Reliance Jio Infocomm Limited 4G OFC Network DGPS Survey report for Forest Diversion of proposed OFC Cable Route from Batati to Hati with Route Length 28.45 Km. in District Korba APPLICATION SUBMITTED BY: RELIANCE JIO INFOCOMM LIMITED DGPS SURVEY AND GIS MAPPING DONE BY: Geotrax International Services Raipur, Chhattisgarh. Geotrax 2016 Page 1 of 29 ## **Table of Contents** | 1. Inti | oduction and Background | 3 | |------------|---|---------| | 1.1 | Background | 3 | | 1.2 | Location and Communication | | | 1.3 | Objective | | | 1.4 | Geotrax Empanelment Certificate in Chhattisgarh | 5 | | 2. Sco | pe of Work | 8 | | 3. De | iverables | 9 | | 4. Bri | ef description of the Technical approach | 9 | | 4.1 | Input Data | 9 | | 4.2 | Planning DGPS Survey & Data Preparation | 9 | | 4.3 | Establishment of Primary Control Point (PCP) 1 | 0 | | 4.4
(TB | Establishment of Secondary Control Point (SCP) & Temporary Bench Mark M)1 | :s
1 | | 4.5 | DGPS Survey Procedure1 | | | 4.6 | Creation of Vector Layers 1 | 2 | | 4.7 | Specification of DGPS Equipment 1 | | | 5. Re | sults1 | 5 | | 6. Ba | ckground of Organization1 | 6 | | 6.1 | Company Profile: Geotrax 1 | 6 | | 7. An | nexure1 | | | 7.1 | Annexure - 1: PCP Observation Processing Report 1 | 8 | | 7.2 | Annexure – 2: DGPS Surveyed coordinates of Forest Patches | 24 | | 7.3 | Annexure - 3: Geo-Referenced Maps of the Proposed Route | 28 | | 7 | 3.1 Geo-referenced Forest Map showing Proposed 4G OFC Route | 28 | | 7 | 3.2 Geo-referenced SQL Map (1:50000) showing Proposed 4G OFC Route 2 | 20 | ## 1. Introduction and Background ## PROJECT 4G OPTICAL FIBER CABLE ## 1.1 Background Reliance Jio Infocomm Limitedis setting up 4G Optical Fiber Cable network across the country. In the state of Chhattisgarh, the company plans to set up the telecom network (including laying of OFC cable) along the NHAI/PWD Road corridor. Reliance Jio Infocomm is granted license by Ministry of Communications & IT, Dept. of Telecommunications, and Govt. Of India, to establish Optical Fiber Cable network under the license number 370/2011 dated. 23.06.2011 issued to M/S Infotel Broadband Services Limited (company name changed to Reliance Jio Infocomm Limited on 22.01.2013). The OFC Cable is laid under the ground at approx. depth of 1.65m and the trench width is 0.5m. In most of the places the cable trench line on National Highways is approx. at a distance of 14.5m from the road centerline and for State/District highways it is approx. 7m from the road centerline. ## 1.2 Location and Communication The proposed OFC Cable route from Batati to Hati (Tehsils covered along the route are: Korba, Pasarkhet, kartala and Kudmura; District: Korba). The Batati to Hati route (Length approx. 28.45 km.) links the town Korba to Dharamjaygarh. The survey site passes through two forest ranges – Korba and Kudmura of Korba forest division. The cable route's proposed starting point is Batati Latitude 22°21'10.73" N and Longitude 82°54'44.77" E and the end location is Hati at Latitude 22°17'58.62" N and Longitude 83°05'12.61" E. The OFC Cable route is covered under Survey of India Toposheet 64 J/15 and 64 N/03 on RF 1:50000. #### 1.3 Objective As per directives of Ministry of Environment & Forests (MoEF) dated 8th July 2011; all applications for Forest Diversion, under Forest Conservation Act, 1980 must be accompanied with Geo-referenced shape file, showing the boundary of the proposed area (both soft copy and hard copy maps), prepared using Differential GPS (DGPS) and the same should be uploaded to MoEF website along with the online application. To meet this requirement of MoEF, Reliance Jio Infocomm Limited, entrusted the DGPS survey work to M/s Geotrax International Services, Raipur, which is an empanelled agency of Directorate of Geology and Mines, Chhattisgarh (*Ref. Circular No. F-7-14/2013/12, dated. 10.11.2014*). ## 1.4 Geotrax Empanelment Certificate in Chhattisgarh By Speed post 966 छत्तीसगढ़ शासन खनिज साधन विभाग मंत्रालय महानदी भवन, नया रायपुर—492002 //अधिसूचना// 19 0 NOV 2014 रायपुर, दिनांक नवम्बर, 2014 कमांक एफ 7—14/2013/12ः राज्य शासन एतद् द्वारा चीफ कन्ट्रोलर ऑफ माइन्स, भारतीय खान ब्यूरो नागपुर के परिपन्न कमांक 2/2010, दिनांक 06.4.2010 के पैरा—2 के बिन्दु—2 के तारतम्य में समस्त खिनजों के खिनज रियायतों के सीमा स्तम्भ का Differential Globle Positioning System(डीजीपीएस) का उपयोग करते हुए सर्वेक्षण करने के लिए तालिका में दर्शित संस्थानों को अधिमान्यता प्रदान करता है:— | Ti. | एजेंसी का नाम एवं पता | |-----|---| | 1 | 2 | | 1 | M/S SHREERAM GEMICON (PVT.) LIMITED GEOLOGICAL AND MINING CONSULTANTS | | | L-09, Songanga Colony Seepat Road, Bilaspur (Chhattisgarh) | | 2 | M/S SINHA MINING CONSULTANCY, GOA Office No. 9, D.Costa Commercial Apartment, Near Old Railway Station Gate, Malbhat, Margo - 403601, Goa-India | | 3 | M/S SPATIAL PLANNING AND ANALYSIS RESEARCH CENTRE PVT. LTD. E/11, Infocity, Chandaka Industrial Estate, Bhubaneshwar, Orissa, India, Pin - 751024 | | 4 | M/S SIDDHARTH GEO CONSULTANTS,
21/3, First Floor Ramkund, Samta Colony, Behind Lifeworth Hospital, Raipur
(Chhattisgarh) 492001 | | 5 | M/S SOHAM FERRO MANGANESE PVT. LTD. Block No. 16,17 Ground Floor N.K.Y. Tower, Anjani Sq. Wardha Road, Nagpur (Maharashtra) | | 6 | M/S SAN SURVEY ENGINEERING, HOOGHLY(WB) Regd. Off 465, Jiban Pal Bagan, Karbala (West), P.O. & Dist Hooghly, West Bengal, Pin - 712103 Contact Office - Anjali Complex, Bankim Kanan, Chinsurah Station Road, Chinsurah Hoogly, West Bengal -712102 | | 7 | M/S GEOTRAX INTERNATION SERVICES, HYDERABAD (TELANGANA) Plate No 156 & 157, Lokayuta Colony, Badangpet Nadergul, Hyderabad 500058, Telangana | | 8 | M/S RAFT CONTRACTORS AND DESIGNERS,
Plot No. D-36, Ground Floor, Koelnagar, Raurkela, Dist. Sundargarh, Orissa,
Pin No 769014 | | 9 | M/S MICRONET SOLUTION, Bisesar House, Opp. HSSC Board Office, (P.B. 85 G.P.O.) Civil Line, Nagpur, Maharashtra - 440001 | | 10 | M/S BHARAT ALUMINIUM COMPANY LIMITED (BALCO) P.O. Balco Nagar Korba(C.G.), India, Pin 495684 | - 2/ अधिमान्यता प्राप्त संस्थानो के लिए शर्ते:- - The Survey Agency Shall Be responsible for the accuracy of the data collected and Survey. - Coordinates of boundry pillars shall be established in the World Geodetic System 1984 (WGS-84) Datum. - 2.3 Each boundry pillar shall be surved using DGPS, at least 2 Hours observation for its ground position. 1/2// | 2.4 | The maximum distance between any two successive pillars should not be more than 100 meter. | |------------------------|---| | 2.5 | All corner pillar should be of pyramid shaped whith base of 1 meter and height of 2 meter and should be placed 1 mater above the ground and 1 meter below the ground. | | 2.6 | Distance and bearing to the forward and backward pillars and latitudes and longitudes should be market on all the corner pillars. | | 2.7 | डीजीपीएस सर्वे कार्य हेतु पारिश्रमिक का निर्घारण अधिमान्य प्राप्त संस्थान एवं | | | खनिज रियायतधारी के मध्य आपसी समन्वय से किया जाएगा। किसी भी प्रकार | | 2727 | का आपसी विवाद होने पर राज्य शासन उत्तरदायी नहीं होगा। | | 2.8 | डीजीपीएस सर्वे कार्य के गुणवत्ता में कमी पाये जाने पर या किसी भी प्रकार की | | | कार्य संबंधी शिकायत पाये जाने पर जांच उपरांत राज्य शासन को यह अधिकार | | | होगा कि उक्त अधिकृत एंजेसी की मान्यता किसी भी समय समाप्त की जा सकती | | | है। | | 2.9 | डीजीपीएस सर्वे के संबंध में भारतीय खान ब्यूरो/राज्य शासन द्वारा समय–समय | | | पर जारी निर्देशों का पालन अधिमान्यता प्राप्त संस्थान को करना होगा। | | 2.10 | राज्य शासन द्वारा जारी यह अधिमान्यता ०३ वर्ष के लिए होगी। समयावधि समाप्ति | | | से 03 माह पूर्व अधिकृत एंजेसी नवीनीकरण हेतु आवेदन कर सकेगा। | | 2.11 | भारत सरकार एवं राज्य शासन द्वारा डीजीपीएस सर्वे के संबंध में समय-समय पर | | | जारी निर्देशों का पालन किया जाना होगा। | | 3/ | यह अधिमान्यता अधिसूचना के जारी होने की तिथि से 03 वर्ष के लिए होगी। | | | छत्तीसगढ़ के शाज्यपाल के नाम से | | | तथा अदेशानुसार, | | | , | | | (स्वोध कमार सिंह) | | | (सुबोध क्रुमार सिंह)
सचिव | | | ी सचिव
छत्तीसगढ शासन | | | खनिज साधन विभाग | | पृ. कमांव
प्रतिलिपि | एफ 7-14/2013/12
रायपुर, दिनांक नवम्बर, 2014 | | 1. | सचिव, भारत सरकार, खान मंत्रालय, शास्त्री भवन, नई दिल्ली, | | 2. | कंट्रोलर जनरल, भारतीय खान ब्यूरो, सेकण्ड फ्लोर, ए-ब्लॉक, इन्दरा भवन, | | | सिविल लाईन, नागपुर (महाराष्ट) | | 3. | चीफ कन्ट्रोलर ऑफ माईन्स, भारतीय खान ब्यूरो, सेकण्ड फ्लोर, ए-ब्लॉक, इन्दरा | भवन, सिविल लाईन, नागपुर (महाराष्ट) क्षेत्रीय खान नियंत्रक, भारतीय खान ब्यूरो, छटवां तल, बी एवं सी —ब्लॉक, इन्दरा भवन, सिविल लाईन, नागपुर (महाराष्ट) संचालक, भौमिकी तथा खनिकर्म, छत्तीसगढ़ ब्लॉक-4, द्वितीय तल, इन्द्रावती समस्त कलेक्टर, जिला ———— छत्तीसगढ़ 4. 5. भवन, नया रायपुर, 1/3// -160t) समस्त संबंधित की ओर सूचनार्थ एवं आवश्यक कार्यवाही हेतु संचालक, शासकीय मुद्रणालय, गोन्दवारा, भनपुरी, रायपुर(छत्तीसगढ़) की ओर राजपत्र में प्रकाशनार्थ । श्री श्रीकांत राव, सहायक भौमिकी विद, संचालनालय भौमिकी तथा खनिकर्म, द्वितीय फ्लौर, इन्द्रावती भवन, नया रायपुर। कृपया उक्त आवैश/अधिसूचना को संचानलालय की वेबसाईट में अपलोड करने का कष्ट करें। गार्ड फाईल रजिस्टर सर्चिव छत्तीसगढ़ शासन खनिज साधन विभाग Fig-1: Batati to Hati 4G OFC Cable Proposed Route on Satellite Imagery ## 2. Scope of Work - 1. Establishment of one base station with 72 Hours observationand secondary control points at every 10km along the proposed route. - 2. DGPS Survey for collection of ground coordinates along the OFCCable trench at every 50m interval and/or at every turn/bend along the porposed trench. The DGPS data is collected at forest patches only. - 3. Data processing and Interpretation - a. Geo-referencing of SOI Toposheet (1:50000), Forest Stock
map (1:15000, if available) and satellite imagery - b. Creation of OFC Cable trench boundary vector map using the DGPS Surveyed data - c. Superimposition of cable route layer on Georeferencedforest maps, SOI Toposheet and Satellite imagery. - d. Computation of Forest area proposed for diversion. It includes Reserved/Protected Forest & Revenue Forest. - e. Preparation of Geo-referenced forest map at 1:15000 scale, and SOI Toposheet at 1:50000 scale. - f. Preparation of DGPS survey report along with soft copy of maps in shapefile format and kml file - 4. Printing of report and Geo-referenced maps and Technical compliance. Geotrax 2016 Page 8 of 29 #### 3. Deliverables The deliverables envisaged for the assignment are described below - 1. Post processed DGPS observations data as well as raw data in RINEX format. - 2. DGPS Reports Base line & network adjustment report for the primary and Secondary Control Points. - 3. Geo-referenced SOI maps & forest block mapsbased on DGPS observations Hard and Soft Copy (SHP and KML formats). - 4. Proposed Forest Diversion area statement as per DGPS Survey - 5. DGPS Survey and mapping report ## 4. Brief description of the Technical approach #### 4.1 Input Data The proposed 4G Cable Route plan is shown on the ground by the engineer/ Vendor of Reliance Jio Infocomm Ltd (RJIL). The Forest & SOI maps required for geo-referencing were provided by Reliance Jio Infocomm Limited. It is proposed that the cable is laid within the ROW of the NHAI/PWD road corridor (where possible). The cable trench is laid at a depth of 1.65m below ground and the trench width is 0.5m. The revenue village maps were collected from NIC online website (http://cg.nic.in/bhunaksha/). The revenue forest information& details are collected from the District Revenue department and were provided by RJIL. ## 4.2 Planning DGPS Survey & Data Preparation Based on the input data (maps) the location of DGPS base station - Primary and Secondary Control Points (PCP and SCP) in the project area are planned. One PCP with 72 hours observation was planned at NTPC, Korba Township (on roof top of Ganga Bhavan guest house). Based on the OFC Route details provided by Reliance Jio ROW team, Secondary Control Points (SCP) locations were planned using satellite imagery. For establishment of SCP coordinates a DGPS Static Observation for at least 2 hours duration at each of the Secondary Control Points is planned. Geotrax 2016 Page 9 of 29 Not to Scale Fig-3: Satellite Image showing the location of the Primary Control Point in Korba ## 4.3 Establishment of Primary Control Point (PCP) The primary Control Point (PCP) with 72 hours of DGPS Observation was established as the DGPS base station in NTPC Guest House, Korba. The PCP is established inside NTPC Township on roof top of Ganga Bhavan guest house. The DGPS observation was done from 1 September 2015 to 4 September 2015 and the location was marked with a permanent paint. As per Survey of India (SOI) Guideline, the PCP is to be fixed through continuous observation for 72 hours duration. The observed data was processed with reference to the data of International GNSS Service (IGS) stations as per SOI guideline (IGS processed report is enclosed as Annexure-1). For the route survey of OFC line from Batati to Hatti the NTPC Korba PCP was used as a reference point, and using the reference point more Secondary control points were observed in static and RTK mode along/near the proposed OFC route. The coordinate of the PCP is as follows: | Point ID | Latitude (d:m:s) | Longitude (d:m:s) | Ellipsoidal Height (m) | |-----------|------------------|-------------------|------------------------| | Korba PCP | 22°24'56.56025"N | 82°39'42.25144"E | 255.971 | Geotrax 2016 Page 10 of 29 Fig-4: Images showing NTPC Township, Ganga Bhawan Guest House Primary Control Point (PCP) ## 4.4 Establishment of Secondary Control Point (SCP) & Temporary Bench Marks (TBM) The Secondary Control Point (SCP) with 2-4 hours of static observation was established at various locations along the Korba-Hatti Road. The SCP's were established in static mode and the DGPS data was processed with reference to the Primary Control Point. The static data is Post Processed using Trimble Business Centre software for obtaining the SCP coordinates. All along the road Temporary Bench Mark (TBM) are established at every 5km. The DGPS observation of TBM are established in Real-Time-Kinematic mode. | Point ID | Latitude (d:m:s) | Longitude (d:m:s) | Ellipsoidal Height (m) | Location | |-----------|------------------|-------------------|------------------------|---| | Korba PCP | 22°24'56.56025"N | 82°39'42.25144"E | 255.971 | Ganga Bhawan Guest H
ouse, NTPC Township | | SCP 1 | 22°22'32.40843"N | 82°47'34.54303"E | 247.307 | Korba-Rajgamar Rd | | TBM Point ID | Latitude (d:m:s) | Longitude (d:m:s) | Ellipsoidal Height (m) | Remarks | |--------------|------------------|-------------------|------------------------|---------| | TBM-SCP1 | 22°22'32. 40843" | 82°47'34.543033" | 247.307 | | | TBM-H-2 | 22°22'20.70255"N | 82°47'09.01097"E | 253.982 | | | TBM-H-3 | 22°22'10.42516"N | 82°46'37.67376"E | 256.399 | | | TBM-H-4 | 22°22'51.95001"N | 82°48'26.33150"E | 252.322 | | | TBM-H-5 | 22°22'54.48452"N | 82°49'08.21028"E | 261.214 | | | ТВМ-Н6 | 22°22'34.27634"N | 82°49'19.89877"E | 269.726 | | | твм н 7 | 22°22'14.97647"N | 82°49'46.95588"E | 275.48 | | Page 11 of 29 | No Facel De Carding Security States How | | | | | | | |---|------------------|-------------------|------------------------|---------|--|--| | TBM Point ID | Latitude (d:m:s) | Longitude (d:m:s) | Ellipsoidal Height (m) | Remarks | | | | TBM-H-8 | 22°21'50.70262"N | 82°49'58.42005"E | 286.674 | | | | | ТВМН-Н-9 | 22°21'58.85692"N | 82°50'50.50235"E | 283.058 | | | | | TBM-H-11 | 22°21'55.37619"N | 82°51'24.42381"E | 287.132 | | | | | TBM-H-12 | 22°21'44.64992"N | 82°51'44.68277"E | 283.874 | | | | | TBM H 14 | 22°20'44.24805"N | 82°53'38.32971"E | 310.24 | | | | | TBM-H-13 | 22°21'04.80332"N | 82°52'17.25107"E | 285.104 | | | | | TBM-H-16 | 22°21'13.65295"N | 82°54'45.92949"E | 297.734 | | | | | TRM-H-18 | 22°19'38 61747"N | 82°56'22.50014"E | 260.345 | | | | ## 4.5 DGPS Survey Procedure CEDIRAX DGPS survey was carried out using a pair of DGPS instrument. One DGPS Instrument was used as Base Station. The first base station for the survey was established at the Secondary control Point SCP 1. The base is shifted using the Real Time Kinematic Survey method. The distance between the Base Station and rover was always less than 5km. The other DGPS instrument was working as Rover. The survey was conducted in Real Time Kinematic (RTK) mode. The Survey team carried out DGPS Survey of boundary points by walking along the proposed cable trench boundary. DGPS readings were collected at every 50m distance along trench and at every turn or bend. For Geo-referencing village maps around 5 GCPs were collected for the each village having Govt. Forest Land. During the survey the start and end of forest patch was identified in the field with the help of staff from the forest department. The forest department staff also provided information regarding the forest range, compartment number etc. The static data is Post Processed using Trimble Business Centre software. ## 4.6 Creation of Vector Layers The surveyed points captured through DGPS were plotted in the GIS Software and the Polygon and Polyline layers are created using the DGPS Surveyed points. Different layers such as the Forest Patch polygon, Forest Trench centerline, Non-Forest Trench line, polygon showing Revenue forest patches (Chote Jad ka Jungle + Bade Jad Ka Jungle) etc., are prepared. The vector layers prepared are then super-imposed on the Geo-referenced Forest map and Cadastral maps. Geotrax 2016 Page 12 of 29 ## 4.7 Specification of DGPS Equipment Geotrax deployed the most advance and hi-precision devices to carry out the DGPS survey. The DGPS performance specifications are given below. The corresponding fact sheets are placed below for ready reference. ## T300 GNSS Receiver ## Features - Ultra small - Super light - Many user-friendly conveniences built in - GPS L1/L2/L5, BeiDou B1/B2/B3, GLONASS L1/L2 - Low power consumption - Support long baseline E-RTK ## RTK robust enough for challenging environments, in a device that is light and easy to carry With decades of experience in the surveying GNSS receiver, the T300 is a product which combines lots of market proved advantages together. It can track all the working GNSS constellations. By using ComNav's unique QUANTM algorithm technology, it can function in RTK mode with all the GNSS constellations or by using any single GNSS constellation such as GLONASS or BeiDou. The strong anti-interference ability of the receiver makes it possible to work in any environment. #### Design driven to improve user experience Our R&D people are always thinking about how to improve the physical experience of users and workflow in the field. With this in mind, the T300 integrates a cutting edge GNSS board, Bluetooth*, UHF (Rx&Tx) into a compact board. Smart design makes the T300 the lightest and smallest (volume) receiver in the world. #### Hot swap battery design Extending the field working time is also a passion for our R&D people. They do lots of tests and analysis to reduce the power consumption, and make the whole system work more efficiently. In parallel, they've designed in the capability to hot swap the battery source. When the warning sounds and LED flashes, put your second battery in place. Then recharge the first while you keep working. #### Consumer grade batteries... always available Losing power in the field is significantly inconvenient for users, as the batteries for GNSS receivers are often unusual types and not readily available. Once again our R&D people developed a
solution so that the T300 runs on normal consumer batteries. ## **Technical Specifications** T300 #### Signal Tracking - 256 channels with simultaneously tracked satellite signals - GPS: L1 C/A, L1 C, L2 P, L6 - BeiDou: B1, B2, B3 - GLONASS: L1, L2 - SBAS: WAAS, EGNOS, MSAS, GAGAN #### **Performance Specifications** - Cold start: <50 s - Warm start <30 s - Hot start: <15 s - Initialization time: <10 s - Singal re-acquisition: <2 s - Initialization reliability: >99.9% #### **Positioning Specifications** - Post Processing Static - -Horizontal: 2.5 mm + 0.5 ppm RMS -Vertical: 5 mm + 0.5 ppm RMS - Real Time Kinematic -Horizontal: 8 mm + 1 ppm RMS - -Vertical: 15 mm + 1 ppm RMS E-RTK¹ (baseline<100 km) - -Horizontal: 0.2 m + 1 ppm RMS -Vertical: 0.4 m + 1 ppm RMS - Code differential GNSS positioning -Horizontal: 0.25 m+ 1 ppm RMS -Vertical: 0.5 m + 1 ppm RMS - SBAS: Typically <1 m/3D RMS - Standalone: <1.5 m 3D RMS #### **Communications and Memory** - 1 Serial port (7 pin Lemo), Baud rates up to 921,600 bps - Radio modern: Tx/Rx with full frequency range from 410-470 MHz 3 - -Transmit power: 0.5-2W adjustable -Range: 1-4 km - Position data output rates: 1 Hz, 2 Hz, 5 Hz, 10 Hz - 5 LEDs (indicating Power, Satellite Tracking. Bluetooth® and Differential Data) - Bluetooth*: V 2.X protocol, work compatible with Windows 7, Windows mobile and Android #### **Data Format** - Correction data I/O: - RTCM 2.x, 3.x, CMR (GPS only), CMR+ (GPS only). - Position data output: - ASCII: NMEA-0183 GSV, RMC, HDT, VHD, GGA, GSA, ZDA, VTG, GST, PJK, PTNL - ComNay Binary update to 20 Hz #### Physical EH) ATAO - Size(W×H): 15.8 cm × 7.5 cm COMPLEY. - Weight 0.95 kg (include 2 batteries) #### Environmental - Operating temperature: 40 °C to + 65 °C (40 °F to 149 °F) - Storage temperature: 40 °C to + 85 °C (40 °F to 185 °F) Humidity: 100% condensation - Waterproof and dust proof: IP67 protected from temporary immersion to depth of 1 meter, floats - Shock: survives a 2 meter drop on to concrete #### Electrical - Input Voltage: 5-27 VDC - Power consumption: 2.85 W (3 constellations) - Li-ion battery capacity: 2 × 1800 mAh, up to 8 hours typically - Memory: 256 MB internal with up to 16 GB pluggable #### Software - ComNav field data collection software CGSurvey - Carlson's SurvCE field data collection software (optional) - MicroSurvey's FieldGenius field data collection software (optional) - E-RTN, BelDou B3 signal used in RTK calculate current situation, this mode can be used in APAC. - 2 410-470 MHz, 3 frequency range, 410-430, 430-450, 450-470, need to clarify when place the order. - 3 Power consumption will increase if using Internal radio modern tra #### tions subject to change without no B. 2014, ComNav Technology Ltd. All rights reserved. ComNav is the trademark of ComNav Technology Ltd., registered in People's Republic of Cirtins. All other trademarks are the properly of their respective owners. (September, 2014). ComNav Technology Ltd. Building E, No.50 Alley 2080 Lianhua Road 201103 Shanghai - China Tel: +86 21 64056796 Fax: +86 21 54309582 Email: sales@comnavtech.com www.comnavtech.com ## 5. Results The total route length from Batati to hati is approx. 28.45 km and the proposed forest area for diversion is 0.427 Ha.DGPS Survey processing report and coordinates of the PCP are in Annexure-1, and DGPS coordinates of TBM and forest patch boundary coordinates is in Annexure-2. The geo-referenced maps are in Annexure -3. #### **AREA STATEMENT** | ВАТ | ATI TO HATI - PROPOS | ED FOREST DIVERSION AREA | STATEMENT | |-------------------------------|--------------------------------------|--------------------------------|--| | Total Route Length
(in KM) | Total Forest Patch
Length (in KM) | OFC Cable Trench Width (in KM) | Total Forest Diversion Area
(in HA) | | 25.61 | 8.54 | 0.0005 | 0.427 | | SL.
NO. | PATCH
NUMBER | DIV. | RANGE | COMPARTMENT
TYPE | COMPARTMENT
NUMBER | DIVERSION
AREA (in HA | | |------------|-------------------|-------|------------------|---------------------|-----------------------|--------------------------|--| | 1 | 3 | | | PROTECTED FOREST | P 1029 | 0.058 | | | 2 | 4 | KORBA | KORBA | ORANGE AREA | OA 1311 | 0.008 | | | 3 | 5 | | | | OA 1311 | 0.016 | | | 4 | 7 | | KORBA
KUDMURA | PROTECTED FOREST | P 1034 | 0.028 | | | 5 | 8 | | | | P 1141 | 0.009 | | | 6 | | | | | P 1138 | 0.006 | | | 7 | 9 | | | | P 1138 | 0.072 | | | 8 | 10 | | | | P 1139 | 0.034 | | | 9 | 11 | | | ODANICE ADEA | OA 1424 | 0.031 | | | 10 | 12 | | | ORANGE AREA | OA 1425 | 0.019 | | | | TOTAL FOREST AREA | | | | | | | | | | | SCHEDU | JLE OF FOREST | LAND - REVENUE F | FOREST (CJJ + BJJ) | | |--------|------------|-----------------|---------------------|---------------------------|------------------|--------------------|---------------------------| | | SL.
NO. | PATCH
NUMBER | DIST. | TALUK | VILLAGE NAME | KHASRA
NUMBER | DIVERSION
AREA (in HA) | | F | 1 | 1 | | PASARKHE | DATATI | 349/1 | 0.004 | | | 2 | 2 | KORBA | T | BATATI | 588/6 | 0.001 | | B
L | 3 | 4 | | KORBA | GERAON | 301/1 | 0.010 | | | 4 | (2) | | KARTALA | KARTALA | 1179/1 | 0.019 | | : | 5 | - 6 | | | | 1224/1 & 1224/2 | 0.013 | | | 6 | 7 | | | | 1182/1 | 0.032 | | 3 | 7 | | - | V000 X000 X00 X00 X00 X00 | RA TAULIPALI | 1 | 0.032 | | | 8 | 9 | | | | 205/1 | 0.002 | | | 9 | 10 | | KUDMURA | | 467/1 | 0.012 | | | 10 | 11 | | | KUDMURA | 152/1 | 0.021 | | | | | TOTAL | | 0.146 | | | | | | | SWING COMPONITARING | | ABLE A+TABLE B) | 1 | 0.427 | Geotrax 2016 Page 15 of 29 | The Result to General Security | | | | | | | | |--|------------------|-------------------|------------------------|---------|--|--|--| | TBM Point ID | Latitude (d:m:s) | Longitude (d:m:s) | Ellipsoidal Height (m) | Remarks | | | | | TBM-H-8 | 22°21'50.70262"N | 82°49'58.42005"E | 286.674 | | | | | | ТВМН-Н-9 | 22°21'58.85692"N | 82°50'50.50235"E | 283.058 | | | | | | TBM-H-11 | 22°21'55.37619"N | 82°51'24.42381"E | 287.132 | | | | | | TBM-H-12 | 22°21'44.64992"N | 82°51'44.68277"E | 283.874 | 1505 | | | | | TBM H 14 | 22°20'44.24805"N | 82°53'38.32971"E | 310.24 | | | | | | TBM-H-13 | 22°21'04.80332"N | 82°52'17.25107"E | 285.104 | | | | | | TBM-H-16 | 22°21'13.65295"N | 82°54'45.92949"E | 297.734 | | | | | | TRM-H-18 | 22°19'38 61747"N | 82°56'22.50014"E | 260.345 | | | | | #### 4.5 DGPS Survey Procedure CENTRAX DGPS survey was carried out using a pair of DGPS instrument. One DGPS Instrument was used as Base Station. The first base station for the survey was established at the Secondary control Point SCP 1. The base is shifted using the Real Time Kinematic Survey method. The distance between the Base Station and rover was always less than 5km. The other DGPS instrument was working as Rover. The survey was conducted in Real Time Kinematic (RTK) mode. The Survey team carried out DGPS Survey of boundary points by walking along the proposed cable trench boundary. DGPS readings were collected at every 50m distance along trench and at every turn or bend. For Geo-referencing village maps around 5 GCPs were collected for the each village having Govt. Forest Land. During the survey the start and end of forest patch was identified in the field with the help of staff from the forest department. The forest department staff also provided information regarding the forest range, compartment number etc. The static data is Post Processed using Trimble Business Centre software. ## 4.6 Creation of Vector Layers The surveyed points captured through DGPS were plotted in the GIS Software and the Polygon and Polyline layers are created using the DGPS Surveyed points. Different layers such as the Forest Patch polygon, Forest Trench centerline, Non-Forest Trench line, polygon showing Revenue forest patches (Chote Jad ka Jungle + Bade Jad Ka Jungle) etc., are prepared. The vector layers prepared are then super-imposed on the Geo-referenced
Forest map and Cadastral maps. Geotrax 2016 Page 12 of 29 ## 4.7 Specification of DGPS Equipment Geotrax deployed the most advance and hi-precision devices to carry out the DGPS survey. The DGPS performance specifications are given below. The corresponding fact sheets are placed below for ready reference. ## T300 GNSS Receiver ## Features - Ultra small - Super light - Many user-friendly conveniences built in - GPS L1/L2/L5, BeiDou B1/B2/B3, GLONASS L1/L2 - Low power consumption - Support long baseline E-RTK ## RTK robust enough for challenging environments, in a device that is light and easy to carry With decades of experience in the surveying GNSS receiver, the T300 is a product which combines lots of market proved advantages together. It can track all the working GNSS constellations. By using ComNav's unique QUANTM algorithm technology, it can function in RTK mode with all the GNSS constellations or by using any single GNSS constellation such as GLONASS or BeiDou. The strong anti-interference ability of the receiver makes it possible to work in any environment. #### Design driven to improve user experience Our R&D people are always thinking about how to improve the physical experience of users and workflow in the field. With this in mind, the T300 integrates a cutting edge GNSS board, Bluetooth*, UHF (Rx&Tx) into a compact board. Smart design makes the T300 the lightest and smallest (volume) receiver in the world. #### Hot swap battery design Extending the field working time is also a passion for our R&D people. They do lots of tests and analysis to reduce the power consumption, and make the whole system work more efficiently. In parallel, they've designed in the capability to hot swap the battery source. When the warning sounds and LED flashes, put your second battery in place. Then recharge the first while you keep working. #### Consumer grade batteries... always available Losing power in the field is significantly inconvenient for users, as the batteries for GNSS receivers are often unusual types and not readily available. Once again our R&D people developed a solution so that the T300 runs on normal consumer batteries. ## **Technical Specifications** T300 #### Signal Tracking - 256 channels with simultaneously tracked satellite signals - GPS: L1 C/A, L1 C, L2 P, L6 - BeiDou: B1, B2, B3 - GLONASS: L1, L2 - SBAS: WAAS, EGNOS, MSAS, GAGAN #### **Performance Specifications** - Cold start: <50 s - Warm start <30 s - Hot start: <15 s - Initialization time: <10 s - Singal re-acquisition: <2 s - Initialization reliability: >99.9% #### **Positioning Specifications** - Post Processing Static - -Horizontal: 2.5 mm + 0.5 ppm RMS -Vertical: 5 mm + 0.5 ppm RMS - Real Time Kinematic -Horizontal: 8 mm + 1 ppm RMS - -Vertical: 15 mm + 1 ppm RMS E-RTK¹ (baseline<100 km) - -Horizontal: 0.2 m + 1 ppm RMS -Vertical: 0.4 m + 1 ppm RMS - Code differential GNSS positioning -Horizontal: 0.25 m+ 1 ppm RMS -Vertical: 0.5 m + 1 ppm RMS - SBAS: Typically <1 m/3D RMS - Standalone: <1.5 m 3D RMS #### **Communications and Memory** - 1 Serial port (7 pin Lemo), Baud rates up to 921,600 bps - Radio modern: Tx/Rx with full frequency range from 410-470 MHz 3 - -Transmit power: 0.5-2W adjustable -Range: 1-4 km - Position data output rates: 1 Hz, 2 Hz, 5 Hz, 10 Hz - 5 LEDs (indicating Power, Satellite Tracking. Bluetooth® and Differential Data) - Bluetooth*: V 2.X protocol, work compatible with Windows 7, Windows mobile and Android #### **Data Format** - Correction data I/O: - RTCM 2.x, 3.x, CMR (GPS only), CMR+ (GPS only). - Position data output: - ASCII: NMEA-0183 GSV, RMC, HDT, VHD, GGA, GSA, ZDA, VTG, GST, PJK, PTNL - ComNay Binary update to 20 Hz #### Physical EH) ATAO - Size(W×H): 15.8 cm × 7.5 cm COMPLEY. - Weight 0.95 kg (include 2 batteries) #### Environmental - Operating temperature: 40 °C to + 65 °C (40 °F to 149 °F) - Storage temperature: 40 °C to + 85 °C (40 °F to 185 °F) Humidity: 100% condensation - Waterproof and dust proof: IP67 protected from temporary immersion to depth of 1 meter, floats - Shock: survives a 2 meter drop on to concrete #### Electrical - Input Voltage: 5-27 VDC - Power consumption: 2.85 W (3 constellations) - Li-ion battery capacity: 2 × 1800 mAh, up to 8 hours typically - Memory: 256 MB internal with up to 16 GB pluggable #### Software - ComNav field data collection software CGSurvey - Carlson's SurvCE field data collection software (optional) - MicroSurvey's FieldGenius field data collection software (optional) - E-RTN, BelDou B3 signal used in RTK calculate current situation, this mode can be used in APAC. - 2 410-470 MHz, 3 frequency range, 410-430, 430-450, 450-470, need to clarify when place the order. - 3 Power consumption will increase if using Internal radio modern tra #### tions subject to change without no B. 2014, ComNav Technology Ltd. All rights reserved. ComNav is the trademark of ComNav Technology Ltd., registered in People's Republic of Cirtins. All other trademarks are the properly of their respective owners. (September, 2014). ComNav Technology Ltd. Building E, No.50 Alley 2080 Lianhua Road 201103 Shanghai - China Tel: +86 21 64056796 Fax: +86 21 54309582 Email: sales@comnavtech.com www.comnavtech.com ## 5. Results The total route length from Batati to hati is approx. 28.45 km and the proposed forest area for diversion is 0.427 Ha.DGPS Survey processing report and coordinates of the PCP are in Annexure-1, and DGPS coordinates of TBM and forest patch boundary coordinates is in Annexure-2. The geo-referenced maps are in Annexure -3. #### **AREA STATEMENT** | ВАТ | ATI TO HATI - PROPOS | ED FOREST DIVERSION AREA | STATEMENT | |-------------------------------|--------------------------------------|--------------------------------|--| | Total Route Length
(in KM) | Total Forest Patch
Length (in KM) | OFC Cable Trench Width (in KM) | Total Forest Diversion Area
(in HA) | | 25.61 | 8.54 | 0.0005 | 0.427 | | SL.
NO. | PATCH
NUMBER | DIV. | RANGE | COMPARTMENT
TYPE | COMPARTMENT
NUMBER | DIVERSION
AREA (in HA | | |------------|-----------------|-------|----------|---------------------|-----------------------|--------------------------|--------| | 1 | 3 | | | PROTECTED FOREST | P 1029 | 0.058 | | | 2 | 4 | KORBA | KORBA | ODANICE ADEA | OA 1311 | 0.008 | | | 3 | 5 | | | ORANGE AREA | OA 1311 | 0.016 | | | 4 | 7 | 8 | | | P 1034 | 0.028 | | | 5 | 8 | | | | P 1141 | 0.009 | | | 6 | | KORBA | | KUDMURA | | PROTECTED FOREST | P 1138 | | 7 | 9 | KUD | | | | P 1138 | 0.072 | | 8 | 10 | | | | P 1139 | 0.034 | | | 9 | 11 | | | | ODANICE ADEA | OA 1424 | 0.031 | | 10 | 12 | | | ORANGE AREA | OA 1425 | 0.019 | | | | | | TOTAL FO | REST AREA | | 0.281 | | | | | | SCHEDU | JLE OF FOREST | LAND - REVENUE F | FOREST (CJJ + BJJ) | | |---|------------|-----------------|---------------------|---------------|------------------|--------------------|---------------------------| | | SL.
NO. | PATCH
NUMBER | DIST. | TALUK | VILLAGE NAME | KHASRA
NUMBER | DIVERSION
AREA (in HA) | | F | 1 | 1 | | PASARKHE | BATATI | 349/1 | 0.004 | | | 2 | 2 | | Т | T BATAII | 588/6 | 0.001 | | 3 | 3 | 4 | | KORBA | GERAON | 301/1 | 0.010 | | | 4 | (2) | | A KARTALA | | 1179/1 | 0.019 | | : | 5 | - 6 | | | | 1224/1 & 1224/2 | 0.013 | | _ | 6 | 7 | KORBA | | | 1182/1 | 0.032 | | 3 | 7 | | | | | 1 | 0.032 | | | 8 | 9 | | | | TAULIPALI | 205/1 | | | 9 | 10 | | KUDMURA | | 467/1 | 0.012 | | | 10 | 11 | 1 | | KUDMURA | 152/1 | 0.021 | | | | | TOTAL | FOREST AREA | 11 | | 0.146 | | | | | SWING COMPONITARING | | ABLE A+TABLE B) | 1 | 0.427 | Geotrax 2016 Page 15 of 29 ## 6. Background of Organization ## 6.1 Company Profile: Geotrax Geotrax International Services (www.geotrax.in) is a Professional Land Mapping and Services provider across India established in the year 1999. During the last 14+ years, we had an opportunity to execute a variety of surveying jobs all over India and in the Middle East to various customer specifications for RIS, LIS, and Municipal GIS oriented jobs. Cadastral Surveys using ETS/DGPS and Provision of Ground control conforming to stringent accuracy standards using high end instruments as RTK/GPRS DGPS is our specialty. We also have a UAV (Drone) and Ground Penetrating Radar (on Roaster). Geotrax is headed by Mr. V.V.S Bandhakavi (Ex-Survey of India employee) who has more than 40+ years' experience in the field of surveying in India and abroad. ## Some of our major clients include: - > Odisha Space Application Centre (ORSAC) - > Steel Authority of India (SAIL) - National Thermal Power Corporation (NTPC) - > Survey Settlement and Land Records Department (Govt. Of Gujarat) - > Survey Settlement and Land Records Department (Govt. Of Madhya Pradesh) - > Irrigation Dept. (Govt. of Jammu and Kashmir) - National Remote Sensing Agency (Hyderabad) - Meinhardt India Private Limited (Delhi), - Nagarjuna Construction Company (NCC, Hyderabad) - Consulting Engineering Services (CES, New Delhi) - ➤ Lee Associates of South Asia (LASA, Delhi) - > Power development Corporation (Govt. of Jammu and Kashmir) ## Geotrax expertise covers: - DGPS Surveys for Mining lease boundary, and Forest Diversion - Consultancy services for Mining Plan & EIA - Boundary and cadastral surveys using DGPS and Total station; - Topographic surveys. - Ground control surveys for photogrammetric projects, including Airborne GPS. - Only one of the two companies in India who are empanelled by NRSA for DGPS survey for ground control point collection - Route and alignment surveys combining conventional and photogrammetric methods. - Construction and cross-section surveys (from road design to precision layout and quality control). Being a client focused organization, GeoTrax's combination of survey equipment, personnel, and computer resources allow for the tailoring of the project approach to match the orders of accuracy and precision requirements for each project. GeoTrax's equipment
resources include 250 DGPS, 33 hand-held GPS units, theodolites, electronic digital and automatic levels, 19 Electronic Total Stations, and data collectors. On the mapping side, our CAD and GIS professionals assist the survey projects by creating accurate maps. We have dedicated CAD experts who have extensive experience with different CAD software. #### .7. Annexure ## 7.1 Annexure – 1: PCP Observation Processing Report ## **AUSPOS GPS Processing Report** September 5, 2015 This document is a report of the GPS data processing undertaken by the AUSPOS Online GPS Processing Service (version: AUSPOS 2.2). The AUSPOS Online GPS Processing Service uses International GNSS Service (IGS) products (final, rapid, ultra-rapid depending on availability) to compute precise coordinates in ITRF anywhere on Earth and GDA94 within Australia. The Service is designed to process only dual frequency GPS phase data. An overview of the GPS processing strategy is included in this report. Please direct any correspondence to geodesy@ga.gov.au Geodesy Geoscience Australia Cnr Jerrabomberra and Hindmarsh Drive GPO Box 378, Canberra, ACT 2601, Australia Freecall (Within Australia): 1800 800 173 Tel: +61 2 6249 9111. Fax +61 2 6249 9929 Geoscience Australia Home Page: http://www.ga.gov.au Page 18 of 29 #### 1 User Data All antenna heights refer to the vertical distance from the Ground Mark to the Antenna Reference Point (ARP). | Station (s) | Submitted File | Antonna Typo | Antonna
Hoight (s) | Start Time | End Time | |-------------|------------------|--------------|-----------------------|---------------------|---------------------| | 0310 | 03102953244a.150 | CHTT300 NUNE | 1.835 | 2015/09/01 16:58:00 | 2015/09/04 17:19:00 | ## 2 Processing Summary | Date | Usor Stations | Reference Stations | Orbit Type | |---------------------|---------------|--|------------| | 2015/09/01 16:58:00 | 0310 | CRUM FOND HAMP HADE HASC
HESL HYDE IISC LHAZ PERI | IGS rapid | Remark: An IGS Rapid Orbit product has been used in this computation, IGS Rapid orbits are usually of very high quality. However, to ensure you achieve the highest quality coordinates please resubmit approximately 2 weeks after the observation session end to ensure the use of the IGS Final Orbit product. 2 ## 3 Computed Coordinates, ITRF2008 All computed coordinates are based on the IGS realisation of the ITRF2008 reference frame. All the given ITRF2008 coordinates refer to a mean epoch of the site observation data. All coordinates refer to the Ground Mark. #### 3.1 Cartesian, ITRF2008 | Station | X (m) | Y (m) | Z (m) | ITRF2008 0 | |---------|--------------|-------------|-------------|------------| | 0310 | 753502.779 | 5851003.824 | 2417128.610 | 01/09/2015 | | CHUM | 1228950.508 | 4508079.981 | 4327868,535 | 01/09/2015 | | FOMO | -2359952.427 | 5416530.098 | 2394688.444 | 01/09/2015 | | HKNP | -2392360.773 | 5400226.077 | 2400094.284 | 01/09/2015 | | нкон | -2423817.411 | 5386056.906 | 2399883.192 | 01/09/2015 | | HKSC | -2414267.426 | 5386768.794 | 2407459.848 | 01/09/2015 | | HKSL | -2393382.928 | 5393860.985 | 2412592.230 | 01/09/2015 | | HYDE | 1208444.133 | 5966805.988 | 1897077.240 | 01/09/2015 | | IISC | 1337935.993 | 6070317.091 | 1427877.150 | 01/09/2015 | | LHAZ | -106941.934 | 5549269.787 | 3139215.148 | 01/09/2015 | | PBRI | -295635.865 | 6240848.753 | 1278178.464 | 01/09/2015 | | POL2 | 1239971.079 | 4530790.135 | 4302578.856 | 01/09/2015 | | URUM | 193030.295 | 4606851.297 | 4393311.527 | 01/09/2015 | #### 3.2 Geodetic, GRS80 Ellipsoid, ITRF2008 Geoid-ellipsoidal separations, in this section, are computed using a spherical harmonic synthesis of the global EGM2008 geoid. More information on the EGM2008 geoid can be found at http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/ | Station | Latitude
(DMS) | Longitude
(DMS) | Ellipsoidal
Height(m) | Derived Above
Geoid Height(m) | |---------|-------------------|--------------------|--------------------------|----------------------------------| | 0310 | 22 24 56.56025 | 82 39 42.25144 | 255.971 | 317.021 | | CHUM | 42 59 54.60506 | 74 45 03.96764 | 716.348 | 759.338 | | FOMO | 22 11 50.69355 | 113 32 32.97328 | 56.634 | 61.319 | | HKNP | 22 14 56.63158 | 113 53 37.96894 | 350.652 | 353.998 | | нкон | 22 14 51.66789 | 114 13 42.80678 | 166.369 | 168.246 | | HKSC | 22 19 19.81360 | 114 08 28.29557 | 20.198 | 22.654 | | HKSL | 22 22 19.21147 | 113 55 40.75206 | 95.260 | 98.803 | | HYDE | 17 25 02.14157 | 78 33 03.14377 | 441.688 | 518.493 | | IISC | 13 01 16.20960 | 77 34 13.36808 | 843.666 | 929.587 | | LHAZ | 29 39 26.40057 | 91 06 14.50981 | 3624.596 | 3659.287 | | PBRI | 11 38 16.00905 | 92 42 43.69165 | -22.503 | 38.431 | | POL2 | 42 40 47.17388 | 74 41 39.36690 | 1714.208 | 1754.274 | | URUM | 43 48 28.61936 | 87 36 02.41272 | 858.878 | 922.257 | AUSPOS 2.2 Job Number: # 0210 User: bandha27 at gmail com ©Commonwealth of Australia (Geoscience Australia) 2015 ## 4 Ambiguity Resolution - Per Baseline | Baseline | Ambiguities | Resolved | Baseline Length (km) | |-------------|-------------|----------|----------------------| | HKOH - HKSL | 92.0 | % | 33.892 | | нкон - нкэс | 94.2 | % | 12.211 | | CHUM - POL2 | 96.7 | % | 35.732 | | 0310 - HYDE | 49.4 | % | 700.596 | | HYDE - PBRI | 54.1 | % | 1649.361 | | CHUM - URUM | 95.9 | % | 1042.674 | | HKNP - URUM | 85.6 | % | 3359.554 | | HKNP - HKSL | 91.7 | X | 14.063 | | HKNP - PBRI | 38.6 | % | 2522.221 | | FOMO - HKNP | 93.2 | 7. | 36.679 | | HYDE - LHAZ | 78.4 | % | 1856.740 | | HYDE - IISC | 83.9 | % | 497.626 | | AVERAGE | 79.5 | 5% | 980.112 | Please note for a regional solution, such as used by AUSPOS, an average ambiguity resolution of 50% or better for the network indicates a reliable solution. ## 5 Computation Standards ## 5.1 Computation System | Software | Bernese GNSS Software Version 5.2. | | |----------------|------------------------------------|--| | GNSS system(s) | GPS only. | | ## 5.2 Data Preprocessing and Measurement Modelling | Data preprocessing | Phase preprocessing is undertaken in a baseline by baseline mode using triple-differences. In most cases, cycle slips are fixed by the simultaneous analysis of different linear combinations of L1 and L2. If a cycle slip cannot be fixed reliably, bad data points are removed or new ambiguities are set up A data screening step on the basis of weighted postfit residuals is also performed, and outliers are removed. | |--|---| | Basic observable | Carrier phase with an elevation angle cutoff of 7° and a sampling rate of 3 minutes. However, data cleaning is performed a sampling rate of 30 seconds. Elevation dependent weighting is applied according to $1/\sin(e)^2$ where e is the satellite elevation. | | Modelled observable | Double differences of the ionosphere-free linear combination. | | Ground antenna
phase centre calibra-
tions | IGS08 absolute phase-centre variation model is applied. | | Tropospheric Model | A priori model is the GMF mapped with the DRY-GMF. | | Tropospheric Estima-
tion | Zenith delay corrections are estimated relying on the WET-
GMF mapping function in intervals of 2 hour. N-S and E-W
horizontal delay parameters are solved for every 24 hours. | | Tropospherie Map-
ping Function | GMF | | Ionosphere | First-order effect eliminated by forming the ionosphere-free
linear combination of L1 and L2. Second and third effect
applied. | | Tidal displacements | Solid earth tidal displacements are derived from the complete
model from the IERS Conventions 2010, but ocean tide load-
ing is not applied. | | Atmospheric loading | Applied | | Satellite centre of mass correction | IGS08 phase-centre variation model applied | | Satellite phase centre
calibration | IGS08 phase-centre variation model applied | | Satellite trajectories | Best available IGS products. | | Datemile Hajectories | Debt Branche 100 products | AUSPOS 2.2 Job Number: # 0210 User: bandha27 at gmail com ©Commonwealth of Australia (Geoscience Australia) 2015 #### 5.3 Estimation Process | Adjustment | Weighted least-squares algorithm. | | | |------------------------|--|--|--| | Station coordinates | Coordinate constraints are applied at the Reference sites with
standard deviation of 1mm and 2mm for horizontal and vertical
components respectively. | | | | Troposphere | Zenith delay parameters and pairs of horizontal delay gradient
parameters are estimated for each station in intervals of 2 hours
and 24 hours. | | | | Ionospheric correction | An ionospheric map derived from the contributing reference sta-
tions is used to aid ambiguity resolution. | | | | Ambiguity | Ambiguities are resolved in a baseline-by-baseline mode using the
Code-Based strategy for 180-6000km baselines, the Phase-Based
L5/L3 strategy for 18-2000km baselines, the Quasi-Ionosphere-Free
(QIF) strategy for 18-2000km baselines and the Direct L1/L2
strategy for 0-20km baselines. | | | ## 5.4 Reference Frame and Coordinate Uncertainty | Terrestrial reference
frame | IGS08 station coordinates and velocities mapped to the mean
epoch of observation. | |--------------------------------
---| | Australian datum | GDA94 coordinates determined via Helmert transformation from
ITRF using the Dawson and Woods (2010) parameters. | | Derived AHD | For stations within Australia, AUSGeoid09 is used to compute
AHD. AUSGeoid09 is the Australia-wide gravimetric quasigeoid
model that has been a posteriori fitted to the Australian Height
Datum. | | Above-geoid heights | Earth Gravitational Model EGM2008 released by the National
Geospatial-Intelligence Agency (NGA) EGM Development Team
is used to compute above-geoid heights. This gravitational model
is complete to spherical harmonic degree and order 2159, and con-
tains additional coefficients extending to degree 2190 and order
2159. | | Coordinate uncertainty | Coordinate uncertainty is expressed in terms of the 95% confidence
level for both GDA94 and ITRF2008. Uncertainties are scaled
using an empirically derived model which is a function of data
span, quality and geographical location. | ## 7.2 Annexure – 2: DGPS Surveyed coordinates of Forest Patches | SI. No. | Patch No | Pillar ID | Easting (m) | Northing (m) | Latitude "N" | Longitude "E" | |---------|------------|-----------|-------------|--------------|-----------------|-----------------| | 1 | | P 1 | 696939.345 | 2473149.549 | 22°21'10.77636" | 82°54'44.84606" | | 2 | | P 2 | 696953.309 | 2473161.044 | 22°21'11.14427" | 82°54'45.33910" | | 3 | PATCH NO 1 | P 3 | 696968.126 | 2473173.347 | 22°21'11.53806" | 82°54'45.86232" | | 4 | - | P 4 | 696983.868 | 2473186.312 | 22°21'11.95297" | 82°54'46.41820" | | 5 | | P 5 | 697000.53 | 2473200.481 | 22°21'12.40665" | 82°54'47.00673" | | 6 | | P 6 | 698524.705 | 2472757.142 | 22°20'57.36432" | 82°55'40.06954" | | 7 | PATCH NO 2 | P 7 | 698526.379 | 2472747.658 | 22°20'57.05538" | 82°55'40.12378" | | 8 | | P 8 | 698527.641 | 2472740.117 | 22°20'56.80972" | 82°55'40.16450" | | 9 | | P 9 | 698822.941 | 2472133.089 | 22°20'36.95563" | 82°55'50.21132" | | 10 | | P 10 | 698840.667 | 2472115.583 | 22°20'36.37922" | 82°55'50.82285" | | 11 | | P 11 | 698850.754 | 2472100.333 | 22°20'35.87932" | 82°55'51.16848" | | 12 | | P 12 | 698865.006 | 2472083.519 | 22°20'35.32686" | 82°55'51.65894" | | 13 | | P 13 | 698885.052 | 2472061.413 | 22°20'34.59996" | 82°55'52.34947" | | 14 | | P 14 | 698896.256 | 2472043.37 | 22°20'34.00881" | 82°55'52.73287" | | 15 | | P 15 | 698921.913 | 2472011.752 | 22°20'32.97039" | 82°55'53.61520" | | 16 | | P 16 | 698942.879 | 2471970.074 | 22°20'31.60693" | 82°55'54.32911" | | 17 | | P 17 | 698959.374 | 2471947.917 | 22°20'30.87986" | 82°55'54.89554" | | 18 | | P 18 | 698964.02 | 2471917.564 | 22°20'29.89131" | 82°55'55.04427" | | 19 | | P 19 | 698959.682 | 2471896.132 | 22°20'29.19648" | 82°55'54.88310" | | 20 | | P 20 | 698959.102 | 2471883.602 | 22°20'28.78944" | 82°55'54.85722" | | 21 | | P 21 | 698945.129 | 2471859.891 | 22°20'28.02455" | 82°55'54.35836" | | 22 | | P 22 | 698943.532 | 2471830.342 | 22°20'27.06474" | 82°55'54.28933" | | 23 | | P 23 | 698941.555 | 2471810.11 | 22°20'26.40793" | 82°55'54.21119" | | 24 | | P 24 | 698953.081 | 2471769.864 | 22°20'25.09495" | 82°55'54.59588" | | 25 | | P 25 | 698962.679 | 2471737.815 | 22°20'24.04922" | 82°55'54.91689" | | 26 | PATCH NO 3 | P 26 | 698980.128 | 2471699.758 | 22°20'22.80492" | 82°55'55.50952" | | 27 | 1 | P 27 | 698990.978 | 2471681.188 | 22°20'22.19679" | 82°55'55.88030" | | 28 | | P 28 | 698996.81 | 2471664.932 | 22°20'21.66597" | 82°55'56.07679" | | 29 | 1 | P 29 | 699017.514 | 2471627.008 | 22°20'20.42463" | 82°55'56.78321" | | 30 | 1 | P 30 | 699027.469 | 2471608.633 | 22°20'19.82321" | 82°55'57.12280" | | 31 | 1 | P 31 | 699038.471 | 2471579.736 | 22°20'18.87935" | 82°55'57.49427" | | 32 | 1 | P 32 | 699046.866 | 2471558.527 | 22°20'18.18646" | 82°55'57.77809" | | 33 | 1 | P 33 | 699051.45 | 2471538.949 | 22°20'17.54817" | 82°55'57.92948" | | 34 | 1 | P 34 | 699062.305 | 2471520.983 | 22°20'16.95967" | 82°55'58.30070" | | 35 | | P 35 | 699081.384 | 2471498.798 | 22°20'16.23060" | 82°55'58.95738" | | 36 | | P 36 | 699093.031 | 2471484.768 | 22°20'15.76971" | 82°55'59.35804" | | 37 | | P 37 | 699113.904 | 2471464.827 | 22°20'15.11283" | 82°56'00.07841" | | 38 | | P 38 | 699149.209 | 2471430.712 | 22°20'13.98922" | 82°56'01.29667" | | 39 | | P 39 | 699178.604 | 2471387.561 | 22°20'12.57436" | 82°56'02.30438" | | 40 | | P 40 | 699189.475 | 2471370.663 | 22°20'12.02056" | 82°56'02.67663" | | 41 | | P 41 | 699199.186 | 2471350.559 | 22°20'11.36304" | 82°56'03.00692" | | 42 | | P 42 | 699204.662 | 2471331.245 | 22°20'10.73296" | 82°56'03.18959" | Page 24 of 29 | CE | RAX | |------------------------|--| | Mr Read to Westing Ser | The state of s | | SI. No. | Patch No | Pillar ID | Easting (m) | Northing (m) | Latitude "N" | Longitude "E" | |---------|------------|-----------|-------------|--------------|---|-----------------| | 43 | | P 43 | 699215.893 | 2471311.095 | 22°20'10.07331" | 82°56'03.57296" | | 44 | | P 44 | 699224.58 | 2471292.083 | 22°20'09.45171" | 82°56'03.86795" | | 45 | | P 45 | 699233.124 | 2471273.62 | 22°20'08.84802" | 82°56'04.15820" | | 46 | | P 46 | 699246.77 | 2471249.418 | 22°20'08.05566" | 82°56'04.62412" | | 47 | | P 47 | 699253.125 | 2471215.187 | 22°20'06.94033" | 82°56'04.83083' | | 48 | | P 48 | 699262.65 | 2471195.74 | 22°20'06.30425" | 82°56'05.15490' | | 49 | ± | P 49 | 699274.16 | 2471170.34 | 22°20'05.47383" | 82°56'05.54564' | | 50 | 130 | P 50 | 699279.319 | 2471115.571 | 22°20'03.69144" | 82°56'05.70134' | | 51 | | P 51 | 700403.532 | 2469725.174 | 22°19'18.02712" | 82°56'44.35331' | | 52 | | P 52 | 700423.087 | 2469711.375 | 22°19'17.57039" | 82°56'45.03027' | | 53 | | P 53 | 700436.077 | 2469700.745 | 22°19'17.21943" | 82°56'45.47927' | | 54 | | P 54 | 700450.343 | 2469672.656 | 22°19'16.30042" | 82°56'45.96502' | | 55 | DATOU NO 4 | P 55 | 700464.313 | 2469646.621 | 22°19'15.44831" | 82°56'46.44133' | | 56 | PATCH NO 4 | P 56 | 700479.183 | 2469618.787 | 22°19'14.53734" | 82°56'46.94826' | | 57 | | P 57 | 700499.82 | 2469581.084 | 22°19'13.30317" | 82°56'47.65224' | | 58 | | P 58 | 700530.007 | 2469523.371 | 22°19'11.41461" | 82°56'48.68081' | | 59 | | P 59 | 700543.476 | 2469479.086 | 22°19'09.96951" | 82°56'49.13139' | | 60 | | P 60 | 700560.17 | 2469421.242 | 22°19'08.08231" | 82°56'49.68848' | | 61 | | P 61 | 700580.278 | 2469333.4 | 22°19'05.21863" | 82°56'50.35135 | | 62 | | P 62 | 700590.398 | 2469312.336 | 22°19'04.52971" | 82°56'50.69539 | | 63 | | P 63 | 700608.739 | 2469285.441 | 22°19'03.64781" | 82°56'51.32399 | | 64 | | P 64 | 700635.949 | 2469243.739 | 22°19'02.28089" | 82°56'52.25574 | | 65 | DATOU NO E | P 65 | 700653.877 | 2469215.977 | 22°19'01.37099" | 82°56'52.86953 | | 66 | PATCH NO 5 | P 66 | 700684.586 | 2469178.138 | 22°19'00.12816" | 82°56'53.92526 | | 67 | | P 67 | 700697.625 | 2469157.117 | 22°18'59.43941" | 82°56'54.37128 | | 68 | | P 68 | 700703.021 | 2469126.661 | 22°18'58.44719" | 82°56'54.54604 | | 69 | | P 69 | 700706.227 | 2469099.507 | 22°18'57.56323" | 82°56'54.64579 | | 70 | | P 70 | 700721.764 | 2469061.254 | 22°18'56.31331" | 82°56'55.17132 | | 71 | | P 71 | 702698.274 | 2467588.072 | 22°18'07.59503" | 82°58'03.54758 | | 72 | 1 | P 72 | 702789.053 | 2467594.35 | 22°18'07.76060" | 82°58'06.72138 | | 73 | | P 73 | 702903.353 | 2467603.875 | 22°18'08.02173" | 82°58'10.71828 | | 74 | DATELLALO | P 74 | 702951.745 | 2467610.297 | 22°18'08.20995" | 82°58'12.41159 | | 75 | PATCH NO 6 | P 75 | 703053.637 | 2467622.925 | 22°18'08.57715" | 82°58'15.97645 | | 76 | | P 76 | 703144.653 | 2467635.625
| 22°18'08.95131" | 82°58'19.16150 | | 77 | 1 | P 77 | 703247.683 | 2467638.696 | 22°18'09.00735" | 82°58'22.76176 | | 78 | 1 | P 78 | 703343.462 | 2467629.171 | 22°18'08.65704" | 82°58'26.10303 | | 79 | | P 79 | 703732.532 | 2467758.129 | 22°18'12.68311" | 82°58'39.75244 | | 80 | 1 | P 80 | 703834.926 | 2467799.801 | 22°18'13.99397" | 82°58'43.34821 | | 81 | 1 | P 81 | 703898.823 | 2467820.835 | 22°18'14.65043" | 82°58'45.58981 | | 82 | DATOUR - | P 82 | 704005.98 | 2467839.092 | 22°18'15.19814" | 82°58'49.34123 | | 83 | PATCH NO 7 | P 83 | 704098.055 | 2467869.254 | 22°18'16.13925" | 82°58'52.57132 | | 84 | 1 | P 84 | 704217.656 | | | 82°58'56.76562 | | 85 | 1 | P 85 | 704250.313 | 2467910.816 | Control Control Control Control Control Control | 82°58'57.90888 | | 86 | 1 | P 86 | 704300.068 | | | 82°58'59.64634 | | Sl. No. | Patch No | Pillar ID | Easting (m) | Northing (m) | Latitude "N" | Longitude "E" | |---------|------------|-----------|-------------|--------------|-----------------|-----------------| | 87 | | P 87 | 704356.473 | 2467906.578 | 22°18'17.24206" | 82°59'01.61519" | | 88 | | P 88 | 704381.766 | 2467903.799 | 22°18'17.14092" | 82°59'02.49742" | | 89 | | P 89 | 704436.034 | 2467903.119 | 22°18'17.09563" | 82°59'04.39274" | | 90 | | P 90 | 704469.16 | 2467902.44 | 22°18'17.05940" | 82°59'05.54954" | | 91 | | P 91 | 704477.772 | 2467903.411 | 22°18'17.08726" | 82°59'05.85081" | | 92 | | P 92 | 704488.668 | 2467908.764 | 22°18'17.25661" | 82°59'06.23386" | | 93 | | P 93 | 704502.705 | 2467922.049 | 22°18'17.68242" | 82°59'06.73029" | | 94 | | P 94 | 704521.809 | 2467948.779 | 22°18'18.54306" | 82°59'07.40989" | | 95 | | P 95 | 704535.39 | 2467969.077 | 22°18'19.19703" | 82°59'07.89363" | | 96 | | P 96 | 704557.527 | 2468002.305 | 22°18'20.26759" | 82°59'08.68216" | | 97 | DATCH NO 7 | P 97 | 704583.407 | 2468036.734 | 22°18'21.37557" | 82°59'09.60202" | | 98 | PATCH NO 7 | P 98 | 704611.453 | 2468075.099 | 22°18'22.61056" | 82°59'10.59934" | | 99 | | P 99 | 704643.713 | 2468118.56 | 22°18'24.00942" | 82°59'11.74618" | | 100 | | P 100 | 704668.93 | 2468158.863 | 22°18'25.30862" | 82°59'12.64560" | | 101 | | P 101 | 704688.045 | 2468189.482 | 22°18'26.29564" | 82°59'13.32739" | | 102 | | P 102 | 704709.614 | 2468225.647 | 22°18'27.46191" | 82°59'14.09746" | | 103 | | P 103 | 704725.712 | 2468253.259 | 22°18'28.35250" | 82°59'14.67249" | | 104 | | P 104 | 706108.321 | 2470288.502 | 22°19'33.91059" | 83°00'03.91211" | | 105 | | P 105 | 706136.151 | 2470329.485 | 22°19'35.23066" | 83°00'04.90338" | | 106 | PATCH NO 8 | P 106 | 706152.16 | 2470353.817 | 22°19'36.01462" | 83°00'05.47395" | | 107 | | P 107 | 706168.846 | 2470385.156 | 22°19'37.02604" | 83°00'06.07143" | | 108 | | P 108 | 706204.605 | 2470444.036 | 22°19'38.92439" | 83°00'07.34803" | | 109 | | P 109 | 707642.401 | 2472700.985 | 22°20'51.65893" | 83°00'58.63371" | | 110 | | P 110 | 707691.43 | 2472713.214 | 22°20'52.03507" | 83°01'00.35255" | | 111 | | P 111 | 707760.53 | 2472730.671 | 22°20'52.57240" | 83°01'02.77513" | | 112 | | P 112 | 707818.288 | 2472745.541 | 22°20'53.03057" | 83°01'04.80020" | | 113 | | P 113 | 707864.408 | 2472754.865 | 22°20'53.31354" | 83°01'06.41604" | | 114 | | P 114 | 707925.743 | 2472769.958 | 22°20'53.77738" | 83°01'08.56620" | | 115 | | P 115 | 707955.291 | 2472773.054 | 22°20'53.86513" | 83°01'09.60009" | | 116 | | P 116 | 7.07978.454 | 2472783.648 | 22°20'54.19937" | 83°01'10.41438" | | 117 | | P 117 | 708037.589 | 2472789.303 | 22°20'54.35740" | 83°01'12.48326" | | 118 | | P 118 | 708102.266 | 2472772.452 | 22°20'53.78149" | 83°01'14.73525" | | 119 | BATOU NO 0 | P 119 | 708125.285 | 2472773.245 | 22°20'53.79725" | 83°01'15.53992" | | 120 | PATCH NO 9 | P 120 | 708162.988 | 2472778.405 | 22°20'53.94850" | 83°01'16.85972" | | 121 | | P 121 | 708185.61 | 2472783.961 | 22°20'54.11922" | 83°01'17.65276" | | 122 | | P 122 | 708245.219 | 2472783.296 | 22°20'54.07160" | 83°01'19.73522" | | 123 | | P 123 | 708286.688 | 2472780.526 | 22°20'53.96347" | 83°01'21.18288" | | 124 | | P 124 | 708335.928 | 2472780.577 | 22°20'53.94364" | 83°01'22.90339" | | 125 |] | P 125 | 708402.504 | 2472779.166 | 22°20'53.86871" | 83°01'25.22894" | | 126 | 1 | P 126 | 708464.814 | 2472775.97 | 22°20'53.73762" | 83°01'27.40459" | | 127 | 1 | P 127 | 708494.853 | 2472776.514 | 22°20'53.74218" | 83°01'28.45443' | | 128 | 1 | P 128 | 708566.9 | 2472755.673 | 22°20'53.03330" | 83°01'30.96204' | | 129 | 594 | P 129 | 708624.803 | 2472740.431 | 22°20'52.51259" | 83°01'32.97803' | | 130 | | P 130 | 708663.466 | 2472736.983 | 22°20'52.38362" | 83°01'34.32733" | | CL No. | | Dillor ID | Footier (w) | No.4Li | 1 - 424 - 1 - 11510 | 1 1 1 1 1 1 1 | |---------|-------------|-----------|-------------|--------------|---------------------|-----------------| | SI. No. | Patch No | Pillar ID | Easting (m) | Northing (m) | Latitude "N" | Longitude "E" | | 131 | | P 131 | 708717.542 | 2472726.606 | 22°20'52.02269" | 83°01'36.21190" | | 132 | | P 132 | 708746.312 | 2472715.16 | 22°20'51.63808" | 83°01'37.21175" | | 133 | | P 133 | 708788.665 | 2472709.294 | 22°20'51.42890" | 83°01'38.68883" | | 134 | | P 134 | 708833.245 | 2472694.95 | 22°20'50.94317" | 83°01'40.23973" | | 135 | | P 135 | 708882.532 | 2472686.308 | 22°20'50.64072" | 83°01'41.95778" | | 136 | | P 136 | 708936.523 | 2472672.721 | 22°20'50.17547" | 83°01'43.83786" | | 137 | | P 137 | 708959.246 | 2472667.989 | 22°20'50.01172" | 83°01'44.62958" | | 138 | | P 138 | 709006.676 | 2472644.311 | 22°20'49.22136" | 83°01'46.27566" | | 139 | | P 139 | 709086.085 | 2472603.279 | 22°20'47.85293" | 83°01'49.03091" | | 140 | | P 140 | 709157.755 | 2472563.545 | 22°20'46.53007" | 83°01'51.51635" | | 141 | | P 141 | 709219.622 | 2472529.572 | 22°20'45.39875" | 83°01'53.66198" | | 142 | 8 | P 142 | 709272.017 | 2472498.209 | 22°20'44.35640" | 83°01'55.47788" | | 143 | | P 143 | 709307.95 | 2472478.099 | 22°20'43.68702" | 83°01'56.72390" | | 144 | | P 144 | 709380.396 | 2472440.394 | 22°20'42.42974" | 83°01'59.23737" | | 145 | | P 145 | 709393.963 | 2472434.369 | 22°20'42.22796" | 83°01'59.70856" | | 146 | | P 146 | 709414.728 | 2472421.461 | 22°20'41.79931" | 83°02'00.42800" | | 147 | | P 147 | 709450.748 | 2472401.921 | 22°20'41.14840" | 83°02'01.67731" | | 148 | | P 148 | 709498.977 | 2472370.612 | 22°20'40.10962" | 83°02'03.34764" | | 149 | | P 149 | 709519.302 | 2472353.796 | 22°20'39.55414" | 83°02'04.04986" | | 150 | | P 150 | 709552.554 | 2472325.033 | 22°20'38.60467" | 83°02'05.19809" | | 151 | | P 151 | 709589.715 | 2472287.474 | 22°20'37.36760" | 83°02'06.47876" | | 152 | | P 152 | 709620.925 | 2472256.873 | 22°20'36.35930" | 83°02'07.55477" | | 153 | | P 153 | 709663.946 | 2472216.958 | 22°20'35.04305" | 83°02'09.03905" | | 154 | | P 154 | 709714.868 | 2472170.064 | 22°20'33.49652" | 83°02'10.79607" | | 155 | | P 155 | 710937.923 | 2471569.061 | 22°20'13.42372" | 83°02'53.24291" | | 156 | , | P 156 | 711031.911 | 2471538.141 | 22°20'12.37724" | 83°02'56.51190" | | 157 | = | P 157 | 711160.944 | 2471499.061 | 22°20'11.05001" | 83°03'01.00140" | | 158 | | P 158 | 711278.938 | 2471465.435 | 22°20'09.90489" | 83°03'05.10780" | | 159 | PATCH NO 10 | P 159 | 711438.36 | 2471435.603 | 22°20'08.86472" | 83°03'10.66334" | | 160 | 0 | P 160 | 711531.566 | 2471420.162 | 22°20'08.32158" | 83°03'13.91232" | | 161 | | P 161 | 711649.875 | 2471387.51 | 22°20'07.20791" | 83°03'18.03012" | | 162 | - | P 162 | 711720.456 | 2471363.15 | 22°20'06.38488" | 83°03'20.48440" | | 163 | | P 163 | 711818.839 | 2471328.026 | 22°20'05.19963" | 83°03'23.90483" | | 164 | | P 164 | 712534.317 | 2470755.594 | 22°19'46.27660" | 83°03'48.62742" | | 165 | | P 165 | 712639.158 | 2470662.55 | 22°19'43.20584" | 83°03'52.24553" | | 166 | | P 166 | 712745.578 | 2470566.472 | 22°19'40.03575" | 83°03'55.91733" | | 167 | | P 167 | 712801.844 | 2470519.837 | 22°19'38.49496" | 83°03'57.86064" | | 168 | | P 168 | 712852.514 | 2470472.492 | 22°19'36.93356" | 83°03'59.60809" | | 169 | PATCH NO 11 | P 169 | 712926.416 | 2470410.616 | 22°19'34.88957" | 83°04'02.16020" | | 170 | | P 170 | 712955.044 | 2470389.498 | 22°19'34.19043" | 83°04'03.15017" | | 171 | | P 171 | 713049.685 | 2470363.026 | 22°19'33.28785" | 83°04'06.44370" | | 172 | | P 172 | 713159.662 | 2470343.49 | 22°19'32.60382" | 83°04'10.27629" | | 173 | | P 173 | 713287.109 | 2470313.207 | 22°19'31.56272" | 83°04'14.71400" | | 174 | | P 174 | 713335.56 | 2470297.548 | 22°19'31.03212" | 83°04'16.39910" | | Sl. No. | Patch No | Pillar ID | Easting (m) | Northing (m) | Latitude "N" | Longitude "E" | |---------|-------------|-----------|-------------|--------------|-----------------|-----------------| | 175 | | P 175 | 713414.512 | 2470245.901 | 22°19'29.31825" | 83°04'19.13241" | | 176 | | P 176 | 713927.84 | 2468925.212 | 22°18'46.16404" | 83°04'36.42954" | | 177 | PATCH NO 12 | P 177 | 713920.066 | 2468838.84 | 22°18'43.36029" | 83°04'36.11646" | | 178 | | P 178 | 713917.805 | 2468768.63 | 22°18'41.07934" | 83°04'36.00371" | | 179 | | P 179 | 713911.767 | 2468705.904 | 22°18'39.04335" | 83°04'35.76265" | | 180 | | P 180 | 713908.475 | 2468671.701 | 22°18'37.93315" | 83°04'35.63121" | | 181 | | P 181 | 713898.886 | 2468620.968 | 22°18'36.28855" | 83°04'35.27187" | | 182 | | P 182 | 713894.52 | 2468584.059 | 22°18'35.09088" | 83°04'35.10164" | | 183 | | P 183 | 713895.711 | 2468545.562 | 22°18'33.83913" | 83°04'35.12472" | ## 7.3 Annexure - 3: Geo-Referenced Maps of the Proposed Route #### 7.3.1 Geo-referenced Forest Map showing Proposed 4G OFC Route Not to Scale खन परिकेश अधिकारी फुटमुरा परिकेश, कृदमुरा (सा.) बन परिकामाधिकारी, पसरकेत बरिकेम कोरवा (छ ग वनमंडलाधिकारी कोरखा वन मंडल कोरबा Not to Scale