |               |                   |
| 19      | 1.800             | 1.900   | 0.100       | Hilly   | BT            | 7.000             |
| 20      | 1.900             | 2.000   | 0.100       | Hilly   | BT            | 7.000             |
| 21      | 2.000             | 2.100   | 0.100       | Hilly   | BT            | 7.000             |
| 22      | 2.100             | 2.200   | 0.100       | Hilly   | BT            | 7.000             |
| 23      | 2.200             | 2.300   | 0.100       | Hilly   | BT            | 7.000             |
| 24      | 2.300             | 2.400   | 0.100       | Hilly   | BT            | 5.500             |
| 25      | 2.400             | 2.500   | 0.100       | Hilly   | BT            | 5.500             |
| 26      | 2.500             | 2.600   | 0.100       | Hilly   | BT            | 5.500             |
| 27      | 2.600             | 2.700   | 0.100       | Hilly   | BT            | 5.500             |
| 28      | 2.700             | 2.800   | 0.100       | Hilly   | BT            | 5.500             |
| 29      | 2.800             | 2.900   | 0.100       | Hilly   | BT            | 5.500             |
| 30      | 2.900             | 3.000   | 0.100       | Hilly   | BT            | 7.000             |
| 31      | 3.000             | 3.100   | 0.100       | Hilly   | BT            | 7.000             |
| 32      | 3.100             | 3.200   | 0.100       | Hilly   | BT            | 7.000             |
| 33      | 3.200             | 3.300   | 0.100       | Hilly   | BT            | 7.000             |
| 34      | 3.300             | 3.400   | 0.100       | Hilly   | BT            | 7.000             |
| 35      | 3.400             | 3.500   | 0.100       | Hilly   | BT            | 7.000             |
| 36      | 3.500             | 3.600   | 0.100       | Hilly   | BT            | 7.000             |
| 37      | 3.600             | 3.700   | 0.100       | Hilly   | BT            | 7.000             |
| 38      | 3.700             | 3.800   | 0.100       | Hilly   | BT            | 3.900             |
| 39      | 3.800             | 3.900   | 0.100       | Hilly   | BT            | 3.900             |
| 40      | 3.900             | 4.000   | 0.100       | Hilly   | BT            | 3.900             |
| 41      | 4.000             | 4.100   | 0.100       | Hilly   | BT            | 3.900             |
| 42      | 4.100             | 4.200   | 0.100       | Hilly   | BT            | 3.900             |
| 43      | 4.200             | 4.300   | 0.100       | Hilly   | BT            | 3.900             |
| 44      | 4.300             | 4.400   | 0.100       | Hilly   | BT            | 3.900             |
| 45      | 4.400             | 4.500   | 0.100       | Hilly   | BT            | 3.900             |
| 46      | 4.500             | 4.600   | 0.100       | Hilly   | BT            | 3.900             |

| Sr. no. | Existing Chainage |         | Length (km) | Terrain | Pavement Type | Carriageway Width |
|---------|-------------------|---------|-------------|---------|---------------|-------------------|
|         | From (km)         | To (km) |             |         |               |                   |
| 47      | 4.600             | 4.700   | 0.100       | Hilly   | BT            | 3.900             |
| 48      | 4.700             | 4.800   | 0.100       | Hilly   | BT            | 3.900             |
| 49      | 4.800             | 4.900   | 0.100       | Hilly   | BT            | 3.900             |
| 50      | 4.900             | 5.000   | 0.100       | Hilly   | BT            | 3.900             |
| 51      | 5.000             | 5.100   | 0.100       | Hilly   | BT            | 3.900             |
| 52      | 5.100             | 5.200   | 0.100       | Hilly   | BT            | 3.900             |
| 53      | 5.200             | 5.300   | 0.100       | Hilly   | BT            | 3.900             |
| 54      | 5.300             | 5.400   | 0.100       | Hilly   | BT            | 3.900             |
| 55      | 5.400             | 5.500   | 0.100       | Hilly   | BT            | 3.900             |
| 56      | 5.500             | 5.600   | 0.100       | Hilly   | BT            | 3.900             |
| 57      | 5.600             | 5.700   | 0.100       | Hilly   | BT            | 3.900             |
| 58      | 5.700             | 5.800   | 0.100       | Hilly   | BT            | 3.900             |
| 59      | 5.800             | 5.900   | 0.100       | Hilly   | BT            | 3.900             |
| 60      | 5.900             | 6.000   | 0.100       | Hilly   | BT            | 3.900             |
| 61      | 6.000             | 6.100   | 0.100       | Hilly   | BT            | 3.900             |
| 62      | 6.100             | 6.200   | 0.100       | Hilly   | BT            | 3.900             |
| 63      | 6.200             | 6.300   | 0.100       | Hilly   | BT            | 3.900             |
| 64      | 6.300             | 6.400   | 0.100       | Hilly   | BT            | 3.900             |
| 65      | 6.400             | 6.500   | 0.100       | Hilly   | BT            | 3.900             |
| 66      | 6.500             | 6.600   | 0.100       | Hilly   | BT            | 3.900             |
| 67      | 6.600             | 6.700   | 0.100       | Hilly   | BT            | 3.900             |
| 68      | 6.700             | 6.800   | 0.100       | Hilly   | BT            | 3.900             |
| 69      | 6.800             | 6.900   | 0.100       | Hilly   | BT            | 3.900             |
| 70      | 6.900             | 7.000   | 0.100       | Hilly   | BT            | 3.900             |
| 71      | 7.000             | 7.100   | 0.100       | Hilly   | BT            | 3.900             |
| 72      | 7.100             | 7.200   | 0.100       | Hilly   | BT            | 3.900             |
| 73      | 7.200             | 7.300   | 0.100       | Hilly   | BT            | 3.900             |
| 74      | 7.300             | 7.400   | 0.100       | Hilly   | BT            | 3.900             |

| Sr. no. | Existing Chainage |         | Length (km) | Terrain | Pavement Type | Carriageway Width |
|---------|-------------------|---------|-------------|---------|---------------|-------------------|
|         | From (km)         | To (km) |             |         |               |                   |
| 75      | 7.400             | 7.500   | 0.100       | Hilly   | BT            | 3.900             |
| 76      | 7.500             | 7.600   | 0.100       | Hilly   | BT            | 3.900             |
| 77      | 7.600             | 7.700   | 0.100       | Hilly   | BT            | 3.900             |
| 78      | 7.700             | 7.800   | 0.100       | Hilly   | BT            | 3.900             |
| 79      | 7.800             | 7.900   | 0.100       | Hilly   | BT            | 3.900             |
| 80      | 7.900             | 8.000   | 0.100       | Hilly   | BT            | 3.900             |
| 81      | 8.000             | 8.100   | 0.100       | Hilly   | BT            | 3.900             |
| 82      | 8.100             | 8.200   | 0.100       | Hilly   | BT            | 3.900             |
| 83      | 8.200             | 8.300   | 0.100       | Hilly   | BT            | 3.900             |
| 84      | 8.300             | 8.400   | 0.100       | Hilly   | BT            | 3.900             |
| 85      | 8.400             | 8.500   | 0.100       | Hilly   | BT            | 3.900             |
| 86      | 8.500             | 8.600   | 0.100       | Hilly   | BT            | 3.900             |
| 87      | 8.600             | 8.700   | 0.100       | Hilly   | BT            | 3.900             |
| 88      | 8.700             | 8.800   | 0.100       | Hilly   | BT            | 3.900             |
| 89      | 8.800             | 8.900   | 0.100       | Hilly   | BT            | 3.900             |
| 90      | 8.900             | 9.000   | 0.100       | Hilly   | BT            | 3.900             |
| 91      | 9.000             | 9.100   | 0.100       | Hilly   | BT            | 3.900             |
| 92      | 9.100             | 9.200   | 0.100       | Hilly   | BT            | 3.900             |
| 93      | 9.200             | 9.300   | 0.100       | Hilly   | BT            | 3.900             |
| 94      | 9.300             | 9.400   | 0.100       | Hilly   | BT            | 3.900             |
| 95      | 9.400             | 9.500   | 0.100       | Hilly   | BT            | 3.900             |
| 96      | 9.500             | 9.600   | 0.100       | Hilly   | BT            | 3.900             |
| 97      | 9.600             | 9.700   | 0.100       | Hilly   | BT            | 3.900             |
| 98      | 9.700             | 9.800   | 0.100       | Hilly   | BT            | 3.900             |
| 99      | 9.800             | 9.900   | 0.100       | Hilly   | BT            | 3.900             |
| 100     | 9.900             | 10.000  | 0.100       | Hilly   | BT            | 3.900             |
| 101     | 10.000            | 10.100  | 0.100       | Hilly   | BT            | 3.900             |
| 102     | 10.100            | 10.200  | 0.100       | Hilly   | BT            | 3.900             |

| Sr. no. | Existing Chainage |         | Length (km) | Terrain | Pavement Type | Carriageway Width |
|---------|-------------------|---------|-------------|---------|---------------|-------------------|
|         | From (km)         | To (km) |             |         |               |                   |
| 103     | 10.200            | 10.300  | 0.100       | Hilly   | BT            | 3.900             |
| 104     | 10.300            | 10.400  | 0.100       | Hilly   | BT            | 3.900             |
| 105     | 10.400            | 10.500  | 0.100       | Hilly   | BT            | 3.900             |
| 106     | 10.500            | 10.600  | 0.100       | Hilly   | BT            | 3.900             |
| 107     | 10.600            | 10.700  | 0.100       | Hilly   | BT            | 3.900             |
| 108     | 10.700            | 10.800  | 0.100       | Hilly   | BT            | 3.900             |
| 109     | 10.800            | 10.900  | 0.100       | Hilly   | BT            | 3.900             |
| 110     | 10.900            | 11.000  | 0.100       | Hilly   | BT            | 3.900             |
| 111     | 11.000            | 11.100  | 0.100       | Hilly   | BT            | 3.900             |
| 112     | 11.100            | 11.200  | 0.100       | Hilly   | BT            | 3.900             |
| 113     | 11.200            | 11.300  | 0.100       | Hilly   | BT            | 3.900             |
| 114     | 11.300            | 11.400  | 0.100       | Hilly   | BT            | 3.900             |
| 115     | 11.400            | 11.500  | 0.100       | Hilly   | BT            | 3.900             |
| 116     | 11.500            | 11.600  | 0.100       | Hilly   | BT            | 3.900             |
| 117     | 11.600            | 11.700  | 0.100       | Hilly   | BT            | 3.900             |
| 118     | 11.700            | 11.800  | 0.100       | Hilly   | BT            | 3.900             |
| 119     | 11.800            | 11.900  | 0.100       | Hilly   | BT            | 3.900             |
| 120     | 11.900            | 12.000  | 0.100       | Hilly   | BT            | 3.900             |
| 121     | 12.000            | 12.100  | 0.100       | Hilly   | BT            | 3.900             |
| 122     | 12.100            | 12.200  | 0.100       | Hilly   | BT            | 3.900             |
| 123     | 12.200            | 12.300  | 0.100       | Hilly   | BT            | 3.900             |
| 124     | 12.300            | 12.400  | 0.100       | Hilly   | BT            | 3.900             |
| 125     | 12.400            | 12.500  | 0.100       | Hilly   | BT            | 3.900             |
| 126     | 12.500            | 12.600  | 0.100       | Hilly   | BT            | 3.900             |
| 127     | 12.600            | 12.700  | 0.100       | Hilly   | BT            | 3.900             |
| 128     | 12.700            | 12.800  | 0.100       | Hilly   | BT            | 3.900             |
| 129     | 12.800            | 12.900  | 0.100       | Hilly   | BT            | 3.900             |
| 130     | 12.900            | 13.000  | 0.100       | Hilly   | BT            | 3.900             |

| Sr. no. | Existing Chainage |         | Length (km) | Terrain | Pavement Type | Carriageway Width |
|---------|-------------------|---------|-------------|---------|---------------|-------------------|
|         | From (km)         | To (km) |             |         |               |                   |
| 131     | 13.000            | 13.100  | 0.100       | Hilly   | BT            | 3.900             |
| 132     | 13.100            | 13.200  | 0.100       | Hilly   | BT            | 3.900             |
| 133     | 13.200            | 13.300  | 0.100       | Hilly   | BT            | 3.900             |
| 134     | 13.300            | 13.400  | 0.100       | Hilly   | BT            | 3.900             |
| 135     | 13.400            | 13.500  | 0.100       | Hilly   | BT            | 3.900             |
| 136     | 13.500            | 13.600  | 0.100       | Hilly   | BT            | 3.900             |
| 137     | 13.600            | 13.700  | 0.100       | Hilly   | BT            | 3.900             |
| 138     | 13.700            | 13.800  | 0.100       | Hilly   | BT            | 3.900             |
| 139     | 13.800            | 13.900  | 0.100       | Hilly   | BT            | 3.900             |
| 140     | 13.900            | 14.000  | 0.100       | Hilly   | BT            | 3.900             |
| 141     | 14.000            | 14.100  | 0.100       | Hilly   | BT            | 3.900             |
| 142     | 14.100            | 14.200  | 0.100       | Hilly   | BT            | 3.900             |
| 143     | 14.200            | 14.300  | 0.100       | Hilly   | BT            | 3.900             |
| 144     | 14.300            | 14.400  | 0.100       | Hilly   | BT            | 3.900             |
| 145     | 14.400            | 14.500  | 0.100       | Hilly   | BT            | 3.900             |
| 146     | 14.500            | 14.600  | 0.100       | Hilly   | BT            | 3.900             |
| 147     | 14.600            | 14.700  | 0.100       | Hilly   | BT            | 3.900             |
| 148     | 14.700            | 14.800  | 0.100       | Hilly   | BT            | 3.900             |
| 149     | 14.800            | 14.900  | 0.100       | Hilly   | BT            | 3.900             |
| 150     | 14.900            | 15.000  | 0.100       | Hilly   | BT            | 3.900             |
| 151     | 15.000            | 15.100  | 0.100       | Hilly   | BT            | 3.900             |
| 152     | 15.100            | 15.200  | 0.100       | Hilly   | BT            | 3.900             |
| 153     | 15.200            | 15.300  | 0.100       | Hilly   | BT            | 3.900             |
| 154     | 15.300            | 15.400  | 0.100       | Hilly   | BT            | 3.900             |
| 155     | 15.400            | 15.500  | 0.100       | Hilly   | BT            | 3.900             |
| 156     | 15.500            | 15.600  | 0.100       | Hilly   | BT            | 3.900             |
| 157     | 15.600            | 15.700  | 0.100       | Hilly   | BT            | 3.900             |
| 158     | 15.700            | 15.800  | 0.100       | Hilly   | BT            | 3.900             |

| Sr. no. | Existing Chainage |         | Length (km) | Terrain | Pavement Type | Carriageway Width |
|---------|-------------------|---------|-------------|---------|---------------|-------------------|
|         | From (km)         | To (km) |             |         |               |                   |
| 159     | 15.800            | 15.900  | 0.100       | Hilly   | BT            | 3.900             |
| 160     | 15.900            | 16.000  | 0.100       | Hilly   | BT            | 3.900             |
| 161     | 16.000            | 16.100  | 0.100       | Hilly   | BT            | 3.900             |
| 162     | 16.100            | 16.200  | 0.100       | Hilly   | BT            | 3.900             |
| 163     | 16.200            | 16.300  | 0.100       | Hilly   | BT            | 3.900             |
| 164     | 16.300            | 16.400  | 0.100       | Hilly   | BT            | 3.900             |
| 165     | 16.400            | 16.500  | 0.100       | Hilly   | BT            | 3.900             |
| 166     | 16.500            | 16.600  | 0.100       | Hilly   | BT            | 3.900             |
| 167     | 16.600            | 16.700  | 0.100       | Hilly   | BT            | 3.900             |
| 168     | 16.700            | 16.800  | 0.100       | Hilly   | BT            | 3.900             |
| 169     | 16.800            | 16.900  | 0.100       | Hilly   | BT            | 3.900             |
| 170     | 16.900            | 17.000  | 0.100       | Hilly   | BT            | 3.900             |
| 171     | 17.000            | 17.100  | 0.100       | Hilly   | BT            | 3.900             |
| 172     | 17.100            | 17.200  | 0.100       | Hilly   | BT            | 3.900             |
| 173     | 17.200            | 17.300  | 0.100       | Hilly   | BT            | 3.900             |
| 174     | 17.300            | 17.400  | 0.100       | Hilly   | BT            | 3.900             |
| 175     | 17.400            | 17.500  | 0.100       | Hilly   | BT            | 3.900             |
| 176     | 17.500            | 17.600  | 0.100       | Hilly   | BT            | 3.900             |
| 177     | 17.600            | 17.700  | 0.100       | Hilly   | BT            | 3.900             |
| 178     | 17.700            | 17.800  | 0.100       | Hilly   | BT            | 3.900             |
| 179     | 17.800            | 17.900  | 0.100       | Hilly   | BT            | 3.900             |
| 180     | 17.900            | 18.000  | 0.100       | Hilly   | BT            | 3.900             |
| 181     | 18.000            | 18.100  | 0.100       | Hilly   | BT            | 3.900             |
| 182     | 18.100            | 18.200  | 0.100       | Hilly   | BT            | 3.900             |
| 183     | 18.200            | 18.300  | 0.100       | Hilly   | BT            | 3.900             |
| 184     | 18.300            | 18.400  | 0.100       | Hilly   | BT            | 3.900             |
| 185     | 18.400            | 18.500  | 0.100       | Hilly   | BT            | 3.900             |
| 186     | 18.500            | 18.600  | 0.100       | Hilly   | BT            | 3.900             |

| Sr. no. | Existing Chainage |         | Length (km) | Terrain | Pavement Type | Carriageway Width |
|---------|-------------------|---------|-------------|---------|---------------|-------------------|
|         | From (km)         | To (km) |             |         |               |                   |
| 187     | 18.600            | 18.700  | 0.100       | Hilly   | BT            | 3.900             |
| 188     | 18.700            | 18.800  | 0.100       | Hilly   | BT            | 3.900             |
| 189     | 18.800            | 18.900  | 0.100       | Hilly   | BT            | 3.900             |
| 190     | 18.900            | 19.000  | 0.100       | Hilly   | BT            | 3.900             |
| 191     | 19.000            | 19.100  | 0.100       | Hilly   | BT            | 3.900             |
| 192     | 19.100            | 19.200  | 0.100       | Hilly   | BT            | 3.900             |
| 193     | 19.200            | 19.300  | 0.100       | Hilly   | BT            | 3.900             |
| 194     | 19.300            | 19.400  | 0.100       | Hilly   | BT            | 3.900             |
| 195     | 19.400            | 19.500  | 0.100       | Hilly   | BT            | 3.900             |
| 196     | 19.500            | 19.600  | 0.100       | Hilly   | BT            | 3.900             |
| 197     | 19.600            | 19.700  | 0.100       | Hilly   | BT            | 3.900             |
| 198     | 19.700            | 19.800  | 0.100       | Hilly   | BT            | 3.900             |
| 199     | 19.800            | 19.900  | 0.100       | Hilly   | BT            | 3.900             |
| 200     | 19.900            | 20.000  | 0.100       | Hilly   | BT            | 3.900             |
| 201     | 20.000            | 20.100  | 0.100       | Hilly   | BT            | 3.900             |
| 202     | 20.100            | 20.200  | 0.100       | Hilly   | BT            | 3.900             |
| 203     | 20.200            | 20.300  | 0.100       | Hilly   | BT            | 3.900             |
| 204     | 20.300            | 20.400  | 0.100       | Hilly   | BT            | 3.900             |
| 205     | 20.400            | 20.500  | 0.100       | Hilly   | BT            | 3.900             |
| 206     | 20.500            | 20.600  | 0.100       | Hilly   | BT            | 3.900             |
| 207     | 20.600            | 20.700  | 0.100       | Hilly   | BT            | 3.900             |
| 208     | 20.700            | 20.800  | 0.100       | Hilly   | BT            | 3.900             |
| 209     | 20.800            | 20.900  | 0.100       | Hilly   | BT            | 3.900             |
| 210     | 20.900            | 21.000  | 0.100       | Hilly   | BT            | 3.900             |
| 211     | 21.000            | 21.100  | 0.100       | Hilly   | BT            | 3.900             |
| 212     | 21.100            | 21.200  | 0.100       | Hilly   | BT            | 3.900             |
| 213     | 21.200            | 21.300  | 0.100       | Hilly   | BT            | 3.900             |
| 214     | 21.300            | 21.400  | 0.100       | Hilly   | BT            | 3.900             |

| Sr. no.             | Existing Chainage |               | Length (km) | Terrain | Pavement Type | Carriageway Width |
|---------------------|-------------------|---------------|-------------|---------|---------------|-------------------|
|                     | From (km)         | To (km)       |             |         |               |                   |
| 215                 | 21.400            | 21.500        | 0.100       | Hilly   | BT            | 3.900             |
| 216                 | 21.500            | 21.600        | 0.100       | Hilly   | BT            | 3.900             |
| 217                 | 21.600            | 21.700        | 0.100       | Hilly   | BT            | 3.900             |
| 218                 | 21.700            | 21.800        | 0.100       | Hilly   | BT            | 3.900             |
| 219                 | 21.800            | 21.900        | 0.100       | Hilly   | BT            | 3.900             |
| 220                 | 21.900            | 22.000        | 0.100       | Hilly   | BT            | 3.900             |
| 221                 | 22.000            | 22.100        | 0.100       | Hilly   | BT            | 3.900             |
| 222                 | 22.100            | 22.200        | 0.100       | Hilly   | BT            | 3.900             |
| 223                 | 22.200            | 22.300        | 0.100       | Hilly   | BT            | 3.900             |
| 224                 | 22.300            | 22.400        | 0.100       | Hilly   | BT            | 3.900             |
| 225                 | 22.400            | 22.500        | 0.100       | Hilly   | BT            | 3.900             |
| 226                 | 22.500            | 22.600        | 0.100       | Hilly   | BT            | 3.900             |
| 227                 | 22.600            | 22.713        | 0.100       | Hilly   | BT            | 3.900             |
| <b>Total Length</b> |                   | <b>22.713</b> |             |         |               |                   |

The project road traverses through Mountainous & Hilly terrain.

#### 0.4.1 Road Junctions

There is one Major junction and 4 minor junctions in the project stretch.

**Table 0.2: Details of Major Junction**

| S.No. | Chainage                   | Link     | Type |
|-------|----------------------------|----------|------|
| 1     | 0+000 (Km 24.711 of NH-44) | Srinagar | Y    |

#### 0.4.2 Existing Bridge & Cross Drainage Structures

There 3 minor bridges, 71 Pipe culverts, 16 Slab culverts, 12 Stone Masonry Culverts, 2 Blocked culverts and 3 Causeways on project road on the project road section.

**Table 0.3: Summary of Existing Bridges and Culverts**

| <b>Sr. No.</b> | <b>Type</b>            | <b>No's of structures</b> |
|----------------|------------------------|---------------------------|
| 1              | Minor Bridges          | 3                         |
| 2              | Causeway               | 3                         |
| 3              | Pipe Culverts          | 71                        |
| 4              | Slab Culverts          | 16                        |
| 5              | Stone Masonry Culverts | 12                        |
| 6              | Blocked culverts       | 2                         |
| <b>Total</b>   |                        | <b>107</b>                |

#### **0.4.3 Traffic Survey Analysis and Forecast**

It is very important, that the existing information on traffic flow, commodity movement and traffic pattern is required to assess the traffic behaviour on a project road.

Batote to Kishtwar after the construction of Sudhmahadev tunnel and road stretch from Chenani to Sudhmaahdev, there could be increase in the traffic enroute to Doda Town and beyond. However, the proposed road configuration shall cater to the design service volume 9000(PCU). Further the road has been designed for 20 MSA against the projected 1.21 MSA (after 15 years)

To collect such information to satisfy the Terms of Reference (TOR) and project requirements, following various types of traffic surveys were carried out:

- Classified Traffic Volume Count Survey
- Intersection Volume Count Survey
- Axle Load Spectrum Survey
- Origin – Destination (OD) Survey and commodity movement Surveys
- Speed and Delay Survey

#### **0.4.4 Classified Continuous Volume Count Survey**

A comprehensive traffic survey plan has been prepared for the project road after considering traffic intensity on homogeneous sections and travel characteristics. Detailed site visit of project road and its influence/alternative transport network has been carried out between on 20th November 2017 to 26th November 2017. Traffic survey locations were finalised by consultation with client officials.

**Table 0.4: Summary of Classified Volume Count Survey at all count stations**

| Sr. No.                                      | Chainages             | Justification/Rational                                                                                                    |
|----------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------|
| <b>Classified Volume Count Surveys (CVC)</b> |                       |                                                                                                                           |
| 1                                            | Km 11/500 near Bashat | Km (11/500) has been selected to get the idea of traffic in homogeneous section from Start of Project Road to Sudhmahadev |

#### 0.4.5 Annual Average Daily Traffic (AADT)

The seasonal correction factors are used to convert Average Daily Traffic (ADT) to Annual Average Daily Traffic (AADT). The Annual Average Daily Traffic for all traffic survey locations is presented vide Table below:

**Table 0.5: Summary of Annual Average Daily Traffic (AADT)**

| Sr. No. | Location           | Fast Moving Vehicles (PCU) | Slow Moving Vehicles (PCU) | Total AADT (PCU) |
|---------|--------------------|----------------------------|----------------------------|------------------|
| 1       | Bashat (km 11/500) | 1253                       | 19                         | 1271             |

#### 0.4.6 Turning Movement Count

There is one major intersection in the project stretch and TMC count is not conducted at this location as it is the start of the project stretch.

#### 0.4.7 Axle Load Survey

To estimate vehicle loading spectrum on project road, and to determine vehicle damage factor for the commercial vehicles, the axle load surveys have been carried out at identified locations. The data collected from the Axle Load Survey has been compiled and analysed through "Fourth power" pavement damage rule to arrive at the vehicles damage factor (VDF). The survey is analysed to obtain Vehicle Damage Factor (VDF) and is presented below:

**Table 0.6: Adopted VDF by Homogeneous Sections**

| SUMMARY of VDF at Bashat Km 11.500 |       |
|------------------------------------|-------|
| Vehicle Type                       | VDF   |
| LCV                                | 0.433 |
| 2 Axle Truck                       | 1.876 |
| 3 Axle Truck                       | 0.377 |
| Multi Axle Truck                   | 0.000 |
| Bus                                | 0.459 |

The equivalent single axle loads (ESALs) have been calculated assuming that the project road will be opened to traffic in the beginning of year 2021. MSA for the homogeneous sections is worked out for 15 years excluding construction period:

**Table 0.7: Summary of MSA**

| Section |             | Existing Chainage |        | Design MSA<br>(2021-2035) |
|---------|-------------|-------------------|--------|---------------------------|
| From    | To          | From              | To     |                           |
| Chenani | Sudhmahadev | 0/000             | 22/713 | 20                        |

#### 0.4.8 Speed-Delay Survey

Speed and delay survey was carried out to obtain the information on the average journey time, journey speed and running speed of the project road.

Round trip was made on entire project road during identified peak period using new technology vehicle. The survey vehicle was kept maintaining the speed of existing traffic flow. Start time, delay occurred, distance covered, and end time were recorded on the specified survey format. The data thus obtained is analysed and presented below:

**Table 0.8: Summary of Speed-Delay Survey**

| S.<br>No | Section |             | Distance<br>(Km) | Average<br>travel<br>Time<br>during<br>off-peak<br>(minutes) | Average<br>speed<br>during<br>off-peak<br>(km/hr) | Travel<br>Time<br>during<br>peak<br>(minutes) | Average<br>speed<br>during<br>peak<br>hours<br>(km/hr) | Delay<br>(minutes) | Reason<br>for delay                   |
|----------|---------|-------------|------------------|--------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|--------------------|---------------------------------------|
|          | From    | To          |                  |                                                              |                                                   |                                               |                                                        |                    |                                       |
| 1        | Chenani | Sudhmahadev | 22.713           | 45                                                           | 30                                                | 68                                            | 20                                                     | 23                 | Delay due<br>to traffic<br>conditions |

The dominant reason for delay in Chenani - Sudhmahadev section is high vehicular movements during peak hours especially at the start point of the project road i.e. Chenani. At the start point of the stretch, it was observed during speed delay study that many vehicles were parked along the roadside. Such roadside parking caused delay in traffic movement.

#### 0.5 Growth Rate

The various methods specified vide IRC 108: 2015 are taken in to consideration for arriving at reasonable growth rate for traffic in future. The results of such methods along with proposed growth rate for each type of vehicle are presented vide Table below:

**Table 0.9: Comparative Analysis and Adopted of Growth Rates**

| S.NO | Vehicle Type                   | Goods (%) | Bus (%)  | Car (%)  | 3-Wheeler (%) | 2-Wheeler (%) |
|------|--------------------------------|-----------|----------|----------|---------------|---------------|
| 1    | Vehicle Growth Criteria Method | 22.11     | 3.22     | 17.50    | 1.09          | 8.42          |
| 2    | Net State Domestic Method      | 6.17      | 4.72     | 4.79     | 4.63          | 4.68          |
| 3    | As per IRC                     | 5         | 5        | 5        | 5             | 5             |
|      | <b>Adopted Growth Rates</b>    | <b>5</b>  | <b>5</b> | <b>5</b> | <b>5</b>      | <b>5</b>      |

**Table 0.10: Summary of Projected Total AADT Traffic PCU Volume / day**

| Homogeneous Section                            | Year 2017 | Year 202 | Year 2025 | Year 2030 | Year 2035 |
|------------------------------------------------|-----------|----------|-----------|-----------|-----------|
| Chenani to Sudhmahadev (Ch.0+000 to km 22+713) | 1256      | 1527     | 1856      | 2368      | 3023      |

## 0.6 Capacity Analysis

Capacity analysis is fundamental to the planning, design and operation of roads. It is a valuable tool for evaluation of the investment needed for the future improvements. The capacity figures used for determining the desired carriageway width in differing terrain w.r.t. traffic volume and composition are as per IRC: 64-1990. As per IRC 64:1990, it is recommended that on major arterial routes LOSB should be adopted for the design purpose. On other roads under exceptional circumstances, LOSC could also be adopted for design. For LOS C, Design service volume can be taken as 40 % higher than those for LOS B. For augmentation of the facilities and up gradation of the project highway, the design service volume for the mountainous/hilly terrain condition and level of Service B & C is shown in Table:

**Table 0.11: Design Service Volume for Different Lane Configurations**

| Lane Configuration              | Design Service Volume<br>(PCUs per day)<br><i>Level of Service B</i> | Design Service Volume<br>(PCUs per day)<br><i>Level of Service C</i> |
|---------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| 2-Lane with 1.5m Paved Shoulder | 9000                                                                 | 10000                                                                |
| 4-Lane with 1.5m Paved Shoulder | 10000                                                                | 20000                                                                |

## 0.7 Lane Requirements

Based on the assessment of the traffic demand on the various homogeneous sections of the Project Highway, the Consultant have carried out detailed option analysis for Two-laning with paved shoulders. Based on the estimated Capacity & Design Service Volume, the number of lanes required for the project road is worked out for LOS B & LOS C which is presented in Table below.

**Table 0.12: Lanning Requirement for the Project Corridor**

| Homogeneous Sections                              | LOS B                      | LOS C                      |
|---------------------------------------------------|----------------------------|----------------------------|
|                                                   | 2-Lane with Paved Shoulder | 2-Lane with Paved Shoulder |
| Chenani to Sudhmahadev<br>(Ch.0+000 to km 22+713) | 2018                       | Beyond Analysis Period     |

It is revealed from the capacity analysis results and considering future traffic growth, the Project road requires Two lane configuration.

## 0.8 Results of Engineering Surveys and Investigations

### 0.8.1 Pavement Condition

It is the most important data needed for deciding upon the maintenance. The basic measurement of pavement condition is existing distresses. The information required is on the type, severity and amount of distress.

Pavement condition survey consists of observing and recording the various distresses like cracks, pothole, rutting, ravelling etc of the existing carriageway, pavement shoulders and embankment. The details collected from pavement condition survey form the basis to decide strategy for adequate strengthening / rehabilitation measure of Existing pavement.

**Table 0.13: Percentage wise distribution of Good Fair and Poor Road**

| Sr. No. | Condition | Length (Km) | % Condition |
|---------|-----------|-------------|-------------|
| 1       | Good      | 15.373      | 67.68       |
| 2       | Poor      | 7.340       | 32.32       |

### 0.8.2 Benkelman Beam Deflection

Structural strength of existing pavement has been assessed by conducting Benkelman beam test as per procedure specified vide IRC 81: 1997 and in accordance with TOR set-forth vide consultancy agreement as well as for identified control sections. On an average, characteristic deflection was noticed 0.67 mm for the project stretch.

### 0.8.3 Pavement Investigation

Summary of the layer thickness as recorded from test pits are as under:

**Table 0.14: Summary of Crust Thickness in mm**

| Location | Granular | BT | Old BT | Old Granular | Boulder | Total thickness |
|----------|----------|----|--------|--------------|---------|-----------------|
| 5.0      | 425      | 75 | -      | -            | -       | 500             |
| 10.0     | 465      | 85 | -      | -            | -       | 550             |
| 15.0     | 510      | 90 | -      | -            | -       | 600             |

## 0.9 Proposed design standards

Following table is a summary of the recommended design standards proposed to be adopted for the project road other than service road and intersections:

**Table 0.15: Summary of Recommended Design Standard**

|       |                                         |                                                                                                                                                                                       |
|-------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)   | Design Speed (Km/hr)                    |                                                                                                                                                                                       |
|       | Mountainous Terrain                     | : 60 (Ruling), 40(Minimum)                                                                                                                                                            |
|       | Plain Terrain                           | : 100 (Ruling), 80(Minimum)                                                                                                                                                           |
| (ii)  | Level of Service                        | : B                                                                                                                                                                                   |
| (iii) | Roadway Widths (m)                      | :<br><br>Mountainous Terrain<br>Plain Terrain<br>11 m for 2-lanes with paved shoulders/ Granular Shoulder<br>14m for 2-lanes with paved shoulders/ Granular Shoulder                  |
| (iv)  | Roadway Elements<br>Mountainous Terrain |                                                                                                                                                                                       |
|       | With Retaining wall and parapet         | :<br><br>Carriageway<br>• 2-lane- 2X3.5m<br>Paved Shoulder<br>• 2-lane with PSS- 2x1.5m                                                                                               |
|       | Without Retaining wall                  | :<br><br>Carriageway<br>• 2-lane- 2X3.5m<br>Paved Shoulder<br>• 2-lane with PSS- 2x1.5m<br>Unpaved Shoulder<br>• 2-lane with - 1.0m                                                   |
|       | Built up Area with retaining wall       | :<br><br>Carriageway<br>• 2-lane- 2X3.5m<br>Paved Shoulder<br>• 2-lane with PSS- 2x1.5m                                                                                               |
|       | Plain Terrain                           | :<br><br>Carriageway<br>• 2-lane- 2X3.5m<br>Paved Shoulder<br>• 2-lane with PSS- 2x1.5m<br>Unpaved Shoulder<br>• 2- lane -2X2.0m                                                      |
| (v)   | Camber                                  | <b>Carriageway</b><br>Flexible- 2.50%<br>Rigid - 2.00 %<br><b>Paved Shoulder</b><br>Flexible- 2.50%<br>Rigid - 2.00 %<br><b>Unpaved Shoulder</b><br>Flexible- 3.50%<br>Rigid - 3.00 % |
| (vi)  | Right of Way                            | As per Plan and Profile                                                                                                                                                               |
| (vii) | Embankment/ Cutting                     |                                                                                                                                                                                       |

|        |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Slope<br>Fill height, up to 3.0 m<br>Fill height from 3.0 m to 6.0 m<br>Fill height exceeding 6.0 m                                           | In filling- 1V: 2 H<br>In filling- 1V: 1.5 H<br>To be designed based on soil parameters, (IRC: 75)<br>In cutting- 1V:1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (viii) | Stopping Sight Distance<br><br>Intermediate sight distance                                                                                    | 20 m for design speed of 20 km/hr<br>25 m for design speed of 25 km/hr<br>30 m for design speed of 30 km/hr<br>40 m for design speed of 35 Km /hr<br>45m for design speed of 40km/hr<br>60 m for design speed of 50km/hr<br>90 m for design speed of 60km/hr<br>120m for design speed of 80 km/hr<br>180m for design speed of 100km/hr<br><br>40 m for design speed of 20 km/hr<br>50 m for design speed of 25 km/hr<br>60 m for design speed of 30 km/hr<br>80 m for design speed of 35 Km /hr<br>90 m for design speed of 40km/hr<br>120 m for design speed of 50km/hr<br>180 m for design speed of 60km/hr<br>240m for design speed of 80km/hr<br>360m for design speed of 100km/hr |
| (ix)   | Super-elevation<br>Mountainous Terrain<br>Plain Terrain                                                                                       | Maximum 10%<br>Maximum 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (x)    | Radii for Horizontal Curves<br>Mountainous Terrain<br><br>Plain Terrain                                                                       | Ruling Minimum 150 m<br>Absolute minimum 75 m<br>Ruling Minimum 400 m<br>Absolute minimum 250 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (xi)   | Ruling Gradient<br>Mountainous Terrain<br>Plain Terrain                                                                                       | 5.0%<br>2.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (xii)  | Minimum K- factor<br>Summit Curve<br>Mountainous Terrain<br><br>Plain Terrain<br><br>Valley Curve<br>Mountainous Terrain<br><br>Plain Terrain | Desirable: 8<br>Minimum: 5<br>Desirable: 74<br>Minimum: 38<br><br>Desirable: 10<br>Minimum: 7<br>Desirable: 42<br>Minimum: 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (xiii) | Bridge Clearance                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | Vehicular underpass                                                                                                                           | 5.5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | Cattle and Pedestrian                                                                                                                         | 3.0m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (xiv)  | Design Flood Frequency                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | Bridges                                                                                                                                       | 100 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|  |                    |          |
|--|--------------------|----------|
|  | Sewers and Ditches | 60 years |
|--|--------------------|----------|

## 0.10 Improvement Proposals

The improvement proposals for proposed widening include the provisions for the following major items:

- a) Proposal for Widening and Reconstruction
- b) Requirement of bypasses and realignment
- c) Geometric Improvement Design
- d) Proposed Pavement Design
- e) Traffic Control and Safety Measures
- f) Bridge and Cross Drainage Structures

### 0.10.1 Proposal for Reconstruction

To meet future traffic requirement, the existing carriageway is proposed to upgrade to achieve high speed of travel with comfort and safety.

**Table 0.16: Proposed Cross Section**

| Sr. No. | Design Chainage |         | Length (Km) | TCS Type | Remarks                                              |
|---------|-----------------|---------|-------------|----------|------------------------------------------------------|
|         | From (Km)       | To (Km) |             |          |                                                      |
| 1       | 0.000           | 0.800   | 0.800       | 3        | One side Valley & One side Built up or open area     |
| 2       | 0.800           | 0.840   | 0.040       | 6        | Realignment                                          |
| 3       | 0.840           | 0.890   | 0.050       | 4        | Approach to Bridge                                   |
| 4       | 0.890           | 0.965   | 0.075       | Bridge   | Bridge                                               |
| 5       | 0.965           | 1.015   | 0.050       | 4        | Approach to Bridge                                   |
| 6       | 1.015           | 1.274   | 0.259       | 2        | One side Hill & One side Valley (Drain on Hill Side) |
| 7       | 1.274           | 1.466   | 0.192       | 2        | One side Hill & One side Valley (Drain on Hill Side) |
| 8       | 1.466           | 2.400   | 0.934       | 6        | Realignment                                          |
| 9       | 2.400           | 2.450   | 0.050       | 4        | Approach to Bridge                                   |
| 10      | 2.450           | 2.700   | 0.250       | Bridge   | Bridge                                               |

| Sr. No. | Design Chainage |         | Length (Km) | TCS Type | Remarks                                                    |
|---------|-----------------|---------|-------------|----------|------------------------------------------------------------|
|         | From (Km)       | To (Km) |             |          |                                                            |
| 11      | 2.700           | 2.750   | 0.050       | 4        | Approach to Bridge                                         |
| 12      | 2.750           | 3.050   | 0.300       | 1        | One side Hill & One side Valley (Breast Wall on hill side) |
| 13      | 3.050           | 3.300   | 0.250       | 6        | Realignment                                                |
| 14      | 3.300           | 4.100   | 0.800       | 1        | One side Hill & One side Valley (Breast Wall on hill side) |
| 15      | 4.100           | 4.167   | 0.067       | 6        | Realignment                                                |
| 16      | 4.167           | 4.217   | 0.050       | 4        | Approach to Bridge                                         |
| 17      | 4.217           | 4.223   | 0.006       | Bridge   | Bridge                                                     |
| 18      | 4.223           | 4.273   | 0.050       | 4        | Approach to Bridge                                         |
| 19      | 4.273           | 4.900   | 0.627       | 6        | Realignment                                                |
| 20      | 4.900           | 5.400   | 0.500       | 1        | One side Hill & One side Valley (Breast Wall on hill side) |
| 21      | 5.400           | 5.558   | 0.158       | 6        | Realignment                                                |
| 22      | 5.558           | 5.700   | 0.142       | 1        | One side Hill & One side Valley (Breast Wall on hill side) |
| 23      | 5.700           | 6.000   | 0.300       | 6        | Realignment                                                |
| 24      | 6.000           | 6.185   | 0.185       | 1        | One side Hill & One side Valley (Breast Wall on hill side) |
| 25      | 6.185           | 6.400   | 0.215       | 6        | Realignment                                                |
| 26      | 6.400           | 6.600   | 0.200       | 1        | One side Hill & One side Valley (Breast Wall on hill side) |
| 27      | 6.600           | 6.825   | 0.225       | 6        | Realignment                                                |
| 28      | 6.825           | 7.400   | 0.575       | 1        | One side Hill & One side Valley (Breast Wall on hill side) |
| 29      | 7.400           | 7.447   | 0.047       | 6        | Realignment                                                |

| Sr. No. | Design Chainage |         | Length (Km) | TCS Type | Remarks                                                                              |
|---------|-----------------|---------|-------------|----------|--------------------------------------------------------------------------------------|
|         | From (Km)       | To (Km) |             |          |                                                                                      |
| 30      | 7.447           | 7.497   | 0.050       | 4        | Approach to Bridge                                                                   |
| 31      | 7.497           | 7.503   | 0.006       | Bridge   | Bridge                                                                               |
| 32      | 7.503           | 7.553   | 0.050       | 4        | Approach to Bridge                                                                   |
| 33      | 7.553           | 7.700   | 0.147       | 6        | Realignment                                                                          |
| 34      | 7.700           | 8.677   | 0.977       | 1        | One side Hill & One side Valley (Breast Wall on hill side)                           |
| 35      | 8.677           | 8.727   | 0.050       | 4        | Approach to Bridge                                                                   |
| 36      | 8.727           | 8.733   | 0.006       | Bridge   | Bridge                                                                               |
| 37      | 8.733           | 8.783   | 0.050       | 4        | Approach to Bridge                                                                   |
| 38      | 8.783           | 8.800   | 0.017       | 6        | Realignment                                                                          |
| 39      | 8.800           | 8.897   | 0.097       | 1        | One side Hill & One side Valley (Breast Wall on hill side)                           |
| 40      | 8.897           | 8.947   | 0.050       | 4        | Approach to Bridge                                                                   |
| 41      | 8.947           | 8.953   | 0.006       | Bridge   | Bridge                                                                               |
| 42      | 8.953           | 9.003   | 0.050       | 4        | Approach to Bridge                                                                   |
| 43      | 9.003           | 9.254   | 0.251       | 6        | Realignment                                                                          |
| 44      | 9.254           | 9.304   | 0.050       | 4        | Approach to Bridge                                                                   |
| 45      | 9.304           | 9.364   | 0.060       | Bridge   | Bridge                                                                               |
| 46      | 9.364           | 9.414   | 0.050       | 4        | Approach to Bridge                                                                   |
| 47      | 9.414           | 10.200  | 0.786       | 5        | One side Hill & One side Valley (Breast Wall and Gabion Box Protection on hill side) |

| Sr. No. | Design Chainage |         | Length (Km) | TCS Type | Remarks                                                                              |
|---------|-----------------|---------|-------------|----------|--------------------------------------------------------------------------------------|
|         | From (Km)       | To (Km) |             |          |                                                                                      |
| 48      | 10.200          | 10.600  | 0.400       | 6        | Realignment                                                                          |
| 49      | 10.600          | 10.900  | 0.300       | 5        | One side Hill & One side Valley (Breast Wall and Gabion Box Protection on hill side) |
| 50      | 10.900          | 11.100  | 0.200       | 6        | Realignment                                                                          |
| 51      | 11.100          | 11.400  | 0.300       | 5        | One side Hill & One side Valley (Breast Wall and Gabion Box Protection on hill side) |
| 52      | 11.400          | 11.625  | 0.225       | 6        | Realignment                                                                          |
| 53      | 11.625          | 11.700  | 0.075       | 1        | One side Hill & One side Valley (Breast Wall on hill side)                           |
| 54      | 11.700          | 12.100  | 0.400       | 6        | Realignment                                                                          |
| 55      | 12.100          | 13.217  | 1.117       | 1        | One side Hill & One side Valley (Breast Wall on hill side)                           |
| 56      | 13.217          | 13.267  | 0.050       | 4        | Approach to Bridge                                                                   |
| 57      | 13.267          | 13.273  | 0.006       | Bridge   | Bridge                                                                               |
| 58      | 13.273          | 13.323  | 0.050       | 4        | Approach to Bridge                                                                   |
| 59      | 13.323          | 13.555  | 0.255       | 6        | Realignment                                                                          |
| 60      | 13.555          | 14.180  | 0.625       | 1        | One side Hill & One side Valley (Breast Wall on hill side)                           |
| 61      | 14.180          | 14.447  | 0.267       | 6        | Realignment                                                                          |
| 62      | 14.447          | 14.497  | 0.050       | 4        | Approach to Bridge                                                                   |
| 63      | 14.497          | 14.503  | 0.006       | Bridge   | Bridge                                                                               |
| 64      | 14.503          | 14.553  | 0.050       | 4        | Approach to Bridge                                                                   |
| 65      | 14.553          | 14.700  | 0.147       | 6        | Realignment                                                                          |

| Sr. No. | Design Chainage     |         | Length (Km)   | TCS Type | Remarks                                                                              |
|---------|---------------------|---------|---------------|----------|--------------------------------------------------------------------------------------|
|         | From (Km)           | To (Km) |               |          |                                                                                      |
| 66      | 14.700              | 14.787  | 0.087         | 1        | One side Hill & One side Valley (Breast Wall on hill side)                           |
| 67      | 14.787              | 14.837  | 0.050         | 4        | Approach to Bridge                                                                   |
| 68      | 14.837              | 14.843  | 0.006         | Bridge   | Bridge                                                                               |
| 69      | 14.843              | 14.893  | 0.050         | 4        | Approach to Bridge                                                                   |
| 70      | 14.893              | 15.055  | 0.162         | 6        | Realignment                                                                          |
| 71      | 15.055              | 16.300  | 1.245         | 1        | One side Hill & One side Valley (Breast Wall on hill side)                           |
| 72      | 16.300              | 16.700  | 0.400         | 6        | Realignment                                                                          |
| 73      | 16.700              | 16.990  | 0.290         | 5        | One side Hill & One side Valley (Breast Wall and Gabion Box Protection on hill side) |
|         | <b>Total Length</b> |         | <b>16.990</b> |          |                                                                                      |

### 0.10.2 Typical Cross-sections

Proposed cross-sections are shown in table given below.

**Table 0.17: Summary of TCS**

| Sr. No. | Detail                                                                               | TCS | Length |      |
|---------|--------------------------------------------------------------------------------------|-----|--------|------|
|         |                                                                                      |     | (m)    | (Km) |
| 1       | One side Hill & One side Valley (Breast Wall on hill side)                           | 1   | 6.902  | 6902 |
| 2       | One side Hill & One side Valley (Drain on Hill Side)                                 | 2   | 0.451  | 451  |
| 3       | One side Valley & One side Built up or open area                                     | 3   | 0.800  | 800  |
| 4       | Approach to Bridge                                                                   | 4   | 1.000  | 1000 |
| 5       | One side Hill & One side Valley (Breast Wall and Gabion Box Protection on hill side) | 5   | 1.676  | 1676 |

| Summary of TCS      |             |     |                 |               |
|---------------------|-------------|-----|-----------------|---------------|
| Sr. No.             | Detail      | TCS | Length          |               |
|                     |             |     | (m)             | (Km)          |
| 6                   | Realignment | 6   | 5.734           | 5734          |
| 7                   | Bridge      |     | 0.427           | 427           |
| <b>Total Length</b> |             |     | <b>16990.00</b> | <b>16.990</b> |

### 0.10.3 Requirement of Bypasses

No bypass is proposed in the project stretch.

### 0.10.4 Pavement Design

Flexible pavement is proposed new carriageway and reconstruction. Design period of 15 years considered for new carriageway. The Pavement improvement proposal for entire project road is presented in **Table 0.18**.

**Table 0.18 Improvement Proposal for New Pavement**

| Crust Composition for New Pavement as per IRC 37 – 2012 |                 |        |     |     |       |     |     |     |         |                 |
|---------------------------------------------------------|-----------------|--------|-----|-----|-------|-----|-----|-----|---------|-----------------|
| Homogeneous Section                                     | Design Chainage |        | CBR | MSA | Crust |     |     |     | S.Grade | Total Thickness |
|                                                         | From            | To     |     |     | BC    | DBM | WMM | GSB |         |                 |
| 1                                                       | 0/000           | 16/990 | 10  | 20  | 40    | 80  | 250 | 200 | 500     | 1070            |

### 0.10.5 Traffic Control and Safety Measures

#### 0.10.5.1 Road Marking & Traffic Signs

Road markings will be made for centre and edge lines using reflective thermoplastic paints. Appropriate road markings will also be provided at junctions and crossings.

Road signs are to place according to IRC: 67-2012. The signs are to be placed on embankment so that extreme edge of sign would be 2.0m away from the edge of the carriageway. The location of each sign is to be decided in accordance with the guidelines there in.

#### 0.10.5.2 Proposal for Truck Lay byes/Parking cum Rest Area

As per the detailed field surveys and reconnaissance, there is no requirement of truck lay bye/ Parking cum rest areas proposal.

**Table 0.19 Truck lay byes/ Parking cum Rest Area Location**

|            |                          |
|------------|--------------------------|
| Sr.<br>No. | <b>Existing Chainage</b> |
|            | Nil                      |

## 0.10.6 Major Bridge/ Minor Bridge & Cross Drainage Structures

### 0.10.6.1 Bridges

There are 3 minor bridges which crosses either River, Nalla or small streams. Photographic representations are some of minor bridges are described as below.

Out of 3 minor bridges, all 3 are to be abandoned and 10 new bridges are proposed. The Brief details of improvement proposal for existing bridges are given in Table no. 0.20. The details of improvement proposal for bridges are given in **Annexure-8.2**.

Details of bridges are provided in **Annexure-4.10**.

### 0.10.6.2 Culverts

There are 71 Pipe culverts, 16 Slab culverts, 12 Stone Masonry Culverts, 2 Blocked culverts and 3 Causeways on project road. Improvement proposal for culvert are given in Table no. 0.20. Details of culverts are provided in **Annexure-4.11**.

The details of improvement proposal for culverts are given in **Annexure-8.3**

**Table 0.20: Summary of structures proposed**

| SL.NO.   | DESCRIPTION                                                | No. Of Structures | REMARKS |
|----------|------------------------------------------------------------|-------------------|---------|
| <b>1</b> | <b>PIPE CULVERTS</b>                                       |                   |         |
|          | <b>Causeway -PQC</b>                                       |                   |         |
| (i)      | Retaining & Widening                                       | 0                 |         |
| (ii)     | Dismantling & Reconstruction Pipe Culvert with Box Culvert | 2                 |         |
| (iii)    | New Proposals                                              | 0                 |         |
| (iv)     | Abandoned                                                  | 1                 |         |
|          | <b>Pipe Culverts</b>                                       |                   |         |
| (i)      | Retaining & Widening                                       | 0                 |         |
| (ii)     | Dismantling & Reconstruction Pipe Culvert with Box Culvert | 37                |         |
| (iii)    | New Proposals                                              | 0                 |         |
| (iv)     | Abandoned                                                  | 34                |         |
| <b>2</b> | <b>SLAB CULVERTS</b>                                       |                   |         |
| (i)      | Retaining & Widening                                       | 0                 |         |
| (ii)     | Dismantling & Reconstruction Slab Culvert with Box Culvert | 12                |         |

| SL.NO.   | DESCRIPTION                  | No. Of Structures | REMARKS |
|----------|------------------------------|-------------------|---------|
| (iii)    | New Proposals                | 0                 |         |
| (iv)     | Abandoned                    | 4                 |         |
| <b>3</b> | <b>BOX CULVERTS</b>          |                   |         |
| (i)      | Retaining & Widening         | 0                 |         |
| (ii)     | Dismantling & Reconstruction | 0                 |         |
| (iii)    | New Proposals                | 30                |         |
| (iv)     | Abandoned                    | 0                 |         |
| <b>4</b> | <b>SLAB CULVERTS</b>         |                   |         |
| (i)      | Retaining & Widening         | 0                 |         |
| (ii)     | Dismantling & Reconstruction | 8                 |         |
| (iii)    | New Proposals                | 0                 |         |
| (iv)     | Abandoned                    | 4                 |         |
| <b>4</b> | <b>Blocked Culverts</b>      |                   |         |
| (i)      | Retaining & Widening         | 0                 |         |
| (ii)     | Dismantling & Reconstruction | 1                 |         |
| (iii)    | New Proposals                | 0                 |         |
| (iv)     | Abandoned                    | 1                 |         |
| <b>5</b> | <b>UNDERPASSES</b>           |                   |         |
| (a)      | Vehicular underpasses        | 0                 |         |
| (b)      | Cattle underpasses           | 0                 |         |
| <b>6</b> | <b>MINOR BRIDGES</b>         |                   |         |
| (i)      | Abandoned                    | 3                 |         |
| (ii)     | Dismantling & Reconstruction | 0                 |         |
| (iii)    | Retained                     | 0                 |         |
| (iv)     | New proposals                | 8                 |         |
| <b>7</b> | <b>MAJOR BRIDGES</b>         |                   |         |
| (i)      | To be widened                | 0                 |         |
| (ii)     | Dismantling & Reconstruction | 0                 |         |
| (iii)    | Retained                     | 0                 |         |
| (iv)     | New proposals                | 2                 |         |

## 0.11 Cost Estimate

Preliminary cost estimate for the project Road is finalised based on the improvement proposed. The preliminary cost estimate is worked out based on the quantities calculated for major items of work to be executed in the project and rates derived after detail analysis

**Table 0.21 Cost of Civil Works**

| Section             | Ex. Length (km) | Design Length (km) | Civil Cost in Crore |
|---------------------|-----------------|--------------------|---------------------|
| Chenani-Sudhmahadev | 22.713          | 16.990             | 174.34              |

## 0.12 Environmental Impact Assessment

A corridor of 10 km on either side from the project road is considered for study of various environmental attributes. The study is carried out as per the requirements stipulated by the Ministry of Environment and Forests, Government of India for Environmental Impact Assessment of Rail / Roads / Highway Projects. Important features from environmental point of view observed along the project road are as mentioned below.

- From the preliminary inventory, local inquiry and as informed by the forest department, it is revealed there is demarcated forest in the stretch of the Project Road.
- Project Corridor on both sides has significant amount of tree plantation. Different type of trees is existing along the project road. Trees will be impacted due to road widening. Along the project road which lies in toe line on either side of the road edge shall be made to avoid felling of trees which are not falling under corridor of impact. With the addition of trees and shrubs, following re-forestation, the short-term impact of construction is expected to be reversed over the long term.

### 0.12.1 Social screening

The project road falls within one district of Jammu and Kashmir i.e. Udhampur. During the initial social screening period, primary consultations were conducted at village Bashat town along the project road.

- The consultations were held to build awareness about the project amongst the people, district level administration, and NGOs and to enlist their support in preparation and implementation of the project. Also, it served the purpose of understanding the reaction of the likely affected persons.
- Issues raised by individuals during the consultations were mainly related to land acquisition, loss of livelihood and income restoration, loss of religious structures, community structures, trees, etc.
- A preliminary baseline socio-economic survey identified that structures are likely to be affected due to the project. The remaining includes private and government structures that will be affected due to the proposed project. Most of the structures affected are of kuccha type i.e. temporary in nature.

### 0.13 List Clearances required for the Project

Following clearances are required before the commencement of construction work. Out of these, few are critical and need to be obtained immediately to avoid the time lag at later date

**Table 0.22: Project Clearances**

| Sr. No. | Item                                                                                                           | Agency                                                                          |
|---------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1.      | Forest Clearance                                                                                               | Jammu and Kashmir Forest Department                                             |
| 2.      | Pollution Clearance -No Objection Certificate (NOC)<br>(Exempted)                                              | Jammu and Kashmir State Pollution Control Board                                 |
| 3.      | Shifting of services and utilities including underground water pipeline sewerage line and optical fibre cables | BSNL, BSEB, Public Health Engineering department, Optical fibber cable operator |
| 4.      | Clearance for cutting trees and transporting                                                                   | Forest Department, Department of Horticulture                                   |
| 5.      | Dismantling of structure falling within right of way                                                           | Competent Land Acquisition Authority                                            |

## 0.14 Results of Financial Analysis

To assess whether the project is a profitable proposition, the returns to investors are measured by the post-tax project FIRR and the equity FIRR, which is estimated from the cash-flow statements, based on discounted cash-flow technique. To qualify the project in terms of attractive financial returns, the following criteria have been adopted:

- Post tax IRR on Project Investment : minimum 12%
- Post tax IRR on Equity : minimum 12%
- DSCR : >1.0
- BCR : >1.3
- NPV @ 12% : must be positive

### 0.14.1 Recommendation & Conclusion on Type of Financing:

- Project road is financially not viable based on the forecasted traffic and MoRT&H user fee with 40% government subsidy and maximum concession period of 15 years.
- Therefore, under EPC contract option proposed for the entire project section with single package and 15 years concession period is adopted.

## 0.15 Results of Economic Analysis

### 0.15.1 Economics Internal Rate of Return

The EIRR and NPV at 12% discount rate for construction package as worked out with and without benefits due to travel time savings are summarized as under:

**Table 0.23: Results of Economic Analysis**

| Homogeneous Sections | Option           | Net Economic Benefit (NPV @ 12%) | Economic Internal Rate of Return (12 %) |
|----------------------|------------------|----------------------------------|-----------------------------------------|
| Chenani-Sudhmahadev  | With time saving | (58.88)                          | (6.93%)                                 |

### 0.15.2 Recommendation & Conclusion

The proposed road is required for alternate route in future from Chenani to Srinagar via Sudhmahadev, Goha, Khelani, Khanbal.

## 0.16 Recommendations

- Based on the lane capacity analysis results, the project road requires 2 lanes with paved shoulder for capacity augmentation and efficient movement of traffic up to project common concession period of 15 years i.e. horizon year 2035.
- The project road can be improved without causing significant adverse environmental impacts to the natural, social, economic or cultural environments.
- The process of land acquisition must be initialised immediately after the approval of the alignment, to expedite construction of widening sections.
- The project can be constructed within 24 months period with strategic planning and through one construction package. The estimated basic cost is given below table

**Table 0.25: Base Cost**

| Section             | Proposed Length (km)                             | Base Cost In Cr |
|---------------------|--------------------------------------------------|-----------------|
| Chenani-Sudhmahadev | Existing Length: 22/713<br>Design Length: 16/990 | 174.34          |

- Project road section is financially not viable based on the forecasted traffic and MoRT&H user fee with 40% government subsidy. Therefore, under EPC contract option proposed for the entire project section with single package and 15 years concession period is adopted.