

M/s. Goa Tamnar Transmission
Project Limited (GTTPL)

BIA and BMP for 400 kV Transmission Line Corridor Passing through Protected area of Goa State

Final Report

7 March 2019

Project No.: 0476969

www.erm.com

Document details	The details entered below are automatically shown on the cover and the main page footer. PLEASE NOTE: This table must NOT be removed from this document.			
Document title	BIA and BMP for 400 kV Transmission Line Corridor Passing through Protected areas of Goa State			
Document subtitle	Final Report			
Project No.	0476969			
Date	7 March 2019			
Version	2.0			
Author	Rahul Srivastava, Saumabha Bhattacharya, Omesh Bajpai, Suhas Fuladi			
Client Name	M/s. Goa Tamnar Transmission Project Limited (GTTPL)			

Document history

				ERM approval	to issue	
Version	Revision	Author	Reviewed by	Name	Date	Comments
Draft	01	Rahul Srivastava, Saumabha Bhattacharya, Omesh Bajpai and Suhas Fuladi	Arun Venkataraman	Arun Venkataram an	11.01.2019	Text
Final	02	Rahul Srivastava, Saumabha Bhattacharya, Omesh Bajpai and Suhas Fuladi		Arun Venkataram an	11.03.2018	Text

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

Signature Page

08 March 2019

BIA and BMP for 400 kV Transmission Line Corridor Passing through Protected area of Goa State

Final Report

Author: Rahul Srivastava, Saumabha Bhattacharya, Omesh Bajpai and Suhas Fuladi

Name Rahul Srivastava Job title Senior Consulant Name Arun Venkataraman Job title Technical Director

ERM India Private Limited

Building 10,

4th Floor, Tower A,

DLF Cyber City,

Gurgaon - 122002

India

© Copyright 2019 by ERM Worldwide Group Ltd and / or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM

CONTENTS

1.	INTR	ODUCTIO	ON	1
	1.1 1.2 1.3 1.4	Project I Project	Background Brief Justification Layout	
2.	PRO	JECT DES	SCRIPTION	6
	2.1 2.2 2.3 2.4 2.5	Tower D Conduct Siting C	ission Line Route in Goa State Protected Areas	10 10 11
		2.5.2 2.5.3	Erection of Tower BodyStringing of Conductor	
	2.6 2.7 2.8	Constru Employr	nction Period	15 15
3.	ECOI	OGICAL	BASELINE	18
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Climate. The Stu Study D Survey Scope of Approact 3.7.1 3.7.2	graphic Unit Idy Area Duration Team Of Work for Study Ch and Methodology Approach Methodology of Primary Data Collection Ssessment	
		3.8.1 3.8.2 3.8.3 3.8.1 3.8.2 3.8.3 3.8.4 3.8.5 3.8.6 3.8.7 3.8.8	Vegetation Profile in Study Area Taxonomic Status-Species Richness Status of Growth Forms Status of Tree species Status of Annuals (Herbs and Grasses species) Status of Medicinal Plants Status of Threatened Plants Status of Endemic Species Overall Species Richness Species Diversity and Species Evenness Overall Species list	31 32 34 35 36 37 38
	3.9	Faunal <i>i</i> 3.9.1 3.9.2 3.9.3	Assessment Herpetofauna Avifauna Mammals	42 50
4.	IMPA	CT ASSE	SSMENT	66
	4.1 4.2 4.3 4.4 4.5	Impacts Impact A Impact A 4.5.1	s on Biodiversity	
		4.5.2	Impacts during operation Phase	71

5 .	MITIG	ATION MEASURES	74
	5.1	INTRODUCTION	74
	5.2	Construction Phase Mitigation Measures	74
	5.3	Mitigation for Operational Phase	75
6.	BIODIN	VERSITY MANAGEMENT PLAN	77
0.			
	6.1	Introduction	
	6.2		
		6.2.1 Ecological Sensitivity	
	6.3	Cost of the Biodiversity Management Plan	83
List o	of Table	s	
Table	1.1	Comparative Statement of Three Alternative Routes	2
Table	2.1	Transmission Line Project Components	6
Table	2.2	Coordinate Statement of required area of Wildlife Division, North Goa	9
Table	2.3	Tower Details	10
Table	2.4	Conductor Details	10
Table	2.5	Proposed Construction Period	15
Table	2.6	Employment Generation	
Table	3.1	Ecological Survey Team	
Table	3.2	Details of Floral Survey Quadrates	21
Table	3.3	Details of the Quadrate Surveyed and its Distribution	28
Table	3.4	Taxonomic Status of Flora along the Proposed Transmission line route	31
Table	3.5	Status of Floral Growth forms along the Proposed Transmission Line Route	
Table	3.6	Important Value Index (IVI) and Rank Order of Tree Species and lianas in Study Al 32	rea
Table	3.7	Important Value Index (IVI) and Rank Order of Herbs and Grass Species	34
Table	3.8	Medicinal Plants recorded from Transmission Line Route	35
Table	3.9	Threatened Species	36
Table	3.10	Endemic Species	37
Table	3.11	Overall Species Richness of Flora along the transmission line route	38
Table	3.12	Species Diversity and Species Evenness	39
Table	3.13	Overall List of Flora (Botanical name, Family, Local name, Locality, Local name, Growth form, Vegetation/Forest type) along the Proposed Transmission line	40
Table	3.14	Transects for Faunal Survey	42
Table		Amphibians reported & recorded from the Transmission Line Route	
Table	3.16	Reptiles recorded from the Study Area	
Table	3.17	Threatened Species	
Table	3.18	Details of Species Recorded from the Study Area	
Table	3.19	Potential Species List likely to be observed from the Study Area	
Table	3.20	Endemic Avian Species of the Study Area	60
Table	3.21	Details of Sightings in Transmission Line Corridor	
Table	3.22	Taxonomic Status of Mammals	
Table	3.23	Checklist of Mammals in Bhagwan Mahaveer Wildlife Sanctuary, Goa	63
Table	4.1	Habitat Impact Assessment Criteria	67
Table	4.2	Species impact assessment criteria	
Table	4.3	Context of various impacts during construction phase	
Table	4.4	Impact significance of Overall Construction Activities	
Table	4.5	Context of various impacts during operation phase	
Table	4.6	Impact significance of Operational Activities	
Table	5.1	Impact Summary	
Table	6.1	Threatened Species	77

Table 6.2	Biodiversity Management Plan	79
Table 6.3	Cost of Implementation of BMP	
List of Figure	res	
Figure 1.1	Alternate Routes for Xeldem Narendra Line within Goa State	4
Figure 2.1	Layout Map of Transmission Line rote in Protected Area of Goa State (Section 1	1)7
Figure 2.2	Layout Map of Transmission Line rote in Protected Area of Goa State (Section 2	2)8
Figure 2.3	Photograph setting template being prepared for final concreting	12
Figure 2.4	Model visual: Derrick pole at tower base	13
Figure 2.5	Puller – Tensioner machine	14
Figure 3.1	Ecological Baseline Field Surveys	24
Figure 3.2	Vegetation Types in the Study Area	26
Figure 3.3	Floral and Faunal Survey locations (Section 1)	29
Figure 3.4	Floral and Faunal Survey locations (Section 2)	30
Figure 3.5	Medicinal Plants recorded from Transmission Line Route	35
Figure 3.6	Threatened Species	36
Figure 3.7	Endemic Species	37
Figure 3.8	Amphibians recoded from the Study Area	45
Figure 3.9	Reptiles recoded from the Study Area	
Figure 3.10	Avifauna Recorded During Survey	
Figure 3.11	Mammal Species recorded in Transmission Line Corridor	61
Figure 5.1	Mitigation Structures for Transmission Line	

Acronyms and Abbreviations

Name Description

ATV All-Terrain Vehicle

BIA Biodiversity Impact Assessment
BMP Biodiversity Management Plan

BMWS Bhagwan Mahaveer Wildlife Sanctuary

CITES Convention on International Trade in Endangered

Species of Wild Fauna and Flora

CR Critically Endangered

DD Data Deficient
EHV Extra High Voltage

EN Endangered

EPMs Environmental Protection Measures

EPS Electric Power Survey
ERM India Private Limited

Gol Government of India

GTTPL Goa Tamnar Transmission Projects Limited

IUCN International Union for Conservation of Nature

IVI Importance value Index

KPTCL Karnataka Power Transmission Corporation Limited

LC Least Concern
LILO Line In Line Out
NA Not assessed

NGO Non-Governmental Organisation

NT Near Threatened

PCCF (WL) Principal Chief Conservator of Forests (Wieldlife)

PGCIL Power Grid Corporation of India Limited

ROW Right of Way

SPV Special Purpose Vehicle

VU Vulnerable

WLS Wildlife sanctuary

1. INTRODUCTION

Sterlite Powergrid Ventures Limited by its subsidiary company Goa Tamnar Transmission Projects Limited (GTTPL) is developing the project, "Additional 400 kV feed to Goa and Additional System for Power Evacuation from Generation Projects pooled at Raigarh (Tamnar) Pool" which is awarded to them through tariff based competitive bidding process.

The transmission line proposed route is passing through the Bhagwan Mahaveer Wildlife Sanctuary which requires wildlife clearance from the State Wildlife Board of Goa and National Wildlife Board at Ministry of Environment, Forest and Climate Change, Government of India.

GTTPL has entrusted ERM India Private Limited (ERM) to undertake a Biodiversity Impact Assessment study and prepare a biodiversity management plan for the project. The current study assess the biological impacts (BIA) of the transmission line project of the flora and fauna of the wildlife sanctuary and presents the biodiversity management plans (BMP) to be implemented during the construction and operation phase of the project.

1.1 Project Background

The peak demand met by Goa during the year 2014-15 was 489 MW and as per the 18th EPS, the peak demand of 815 MW was expected by the end of 12th Plan (2016-17) and 1192 MW by the end of 13th plan (2021-22).

At present demand of Goa is mainly catered through Mapusa 3x315 MVA, 400/220 kV substation, which gets feed from Kolhapur 400 kV substation through a 400 kV D/c line. The Goa system is also connected with Maharashtra and Karnataka through 220 kV lines.

To supply the projected power requirement of Goa with reliability, an additional 400 kV in feed to Goa was required. The matter was discussed in the 38th meeting of Standing Committee on Power System Planning in Western Region, held on 17th July 2015 at New Delhi wherein the provision for a new 400kV S/s in Goa at Xeldem along with its interconnections with the Inter State Transmission System was agreed. Accordingly, following transmission system was discussed and approved in the 39th & 40th SCM of WR held on 30th November 2015 & 01st June 2016 respectively and 39th & 40th SCM of SR held on 28th and 29th December 2015 and 19th November 2016 respectively.

1.2 Project Brief

The project is a part of "Additional 400 kV feed to Goa and Additional system for Power Evacuation from Generation Projects Pooled at Rajgarh (Tamnar) Pool". PFC Consulting Limited (A Wholly owned subsidiary of Power Finance Corporation Limited) on behalf of Ministry of Power (GoI) entrusted Goa Tamnar Transmission Project Ltd. to construct the transmission projects in Goa, Karnataka & Chhattisgarh state for "Additional Feed of 400 kV to Goa State".

1.3 Project Justification

The construction of 400 kV D/C Xeldem-Mapusa is an additional feed to Goa State to meet arising power deficit through present network system. During survey of this transmission line we came to know that the line passes through several forest patches of North Goa Forest Division.

Although, this is despite trying to ensure that the transgressed forest area should be minimum & unavoidable to the extent possible. To confirm the forest area is minimum & unavoidable, three (03) possible alternate routes from generating to terminating end of the transmission line was determined and the least impacting route was selected. The route comparison of the 3 routes are given below:

The Project shall be implemented through the Special Purpose Vehicle (SPV) named Goa-Tamnar Transmission Project Limited which shall be the complete owner and operator of the project. This project is part of National Grid Development.

Transmission line projects are environmentally friendly and do not involve any disposal of solid effluents and hazardous substances in land, air and water. The constructional features of 400 kV Transmission line is such that it is not affecting the environment as it's not dividing the existing forest because of the long spans between the towers (400 Mtrs) of the transmission line follows the forest road / forest block boundary thus involving minimum tree felling and also allowing minimal impact to bird movement due to high towers. The ground clearance for lower most conductors is 8.84 Meters. The spacing between the phase conductors is (4 Mtrs) as well. A very small space is required for the construction of tower foundations (maximum 20 X 20 Mtrs). The tower foundations are under the ground (3.5 Mtrs) and a small portion of 0.50X0.50 Mtrs are elevated as plinth.

The 400 kV D/C Narendra (Karnatka) – Xeldem (Goa) Transmission Line starts from Narendra village in Dharwad District, Karnatka by tapping the existing 400 kV Narendra line of PGCIL by LILO and terminating at 400/220 kV substation at Xeldem in Goa. The line will be passing through Dharwad, Belgaum and Uttar Kannada District of Karnataka and South Goa District of Goa.

Three alternative route corridors were identified largely by maximizing linear opportunities, such as following existing roadways and power line corridors and negotiating rivers, railway and road crossings. All efforts have been made to provide a minimum no of angle points. Power line crossings have been fixed as close as possible to a right angle.

In Karnataka the total length of the proposed route is 77.631 Km. Out of this only 28.740 Km is forest land and 6.61 Km falls in Dandeli Wild Life Sanctuary and the remaining 42.281 Km is Non Forest Land. In Dandeli Wild Life Sanctuary, there is one 220 kV line and one 110 kV line of KPTCL feeding Goa. The 110 kV line is defunct from the border of Goa to Anmod village. Beyond Anmod this 110 kV line is charged and is feeding Anmod Substation so cannot be used. As per the directions of PCCF (WL) and Chief Wild Life Warden Karnataka, proposed route has been aligned such that our 400 kV transmission line will be using the defunct 110 kV corridor thus avoiding new corridor where ever possible. The comparative statatement of three alternative lines considered is provided in *Table 1.1*.

The total Bee Line Length in Karnataka is 75.645 Km. The line length of Alternate – I (Proposed Line) is 77.63 Km. Alternate – II is 79.1 Km. Alternate – III is 79.855 Km.

- Alternate Route I- The length of forest and wild life in alternate I is 35.35 Km (Forest –28.74 Km and WL 6.61 Km).
- Alternate Route II- The length of forest and wildlife in alternate II is 51.5 Km (Forest 43.40 Km and WL 8.1 Km).
- Alternate Route III- The length of forest & wildlife in alternate III is 48.96 Km (Forest 41.91 Km and WL 7.035 Km).

In view of above facts, it is evident that alternate – I involves the minimum forest and Wild Life Sanctuary land as well non-forest land.

Table 1.1 Comparative Statement of Three Alternative Routes

Description	Alternate Route 1 (Proposed Route)	Alternate Route 2	Alternate Route 3
Bee Line Length	68.74Km	68.74Km	68.74Km
Line Length	77.63 Km	79.1 Km	79.85 Km
Angle Points	47	60	54

Description	Alternate Route 1 (Proposed Route)	Alternate Route 2	Alternate Route 3
Forest Length	28.74 Km	43.40 Km	41.91 Km
Wildlife Length	6.61 Km	8.1 Km	7.035 Km
Total Forest & WL Length	35.35 Km	51.5 Km	48.96 Km
Forest Area (Ha)	132.205 Ha	199.64 Ha	192.79 Ha
Wildlife & NP Area	30.412 Ha	37.26 Ha	32.36 Ha
Total Forest & WL Area	162.617 Ha	236.9 Ha	225.15 Ha
Density of Forest Area	Moderate Dense	High Dense	Moderate Dense

After detailed analysis as per *Table 1.2* above, it is observed that the alternative – I has the least route length and has minimum crossings in terms of rail, road and existing power line. Keeping the above points in consideration, we propose Alternative – I to be taken as final proposed route alignment. The area falling in Goa section is presented below (Refer *Figure 1.1*).

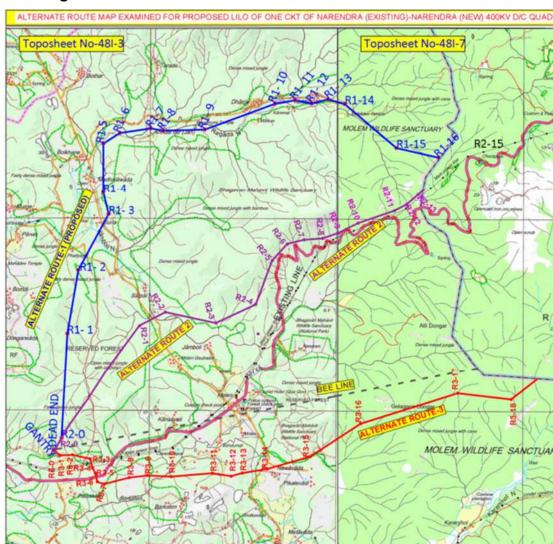


Figure 1.1 Alternate Routes for Xeldem Narendra Line within Goa

www.erm.com Version: 2.0

Project No.: 0476969

Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

Report Layout 1.4

The report is presented in following format.

Section	Name
Chapter 1 (This Section)	Introduction
Chapter 2	Project Description
Chapter 3	Ecological Baseline
Chapter 4	Impact Assessment of Transmission line on Biodiversity
Chapter 5	Mitigation Measures
Chapter 6	Biodiversity Management Plan

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

2. PROJECT DESCRIPTION

The project is a part of "Additional 400 kV feed to Goa and Additional system for Power Evacuation from Generation Projects Pooled at Rajgarh (Tamnar) Pool". PFC Consulting Limited (A Wholly owned subsidiary of Power Finance Corporation Limited) on behalf of Ministry of Power (GoI) entrusted Goa Tamnar Transmission Project Ltd. to construct the transmission projects in Goa, Karnataka & Chhattisgarh state for "Additional Feed of 400 kV to Goa State".

The project component for this transmission line project is presented in the *Table 2.1* below

Table 2.1 Transmission Line Project Components

LILO of one ckt. of Narendra (existing) – Narendra (New) 400kV D/c quad line at Xeldem Xeldem – Mapusa400kV D/c (quad) line Establishment of 2x500MVA, 400/220kV substation at Xeldem
Establishment of 2x500MVA, 400/220kV substation at Xeldem
,
ICTs: 2x500MVA, 400/220kV ICT bays: 2 nos.

2.1 Transmission Line Route in Goa State Protected Areas

The Transmission line route passes through the Bhagwan Mahaveer Wildlife Sanctuary (BMWS). It Intercepts BMWS in two sections. At first it enters the BMWS near Surla Village and then secondly it enters ahead of Tambdi Surla Temple and enters in Karnataka. The location map of the transmission line in protected area of Goa State is provided in *Figure 2.1*. and *Figure 2.2*.

India Goa North Goa AP-4/0 South Goa District : South Goa Mormugao Dahrbandora Towards Legend **Layout Map of Transmission Line Route in** Protected Area of Goa State (Section 1) Angle Point & Transmission Tower 500M Study Area Environmental Road Network **S** Resources Bhagwan Mahavir WLS Scale: Data Source: Transmission Line (Out Side WLS) **ERM** Management Transmission Line (Within WLS) Eco-Sensitive Zone

Figure 2.1 Layout Map of Transmission Line rote in Protected Area of Goa State (Section 1)

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

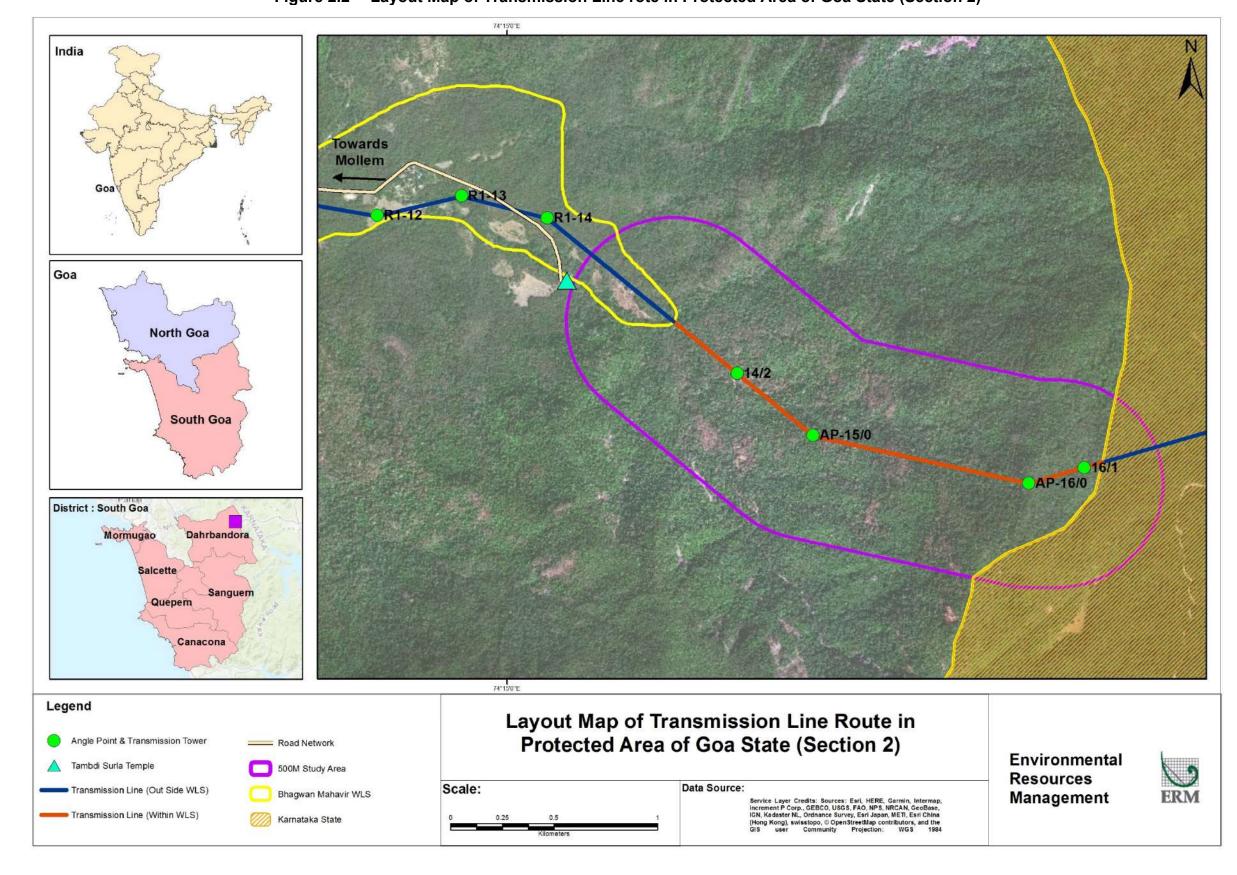


Figure 2.2 Layout Map of Transmission Line rote in Protected Area of Goa State (Section 2)

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

The total length of the Transmission Line within BMWS, falls in two Surveys numbers/Forest compartments. The details are given in *Table 2.2.*

Table 2.2 Coordinate Statement of required area of Wildlife Division, North Goa

DGPS No.	UTM		Degree, Minute Second		Wildlife Division	Village Name	Compartment /Survey No.	Area (Ha.)	Legal Status of Land
	Easting	Northing	Longitude	Latitude					
40	413914	1705355	74°11'51.64"	15°25'25.47"			0.11.00	2.53	BMWS
41	413960	1705379	74°11'53.18"	15°25'26.26"					BMWS
42	413914	1705204	74°11'51.65"	15°25'20.56"					BMWS
43	413960	1705210	74°11′53.2"	15°25'20.76"			S.No. 23		BMWS
44	413992	1704836	74°11'54.32"	15°25'08.59"					BMWS
45	414054	1704821	74°11'56.4"	15°25'08.11"					BMWS
60	420372	1706810	74°15'28.13"	15°26'13.58"		Surla S.No. 73			BMWS
61	420298	1706811	74°15'25.65"	15°26'13.6"	North				BMWS
62	420616	1706542	74°15'36.35"	15°26'04.88"	Goa				BMWS
63	420657	1706567	74°15'37.72"	15°26'05.7"			C No. 72		BMWS
64	420969	1706299	74°15'48.22"	15°25'57.01"				0.04	BMWS
65	420958	1706257	74°15'47.86"	15°25'55.65"			5.NO. 73	9.01	BMWS
67	421968	1706025	74°16'21.77"	15°25'48.21"					BMWS
68	421967	1706073	74°16'21.73"	15°25'49.77"					BMWS
69	422070	1706049	74°16'25.19"	15°25'49"	-				BMWS
70	422112	1706113	74°16'26.59"	15°25'51.09"					BMWS
	I	1	1	1	1	1	Total	11.54	

2.2 Tower Details

Tower detailed for the transmission line are presented in the *Table 2.3.* A total of 25 transmission towers are to be erected for the entire stretch within Bhagwan Mahaveer Wildlife Sanctuary (BMWS).

Table 2.3 Tower Details

Tower Parameter	Tower Details
Type of the Towers	WZ-1 DA,DB,DC,DD WZ-2 DA,DB,DC,DD
Total height of the tower above the ground level	46.40 m
Average distance between the Towers	400 m
Total no. of towers installed within the Sanctuary area	06 (Including angle & suspension)
Foundation area for each tower	20 X 20 m
Elevated Plinth area	0.50X0.50 m
Type of basement	Concrete (RCC/PCC)
Depth	3.5 m
Mode of pit digging for basement construction	Drilling & Manual excavation

The first section within the near the Surla village next to Darbandora-Sancodemo-Mollem-Collem road bears one angle tower (A/P-4/0) and one extension tower (3/1). The terrain in this region is undulating plateau with open grassland and rocky outcrops with dense vegetation in the fringes. (Refer *Figure* 2.1).

The second section where the transmission line enters the BMWLS is ahead of Tambdi Surla Temple are two angle towers (AP-15/0 and AP-16/0) and two extension tower ((14/2 and 15/1). The terrain is hilly with gentle gradient at tower 14/2 and it gets steeper till AP-16/0. After AP-16/0 the terrain is cliff shaped and transmission line enters Karnataka border connecting at AP-17. (Refer *Figure 2.2*)

Tower design diagrams are presented in *Annex A*, and foundation design diagrams are presented in *Annex B*.

2.3 Conductor Details

The horizontal distance between two conductors vary from 11 m. The lowest conductor from ground will be providing ground clearance of 8.84 m. he conductor arrangement is present in *Table 2.4.*

Table 2.4 Conductor Details

Conductor Details	
Distance between the two conductors	
Phase to Phase	11 m
Mid Span Clearance	9 m
Ground Clearance	8.84 m

2.4 Siting Criteria for Transmission Line

The siting criteria¹ for transmission line sector is given in the following bullets

- The alignment of the transmission line should be most economical from the point of view of construction and maintenance.
- The alignment of the transmission line selected should be the shortest route possible.
- Routing of transmission line through protected/reserved forest area should be avoided. In case it is not possible to avoid the forests or areas having large trees, the route should be aligned in such a way that cutting of trees is minimum.
- The route should have minimum crossings of major rivers, railway lines, national/state highways, overhead EHV power line and communication lines.
- The number of angle points shall be kept at a minimum.
- Marshy and low lying areas, river beds and earth slip zones shall be avoided to minimize risk to the foundations.
- It would be preferable to utilize the ground level for the alignment.
- Crossing of power lines shall be minimum. In case it is required, a gap of a minimum distance of 300 m between powerlines to avoid induction problems on the lower voltage lines.
- Crossing of communication line shall be minimized and if crossings do occur they shall be cross
 preferably at right angles Proximity and parallelism with telecom lines shall be eliminated to avoid
 danger of induction to them.
- Areas subjected to flooding such as ditches (nullahs) shall be avoided.
- Restricted areas such as civil and military airfield shall be avoided. Care shall also be taken to avoid aircraft landing approaches.
- All alignment should be easily accessible both in dry and rainy seasons to enable maintenance throughout the year.
- Certain areas such as quarry sites, tea, tobacco plantations and saffron and rice fields and gardens & nurseries which will result in problems of right of way during construction and maintenance of towers, should be avoided.
- Angle points should be selected such that shifting of the point within 100 m radius is possible at the time of construction of the transmission line.
- The line routing should avoid large habitations, densely populated areas, forest, animal/bird sanctuaries, reserve coal belt areas, oil pipe line/underground inflammable pipe lines etc. to the extent possible.
- The areas requiring special foundations and those prone to flooding should be avoided.

2.5 Construction Activities and Methods

2.5.1 Installation of 400 kV steel tower foundations

The foundations will be excavated manually using manual or mechanised tools and plants and concrete will be mixed manually by hand mixing at the same location.

⁽¹⁾ Siting Criterial for Transmission Line MoEF&CC

The standard foundation practice is to have four individual footings for each tower leg. The tower foundation area will be set out and pegged prior to foundation excavation. All such removals are restored upon completion of foundation works. Excavations are set out specifically for the type of tower and the type of foundation required for each specific site.

When each leg is excavated the formation levels (depths) are checked by the onsite engineer. A Prop technique is used to set and hold the tower stubs in position while the concrete is being poured and cured.

After concrete is poured the remaining part of the foundation, the shear block or neck, is shuttered. Once the shuttering is complete more concrete may be poured and the foundation completed. The tower foundations are backfilled one leg at a time usually with the material already excavated. The backfill is placed and compacted in layers. (Refer *Figure 2.3*)

Foundation size

The average foundation size for each tower leg used on the 400kV transmission system is $5.3m \times 5.3m \times 3.6m$ for single circuit angle tower, $5.1m \times 5.1m \times 4m$ for double circuit angle tower and $3.4m \times 3.4m \times 2.8m$ for double circuit intermediate tower.

Working area

The average working area for construction of a 400 kV tower will extend 10 metres all around the footprint of the base of the tower.

Construction equipment to be used for foundation

- 4x4 vehicle
- Concrete vibrator
- Water pump
- Timber or other Shuttering boxes
- 360° tracked excavator (7 ton normally).
- Transit van
- Chains another small tools
- Concrete Mixer (200Kgs)

Duration of foundation work

- Tower foundation work 4-6 days
- Crew size 18-20 workers

2.5.2 Erection of Tower Body

The most common and effective method of constructing a transmission line of this nature is a "derrick pole". The methodologies are outlined below.

Derrick Pole Methodology

The tower can be erected using a derrick / gin pole and tractor. The derrick pole is a very simple and straight forward way to build the tower where small sections of steel are lifted into place using the derrick and a winch. As illustrated the derrick consists of a solid steel pole which is held in position using guy ropes anchored to the ground (Refer *Figure 2.4*).

Figure 2.4 Model visual: Derrick pole at tower base

Construction equipment to be used for tower erection.

- 4x4 vehicle
- Winch
- Tractor
- Derrick pole
- Transit van
- Chains and other small tools

Duration of tower erection works

The average duration of tower building works is as follows:

- Each Tower erection: 6-8 days
- Crew size: 35 workers

2.5.3 Stringing of Conductor

Stringing of overhead lines refers to the installation of phase conductions and shield-wires on the supporting pole-set or tower structures. The conductor is kept clear of all obstacles along the straight by applying sufficient tension. This method of the pulling of a light pilot line (nylon rope) which is normally carried by hand into the stringing wheels. This in turn is used to pull a heavier pilot line (Steel rope) which is subsequently used to pull in the conductors from the drum stands using specifically designed "puller – tensioner" machines, see photograph below (Refer *Figure 2.5*). The main advantages with this method are (a) the conductor is protected from surface damage and (b) major obstacles such as road and rail crossings can be completed without the need for major disruption.

Figure 2.5 Puller – Tensioner machine

Once the conductor has been pulled into position, one end of the straight is terminated on the appropriate tension fittings and insulator assemblies. The free end of the straight is then placed in temporary clamps called "come-alongs" which take the conductor tension. The conductor is then cut from the puller-tensioner and the conductor is sagged using a chain hoist.

Construction equipment to be used during stringing of conductor and earth wire

- 4x4 vehicles
- Puller tensioner X 2 (see appendix 4 for details)
- Tractor
- Drum stands X 2
- Drum carriers X 2
- Stringing wheels
- Conductor drums
- Compressor & head
- Transit vans
- Chains and other small tools

Duration of stringing works

The average duration of stringing works is typically 1 week per straight. This figure is approximately the same for all straights regardless of length as the most time consuming aspect is the movement and setup of stringing equipment. Stringing crews are typically quite large and could have as many as 65 workers.

2.6 Construction Period

The proposed construction is scheduled to start from September 2019 and likely to be completed by March 2020 (Refer *Table 2.5*) in Bhagwan Mahaveer Wildlife Sanctuary.

Table 2.5 Proposed Construction Period

SN.	Area of Construction	Tentative Period (month and year)
1	Total period for the construction of the project	Mar '19 to Jan'21
2	Construction along the Bhagwan Mahaveer Wildlife Sanctuary	Sep '19 to Mar'20

2.7 Employment

A total of 138 man power is expected to be deployed for the Goa section of the transmission line passing through Bhagwan Mahaveer Wildlife Sanctuary. This includes 10 skilled man power, 8 semi-skilled man power and 120 unskilled manpower. (Refer *Table 2.6*)

Table 2.6 Employment Generation

Source of Manpower	Skilled	Semi-skilled	Unskilled	Total
On Roll Company	4	0	0	4
On roll of EPC contractor	6	4	0	10
Involvement of locals- non-technical people	0	4	120	124
Total	10	8	120	138

2.8 Operation and Maintenance

Activities for routine patrols, inspections, or scheduled maintenance, are planned in advance. However, there will be an occasional need for emergency response in cases where safety and property are threatened, to prevent imminent damage to the transmission line and ancillary facilities, or to restore service in the event of an outage. Routine, corrective, and emergency response activities will be conducted in accordance with typical O&M schedules.

Routine Maintenance (Preventative Maintenance)

Routine maintenance activities are conducted on a regular basis and have been carried out historically to identify and repair any deficiencies. These activities do not damage vegetation or soil and do not adversely impact sensitive resources including known federal and state listed species, waters and cultural resources. Personnel are generally present in any one area for less than one day. The following are examples of routine maintenance activities:

 Routine air patrols to inspect for structural and conductor defects, conductor clearance problems and hazardous trees.

- Routine ground patrols to inspect structural and conductor components. Such inspections generally require either an all-terrain vehicle (ATV) or pickup and possibly additional support vehicles traveling on access and service roads and may rely on either direct line-of-sight or binoculars. In some cases, the inspector may walk the ROW. Follow-up maintenance is scheduled depending on the severity of the problem either as soon as possible or as part of routine scheduled maintenance.
- Climbing surveys may be necessary to inspect hardware or make repairs. Personnel generally access these structures by pickup, ATV, or on foot.
- Structure or conductor maintenance typically occurs manually. The maintenance vehicle may be located on or off a road, and no-to-minimal grading is necessary to create a safe work area.
- Cathodic protection surveys to check the integrity and functionality of the anodes and ground beds. These surveys typically require personnel to use an ATV or pickup and make brief stops.
- Routine cyclical vegetation clearing to trim or remove tall shrubs and trees to ensure adequate ground-to-conductor clearances. Vegetation clearing cycles vary from 3 to 5 years or as needed (dependent upon the vegetation present). Personnel generally access the area by pickup, ATV, or on foot; use chainsaws to clear the vegetation; and typically spend less than half a day in any one specific area. In some cases vegetation may be cleared using mechanical means.
- Removal of individual trees or snags (hazard trees) that pose a risk of falling into conductors or structures and causing outages or fires. Personnel generally access hazard trees by truck, ATV, or by foot from an access or service road, and cut them with a chainsaw or similar tool. Any felled trees or snags are left in place as sources of large woody debris or as previously directed by the land management agency. Felled green trees are limbed to reduce fire hazard.

Corrective maintenance

Corrective maintenance activities are relatively large-scale efforts that occur infrequently, may result in more extensive vegetation clearing or earth movement, and may include rehabilitation seeding and associated activities. Personnel are generally present in any one location or area for a prolonged time, generally more than one day. The following are examples of corrective maintenance:

- Non-cyclical vegetation clearing to remove saplings or larger trees in the ROW.
- Structure or conductor maintenance in which earth must be moved, such as the creation of a landing pad for construction or maintenance equipment.
- Structure (e.g., cross-arm, insulator, structure) replacement.

Project No.: 0476969

- Follow-up restoration activities, such as seeding, noxious weed control, and erosion control.
- Conductor repair or replacement, which requires the use of several types of trucks and equipment and grading to create a safe work area to hang and pull the conductor into place.

Emergency situations

Emergency situations are those conditions that may result in imminent or direct threats to public safety or threaten' ability to provide reliable transmission service to its customers. Emergency situations may include:

- Failure of conductor splices.
- Damage to structures or conductors from wildfire, high winds, ice, or other weather related conditions.
- Line or system outages or fire hazards caused by trees falling into conductors.

- Breaking or imminent failure of cross-arms or insulators, which could, or does, cause conductor failure.
- Damage to structures or conductors from vandalism In the case of an emergency where life or substantial property is at risk or there is a potential or actual interruption in service, the Companies will promptly respond to the emergency and conduct any and all activities, including emergency repair requiring heavy equipment access to the structures or other ancillary facilities, needed to remedy the emergency and will implement feasible and practicable Environmental Protection Measures (EPMs).

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) 7 Man

3. ECOLOGICAL BASELINE

3.1 Physiographic Unit

The entire Goa state can be divided into three main physiographic units viz, the mountainous region of the Sahyadri in the east, the middle level plateaus in the centre and the low-lying river basins with coastal plains. Goa includes a portion of the Western Ghats, a range of mountains 1,600 km long extending from north of Mumbai to Cape of Comorin (Kanyakumari), which is identified as one of the `hotspots' of biological diversity and endemism in the world.¹

The Ghats extend in the north south direction, and exhibit rise in altitude. Goa has a hilly terrain especially on its eastern side where lies the southern end of the northern part of the Western Ghats.

3.2 Climate

The State of Goa is situated in the tropics and has profound orographic influence. The climate is humid throughout the year, with humidity level ranging from 75% to 95% in the monsoon. The main feature of the Goa climate is the south-west monsoon, which occurs between June and September. The average rainfall is 2500 mm to 3000 mm, although in Western Ghats the downpour is considerably high (over 4000 mm) than on the coast. In addition there are pre-monsoon (May) and post-monsoon (October) showers as a result of the north-east monsoon. Goa receives rain from the south-west monsoon, thereby experiencing a dry period lasting from November to May [November to February (winter) and March to May (summer)]. There is a slight variation in temperature through the seasons. May is the relatively warmest month and the mean daily temperature is around 30° C and maximum temperature rises to 36° C. January is the coolest with mean daily temperature of about 25° C. The average temperature ranges between 21° C and 30° C.³

During the survey, the weather was sunny with at least two incidents of thunderstorm and heavy rains in evening and night.

3.3 The Study Area

The proposed transmission line intersects the Bhagwan Mahaveer Wildlife Sanctuary at two locations as presented in *Figure 2.1* and *Figure 2.2* of Chapter 2. The entire stretch of transmission line route is a green field area. The core and buffer areas are demarcated as following.

Core Area: The transmission line route, the tower locations (with activity areas of 10 m radius) and the Right of Way (23 m on each side from median of the line route) is considered as Core area for biodiversity assessments.

Buffer Area: Buffer areas are considered 500 m radius areas from the transmission tower locations and the transmission route.

3.4 Study Duration

www.erm.com Version: 2.0

The ERM team comprising of three members undertook a 5 day reconnaissance survey of the transmission line route from 19th September to 24rd September 2018. The reconnaissance survey

⁽¹⁾ Myer, N. (1990): The biodiversity challenge: Expanded hot spots analysis. Environmentalist. 10: 243-256.

⁽²⁾ Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B and Kent, J. (2000): Biodiversity hotspots for conservation priorities. Nature. 403: 853-858.

⁽³⁾ Joshi, V. C and Janarthanam, M. K. (2004): The diversity of life forms type, habitat preference and phenology of the endemics in the Goa region of Western Ghats, India. Journal of Biogeography. 31: 1227-1237.

identiifed habitats and approaches to the transmission line route. Based on the reconnaissance survey, plan was developed to undertake a detailed survey. Interactions with the proponent was also undertaken on the different alternatives of the transmission line routes.

The detailed 7 day ecological survey was commissioned from 2nd October to 9th October 2018. The survey team has ERM team member and external species experts from various groups of flora and fauna to establish the ecological baseline of the study area.

3.5 **Survey Team**

The survey team had following members for the enumerating flora and fauna of the transmission line corridor. The team composition is given in *Table 3.1.*

Ecological Survey Team

Name of the Expert Area of Specialization Avifauna and Mammal Expert Avifauna Expert

ERM Team Dr. Rahul Srivastava (Senior Consultant) Mr. Saumabha Bhattacharya (Consultant) Dr. Omesh Bajpai (Consultant) Plant Taxonomist Mr. Suhas Fuladi (Assistant Consultant) Mammal Expert **External Expert** Mr. Nilim Kumar Khaire (Herpetological Society of India, Pune) Herpetofauna Expert (Snakes) Dr. Varad B Giri (Herpetological Society of India, Pune) Herpetofauna Expert (Amphibians and Reptiles) Dr. Mandar N Datar (Agharkar Research Institute, Pune) Plant Taxonomist Mr. Vijay Patil (Herpetological Society of India, Pune) Field Support & Data Collection Mr. Aamatya Sharma (Herpetological Society of India, Pune) Field Support (Data and Photography)

3.6 Scope of Work for Study

The Study was undertaken to achieve the following scope of work,

Table 3.1

- Establish a preliminary baseline of terrestrial and aquatic floral and faunal species within the study area (Length ~ 3 km in WLS in Goa (approx.) with 46 m width¹) and immediate vicinity based on primary survey along with review of secondary literature.'
- Assess the status of major habitats/forests and associated floral species along the proposed transmission line passing through the WLS/Tiger Reserve/Elephant Reserve;
- Identify flagship species corridors, through primary surveys and reiew of relevant management plans, such as those for tiger and elephant likely impacted by the proposed project associated activities;
- Identify & evaluate the likely impacts of the proposed transmission line during the construction and operation phase on the habitat and wildlife species found in the area;
- Suggest mitigation measures and a BMP to minimize the likely impact on protected area, its habitat values and overall ecology of the wildlife/Tiger/Elephant reserve corridors.

The approach and methodology for the above scope of work is discussed hereunder

Project No.: 0476969

¹ http://mofpi.nic.in/sites/default/files/GUIDELINES 06.11.2015.pdf

3.7 Approach and Methodology

3.7.1 Approach

Following step wise approach was followed in order to achieve the conformity with the scope of work for baseline data collection

- **Step 1: Reconnaissance Survey-** A reconnaissance survey to understand the complexity of terrain, habitats available, approach for various locations enroute to transmission line corridor and potential areas for species enumeration.
- **Step 2: Secondary Data Collection-** Available secondary data through published research papers, books and periodicals and PhD thesis from the area was reviewed and enlisted to confirm the presence of species. Secondary data was also collected on the historical surveys in the area. Management plan of the protected area was also reviewed. Consultation with the locals and forest officials were also made.
- **Step 3: Primary Data Collection**-Primary surveys were undertaken to understand the actual baseline and analyse the impacts of the proposed project on ecological baseline.
- **Step 4: Biodiversity Impact Assessment-** Assessment of impact of the various construction and operation activities on the ecological baseline.
- **Step 5: Biodiversity Management Plan-**Preparation of Management plan for mitigation of major impacts of construction and operation activities

3.7.2 Methodology of Primary Data Collection

Primary data collection methods for flora and fauna species are discussed hereunder

Floral Assessment

Floral assessment were focused on

- Enumeration of Trees, Shrubs, Herbs, climbers and orchids likely to encounter on the transmission line route and its immediate vicinity;
- Undertake phytosociology along the transmission line corridor to calculate frequency, density and abundance for plant species along with the IVI and calculation of species richness and species diversity;
- The enumerated list of floral species will be compared to Indian Red Data Book and species listed in the IUCN Red data list to confirm their conservation status.
- Following will be emphasized;
 - Species with conservational significance (Indian Red Data Book)
 - Endemic flora species
 - Species with high commercial value

The detailed methodology for data collection for each floral groups (Habit) are presented here under

Trees: Quantitative data was collected using standard quadrate methods of sample plot size 10 m x 10 m for trees in various habitat types along the transmission line route and immediate vicinity.

Shrubs: Quantitative data was collected using standard quadrate methods of sample plot size 10 m x 10 m for shrubs in various habitat types along the transmission line route and immediate vicinity.

Annuals (Herbs, Grasses, Pteridophytes, etc.): Quantitative data was collected on plateaus associated with transmission line using standard quadrate methods of sample plot size 1 m x 1 m for herbs, grasses.

Climbers: Quantitative data was collected using standard quadrate methods of sample plot size 10 m x 10 m for large climbers (lianas) in various habitat types along the transmission line route and immediate vicinity.

Details of the quadrates is presented in Refer Table 3.2 and sampling photographs in Figure 3.1

S.N. **Quadrat Size Number of Quadrates Buffer Zone Core Zone Study Area** 1. 5 2 7 Trees, shrubs and lianas 2. 1 4 5 Annuals (Herbs, Grasses, Pteridophytes, etc.) and climbers

Table 3.2 Details of Floral Survey Quadrates

Faunal Assessment

- Faunal assessment was carried out through enumeration of herpetofauna amphibians and reptiles), avifauna (resident and migratory) and mammals likely to encounter on the transmission line route and its immediate vicinity;
- Assessment of various faunal habitats;
- The enumerated list of faunal species will be compared to Indian Wildlife Protection Act, 1971 schedules and species listed in the IUCN Red -List v.2018.2 to confirm their conservation status.
- Following will be emphasized;
 - Species with conservational significance (Sch. I of IWPA,1972, IUCN v2018.2 Red -List species
 - Endemic faunal species
 - Species listed in CITES Appendix I & II

The detailed methodology for data collection for each faunal groups are presented here under,

Four Transects were laid to enumerate

Herpetofauna: In view of the activity pattern of herpetofauna, diurnal and nocturnal surveys were carried out in the study area. Amphibians and reptiles are known to inhabit various habitats and remain among leaf litter or under rocks and thus special efforts were taken to locate and study those using following methods:

- Direct Search Method: This method involves searching thoroughly the known habitats of amphibians and reptiles. Intensive searching was carried out in most of the habitats by removing stones, logs, among leaf litter and on trees. This is not a time constrained method so considerable and roughly equal amount of time was spent in most of the habitats.
- Searching streams: This method was utilized to study amphibians and certain reptiles
 which are closely associated with aquatic habitats. The surveys were conducted mostly
 during the night. A few streams coming in or close to the Transmission Line route were
 surveyed.
- Opportunistic records: The local nature enthusiasts are photographing amphibians and reptiles and posting these images on social networking sites. A few of them send these images for identification to us. This network of local contacts was used to understand the

herpetofauna diversity in the study area. The identifications of images taken by locals were confirmed by detailed observations.

Systematic Analysis: In the study area except a few frogs and lizards, there is less
ambiguity in the taxonomy of most of the known amphibians and reptiles. A through
taxonomic examination was carried out for most of the herpetofauna encountered during field
surveys. The identification was based on recent and historical publications.

Avifauna: In view of the activity of the Avifaunal species early morning and evening surveys were undertaken for enumerating species presence along the transmission line route and buffer area. Day surveys were undertaken to enumerate the soring birds. Following methods were implied

- Total or flock / block count method: Sridharan 1989¹, Bhupathy 1991², Thompson 2002)³ were adopted to assess the status of aquatic birds in dam /water bodies and point count method in the riparian forest along stream / river side (Gregory et al. 2002)⁴ of the project area. Birds in the riparian forests were recorded and enumerated within 50 m radius as part of point count.
- Point Count (Hutto et al. 1986⁵, Bibby et al. 1992⁶, Rosentod et al. 2002⁷, Salim and Rahul 2002⁸) and area search (Dieni and Jones 2002⁹) techniques were applied to assess the status of terrestrial birds. Point counts in the forest and allied habitats were made within 50 m radius, while in agriculture that include fallow lands, and scrub / grassland / barren area habitats, birds were recorded within 100 m radius.
- Additional effort was made to locate/identify the presence of any breeding/nesting sites / roosting sites of avifauna.
- Species identification was confirmed using the field guides for the avifaunal species

Mammals

Mammalian fauna was assessed at each sampling locations in different habitats through recording both direct and indirect evidences.

- Status and distribution of different mammalian fauna was quantified using direct count covering all the terrestrial habitats of the transmission line and Right of way areaadopting road count (Burnham et al. 1980¹⁰, Sale and Berkmuller 1988¹¹, Rodgers 1991¹²). These

Project No.: 0476969

¹ Sridharan, U. 1989. Comparative ecology of resident ducks in Keoladeo National Park, Bharatpur. Ph.D. Dissertation, University of Bombay, Bombay.

² Bhupathy, S. 1991. Blotch structure in individual identification of the Indian Python (Python molurus molurus Linn.) and its possible usage in population estimation. Journal of Bombay Natural History Society 87: 399–404. 85

³ Thompson, W.L. 2002.Towards reliable bird surveys: accounting for individuals present but not detected. The Auk. 119:18-25.

⁴ Gregory, R. D., Gibbons, D. W. and Donald, P. F. 2002. Bird census and survey techniques. Pp:17-56. In: Bird Ecology and Conservation: A Handbook of Techniques. (Eds.) W. J. Sutherland, I. Newton and R. E. Green. Oxford University Press, Oxford. 386 p.

⁵ Hutto, R.L., S.M. Pletsechel and P. Hendrick. 1986. A fixed radius point count method for non breeding season use. The Auk. 103: 593-602.

⁶ Bibby, C.J., N.D., Burgerss and D.A. Hill. 1992. Bird Census techniques, Academic Press, London.

⁷ Rosentod, S.S., Anderson, B.R., Giesenk. N, Leukerig, T., and Carter, M.F. 2002. Land bird counting techniques: Current practises and an alternative. The Auk 119(1):46-53

⁸ Salim, J. and Rahul, K. 2002. Field methods for bird surveys. Bombay Natural History Society; Department of Wildlife Sciences, Aligarh Muslim University, Aligarh, and world Pheasant association, South Asia Regional Office (SARO), New Delhi, India. 61 p.

⁹ Dieni, J.S. and Jones, S.L. 2002. A field test of the area search method for measuring breeding birds population. J. Field Ornithology, 73: 253-257.

¹⁰ Burnham, K.P., D.R. Andreson., and J.L. Laake. 1980. Estimation of density from line transect sampling of biological population. Wildl. Mongr. No. 72. The Wildlife Society, Washington D.C. 202p

¹¹ Sale, J.B. and K. Berkmuller, 1988. Manual of Wildlife Techniques for India. FAO, United Nation's India Establishment of Wildlife Institute of India Dehra Dun.

¹² Rodgers, W.A. 1991. Technique for Wildlife Census in India, A field Manual. Technical Manual. TM2. Wildlife Institute of India, Dehra Dun. India.81pp.

survey routes were the area between two sample points and the forest trails that traverse across different habitats and land uses.

- In addition indirect evidences (pellets, dungs, droppings, scats and other tracks and signs), were searched within circular (25m radius) plots at each sampling location, which provide relative abundance of presence of mammalian fauna (Thompson et al. 1989¹, Rodgers 1991, Henke and Knowlton 1995², Allen et al. 1996³).
- Further presence of different faunal species was also ascertained and substantiated by interviewing the local people with the pictures of the mammals from the field guides that could probably occur in the area and discussion with local experts.

Field Survey pictorial representation are provided in Figure 3.1

¹ Thommpson, I.D., Davidson, I.J., O' Donnell, S. and Brazeau, F. 1989. Use of track transect to measure the relative occurrence of some arboreal mammals in uncut forest and regeneration stands. Canadian Journal of Zoology. 67: 1816-1823.

² Henke, S.E. and knowlton, F.F. 1995. Techniques for estimating Coyote abundance. Pp; 71-78. In: Proceedings of the symposium: Coyotes in the southwest. Parks and wildlife Department: Austin, Texas.

³ Allen, L., Engeman, R. and Krupa, H. 1996 Evaluation of three relative abundance indices for assessing dingo population. Wildlife Research. 23 197-206.

Figure 3.1 Ecological Baseline Field Surveys

3.8 Floral Assessment

3.8.1 Vegetation Profile in Study Area

The vegetation¹ of the study area is a mosaic of tropical evergreen, tropical semi-evergreen and moist deciduous forests along with the lateritic plateaus or lateritic outcrops. The higher altitudinal area and the area along the riverbanks have tropical evergreen forests; while the area of lower altitude and more towards the plains comprises tropical moist deciduous type of forests. The tropical semi-evergreen forests are transitional between evergreen forests and moist deciduous forests. Beside these three forest types, lateritic plateaus or lateritic outcrops also occurs in patches in the area. The brief account of these vegetation types is given below and pictorial representation is provided in *Figure 3.2*.

West Coast Tropical Evergreen Forests

The evergreen type of forests is mainly seen on higher altitudes and along the riverbanks, because of the perennial sources of water within the study area. The tall and lofty components here are Actinodaphne angustifolia, Canarium strictum, Diospyros buxifolia, Diospyros pruriens, Garcinia gummi-gutta, Holigarna grahamii, Knema attenuata, Mammea suriga, Polyalthia fragrans, Syzygium laetum, Vitex altissima, etc. The middle-sized trees are composed of Litsea coriacea, Aporusa cardiosperma, Antidesma acidum, Blachia andamanica subsp. denudata, Ixora nigricans, Psychotria dalzellii, Memecylon terminale, Dracaena terniflora. The trees found in the riparian forests are Calophyllum calaba, Lophopetalum wightianum and Hydnocarpus pentandrus. Arenga wightii, a common palm can be seen near streams and rivers. Along the rivers shrubs like Melastoma malabathricum and Wendlandia thyrsoidea can also be seen. Some woody climbers or lianas found in this type of forest are Entada rheedei, Gnetum ula, Chonemorpha fragrans, Ancistrocladus heyneanus, Luvunga eleutherandra, Paramignya monophylla and Toddalia asiatica. Undergrowth is formed by shrubby species like Dracaena terniflora, Ixora coccinea and herbaceous species of families Cyperaceae, Zingiberaceae, Commelinaceae and Asteraceae.

Epiphytic plants in evergreen forests are restricted to family Orchidaceae (belonging to the genera like *Aerides, Bulbophyllum, Cymbidium, Eria* and *Vanda*) and Apocynaceae (*Hoya wightii*). Other epiphytes or lithophytes like *Utricularia striatula* and *Argostemma courtallense* are also found in the crevices of rocks and on trunks of tall trees where there is little soil and moisture. Common epiphytic ferns growing on trees are *Drynaria quercifolia* and *Pyrrosia adnascens*. The herbaceous flora includes *Costus speciosus, Impatiens* sp., *Phyllanthus* sp., *Urena lobata, Gynura nitida*, etc.

West Coast Semi-Evergreen Forests

Project No.: 0476969

These forests are transitional between moist deciduous forests and evergreen forests and found in the upper parts of ghats and lower elevations near stream beds. The semi-evergreen formations are seen with isolated patches of evergreen forests in ravines and valleys.

The following two edaphic types are found depending on local variation in soil and moisture within semi-evergreen forests.

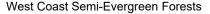
Cane Breaks- These occur on the slopes of the ghat region. *Calamus thwaitesii* is more common in lower elevation areas. *Calamus pseudotenuis* is more common on higher elevations.

Lateritic Semi-evergreen forests- These forests are distributed over elevations above 200 m. Important species found in these areas are Actinodaphne angustifolia, Canthium dicoccum, Macaranga peltata, Careya arborea, Lagerstroemia lanceolata, Pterospermum diversifolium, etc. The second storey includes Glochidion hohenackeri, Olea dioica, Ixora nigricans, Celtis timorensis, etc.

-

¹ Datar, M. N., & Lakshminarasimhan, P. (2013). *Flora of Bhagwan Mahavir (Molem) National Park and Adjoinings, Goa.* Botanical Survey of India

The shrubs found in undergrowth are Chassalia curviflora var. ophioxyloides, Glycosmis pentaphylla, Maesa indica, Leea asiatica, Leea indica, Crotalaria retusa and Gnidia glauca. These species are often associated with climbing shrubs like Connarus monocarpus and Clematis gouriana. Some of the common herbs include Impatiens balsamina, Cyperus sp., Asystasia dalzelliana, Cynarospermum asperrimum, Lindernia sp., and grasses such as Apluda mutica, Eragrostis unioloides, Garnotia arboreum and Ischaemum sp.


Moist Deciduous Forests- Most of the forests in the study area fall in this category. This type of forest is mostly found in the plains between the altitudes from 80 to 200 m. Important floristic elements found in these areas are Careya arborea, Dillenia pentagyna, Grewia tiliifolia, Lannea coromandeliaca, Terminalia sp., Schleichera oleosa, Xylia xylocarpa, Haldina cordifolia, etc. Other trees found in moist deciduous forests are Falconeria insignis, Wrightia sp., Flacourtia montana, etc. The dominant families are Rubiaceae (Ixora, Mitragyna), Bignoniaceae (Heterophragma, Stereospermum, Oroxylum) Euphorbiaceae (Mallotus, Glochidion, Antidesma, Briedelia) and Leguminosae (Dalbergia, Acacia, Albizia). These elements are sometimes intermixed with species of Dendrocalamus and Bambusa. In the riparian patches, Hopea ponga and Crateva magna are seen. The shrubs or second storey of trees includes Catunaregam spinosa, Flemingia strobilifera, Canthium sp., Strychnos nux-vomica, Meyna laxiflora, Ziziphus xylopyrus, Xantolis tomentosa. Common epiphyte, especially on most of the Terminalia sp. is Rhynchostylis retusa. Aerides crispa and Aerides maculosa are also found epiphytic on many trees.

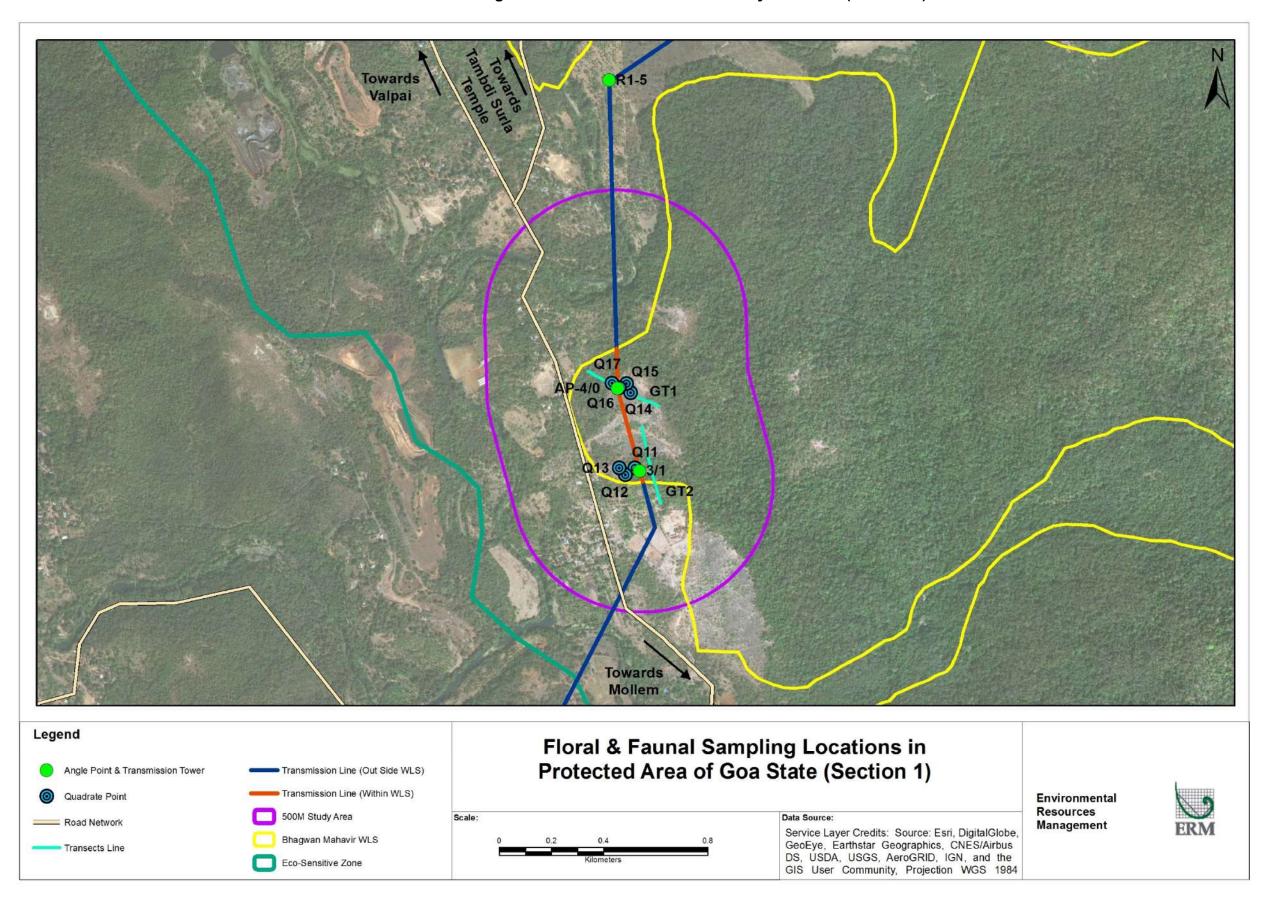
The ground flora in forest clearings and exposed situations comprises members of Leguminosae: Papilionoideae (*Geissaspis, Crotalaria, Indigofera, Alysicarpus, Desmodium, Tadehagi*), Acanthaceae (*Justicia, Lepidagathis, Rungia*), Rubiaceae (*Spermacoce, Neanotis, Hedyotis*), Euphorbiaceae (*Euphorbia*), Asteraceae (*Blumea, Elephantopus, Senecio, Phyllocephalum*) and Lamiaceae (*Leucas, Platostoma, Pogostemon, Hyptis*). In open areas climbers and twiners of Convolvulaceae, Leguminosae: Papilionoideae, Smilacaceae, Ranunculaceae have been recorded.

The Plateaus:- Lateritic plateaus or lateritic outcrops are of common occurrence in Western Ghats of Goa. They are very specific as far as their floristic composition and geology are concerned. These outcrops are dry and barren during most of the year, but after the arrival of monsoon many tiny plants start appearing on them. *Utricularia lazulina, Utricularia uliginosa* and *Utricularia reticulata* are the common insectivorous species on the outcrops. In addition, *Eriocaulon* sp., *Lindernia ciliata, Impatiens minor, Fimbristylis* sp., *Rhamphicarpa longiflora* and *Jansenella griffithiana* are also seen on plateaus. Most of the vegetation on plateaus sustain till September only.

Figure 3.2 Vegetation Types in the Study Area

Moist Deciduous Forests

Cane Breaks-West Coast Semi-Evergreen Forests


Tambdi Surla Waterfall- Lateritic Semi-evergreen forests

Following quadrates (Refer *Table 3.3*) were laid in the core and buffer zone of the Transmission line corridor. The quadrates location is shown in *Figure 3.3* and *Figure 3.4*

Table 3.3 Details of the Quadrate Surveyed and its Distribution

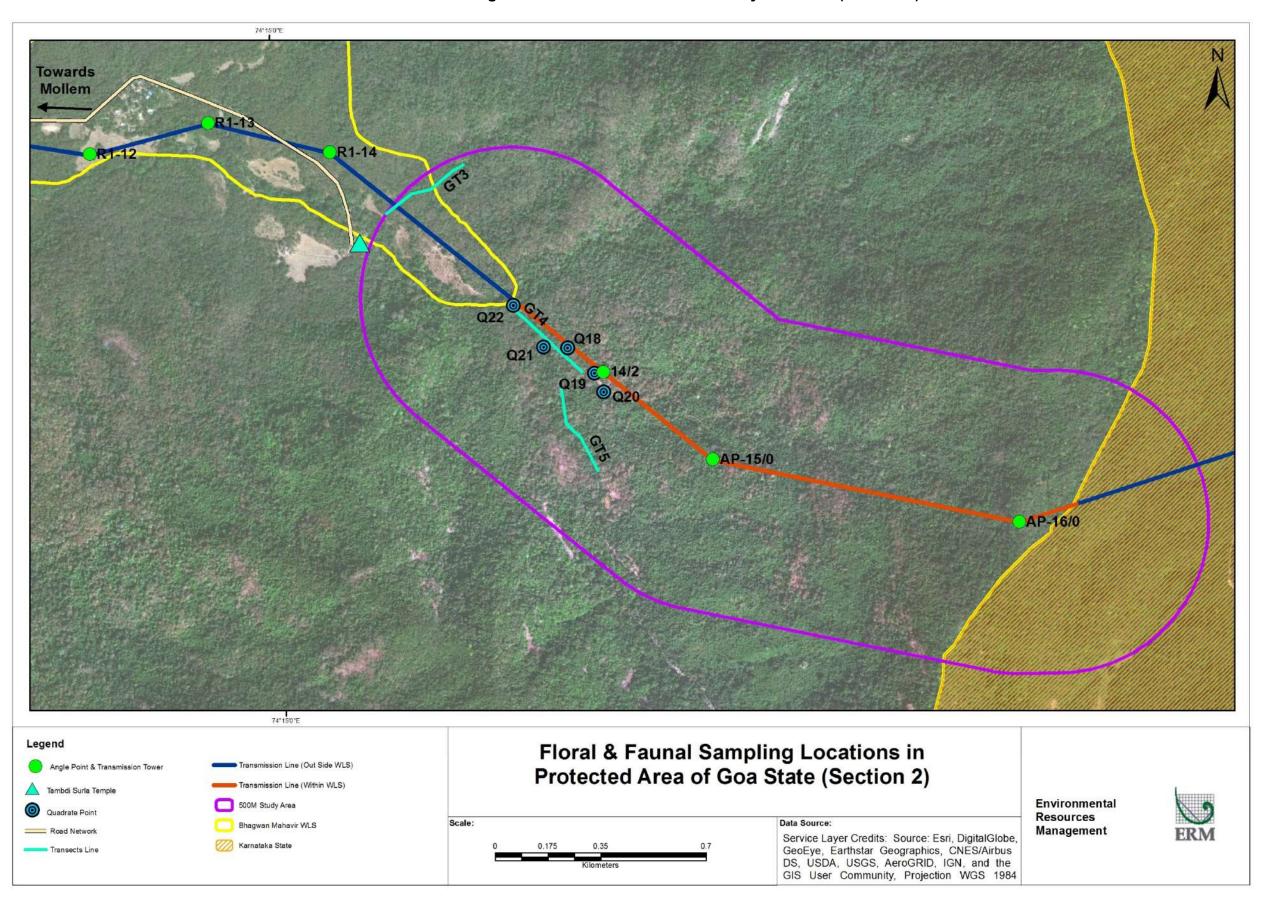

Quadrates in Core Zone			Quadrates in Buffer Zone		
Q11:	43 P 413994.88 m E; 1704898.54 m N	Lateritic Plateau Vegetation	Q12:	43 P 413956.80 m E 1704872.58 m N	Moist Deciduous Forests
Q16:	43 P 413943.56 m E 1705206.48 m N	Lateritic Plateau Vegetation	Q13:	43 P 413935.33 m E 1704899.98 m N	Lateritic Plateau Vegetation
Q17:	43 P 413916.26 m E 1705225.60 m N	Moist Deciduous Forests	Q14:	43 P 413986.83 m E 1705186.19 m N	Lateritic Plateau Vegetation
Q18:	43 P 420489.54 m E 1706658.67 m N	Moist Deciduous Forests	Q15:	43 P 413971.41 m E 1705222.75 m N	Moist Deciduous Forests
Q19:	43 P 420576.37 m E 1706572.20 m N	West Coast Tropical Evergreen Forests	Q20:	43 P 420605.24 m E 1706509.50 m N	West Coast Tropical Evergreen Forests
Q22:	43 P 420314.00 m E 1706804.00 m N	Moist Deciduous Forests	Q21:	43 P 420410.80 m E 1706663.15 m N	West Coast Tropical Evergreen Forests

Figure 3.3 Floral and Faunal Survey locations (Section 1)

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

Figure 3.4 Floral and Faunal Survey locations (Section 2)

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

3.8.2 Taxonomic Status-Species Richness

In core zone of Goa, sampling was done in only one vegetation type i.e forest. The diversity is represented by 19 families 26 genera and 27 species.

In buffer zone two vegetation types were surveyed yielding 11 families 14 genera and 15 species from forests and 5 families 7 genera and 7 species from plateaus. Overall diversity is represented by 28 families 42 genera and 45 species. (Refer *Table 3.4*)

Table 3.4 Taxonomic Status of Flora along the Proposed Transmission line route

Taxa	Core Zone		СТ		Buffer Zone			SAT	
	FT1 (Forests)	FT2	FT3		FT1 (Forests)	FT2 (Plateaus)	FT3		
Family	19	0	0	19	11	5	0	16	28
Genus	26	0	0	26	14	7	0	21	42
Species	27	0	0	27	15	7	0	22	45

Note1: FT1- West Coast Semi-Evergreen Forests, FT2-Lateritic plateaus; CT-Core Zone Total, BT-Buffer Zone Total, SAT-Study Area Total

3.8.3 Status of Growth Forms

Various growth forms studied are discussed hereunder;

- Tree: A woody, perennial plant, having a single trunk (bole) with multiple branches.
- Shrub: A woody, perennial plant, generally smaller than a tree, and with several stems arising from the ground level.
- **Herb:** A non-woody plant other than grasses.
- **Grass:** Plant belonging to the grass families Poaceae, Cyperaceae and Juncaceae.
- Pteridophyte: The vascular plant (with xylem and phloem) that disperses spores
- Climber: Plant, which climb up trees and other tall objects.

Study area is represented by twenty five (25) trees species; three (3)species of shrubs and eleven (11) species of lianas/climbers in forests and four (4) species of herbs and three (3) species of grasses. Details are provided in *Table 3.5.*

Table 3.5 Status of Floral Growth forms along the Proposed Transmission Line Route

Growth forms	Core Zone			СТ	В	Buffer Zone			SAT
	FT1(Forest)	FT2	FT3		FT1(Forests)	FT2(Plateaus)	FT3		
Tree	15	0	0	15	10	0	0	10	25
Shrub	3	0	0	3	0	0	0	0	3
Herb	0	0	0	0	0	4	0	4	4
Grass	0	0	0	0	0	3	0	3	3
Climber	9	0	0	9	5	0	0	5	11
Total Species	27	0	0	27	15	7	0	22	45

Note1: FT1- West Coast Semi-Evergreen Forests, FT2-Lateritic plateaus; CT-Core Zone Total, BT-Buffer Zone Total, SAT-Study Area Total

Note2: Lianas are treated here under shrubs and climbers based on their habit.

3.8.1 Status of Tree species

A total of 38 trees and liana species were recorded from study area. Based on IVI values Lagerstroemia microcarpa and Memecylon umbellatum were found to be dominant amongst trees, while amongst lianas Getonia floribunda was dominant. The details are presented in **Table 3.6.**

Table 3.6 Important Value Index (IVI) and Rank Order of Tree Species and lianas in Study Area

S. N.	Tree Species	RF (%)	RDN (%)	RA (%)	IVI	RO
Core 2	Zone					
1	Allophylus cobbe (L.) Raeusch.	2.63	1.61	2.37	6.62	10
2	Beilschmiedia dalzellii (Meisn.) Kosterm.	5.26	3.23	2.37	10.86	8
3	Calamus thwaitesii Becc.	2.63	3.23	4.74	10.60	9
4	Careya arborea Roxb.	2.63	1.61	2.37	6.62	10
5	Catunaregam spinosa (Thunb.) Tirveng.	2.63	1.61	2.37	6.62	10
6	Combretum latifolium Blume	2.63	1.61	2.37	6.62	10
7	Dalbergia horrida (Dennst.) Mabb.	7.89	4.84	2.37	15.10	6
8	Dillenia pentagyna Roxb.	5.26	6.45	4.74	16.46	5
9	Diploclisia glaucescens (Blume) Diels	2.63	3.23	4.74	10.60	9
10	Embelia tsjeriam-cottam (Roem. & Schult.) A. DC.	2.63	1.61	2.37	6.62	10
11	Flacourtia montana J. Graham	2.63	1.61	2.37	6.62	10
12	Getonia floribunda Roxb.	7.89	6.45	3.16	17.51	4
13	Hopea ponga (Dennst.) Mabb.	2.63	1.61	2.37	6.62	10
14	Ixora brachiata Roxb.	2.63	1.61	2.37	6.62	10
15	Lagerstroemia microcarpa Wight	2.63	9.68	14.23	26.54	2
16	Leea indica (Burm. f.) Merr.	2.63	1.61	2.37	6.62	10
17	Lepisanthes tetraphylla (Vahl) Radlk.	2.63	3.23	4.74	10.60	9
18	Memecylon umbellatum Burm. f.	5.26	9.68	7.11	22.06	3
19	Moullava spicata (Dalzell) Nicolson	2.63	1.61	2.37	6.62	10
20	Olea dioica Roxb.	2.63	1.61	2.37	6.62	10
21	Schleichera oleosa (Lour.) Oken	2.63	1.61	2.37	6.62	10
22	Tabernaemontana heyneana Wall.	5.26	4.84	3.56	13.66	7
23	Terminalia bellirica (Gaertn.) Roxb.	2.63	3.23	4.74	10.60	9
24	Terminalia elliptica Willd.	7.89	16.13	7.91	31.93	1
25	Ventilago denticulata Willd.	2.63	1.61	2.37	6.62	10
26	Xantolis tomentosa (Roxb.) Raf.	5.26	3.23	2.37	10.86	8
27	Ziziphus rugosa Lam.	2.63	1.61	2.37	6.62	10
Buffer	zone	RF (%)	RDN (%)	RA (%)	IVI	RO
1	Albizia odoratissima (L. f.) Benth.	6.25	2.50	2.94	11.69	4
2	Bombax ceiba L.	6.25	2.50	2.94	11.69	4

S. N.	Tree Species	RF (%)	RDN (%)	RA (%)	IVI	RO
3	Calamus thwaitesii Becc.	12.50	30.00	17.65	60.15	2
4	Derris heyneana (Wight & Arn.) Benth.	6.25	2.50	2.94	11.69	4
5	Dillenia pentagyna Roxb.	6.25	2.50	2.94	11.69	4
6	Diospyros paniculata Dalzell	6.25	5.00	5.88	17.13	3
7	Diospyros pruriens Dalzell	6.25	5.00	5.88	17.13	3
8	Grewia tiliifolia Vahl	6.25	2.50	2.94	11.69	4
9	Holigarna grahamii (Wight) Kurz	6.25	2.50	2.94	11.69	4
10	Hopea ponga (Dennst.) Mabb.	6.25	30.00	35.29	71.54	1
11	Lophopetalum wightianum Arn.	6.25	2.50	2.94	11.69	4
12	Paramignya monophylla Wight	6.25	2.50	2.94	11.69	4
13	Pterospermum diversifolium Blume	6.25	2.50	2.94	11.69	4
14	Sterculia guttata Roxb. ex DC.	6.25	2.50	2.94	11.69	4
15	Ventilago denticulata Willd.	6.25	5.00	5.88	17.13	3
Study	Area	C-IVI	B-IVI	TOTAL		
1	Albizia odoratissima (L. f.) Benth.		2.94	2.94		
2	Allophylus cobbe (L.) Raeusch.	6.62		6.62		
3	Beilschmiedia dalzellii (Meisn.) Kosterm.	10.86		10.86		
4	Bombax ceiba L.		2.94	2.94		
5	Calamus thwaitesii Becc.	10.60	17.65	28.25		
6	Careya arborea Roxb.	6.62		6.62		
7	Catunaregam spinosa (Thunb.) Tirveng.	6.62		6.62		
8	Combretum latifolium Blume	6.62		6.62		
9	Dalbergia horrida (Dennst.) Mabb.	15.10		15.10		
10	Derris heyneana (Wight & Arn.) Benth.		2.94	2.94		
11	Dillenia pentagyna Roxb.	16.46	2.94	19.40		
12	Diospyros paniculata Dalzell		5.88	5.88		
13	Diospyros pruriens Dalzell		5.88	5.88		
14	Diploclisia glaucescens (Blume) Diels	10.60		10.60		
15	Embelia tsjeriam-cottam (Roem. & Schult.) A. DC.	6.62		6.62		
16	Flacourtia montana J. Graham	6.62		6.62		
17	Getonia floribunda Roxb.	17.51		17.51		
18	Grewia tiliifolia Vahl		2.94	2.94		
19	Holigarna grahamii (Wight) Kurz		2.94	2.94		
20	Hopea ponga (Dennst.) Mabb.	6.62	35.29	41.91		
21	Ixora brachiata Roxb.	6.62		6.62		
22	Lagerstroemia microcarpa Wight	26.54		26.54		
23	Leea indica (Burm. f.) Merr.	6.62		6.62		

S. N.	Tree Species	RF (%)	RDN (%)	RA (%)	IVI	RO
24	Lepisanthes tetraphylla (Vahl) Radlk.	10.60		10.60		
25	Lophopetalum wightianum Arn.		2.94	2.94		
26	Memecylon umbellatum Burm. f.	22.06		22.06		
27	Moullava spicata (Dalzell) Nicolson	6.62		6.62		
28	Olea dioica Roxb.	6.62		6.62		
29	Paramignya monophylla Wight		2.94	2.94		
30	Pterospermum diversifolium Blume		2.94	2.94		
31	Schleichera oleosa (Lour.) Oken	6.62		6.62		
32	Sterculia guttata Roxb. ex DC.		2.94	2.94		
33	Tabernaemontana heyneana Wall.	13.66		13.66		
34	Terminalia bellirica (Gaertn.) Roxb.	10.60		10.60		
35	Terminalia elliptica Willd.	31.93		31.93		
36	Ventilago denticulata Willd.	6.62	5.88	12.50		
37	Xantolis tomentosa (Roxb.) Raf.	10.86		10.86		
38	Ziziphus rugosa Lam.	6.62		6.62		

Notes: RF- Relative Frequency, RDN- Relative Density, RDO- Relative Dominance, C-IVI- Core Important Value Index, B-IVI-Buffer Important Value Index, RO- Rank Order (based on the relative frequency of each species, highest being 1 and lowest being 5).

3.8.2 Status of Annuals (Herbs and Grasses species)

Total of seven species were recorded from lateritic plateaus of buffer zones. Of these seven species three are grasses. Based on IVI values *Eriocaulon eurypeplon* and *Glyphochloa henryi* are dominant species. The details are presented in *Table 3.7.*

Table 3.7 Important Value Index (IVI) and Rank Order of Herbs and Grass Species

Herb Species	RF (%)	RDN (%)	RA (%)	IVI	RO
Eriocaulon eurypeplon Koern.	20	220.8	47.52	288.325	1
Lepidagathis prostrata Dalzell	20	16	3.444	39.444	4
<i>Glyphochloa henryi</i> Janarth., V.C.Joshi, S.Rajkumar	20	102.8	22.126	144.927	2
Geissaspis tenella Benth.	16	1.6	0.431	18.031	5
Murdannia semiteres (Dalzell) Santapau	12	1.2	0.431	13.631	6
Dimeria sp.	8	46.8	25.183	79.983	3
Indopoa paupercula (Stapf) Bor ex Ramamoorthy	4	0.8	0.861	5.661	7

3.8.3 Status of Medicinal Plants

The medicinal plants observed within transmission line route are detailed in the Table 3.8 and represented in Figure 3.5.

Medicinal Plants recorded from Transmission Line Route Table 3.8

S.N.	Species	Habit	CZ	BZ	Medicinal use
1	Bombax ceiba L.	Tree		@	Skincare
2	Catunaregam spinosa (Thunb.) Tirveng.	Shrub	@		Diarrhoea and dysentery
3	Embelia tsjeriam-cottam (Roem. & Schult.) A. DC.	Shrub	@		Vermifuge
4	Ixora brachiata Roxb.	Tree	@		Antimicrobial
5	Moullava spicata (Dalzell) Nicolson	Liana	@		Pneumonia, skin diseases
6	Schleichera oleosa (Lour.) Oken	Trees	@		skin diseases
7	Tabernaemontana heyneana Wall.	Tree	@		Antibacterial
8	Terminalia bellirica (Gaertn.) Roxb.	Tree	@		In Triphala
		Total	7	1	

Source: Datar and Lakshminarasimhan, 2013

Notes: CZ- Core Zone, BZ- Buffer Zone, CS- Common Species, @-Presence

Medicinal Plants recorded from Transmission Line Route Figure 3.5

Catunaregam spinos

Moullava spicata

3.8.4 Status of Threatened Plants

In study area six (06) species were found to be threatened of which four (04) arboreal species occur in forests and two (02) herbaceous species were observed growing on lateritic outcrops. The species are listed in Table 3.9 and represented in Figure 3.6

Table 3.9 **Threatened Species**

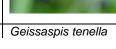
S. N.	Name of species	Habit	Zones (Core Zone/ Buffer Zone)	IUCN,V2018.2
1	Diospyros paniculata Dalzell	Tree	BZ	VU
2	Holigarna grahamii (Wight) Kurz	Tree	BZ	LC
3	Hopea ponga (Dennst.) Mabb.	Climber	CZ,BZ	EN
4	Tabernaemontana heyneana Wall.	Tree	CZ,BZ	NT
5	Eriocaulon eurypeplon Koern.	Herb	CZ	LC
6	Geissaspis tenella Benth.	Herb	CZ	LC

Notes: CZ- Core Zone, BZ- Buffer Zone, Source-Secondary Data

Source: Nayar, T. S., Garden, J. N. T. B., Research Institute, Beegam, A. R., & Sibi, M. (2014). Flowering plants of the Western Ghats, India. Jawaharlal Nehru Tropical Botanic Garden and Research Institute.

Threatened Species Figure 3.6

3.8.5 Status of Endemic Species


The Western Ghats region have higher endemicity within floral species. A total of 12 endemic plants were reported of which four (04) are herbaceous; three (03) are climbers and five (05) are tree species. The endemic species are listed in Table 3.10 and presented in Figure 3.7. These species are endemic to Western Ghats of India.

Endemic Species Table 3.10

S. N.	Name of species	Family	Local Name	Habit	Zones
IV.			Name		(CZ, BZ)
1	Derris heyneana (Wight & Arn.)Benth.	Leguminosae	-	С	BZ
2	Diospyros paniculata Dalzell	Ebenaceae	-	Т	BZ
3	Eriocaulon eurypeplon Koern.	Eriocaulaceae	-	Н	
4	Flacourtia montana J. Graham	Flacourtiaceae	Chaper	Т	CZ
5	Geissaspis tenella Benth.	Leguminosae	-	Н	
6	Glyphochloa henryi Janarth., V.C.Joshi , S.Rajkumar	Poaceae	-	Н	
7	Holigarna grahamii (Wight) Kurz	Anacardiaceae	-	Т	BZ
8	Hopea ponga (Dennst.) Mabb.	Dipterocarpaceae	Kaushi	С	CZ
9	Indopoa paupercula (Stapf) Bor ex Ramamoorthy	Poaceae	-	Н	
10	Ixora brachiata Roxb.	Rubiaceae	-	Т	CZ
11	Moullava spicata (Dalzell) Nicolson	Leguminosae	Shamachi vel	С	CZ
12	Tabernaemontana heyneana Wall.	Apocynaceae	Nagkuda	Т	CZ

Figure 3.7 **Endemic Species**

3.8.6 Overall Species Richness

The study area is represented by 38 species 36 genera and 25 families while associated 60 species belong to 55 genera and 37 family. Overall diversity comprises of 60 species 55 genera and 37 families. The details are presented in *Table 3.11*.

Table 3.11 Overall Species Richness of Flora along the transmission line route

Parameters	Study Area List	SS	Overall
Family	25	37	37
Genus	36	55	55
Species	38	60	60

Notes: SS-taxa which were documented as associated species. Study area list contains taxa documented in quadrats.

3.8.7 Species Diversity and Species Evenness

The species diversity is represented by Shannon Weiner Diversity Index¹ and Simpson Diversity Index² along with Species evenness from the data collected from the study area. The species diversity and species evenness are presented in *Table 3.12*.

Table 3.12 Species Diversity and Species Evenness

Species	Core Zone	Buffer Zone
Shannon Weiner Index of Diversity (H')	2.99	2.094
Simpson Index of Diversity	0.373	0.432
Species Evenness	0.907	0.773

Project No.: 0476969

¹ Shannon, C. E. (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423 and 623–656.

² Simpson, E. H. (1949). "Measurement of diversity". Nature. 163: 688.

3.8.8 Overall Species list

The overall species list is presented as hereunder in *Table 3.13*;

Table 3.13 Overall List of Flora (Botanical name, Family, Local name, Locality, Local name, Growth form, Vegetation/Forest type) along the Proposed Transmission line

S.N.	Species name	Family	Habitat	Habit	Threatened status
1	Aerides maculosa Lindl.	Orchidaceae	Forest	Epiphytic	Endemic
2	Albizia odoratissima (L. f.) Benth.	Leguminosae	Forest	Tree	
3	Allophylus cobbe (L.) Raeusch.	Sapindaceae	Forest	Tree	
4	Beilschmiedia dalzellii (Meisn.) Kosterm.	Lauraceae	Forest	Tree	
5	Bombax ceiba L.	Malvaceae	Forest	Tree	
6	Calamus thwaitesii Becc.	Arecaceae	Forest	Liana	
7	Careya arborea Roxb.	Lecythidaceae	Forest	Tree	
8	Catunaregam spinosa (Thunb.) Tirveng.	Rubiaceae	Forest	Tree	
9	Chamaecrista absus (L.) H. S. Irwin & Barneby	Leguminaceae	Forest	Herb	
10	Cissus repanda Vahl	Vitaceae	Forest	Shrub	
11	Combretum latifolium Blume	Combretaceae	Forest	Liana	
12	Dalbergia horrida (Dennst.) Mabb.	Leguminosae	Forest	Liana	
13	Derris heyneana (Wight & Arn.) Benth.	Leguminosae	Forest	Liana	Endemic
14	Dillenia pentagyna Roxb.	Dilleniaceae	Forest	Tree	
15	Dimeria sp.	Poaceae	Plateau	Herb	
16	Dioscorea bulbifera L.	Dioscoriaceae	Forest	Climber	
17	Diospyros paniculata Dalzell	Ebenaceae	Forest	Tree	Endemic
18	Diospyros pruriens Dalzell	Ebenaceae	Forest	Tree	
19	Diploclisia glaucescens (Blume) Diels	Menispermaceae	Forest	Liana	
20	Embelia tsjeriam-cottam (Roem. & Schult.) A. DC.	Myrsinaceae	Forest	Tree	
21	Eriocaulon dalzellii Koern.	Eriocaulaceae	Plateau	Herb	Endemic
22	Eriocaulon eurypeplon Koern.	Eriocaulaceae	Plateau	Herb	Endemic
23	Flacourtia montana J. Graham	Flacourtiaceae	Forest	Tree	Endemic
24	Geissaspis tenella Benth.	Leguminaceae	Plateau	Herb	Endemic
25	Getonia floribunda Roxb.	Combretaceae	Forest	Liana	
26	Glyphochloa henryi Janarth., V.C.Joshi, S.Rajkumar	Poaceae	Plateau	Herb	Endemic

S.N.	Species name	Family	Habitat	Habit	Threatened status
27	Grewia nervosa (Lour.) Panigrahi	Tiliaceae	Forest	Shrub	
28	Grewia tiliifolia Vahl	Malvaceae	Forest	Tree	
29	Holigarna grahamii (Wight) Kurz	Anacardiaceae	Forest	Tree	Endemic
30	Hopea ponga (Dennst.) Mabb.	Dipterocarpaceae	Forest	Tree	Endemic
31	Indigofera dalzellii T. Cooke	Leguminaceae	Plateau	Herb	Endemic
32	Indopoa paupercula (Stapf) Bor ex Ramamoorthy	Poaceae	Plateau	Herb	Endemic
33	Ischaemum semisagittatum Roxb.	Poaceae	Plateau	Herb	
34	Ixora brachiata Roxb.	Rubiaceae	Forest	Tree	Endemic
35	Lagerstroemia microcarpa Wight	Lythraceae	Forest	Tree	
36	Leea indica (Burm. f.) Merr.	Leeaceae	Forest	Tree	
37	Lepidagathis prostrata Dalzell	Acanthaceae	Plateau	Herb	
38	Lepisanthes tetraphylla (Vahl) Radlk.	Sapindaceae	Forest	Tree	
39	Lophopetalum wightianum Arn.	Celastraceae	Forest	Tree	
40	Memecylon umbellatum Burm. f.	Melastomataceae	Forest	Tree	
41	Moullava spicata (Dalzell) Nicolson	Leguminosae	Forest	Liana	Endemic
42	Murdannia semiteres (Dalzell) Santapau	Commelinaceae	Plateau	Herb	
43	Olea dioica Roxb.	Oleaceae	Forest	Tree	
44	Ophiorrhiza rugosa Wall. var. prostrata (D. Don) Deb & D. C. Monda	Rubiaceae	Forest	Herb	
45	Paramignya monophylla Wight	Rutaceae	Forest	Tree	
46	Pterospermum diversifolium Blume	Malvaceae	Forest	Tree	
47	Rhamphicarpa longiflora (Arn.) Benth.	Schrophulariaceae	Plateau	Herb	
48	Rhynchostylis retusa (L.) Blume	Orchidaceae	Forest	Epiphtic	
49	Schleichera oleosa (Lour.) Oken	Sapindaceae	Forest	Tree	
50	Smithia salsuginea Hance	Legumiaceae	Plateau	Herb	Endemic
51	Sterculia guttata Roxb. ex DC.	Sterculiaceae	Forest	Tree	
52	Strychnos nux-vomica L.	Loganiaceae	Forest	Tree	
53	Tabernaemontana heyneana Wall.	Apocynaceae	Forest	Tree	Endemic
54	Tephrosia coccinea Wall.	Leguminaceae	Forest	Herb	Endemic
55	Terminalia bellirica (Gaertn.) Roxb.	Combretaceae	Forest	Tree	
56	Terminalia elliptica Willd.	Combretaceae	Forest	Tree	
57	Ventilago denticulata Willd.	Rhamnaceae	Forest	Liana	

S.N.	Species name	Family	Habitat	Habit	Threatened status
58	Xantolis tomentosa (Roxb.) Raf.	Sapotaceae	Forest	Tree	
59	Ziziphus oenoplia (L.) Mill.	Rhamnaceae	Forest	Shrub	
60	Ziziphus rugosa Lam.	Rhamnaceae	Forest	Tree	

3.9 Faunal Assessment

Faunal Assessments were focused on the faunal groups such as Herpetofauna (Amphibians and Reptiles), Avifauna and Mammals. Details of these groups are discussed in below sections.

The faunal species survey were made along the transects locations mostly around 50 m width on either side. The location of the transects are discussed as below and presented in *Table 3.14* below

Transect No. Habitats

Section 1: GT1 Intersecting the Lateritic Plateau and Moist Deciduous Forest at Tower LocationAP-4/0

Section 1: GT2 Running parallel to transmission line adjacent to Tower location 3/1 between the Lateritic Plateau and Moist Deciduous Forest

Section 2: GT3 Intersecting the Transmission line between Tower location R1-14 and 14/2 within the buffer area

Section 2: GT4 Runs parallel to the transmission line in Moist Deciduous Forest

Table 3.14 Transects for Faunal Survey

The location of the transects are provided in Figure 3.3 and Figure 3.4.

3.9.1 Herpetofauna

Section 2: GT5

Most of the amphibians and reptiles are generalist and occur in various habitats and a few are habitat specific. There are burrowing, terrestrial, aquatic and arboreal species of amphibians and reptiles. Most of the amphibians and a few reptiles are only active during the monsoon season and a few species are active throughout the year.

Runs diverging from the transmission line in the buffer area

The burrowing species mostly occupy habitats with good canopy cover and thus confined to the forests. Although there are a few exceptions. Most of the burrowing herpetofauna is thus active during monsoon season. The terrestrial species mostly confined to forest floor and are seen among leaf litter, under logs or rocks. These species are considerably sturdy and are seen throughout the year. Aquatic species are mostly seen close to streams, pools and rivers and are solely depend on these water sources for majority of their activities. Due to this specific requirement, they are mostly encountered during monsoon season. Many aquatic amphibians utilize stagnant pools and a few are only seen in the forest streams. The arboreal forms are also mostly seen in the forest habitats. Arboreal reptiles are seen throughout the year but amphibians and mostly seen during rainy season.

Many of the endemic herpetofauna is confined to natural and less disturbed forest habitats. The species which are widely distributed are mostly seen in the disturbed habitats as well.

Past Records of Herpetofauna from the region

Western Ghats of Goa -Brief Details

The Western Ghats region in Goa, although rich in floral and faunal diversity, the herpetofauna is poorly studied. Except a few anecdotal studies describing new species in the recent past, this region is grossly understudied for the amphibians and reptiles. Most of the present day understanding of the herpetofauna of this region is based on historical reports. In the last two decades, a few new species of amphibians and reptiles were described from the Western Ghats region of Goa. This region is a northernmost distribution limit for a few species of herpetofauna viz. *Ophiophagus hannah* (King cobra), *Hypnale hypnale* (Hump-nosed pit viper) and *Draco dussumieri* (Draco).

All these species are commonly seen in Goa but are uncommon or absent in the adjacent Western Ghats region of Maharashtra. Another endemic and Engangered species *Pedostibes tuberculosus* (Malabar tree toad) is also commonly seen in a few pockets in the Western Ghats region of Goa. Two species of caecilians *Gegeneophis goaensis* and *G. pareshi*, two species are frogs *Minervarya gomantaki* and *M. goemchi* and one species of lizard *Cnemaspis goaensis* are presently only known from the Western Ghats region of Goa.

Habitats in Transmission Line Route

Forest Near Tambdi Surla

The habitat near Tambdi Surla in Goa is mostly composed of tropical evergreen to tropical semievergreen forest over an elevation gradient. The forest at the lower altitude is slightly disturbed due to human interference but on higher reaches it is pristine. There are series of perennial streams in this patch and many of them were active during the study period. Some of these smaller streams forms cascades on higher riches and on lower altitude they are open and wider. Due to the presence of cane, thick undergrowth and steep terrain, a few places are inaccessible in this landscape. The pristine, less disturbed natural forest, rich undercover and presence of perennial streams are ideal requirements for the herpetofauna. The habitat in Goa is thus rich due to above mentioned ideal requirements and supports important herpetofaunal elements like *Ophiophagus hanna* (King cobra), *Python bivattatus* (Burmese python) and *Pedostibes tuberculosus* (Malabar tree toad).

Lateritic plateau

The other patch in the study area is a lateritic plateau, surrounded by thick vegetation. These plateaus appear barren during dry seasons but in monsoon they are the abode to many species of herpetofauna. They are also the breeding ground for many endemic amphibians and reptiles. These plateaus are highly exposed due to the lack of tree cover and appear less productive. But they are abode to many dry adapted species of herpetofauna like Saw-scaled viper, *Echis carinatus* and *Ophisops*. Two recently described species of frogs *Minervarya gomantaki* and *M. cepfi* was also predominantly seen on these lateritic plateaus.

Status of Amphibians

Amphibians are poikilothermic vertebrates, primarily depend of fresh water for their survival. Hence major activities of many amphibians and confined to rainy season. Although this rapid assessment survey was conducted after the rainy season we reported eight species of amphibians. Based on secondary reports and personal observations in the past, about 25 species of amphibians are reported from this region (Table 3.15).

The species commonly seen in the study area were Amboli bush frog, *Pseudophilautus amboli* and Netravali leaping frog, *Indirana salelkari*. Both these species were seen in the forest. Amboli bush frog was one of the commonest amphibians seen among dry leaf litter during the daytime also. The juveniles were also observed in the similar habitat. A few males were heard calling during the night. The other species frequently encountered during the survey period were *Indosylvirana* cf. *caeseri* and *Minervarya cepfi*. Other species were sighted ones or twice during the survey.

Most of the species encountered during this survey were known to occur in forest habitats with a few exceptions. The species like Amboli bush frog, Netravali leaping frog mostly seen in the forest and

close to human habitation as well. These frogs breed during the early monsoon months. Bush frogs mostly lay their eggs among moss on trees and leaping frogs lay terrestrial eggs on the forest floor or among open rocks. In bush frogs, free living tadpole stage is missing and babies hatch from eggs. In leaping frog tadpoles are also terrestrial and seen in damp places, many a times away from water sources as well.

The forest streams are abode to endemic lineages of frogs like Night frogs, *Nyctibatrachus*. In one of the cascades close to transmission line, many smaller sized *Nyctibatrachus* were observed. These appear to be an undescribed species based on their smaller size. Further studies in this regard is warranted. The other species, *Nyctibatrachus patreaus* was also observed in the other stream. This species is endemic to the northern Karnataka, Goa and southern Maharashtra.

The other endemic and uncommon species, *Indosylvirana* cf. *caesiri* was also observed near Tambdi Surla. These frogs also breed in forest streams. Interestingly, a few adults were observed among leaf litter in the forest away from the streams during the day. The common species like Indian bull frog *Hoplobatrachus tigerinus*, Ornate narrow-mouthed frog *Microhyla ornata*, cricket frogs *Minervarya* spp., Common Indian toad *Duttaphrynus melanostictus* are seen in less numbers. Most of these are terrestrial anurans and their poor encounter rate can be attributed to late monsoon season.

All the 25 species enlisted in the *Table 3.15* may not occur along the transmission line but are reported from this landscape. Species observed are presented in *Figure 3.8.*

Table 3.15 Amphibians reported & recorded from the Transmission Line Route

SN	Family	Full taxon	English Name	IWPA	IUCN. V2018-2
1.	Bufonidae	Duttaphrynus melanostictus	Common Indian Toad*	Schedule IV	LC
2.	Bufonidae	Pedostibes tuberculosus	Malabar Tree Toad	Schedule IV	EN
3.	Dicroglossidae	Euphlyctis cyanophlyctus	Five-fingered Frogs*	Schedule IV	LC
4.	Dicroglossidae	Fejervarya cepfi	CEPF Burrowing Frog*	Schedule IV	NA
5.	Dicroglossidae	Minervarya gomantaki	Goan Cricket Frog*	Schedule IV	NA
6.	Dicroglossidae	Minervarya goemchi	Goan Cricket Frog	Schedule IV	NA
7.	Dicroglossidae	Hoplobatrachus tigerinus	Indian Bull Frog*	Schedule IV	LC
8.	Dicroglossidae	Sphaerotheca breviceps	Indian Burrowing Frog	Schedule IV	LC
9.	Microhylidae	Microhyla ornata	Ornate Narrow-mouthed Frog*	Schedule IV	LC
10.	Microhylidae	Microhyla rubra	Reddish Narrow-mouthed Frog	Schedule IV	LC
11.	Microhylidae	Uperodon globulosus	Indian Balloon Frog	Schedule IV	LC
12.	Microhylidae	Uperodon mormorata	Marbled Ramanella	Schedule IV	EN
13.	Nyctibatrachidae	Nyctibatrachus petraeus	Castle Rock Night Frog	Schedule IV	LC
14.	Nyctibatrachidae	Nyctibatrachus sp.	Not identified		
15.	Ranidae	Hydrophylax bahuvistara	Wide-spread Fungoid Frog	Schedule IV	NA
16.	Ranidae	Indosylvirana cf. caesari	Maharashtra Golden- backed Frog	Schedule IV	NA
17.	Ranixalidae	Indirana chiravasi	Amboli Leaping Frog	Schedule IV	NA
18.	Ranixalidae	Indirana salelkari	Netravali Leaping Frog*	Schedule IV	NA

SN	Family	Full taxon	English Name	IWPA	IUCN. V2018-2
19.	Rhacophoridae	Polypedates maculatus	Common Indian Tree Frog*	Schedule IV	LC
20.	Rhacophoridae	Pseudophilautus amboli	Amboli Bush Frog	Schedule IV	CR
21.	Rhacophoridae	Raorchestes bombayensis	Maharashtra Bush Frog	Schedule IV	VU
22.	Rhacophoridae	Rhacophorus malabaricus	Malabar Gliding Frog	Schedule IV	LC
23.	Ichthyophiidae	Ichthyophis bombayensis	Bombay Caecilian	Schedule IV	LC
24.	Ichthyophiidae	Ichthyophis davidi	Chorla giant striped caecilian	Schedule IV	NA
25.	Indotyphlidae	Gegeneophis danieli	Daniel's Caecilian	Schedule IV	DD

^{*} Species encountered during the survey

Figure 3.8 Amphibians recoded from the Study Area

Common Indian Toad Duttaphrynus melanostictus

Netravali Leaping Frog* Indirana salelkari

LC - Least Concerned, EN - Endangered, CR - Critically Endangered, NA - Not assessed

Castle Rock Night Frog Nyctibatrachus petraeus

Chorla giant striped caecilian Ichthyophis davidi

Status of Reptiles

Reptiles are also poikilothermic vertebrates, but they are known to occur in varied habitats. Although there is no seasonality in many reptiles, a few species are active during the monsoon. In view of the rich diversity of flora and availability of good micro-habitats, there is rich diversity of reptiles in the study area.

The commonest species of reptile encountered during this study was Sahyadri Forest Lizard *Monilesaurus rouxii*. The juveniles and adults of this agamid lizards were encountered in most of the study sites. Interestingly only a few juvenile individuals of Common garden lizard *Calotes versicolor* were encountered during this survey. Other lizards commonly encountered during the study is Asian house gecko *Hemidactylus frenatus*. This landscape also harbours a good population of Prashad's geko *Hemidactyus prashadi*. Earlier considered as Endangered by IUCN due to its restricted range, t in recent years the range of this species was revised based on fresh reports from Maharashtra and Goa and now is considered as Least Concerned. This species was seen on trees in the forest and in the human settlement as well. The dwarf gecko *Cnemaspis* sp. is considerably common but a single individual was recorded in the study site during this survey. Three species of skinks and a species of gecko was recorded on the plateau. Among skinks, three specimens of Gunther's supple skink *Lygosoma guentheri* were seen under the rocks on the plateau. Seven individuals of gecko, *Hemidactylus murrayi* were also encountered under rocks on the plateau. This species is commonly seen in the forest, disturbed habitats and human settlement.

Among snakes, Green vine snake *Ahaetulla nasuta* was a common species encountered during the study period. This arboreal species prefers bushes and trees and seen in pristine and disturbed habitats and seen in Tambdi Surla and plateau as well. A juvenile inidvidual of Indian rock python was seen near the Tambdi Surla temple during one of the night surveys. This region has a good population of this species and juveniles are often seen during the monsoon. The other uncommon species observed during this survey was Hump-nosed pit viper *Hypnale hypnale*. Unlike other pit vipers, this species is terrestrial and seen among the leaf litter in the forest. two adult individuals of Common wolf snake *Lycodon aulicus* was seen close to a stream near Tambdi Surla. In the same stream a juvenile Cheqered keelback *Xenochorphis piscator* was also recorded.

Although not a single individual of Malabar pit viper *Trimeresurus malabaricus* was recorded during the study period, this place has a good population of this species. The King cobra, *Ophiophagus hannah* is also reported from this forest and they are frequently seen close to the forest streams during monsoon. Previously, other endemic species of snakes like Aquatic *Rhabdops Rhabdops aquaticus* and Khaire's black shieldtail *Melanophidium khairei* were also reported from this habitat.

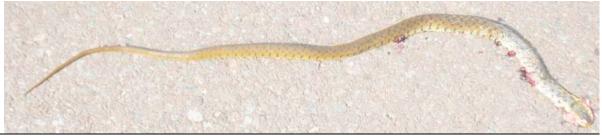
The species description is provided in *Table 3.16* and pictorial representation is given in *Figure 3.9*.

Table 3.16 Reptiles recorded from the Study Area

Sn	Family	Full taxon	English Name	IWPA,1971	IUCN v2018-2
1.	Geomydidae	Melanochelys trijuga	Indian black turtle	Schedule IV	NT
2.	Trionychidae	Lissemys punctata	Indian flapshell turtle	Schedule I Part II	LC
3.	Agamidae	Monilisaurus rouxii	Sahyadri Forest Lizard*	Schedule IV	LC
4.	Agamidae	Calotes versicolor	Indian Garden Lizard*	Schedule IV	LC
5.	Agamidae	Draco dussumieri	South Indian Flying Lizard	Schedule IV	LC
6.	Gekkonidae	Cnemaspis cf. indraneildasii	Indraneil's Day Gecko*	Schedule IV	VU
7.	Gekkonidae	Cyrtodactylus albofasciatus	Boulenger's Indian Gecko	Schedule IV	LC
8.	Gekkonidae	Hemidactylus flaviviridis	Yellow Green House Gecko*	Schedule IV	LC
9.	Gekkonidae	Hemidactylus frenatus	Asian House Gecko*	Schedule IV	LC
10.	Gekkonidae	Hemidactylus leschenaultii	Bark Gecko	Schedule IV	LC
11.	Gekkonidae	Hemidactylus murrayi	Murray's Gecko*	Schedule IV	LC
12.	Gekkonidae	Hemidactylus prashadi	Prashad's Gecko*	Schedule IV	LC
13.	Gekkonidae	Hemidactylus triedrus	Termite Hill Gecko	Schedule IV	LC
14.	Lacertidae	Ophisops beddomei	Beddome's Lacerta	Schedule IV	LC
15.	Mabuyidae	Eutropis carinata	Common Keeled Skink*	Schedule IV	LC
16.	Mabuyidae	Eutropis macularia	Bronze Grass Skink*	Schedule IV	LC
17.	Lygosomidae	Lygosoma goaensis	Goan Supple Skink	Schedule IV	DD
18.	Lygosomidae	Lygosoma guentheri	Günther's Supple Skink*	Schedule IV	LC
19.	Lygosomidae	Lygosoma lineata	Lined Supple Skink	Schedule IV	LC
20.	Lygosomidae	Lygosoma punctata	Spotted Supple Skink	Schedule IV	LC
21.	Ristellidae	Ristella beddomii	Beddome's Cat Skink	Schedule IV	LC
22.	Varanidae	Varanus bengalensis	Bengal Monitor Lizard	Schedule I Part II	LC
23.	Uropeltidae	Melanophidium khairei	Khaire's Black shieldtail	Schedule IV	NA
24.	Uropeltidae	Uropeltis macrolepis	Large-scaled shieldtail	Schedule IV	LC
25.	Pythonidae	Python molurus	Indian rock python*	Schedule I Part II	VU
26.	Erycidae	Eryx conicus	Common sand boa	Schedule IV	NA
27.	Erycidae	Eryx johnii	Red sand boa	Schedule IV	NA
28.	Erycidae	Eryx whitakeri	Whitaker's boa	Schedule IV	NA
29.	Colubridae	Ahaetulla nasuta	Green vine snake*	Schedule IV	LC
30.	Colubridae	Ahaetulla pulverulenta	Brown vine snake	Schedule IV	LC
31.	Colubridae	Chrysopelea ornata	Ornate flying snake	Schedule IV	LC
32.	Colubridae	Dendrelaphis girii	Giri's bronzeback tree snake	Schedule IV	LC
33.	Colubridae	Dendrelaphis tristis	Common bronzeback tree snake	Schedule IV	LC
34.	Colubridae	Argyrogena fasciolata	Banded racer	Schedule IV	LC
35.	Colubridae	Boiga beddomei	Beddome's Cat snake	Schedule IV	LC
36.	Colubridae	Boiga ceylonensis	Ceylon Cat snake	Schedule IV	LC
37.	Colubridae	Boiga forsteni	Forsten's Cat snake	Schedule IV	LC
38.	Colubridae	Boiga trigonata	Common Cat snake	Schedule IV	LC

Sn	Family	Full taxon	English Name	IWPA,1971	IUCN v2018-2
39.	Colubridae	Coelognathus helena monticollaris	Montane trinket snake	Schedule IV	LC
40.	Colubridae	Lycodon cf. aulicus	Common wolf snake*	Schedule IV	LC
41.	Colubridae	Lycodon striatus	White-banded wolf snake	Schedule IV	LC
42.	Colubridae	Lycodon travancoricus	Travancore wolf snake	Schedule IV	LC
43.	Colubridae	Oligodon arnensis	Banded kukri snake	Schedule IV	LC
44.	Colubridae	Oligodon taeniolatus	Variegated kukri snake	Schedule IV	LC
45.	Colubridae	Ptyas mucosa	Oriental rat snake	Schedule II Part II	LC
46.	Colubridae	Rhabdops aquaticus	Aquatic rhabdops	Schedule IV	NA
47.	Colubridae	Sibynophis subpunctatus	Dumeril's black-headed snake	Schedule IV	LC
48.	Colubridae	Amphiesma stolatum	Striped keelback	Schedule IV	LC
49.	Colubridae	Hebius beddomei	Beddome's keelback	Schedule IV	LC
50.	Colubridae	Macropisthodon plumbicolor	Green keelback	Schedule IV	LC
51.	Colubridae	Xenochrophis piscator	Checkered keelback*	Schedule II Part II	LC
52.	Elapidae	Bungarus caeruleus	Common Indian krait	Schedule IV	LC
53.	Elapidae	Calliophis castoe	Castoe's coral snake	Schedule IV	DD
54.	Elapidae	Calliophis nigrescens	Striped coral snake	Schedule IV	LC
55.	Elapidae	Naja naja	Spectacled cobra	Schedule II Part II	LC
56.	Elapidae	Ophiophagus hannah	King cobra	Schedule II Part II	LC
57.	Viperidae	Hypnale hypnale	Hump-nosed pit viper*	Schedule IV	LC
58.	Viperidae	Trimeresurus gramineus	Bamboo pit viper	Schedule IV	LC
59.	Viperidae	Trimeresurus malabaricus	Malabar pit viper	Schedule IV	LC
60.	Viperidae	Daboia russelii	Russell's viper	Schedule II Part II	LC
61.	Viperidae	Echis carinatus	Indian saw-scaled viper	Schedule IV	LC
62.	Typhlopidae	Grypotyphlops acutus	Beaked Worm snake	Schedule IV	LC
63.	Typhlopidae	Indotyphlops braminus	Brahminy Worm snake	Schedule IV	LC

Reptiles recoded from the Study Area Figure 3.9



Asian House Gecko Hemidactylus frenatus

^{*} Species encountered during the survey LC - Least Concerned, EN - Endangered, CR - Critically Endangered, NA - Not assessed

Roadkill of Checkered Keelback Snake

Prashad's Gecko Hemidactylus prashadii

Günther's Supple Skink Lygosoma guentheri

Sahyadri Forest Lizard Monilesaurus rouxii

Malabar pit viper *Trimeresurus malabaricus*

Common wolf snake Lucodon cf aulicus

Hump-nosed pit viper Hypnale hypnale

Green vine snake Ahaetulla nasuta

South Indian Flying Lizard Draco dussumieri

Threatened Species

This region is known to inhabit 88 species of amphibians and reptiles of which seven species are in the threatened category of IUCN and remaining are either Least Concerned or Dada Deficient. There are a few species which are not yet assessed as they are recently described. These threatened species are listed in *Table 3.17*.

Full taxon English Name IUCN v2018-2 Sn **Family** Rhacophoridae CR 1. Pseudophilautus amboli Amboli Bush Frog Pedostibes tuberculosus 2. Bufonidae Malabar Tree Toad ΕN Marbled Ramanella ΕN 3. Microhylidae Uperodon mormorata 4. VU Rhacophoridae Raorchestes bombayensis MaharashtraBush Frog Indian Black Turtle 5. Geomydidae NT Melanochelys trijuga Gekkonidae Indraneil's Day Gecko VU 6. Cnemaspis cf. indraneildasii 7. Pythonidae Python molurus Indian rock python VU

Table 3.17 Threatened Species

Endemic Species

None of the listed species of amphibian and reptile is endemic to this part of the Western Ghats of Goa.

3.9.2 Avifauna

Avifaunal surveys were undertaken along the 5 transects within a study area. Point counts were made in 50 m radius plots at

Species Richness

Total bird species richness, i.e. total number of species recorded from the transects recorded were Twenty Five (25), representing Twenty Four (22) genus from Seventeen families (16). Out of twenty five species, ten species were recorded from transects located at the edge of forest and grasslands and rest fifteen species were recorded from transects located in forested habitats.

Pompadour green pegion (*Treron pompadora*), White rumped shama (*Copsychus malabaricus*), red-whiskered bulbul (*Pycnonotus jocosus*), Malabar Pied Hornbill (*Anthracoceros coronatus*) etc. were recorded from the mosaic of grassland and forest habitat at the edge of forest. Species like Malabar Trogon (*Harpactes fasciatus*), Malabar grey Hornbill (*Ocyceros griseus*), Asian Paradise flycatcher (*Terpsiphone paradise*), Crimson Backed sunbird (*Leptocoma minima*), Malabar woodshrike (*Tephrodornis sylvicola*) etc. were recorded from forested habitat.

Most of the species were recorded during diurnal survey, but Jungle Owlet (*Glaucidium radiatum*) and Sri Lanka frogmouth (*Batrachostomus moniliger*) were recorded during night survey.

Details of all the species recorded during the transect survey is provided in *Table3.18* and pictorial representation is provided in *Figure 3.10*.

Table 3.18 Details of Species Recorded from the Study Area

SNo.	Family	Scientific Name	Common Name	Food Habit	Numbers Recorded	Transect Recorde d from	Sch. of IWPA, 1972	IUCN (v201 8-1)
1	Phasianidae	Gallus sonneratti	Grey Junglefowl	GR	2	GT3	П	LC
2	Columbidae	Streptopelia chinensis	Spotted Dove	GR	3	GT1, GT2	IV	LC
3		Treron pompadora	Pompadour green pegion	FR	4	GT1, GT2	IV	LC
4	Cuculidae	Surniculus lugubris	Drongo Cuckoo	1	1	GT2	IV	LC
5	Cuculidae	Eudynamys scolopacea	Asian Koel	Koel FR 2 GT1 IV		IV	LC	
6	Dicruidae	Dicrurus paradiseus	Greater Racket- tailed drongo	I	2	GT3	IV	LC
7	Strigidae	Glaucidium radiatum	Jungle Owlet	CR	2	GT5	IV	LC
8	Trogonidae	Harpactes fasciatus	Malabar Trogon	I	4	GT3, GT5	IV	LC
9	Alcedinidae	Alcedo atthis	Small blue kingfisher	CR	1	GT3	IV	LC
10		Ceyx erillzacus	Oriental dwarf kingfisher	CR	1	GT2	IV	LC
11	Bucerotidae	Ocyceros griseus	Malabar grey Hornbill	FR	3	GT4, GT5	IV	LC
12		Anthracoceros coronatus	Malabar Pied Hornbill	OM	1	GT2	1	NT
13	CapitonIdae	Psilopogon viridis	White checked Barbet	FR	1	GT4	IV	LC
14		Dinopium javanense	Common golden backed woodpecker	1	1	GT4	IV	LC
15	Vabgidae	Tephrodornis sylvicola	Malabar woodshrike	1	11	GT3, GT4	IV	LC
16	Pycnonotidae	lole indica	Yellow browed bulbul	FR	2	GT3, GT5	IV	LC
17		Pycnonotus gularis	flame-throated bulbul	FR	5	GT3, GT4	IV	LC
18		Pycnonotus jocosus	red-whiskered bulbul	FR	1	GT1	IV	LC
19	Muscicapidae	Copsychus saularis	oriental magpie- robin	I	1	GT1	IV	LC
20		Copsychus malabaricus	White rumped shama	I	2	GT1	IV	LC
21	Monarchidae	Terpsiphone paradisi	Asian Paradise flycatcher	I 1 GT3 IV		IV	LC	
22	Nectariniidae	Leptocoma zeylonica	Purple rumped sunbird	N	2	GT4	IV	LC

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) 7 March 2019 Page 51

23		Leptocoma minima	Crimson Backed sunbird	N	7	GT4, GT5	IV	LC
24		Cinnyris asiaticus	Purple Sunbird	N	1	GT2	IV	LC
25	Podargidae	Batrachostomus moniliger	Sri Lanka frogmouth	I	1	GT5	I (part III)	LC

Source - ERM Primary Survey

Food Habit: Aq A- Aquatic Animals, GR- Granivorous, FR- Frugivorous, CR- Carnivorous, I- Insectivorous, N- Nectar eater, OM- Omnivorous.

IUCN Status: LC- Least Concern, NT- Near Threatened

Figure 3.10 Avifauna Recorded During Survey

Red-whiskered bulbul

Flame-throated bulbul

Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

Overall Species Richness

To overcome the limitations of this particular survey and to have an understanding of the overall species richness of the study area, a cumulative list of all the species found in the study area was prepared based on Zoological Survey of India archive¹. Based on this secondary information, overall species richness i.e. total number of species that can be found in the study area is one hundred and four (104). Secondary information was found to complement the primary survey, as all 25 species recorded were reported to be present in the study area. The details are presented in *Table 3.19*.

Table 3.19 Potential Species List likely to be observed from the Study Area

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
1.	Ardeidae	Ardeolo grayii	Indian Pond Heron	R/LM	No	Aq A	November to February	0	IV	LC
2.		Gorsacllius melanoloplzus	Malayan Night Heron	R	No	Aq A	May to August	0	IV	LC
3.	Ciconlidae	Ciconia episcopus	Wooly-necked stork	R	No	Aq A, I	December to March	0	IV	VU
4.		Ciconia cicollia	White stork	WV	No	AqA, CR	Extralimital	0	IV	LC
5.	Thresklorni thidae	Pseudibis papillosa	Red Naped Ibis	R	No	OM	March to October	0	IV	LC
6.		Platalea leucorodia	Eurasian Spoonbill	WV/R (Partly Nomadic)	No	Aq A & Vg M	Extralimital/No vember to January	0	l (part III)	LC
7.	Accipitridae	Ariceda leuphotes	Black Baza	R	No	CR	February to July	0	I (part III)	LC
8.		Penlis ptilorhyncus	Oriental Honey Buzzard	R/LM	No	CR	February to June	0	I (part III)	LC
9.		Elanus careleus	Black shouldered Kite	R	No	1 &CR	Entire year	0	I (part III)	LC
10.		Spilornis cheela	Crested Serpent eagle	R	No	CR	December to March	1	I (part III)	LC
11.		Accipiter trivirgatus	Crested Goshawk	R	No	CR	March to May	0	l (part III)	LC
12.		Accipiter badius	Shikra	R	No	CR	March to June	0	l (part III)	LC
13.		Accipiter virgatus	Besra Sparrow Hawk	R	No	CR	March to May	0	l (part III)	LC

¹ Fauna of Goa, State Fauna Series 16, Zoological Survey of India; January, 2008

Page 54

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
14.		Accipiter nisus	Eurasian Sparrowhawk	WV	No	CR	Extralimital	0	I (part III)	LC
15.		Butastur teesa	White eyed Buzzard	R	No	CR	February to May	0	I (part III)	LC
16.		Icrillaellts malyanensis	Black Eagle	R	No	CR, I	November to March	1	I (part III)	LC
17.		Aquila rapax	Tawny Eagle	R	No	CR	November to April	0	I (part III)	LC
18.	Falconidae	Falco tinunculus	Common Krestel	WV, R (Breeding)	No	CR, I	January to March (W. Ghats)	0	IV	LC
19.		Falco peregrillus	Peregrine falcon	WV, R	No	CR	Extralimital, March to May in Himalayas	0	l (part III)	LC
20.	Phasianida e	Perdicula argoondah	Rock Bush-Quail	R	No	GR	March to November	0	IV	LC
21.		Galloperdix .spadicea	Red spurfowl	R	No	GR	January to June	0	IV	LC
22.		Galoperdix lunulata	Painted spurfowl	R	No	ОМ	January to June	0	IV	LC
23.		Gallus sonneratti Temminck	Grey Junglefowl	R	No	GR	February to May	2	IV	LC
24.	Rallidae	Amaurornis phoenicurus	White Breasted Waterhen	R	No	ОМ	April to October	0	IV	LC
25.	Charadriida e	Vanellus indicus	Red-Wattled Lapwing	R	No	Vg M, I	March to September	0	IV	LC
26.	Scolopacid ae	Gallinago gallinago	Common Snipe	WV	No	Aq A	Extralimital	0	IV	LC
27.		Lymnocryptesminimus	Jack Snipe	WV	No	Aq A, I	Extralimital	0	IV	LC
28.		Tringa stagnatilis	Marsh Sandpiper	WV	No	Aq A	Extralimital	0	IV	LC
29.		Tringa nebularia	Commom Greenshank	WV	No	Aq A	Extralimital	0	IV	LC
30.		Tringa ochropus Linnaeus	Green Sandpiper	WV	No	AQ A	Extralimital	0	IV	LC
31.		Actitis hypoleucos Linnaeus	Commom sandpiper	WV	No	AQ A	Extralimital	0	IV	LC
32.	Columbida e	Columba eiphinstonii	Nilgiri wood pegion	R/LM	Yes	FR	April to June	0	IV	VU
33.	Č	Streplopelia orienlalis	Oriental turtle dove	SM (wintering)	No	GR	May to July	0	IV	LC

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
34.		Streptopelia chinensis	Spotted Dove	R/LM	No	GR	All over the year	3	IV	LC
35.		Chalcophapsindica	Emerald Dove	R	No	GR	All over the year	0	IV	LC
36.		Treron bicincta	Orange breasted green pigeon	R/SM/LM	No	FR	March to September	0	IV	LC
37.		Treron pompadora	Pompadour green pegion	R/LM	No	FR	December to March	4	IV	LC
38.		Ducula aenea	Greem Imperial Pegion	R/LM	No	FR	February to June	0	IV	LC
39.		Ducula badia	Mountain Imperial Pegion	R/SM/LM	No	FR	January to May	0	IV	LC
40.	Psittacidae	Psinacula cyanocephala	Plum Headed Parakeet	R/LM	No	FR, N	December to April	0	IV	LC
41.		Psittacula columboides		R (Nomadic)	Yes	FR & GR	January to March	0	IV	LC
42.	Cuculidae	Clamator jacobinus	Pied Crested Cuckoo	MV	No	I	June to September	0	IV	LC
43.		Cuculus poliocephalus	Lesser Cuckoo	Wintering/P M	No	1	May to July	0	IV	LC
44.		Cacomantis sonneratii	Banded Bay Cuckoo	R/SM/LM	No	1	February to August	0	IV	LC
45.		Cacomantis passerinus	Indian Plainitive cuckoo	R/LM/Nom adic	No	1	June to September	0	IV	LC
46.		Surniculus lugubris	Drongo Cuckoo	R/LM/Nom adic	No	1	March to October	1	IV	LC
47.		Eudynamys scolopacea	Asian Koel	R/LM/Nom adic	No	FR	March to August	2	IV	LC
48.	Dicruidae	Dicrurus paradiseus	Greater Racket- tailed drongo	R	No	1	April to August	2	IV	LC
49.	Strigidae	Otus sunia	Oriental scops owl	R	No	I & CR	February to May	0	IV	LC
50.		Otus bakkamoena	Collard Scops Owl	R	No	I & CR	January and February	0	IV	LC
51.		Glaucidium radiatum	Jungle Owlet	R	No	I & CR	March to May	2	IV	LC
52.	Apodidae	Collocalia unicolor	Indian edible nest swiftlet		Yes	1	March to June		l (part III)	LC
53.		Apus affinis	House Swift	R/LM	No	I	All year except November to February	0	IV	LC

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
54.	Hemiprocni dae	Hemiprocne coronata	Crested Tee swift	R/SM/LM	No	1	December to July	0	IV	LC
55.	Trogonidae	Harpactes fasciatus	Malabar Trogon	R	Yes	I	February to May	4	IV	LC
56.	Alcedinidae	Alcedo atthis	Small blue kingfisher	R	No	Aq A	February to September	1	IV	LC
57.		Alcedo meninting	Blue eared Kingfisher	R	No	Aq A	May to June	0	IV	LC
58.		Ceyx erillzacus	Oriental dwarf kingfisher	R/MV	No	Aq A	July to September	1	IV	LC
59.		Halcyon smyrnensis	White breasted kingfisher	R/LM	No	OM	January to August	0	IV	LC
60.	Meropidae	Nyctyornis athertoni	Blue beared bee eater	R	No	1	February to August	0	IV	LC
61.		Merops leschenaulti	Chestnut headed bee eater	R/SM	No	1	February to June	0	IV	LC
62.	Coraciidae	Coracias garrulus	European Roller	PM	No	I	Extralimital	0	IV	LC
63.	Upupidae	Upupa epops	Common Hoopoe	R/WV	No	1	January to April	0	IV	LC
64.	Bucerotida e	Ocyceros griseus	Malabar grey Hornbill	R	Yes	FR	January to March	3	IV	LC
65.	_	Ocyceros biroslris	Indian grey hornbill	R/LM	No	OM		0	IV	LC
66.		Anlhracoceros coronatus	Malabar Pied Hornbill	R/LM	Yes	FR, CR	March and April	1	I (part III)	NT
67.		Buceros bicornis	Great pied Hornbill	R/LM	No	FR	February to April	0	I (part III)	NT
68.	CapitonIda e	A1egalaima virdis	White checked Barbet	R	Yes	FR	December to March	1	IV	LC
69.	_	Picunmus innominatus	Spekled Piculet	R	No	1	January to March	0	IV	LC
70.		Dendrocopos nanus	Brown capped pygmy wood pecker	R	No	1	February to July	0	IV	LC
71.		Celeus brachyurus	Rufous woodpecker	R	No	1	February to April	0	IV	LC
72.		Dryocopus javensis	White Bellied woodpecker	R	No	I	January to March	0	IV	LC

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
73.		Picus cholorolophus	Small yellow napped woodpecker	R	No	I	January to May	0	IV	LC
74.		Dinopium javanense	Common golden backed woodpecker	R	No	I	January to May	1	IV	LC
75.	Vabgidae	Tephrodornis sylvicola	Malabar woodshrike	R	Yes	1	-	11	IV	LC
76.	Alaudidae	Calandrella brachydactyla	Greater short toed lark	WV	No	GR,I	Extralimital	0	IV	LC
77.	Hirundinida e	Riparia riparia	Sand martin	wintering	No	1	October to March	0	IV	LC
78.		Riparia paludicola	Plain martin	Wintering	No	I	October to May (in N. India)	0	IV	LC
79.		Hirundo fluvicola	Streak throated swallow	wintering	No	I	All year	0	IV	LC
80.		Delichon urbica	Northern house martin	WV	No	I	Extralimital	0	IV	LC
81.	Motacillida e	Dendronanthus indius	Forest wagtail	WV	No	I	Extralimital	0	IV	LC
82.		Anthus richardi	Richard's Pipit	WV	No	1	Extralimital	0	IV	LC
83.		Anthus godlewskii	Blyth's Pipit	WV	No	1	Extralimital	0	IV	LC
84.	Campepha gidae	Coracina macei	Large cuckoo shrike	R/LM	No	I	January to October	0	IV	LC
85.	Pycnonotid ae	Pycnonotu.· priocephalus	Grey-headed Bulbul	R	Yes	FR	March to july	0	IV	NT
86.		lole indica	Yellow browed bulbul	R	Yes	FR	February to May	2	IV	LC
87.		Pycnonotus gularis	flame-throated bulbul	R	Yes	FR	February to April	5	IV	LC
88.		Pycnonotus jocosus	red-whiskered bulbul	R	No	FR	March to October	1	IV	LC
89.	Laniidae	Lanius cristatus	Brown shrike	WV	No	1	Extralimital	0	IV	LC
90.		Lanius schach	Long Tailed shrike	R/SM	No	OM	March to June	0	IV	LC
91.	Muscicapid ae	Monticola cinclorhynchus	Blue headed Rock thrush	Wintering	No	OM	May to July	0	IV	LC
92.		Luscinia brunnea	Indian blue robin	WV	No	1	extralimital	0	IV	LC

BIA AND BMP FOR 400 KV TRANSMISSION LINE CORRIDOR PASSING THROUGH PROTECTED AREAS OF GOA STATE Final Report

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
93.		Copsychus saularis	oriental magpie- robin	R	No	1	March to July	1	IV	LC
94.		Copsychus malabaricus	White rumped shama	R	No	1	April to June	2	IV	LC
95.	Timaliinae	Garrulax delesserti	Wynaad Laughingthrush	R	Yes	1	July to September	0	IV	LC
96.		Pellomeum ruficeps	Spotted babbler	R	No	I	April to September	0	IV	LC
97.		RhopocicIrla alriceps	Dark Fronted babbler	R	Yes	1	March to July	0	IV	LC
98.		Turdoides subrufus	Indian rufous babbler	R	Yes	1	February to November	0	IV	LC
99.		Alcippe poioicephala	Brown cheeked fulvetta	R	No	I	January to May	0	IV	LC
100.	Monarchid ae	Terpsiphone paradisi	Asian Paradise flycatcher	R	No	1	-	1	IV	LC
101.	Nectariniid ae	Leptocoma zeylonica	Purple rumped sunbird	R	No	N	February to April	2	IV	LC
102.		Leptocoma minima	Crimson Backed sunbird	R	Yes	N	September to April	7	IV	LC
103.		Cinnyris asiaticus	Purple Sunbird	R	No	N	February to April	1	IV	LC
104.	Podargidae	Batrachostomus moniliger	Sri Lanka frogmouth	R	Yes	I	-	1	I (part III)	LC
105	Oriolidae	Oriolus xanthornus	Black-Hooded oriole	R	No	I, FR	February to April	1	IV	LC

Notes: Food Habit: Aq A- Aquatic Animals, GR- Granivorous, FR- Frugivorous, CR- Carnivorous, I- Insectivorous, N- Nectar eater, OM- Omnivorous. IUCN Status: LC- Least Concern, NT- Near Threatened, VU- Vulnerable

Endemism

Out of all the 104 recorded and reported species, sixteen (16) species are endemic to Western Ghats. Nine (9) endemic avian species were recorded during primary survey. Details of endemic species recorded and reported from the study are provided below in *Table 3.20*

Table 3.20 Endemic Avian Species of the Study Area

SNo.	Scientific name	Common name	Recorded during Primary survey	Schedule of WPA, 1972	IUCN status (v2018-1)
1.	Columba eiphinstonii	Nilgiri wood pegion	No	IV	VU
2.	Psittacula columboides	Blue winged Parakeet	No	IV	LC
3.	Collocalia unicolor	Indian edible nest swiftlet	No	1	LC
4.	Harpactes fasciatus	Malabar Trogon	Yes	IV	LC
5.	Ocyceros griseus	Malabar grey Hornbill	Yes	IV	LC
6.	Anlhracoceros coronatus	Malabar Pied Hornbill	Yes	1	NT
7.	A1egalaima virdis	White checked Barbet	Yes	IV	LC
8.	Tephrodornis sylvicola	Malabar woodshrike	Yes	IV	LC
9.	Pycnonotu.· priocephalu s	Grey-headed Bulbul	No	IV	NT
10.	lole indica	Yellow browed bulbul	Yes	IV	LC
11.	Pycnonotus gularis	flame-throated bulbul	Yes	IV	LC
12.	Garrulax delesserti	Wynaad Laughingthrush	No	IV	LC
13.	RhopocicIrla alriceps	Dark Fronted babbler	No	IV	LC
14.	Turdoides subrufus	Indian rufous babbler	No	IV	LC
15.	Leptocoma minima	Crimson Backed sunbird	Yes	IV	LC
16.	Batrachostomus moniliger	Sri Lanka frogmouth	Yes	1	LC

Status of Bird Migration

All 25 species of birds recorded from the study area are residential birds, no migratory birds were recorded during the primary survey. However of a total 104 species reported from the study area, Twenty six (26) migratory species can be found in the study area, viz. White stork, Eurasian Sparrowhawk, Common Snipe, Jack Snipe, Marsh Sandpiper, Commom Greenshank, Green Sandpiper, Commom sandpiper, Lesser Cuckoo, Greater short toed lark, Sand martin, Plain martin Streak throated swallow, Northern house martin, Forest wagtail, Richard's Pipit, Blyth's Pipit, Brown shrike, Blue headed Rock thrush, Indian blue robin.

Status of Foraging Guild

The foraging guide is derived from what the bird species predominantly feeds on. Out of thwenty five species recorded from primary survey, maximum nine species were found to be Insectivorous (36%). Seven species were frugivorous (28%). Three species were found to be carnivorous (12%). Three species were nectar eater (12%). Two are granivorous (8%) and one Omnivorous (4%).

3.9.3 Mammals

Species Richness

In the Goa section of the study area, a total eight (8) species of eight (8) different genera were recorded through direct sightings and signs of species presence. The species recorded through direct sighting include Gaur (*Bos gaurus*), Grey Mongoose (*Herpestes edwardsii*), Bonnet Macaque (*Macaca radiate*), Malabar Giant Squirrel (*Ratifa indica*), Southern Plains Langur (*Semnopithecus entellus*). Signs such as pellet of Sambar (*Rusa unicolor*), quills of Indian Porcupine (*Hystrix indica*), and resting places of Wild Pig (*Sus scrofa*) were also recorded during transects. All the eight species recorded from Goa section belong to seven (7) families namely, *Herpestidae*, *Bovidae*, *Cercopithecidae*, *Sciuridae*, *Cervidae*, *Hystricidae*, and *Suidae*. Malabar Giant Squirrel (*Ratifa indica*) and Bonnet Macaque (*Macaca radiate*) were the species sighted most frequently across the study area.

Table 3.21 Details of Sightings in Transmission Line Corridor

SNo.	Common Name	Scientific	Number	Recorded from	IUCN	WPA Status	Type of
		Name	Recorded	Transect	Status		Sighting/Sign
1	Gaur	Bos gaurus	1		VU	Sch I (Part I)	Direct
2	Grey Mongoose	Herpestes edwardsii	1	GT3	LC	Sch II (Part I)	Direct
3	Bonnet Macaque	Macaca radiate	8	GT1, GT3, GT4	LC	Sch II (Part I)	Direct
4	Indian/Malabar Giant Squirrel	Ratufa indica	5	GT1, GT2, GT5	LC	Sch II (Part I)	Direct
5	Southern Plains Langur	Semnopithecus entellus	4	GT2	LC	Sch II (Part I)	Direct
6	Sambar	Rusa unicolor	1	GT3	VU	Sch III	Pellets
7	Indian Porcupine	Hystrix indica	1	GT5	LC	Sch IV	Quills
8	Wild Boar	Sus scrofa	3	GT1, GT5	LC	Sch III	Resting Place

Source: ERM Primary Survey

Figure 3.11 Mammal Species recorded in Transmission Line Corridor

Project No.: 0476969

Black-faced Langur

Indian Porcupine (Quill)

Overall Species Richness of Mammals

Secondary information collected from forest department and previous studies /reports in the study area were used for preparing the complete checklist of the mammals. In the Goa, a total 41 species of mammals belonging to 35 genera of 20 families have been reported. The details are presented in *Table 3.22* and *Table 3.23*.

Table 3.22 Taxonomic Status of Mammals

Taxonomic group	Goa Section D/ID Sighting	Goa Section Overall
Species	8	41
Genus	8	35
Family	7	20

Threatened Species

Out of which 41 species recorded from Bhagwan Mahaveer Wildlife Sanctuary, 8 species are protected under Schedule I of Wildlife (Protection) Act 1972 and are of conservation significance. These species include Leopard (*Panthera pardus*), Gaur (*Bos gaurus*), Slender Loris (*Loris tardigradus*), Indian Pangolin (*Manis crassicaudata*), Sloth Bear (*Melursus ursinus*), Mouse Deer (*Moschiola indica*), Leopard Cat (*Prionailurus bengalensis*) and Fishing Cat (*Prionailurus viverrinus*).

Slender Loris (*Loris tardigradus*) and Indian Pangolin (*Manis crassicaudata*) are EN (IUCN Red-List V2018-2)" while other species viz. Gaur (*Bos gaurus*), Common Leopard (*Panthera pardus*), Sloth Bear (*Melursus ursinus*) and Fishing Cat (*Prionailurus viverrinus*) are listed as "VU in the IUCN Red List. Mouse Deer (*Moschiola indica*) and Leopard Cat (*Prionailurus bengalensis*) are listed as LC.

Table 3.23 Checklist of Mammals in Bhagwan Mahaveer Wildlife Sanctuary, Goa

SNo	Family	Common Name	Scientific Name	Preferred Habitat	Recorded in T/L Route	IUCN Status	WPA Status
1	Cervidae	Spotted Deer/Chital	Axis axis	Dense moist evergreen forest, deciduous forest	N	LC	Sch III
2	Cervidae	Sambar	Cervus unicolor	Moist and dry deciduous forest	Υ	VU	Sch III
3	Cervidae	Indian Muntjac/Barking Deer	Muntiacus muntjak	Dense/open, deciduous/evergreen forest	N	LC	Sch III
4	Bovidae	Gaur	Bos gaurus	Evergreen and moist deciduous	Υ	VU	Sch I (Part I)
5	Canidae	Golden Jackal	Canis aureus	Scrubland, Grassland/Savannah	N	LC	Sch II (Part I)
6	Canidae	Dhole	Cuon alpinus	Dry/moist deciduous forest, evergreen/semi evergreen forest	N	EN	Sch II (Part I)
7	Ursidae	Sloth Bear	Melursus ursinus	Subtropical/tropical forest, scrubland	N	VU	Sch I (Part I)
8	Felidae	Leopard Cat	Prionailurus bengalensis	Tropical forest, scrubland	N	LC	Sch I (Part I)
9	Felidae	Fishing Cat	Prionailurus viverrinus	Marshland, lowland areas	N	VU	Sch I (Part I)
10	Felidae	Leopard	Panthera pardus	Wide range of forest types, scrubland, grassland, rocky areas	Y	VU	Sch I (Part I)
11	Felidae	Jungle Cat	Felis chaus	Grassland, Scrubland, desert	N	LC	Sch II (Part I)
12	Cercopithecidae	Bonnet Macaque	Macaca radiate	All forest types, plantation, agricultural lands	Y	LC	Sch II (Part I)
13	Cercopithecidae	Hanuman/Black-faced Langur	Semnopithecus entellus	Urban environment, near human habitations	Y	LC	Sch II (Part I)
14	Herpestidae	Grey Mongoose	Herpestes edwardsii	Subtropical/tropical dry forest, Scrubland, grassland	Y	LC	Sch II (Part I)
15	Herpestidae	Ruddy Mongoose	Herpestes smithii	Subtropical/tropical dry forest, Scrubland	N	LC	Sch II (Part I)
16	Herpestidae	Stripe-necked Mongoose	Herpestes vitticollis	Deciduous/evergreen forest, scrubland	N	LC	Sch II (Part I)
17	Hystricidae	Indian Porcupine	Hystrix indica	Tropical/temperate scrubland, forest, grassland	Y	LC	Sch IV

BIA AND BMP FOR 400 KV TRANSMISSION LINE CORRIDOR PASSING THROUGH PROTECTED AREAS OF GOA STATE Final Report

					1		
SNo	Family	Common Name	Scientific Name	Preferred Habitat	Recorded in T/L Route	IUCN Status	WPA Status
18	Suidae	Wild Boar	Sus scrofa	Tropical , temperate forest, scrubland, grassland, agricultural landscape	N	LC	Sch III
19	Tragulidae	Mouse Deer	Moschiola meminna	Tropical deciduous and moist evergreen forest	N	LC	Sch I (Part I)
20	Viverridae	Common Palm Civet	Paradoxurus hermaphroditus	Deciduous/ evergreen forest, village/urban environments	N	LC	Sch II (Part I)
21	Leporidae	Indian/Black-naped Hare	Lepus nigricollis	Subtropical/tropical scrubland, forest	N	LC	Sch IV
22	Lorisidae	Slender Loris	Loris tardigradus	Subtropical/tropical forest, artificial plantations	N	EN	Sch I
23	Manidae	Indian Pangolin	Manis crassicaudata	Subtropical/tropical forest, scrubland, grassland	N	EN	Sch I (Part I)
24	Muridae	Lesser Bandicoot Rat	Bandicota bengalensis	Agricultural landscape, dry deciduous forest	N	LC	Sch IV
25	Muridae	Large Bandicoot Rat	Bandicota indica	Agricultural landscape, grassland dry deciduous forest	N	LC	Sch IV
26	Muridae	White-tailed Wood Rat	Cremnomys blanfordi	Tropical/sub-tropical dry deciduous scrub	N	LC	Sch V
27	Muridae	Indian Gerbil	Tatera indica	Dry deciduous, scrub forest, grassland	N	LC	Sch IV
28	Muridae	Long-tailed Tree Mouse	Vandeleuria oleracea	Dry, moist deciduous forest, grassland, scrubland	N	LC	Sch V
29	Muridae	Little Indian Field Mouse	Mus booduga	Croplands, dry and deciduous forest	N	LC	Sch IV
30	Muridae	Spiny Field Mouse	Mus platythrix	Dry deciduous, scrub forest, cropland	N	LC	Sch IV
31	Muridae	House Rat	Rattus rattus	Grassland, scrubland, natural/seminatural habitat	N	LC	Sch IV
32	Vespertilionidae	Indian Pipistrelle	Pipistrellus coromandra	Forest, agricultural landscape, subterranean habitat	N	LC	-
33	Vespertilionida	Indian Pygmy Bat	Pipistrellus tenuis	Wet/humid forest, urban environment	N	LC	-
34	Pteropodidae	Lesser Dog-faced Fruit Bat	Cynopterus brachyotis	Rural/urban landscape, forested areas	N	LC	Sch IV
35	Tupaiidae	South Indian Tree Shrew	Ananthana elliotti	Scrubland, dry and moist deciduous forest	N	LC	-

BIA AND BMP FOR 400 KV TRANSMISSION LINE CORRIDOR PASSING THROUGH PROTECTED AREAS OF GOA STATE Final Report

SNo	Family	Common Name	Scientific Name	Preferred Habitat	Recorded in T/L Route	IUCN Status	WPA Status
36	Megadermatidae	Lesser False Vampire	Megaderma spasma	Forest, rocky areas, caves, subterranean habitat	N	LC	-
37	Sciuridae	Indian Giant Flying Squirrel	Petaurista philippensis	Dry deciduous and evergreen forest	N	LC	Sch II (Part I)
38	Sciuridae	Indian/Malabar Giant Squirrel	Ratufa indica	Tropical evergreen, semi evergreen, deciduous forest	Y	LC	Sch II (Part I)
39	Sciuridae	Three-striped Palm/Jungle Striped Squirrel	Funambulus palmarum	Forest, Scrubland, inland wetlands	N	LC	Sch IV
40	Pteropodidae	Fulvous Fruit Bat	Rousettus leschenaultia	Tropical moist forest, urban environment	N	LC	Sch IV
41	Soricidae	House Shrew	Suncus murinus	Scrubland, forest, grassland, cultivated fields	N	LC	Sch V

Source: India Biodiversity Portal, ENVIS Database, IUCN

IUCN Status: LC- Least Concern, NT- Near Threatened, VU- Vulnerable

4. IMPACT ASSESSMENT

4.1 Impacts on Biodiversity

The impacts on biodiversity of the proposed transmission line corridor passing through Bhagwan Mahaveer Wildlife Sanctuary has been categorized into the following categories

- Impacts during Construction Phase
- Impacts during Operation Phase

4.2 Impacts during Construction Stage

Following impacts are envisaged during the construction stage on the biodiversity of the Transmission Line route

- Impacts during route survey and planning
- Impacts during vegetation clearance on approach roads
- Impacts during vegetation clearance on tower locations
- Impacts during man and material transportation on each of the tower location
- Impacts during storage of construction material
- Impacts during construction activities
- Impacts during stringing of conductor

4.3 Impacts during operation Stage

Following impacts are envisaged during the operation Phase

- Mortality due to Electrocution and Collision of Avifaunal species
- Mortality due to Electrocution and Collision of arboreal mammalian species

4.4 Impact Assessment Criteria

ERM Impact Assessment Standards defines sensitivity of ecological receptors by determining the significance of effects on species and habitats separately. The significance tables for species and habitats are given in and Table 4.2 respectively.

Table 4.1 Habitat Impact Assessment Criteria

	Habitat Sensitivity/ Value		Magnitude of Effec	ct on Baseline Habitats	
		Negligible	Small	Medium	Large
		Effect is within the normal range of variation	Affects only a small area of habitat, such that there is no loss of viability/ function of the habitat	Affects part of the habitat but does not threaten the long-term viability/ function of the habitat	Affects the entire habitat, or a significant portion of it, and the long-term viability/ function of the habitat is threatened.
Negligible	Habitats with negligible interest for biodiversity.	Not significant	Not significant	Not significant	Not significant
Low	Habitats with no, or only a local designation / recognition, habitats of significance for species listed as of Least Concern (LC) on IUCN Red List of Threatened Species, habitats which are common and widespread within the region, or with low conservation interest based on expert opinion.	Not significant	Not significant	Minor	Moderate
Medium	Habitats within nationally designated or recognised areas, habitats of significant importance to globally Vulnerable (VU), Near Threatened (NT), or Data Deficient (DD) species, habitats of significant importance for nationally restricted range species, habitats supporting nationally significant concentrations of migratory species and / or congregatory species, and low value habitats used by species of medium value.	Not significant	Minor	Moderate	Major
High	Habitats within internationally designated or recognised areas; habitats of significant importance to globally Critically Endangered (CR) or Endangered (EN) species, habitats of significant importance to endemic and/or globally restricted-range species, habitats supporting globally significant concentrations of migratory species and / or congregatory species, highly threatened and/or unique ecosystems, areas associated with key evolutionary species, and low or medium value habitats used by high value species.	Not significant	Moderate	Major	Critical

Table 4.2 Species impact assessment criteria

	Habitat Sensitivity/ Value	Magnitude of Effect on Baseline Species							
	•	Negligible	Small	Medium	Large				
		Effect is within the normal range of variation for the population	Effect does not cause a substantial change in the population of the species or other species dependent on it	Effect causes a substantial change in abundance and/or reduction in distribution of a population over one, or more generations, but does not threatened the long term viability/ function of that population dependent on it.	Affects entire population, or a significant part of it causing a substantial decline in abundance and/or change in and recovery of the population (or another dependent on it) is not possible either at all, or within several generations due to natural recruitment (reproduction, immigration from unaffected areas).				
Neglig ible	Species with no specific value or importance attached to them.	Not significant	Not significant	Not significant	Not significant				
Low	Species and sub-species of Least Concern (LC) on the IUCN Red List, or not meeting criteria for medium or high value.	Not significant	Not significant	Minor	Moderate				
Mediu m	Species on IUCN Red List as Vulnerable (VU), Near Threatened (NT), or Data Deficient (DD), species protected under national legislation, nationally restricted range species, nationally important numbers of migratory, or congregatory species, species not meeting criteria for high value, and species vital to the survival of a medium value species.	Not significant	Minor	Moderate	Major				
High	Species on IUCN Red List as Critically Endangered (CR), or Endangered (EN). Species having a globally restricted range (ie plants endemic to a site, or found globally at fewer than 10 sites, fauna having a distribution range (or globally breeding range for bird species) less than 50,000 km2), internationally important numbers of migratory, or congregatory species, key evolutionary species, and species vital to the survival of a high value species.	Not significant	Moderate	Major	Critical				

4.5 Impact Assessment

4.5.1 Impacts during Construction Phase

Context

Context for impacts of various activities are provided as per Table 4.3

Table 4.3 Context of various impacts during construction phase

Impacts during construction phase	Context
Impacts during Route Survey and Planning	Route survey and planning involves surveying the transmission line route and identifying transmission tower location. Survey identifies the probable approach route to tower locations, feasibility for tower erection, soil testing etc. This will involve vegetation clearance enroute and at tower locations
Impacts during vegetation clearance on approach roads	Approach roads will be required to reach at the tower locations, where possible through tractor trolley with limited vegetation clearance and minimal levelling and where not, on foot by making a small 3-4 m wide forest trail to get access the tower location.
Impacts during vegetation clearance at Tower locations	The tower erection area will need to be cleared for construction activities. An area of 10 m radius will be required to be cleared at each of the tower locations and levelled.
Impacts during man and material transportation on each of the tower location	The transportation of construction workers and construction material at the tower location will be required during the construction phase. While workers transportation facility will be provided till the nearest road end, material transportation will be made through tractor and trolley till the place it is feasible with minimum requirement of vegetation clearance and levelling, it will be further transported on head load by workers to the construction site. Locations which involve larger vegetation clearance, alternate arrangements such as material transportation through rope ways will be explored.
Impacts during storage of construction material	The civil work for foundation and erection of each transmission tower will require the storage of tower components and foundation materials at tower location. This will lead to additional clearance of vegetation in the construction area.
Impacts during construction activities	Foundation and Erection of transmission tower will involve deployment of manpower, excavation of foundation, civil works. This will create temporary habitat disturbance.
Impacts during stringing of conductor	Once the transmission tower erection is completed, conductor stringing will be undertaken. During the stringing all tall trees and branches will be loped and pruned where minimum ground clearance to conductor will be maintained.

Receptors

The receptors in the transmission line route are 45 species of floral species, 25 species of herpetofauna, 105 species of avifauna and 41 species of mammals.

Out of forty five (45) floral species six (06) species are listed as threatened as per IUCN Red list v1.2018, eight (08) species of medicinal importance having commercial value and twelve (12) endemic species from the Western Ghats region.

Faunal species comprised twenty five (25) species of amphibians, sixty three (63) species of reptiles, one hundred and five (105) species of avifauna and forty one (41) species of mammalsin the study area.

Of the above listed species the following IUCN Red- Listed threatened species were recorded: such amphibians; Amboli Bush Frog *Pseudophilautus amboli* (IUCN CR v2018-2), Malabar Tree Toad

Pedostibes tuberculosus and Marbled Ramanella Uperodon mormorata (IUCN EN v2018-2.) and Maharashtra Bush Frog Raorchestes bombayensis (IUCN VU v2018-2).

In reptiles, Indraneil's Day Gecko (Cnemaspis cf. indraneildasii) and Indian rock python (Python molurus) are listed as IUCN VU v2018-2 and are either observed or reported from the study area.

There is significant presence of Sch. I species OF Indian Wildlife Protection Act, 1971 in each faunal group (Refer Section 3.9)

In avifauna, species such as Nilgiri wood pegion (Columba eiphinstonii) (IUCN VU v2018-2) is reported from the study area. Out of total 105 species, 16 avifaunal species are endemic to Western Ghats.

A total of 41 mammals' species reported from the study area, Slender Loris (Loris tardigradus) and Indian Pangolin (Manis crassicaudata) are listed as IUCN EN v.2018.2, while species such as Gaur (Bos gaurus), Common Leopard (Panthera pardus), Sloth Bear (Melursus ursinus) and Fishing Cat (Prionailurus viverrinus) are listed as IUCN VU v2018-2. These species can be potentially impacted.

Impact Significance

Vegetation clearance along the access road and transmission tower locations for the various construction activities as described in Table 4.3 will lead to habitat loss, habitat disturbance to faunal species. It will also lead to loss of natural vegetation which will lead to reduced vegetal cover, shrinkage in natural forest cover, loss of nesting and foraging for avifaunal species, arboreal amphibians, reptiles and movement pattern of mammal species in the study area.

The excavation, levelling and removal of vegetation will also result in soil erosion which will be washed and drained and with the occurrence of rains, will run into the natural streams and change the stream characteristics, impacting the aquatic habitat associated amphibians and reptile and mammalian species.

The study area falls within the Bhagwan Mahaveer Wildlife Sanctuary with presence of significant number of Sch. I species along with presence of IUCN listed CR, EN and VU species, the resource sensitivity is High for habitats and species. The impacts described above will not cause a significant change in the population of these species and therefore the impact magnitude has been deemed Small. The construction period is suggested is of 6 months hence the impact duration suggested is Short term. (Refer *Table 4.4*). The Overall impact significance is **Moderate** for habitats and species.

Residual Impacts

Removal of vegetation, development of approach roads and construction activities can have a direct and indirect impact on the local ecology. The impact is limited to the construction phase of the Project, following which the vegetation can recover, however, recovery as back to original stage will require significant duration of undisturbed state. The significance of the residual impacts is Minor for habitats and species. (Refer Table 4.4)

Impact significance of Overall Construction Activities Table 4.4

Impact	During Const	During Construction Phase								
Impact Nature	Negative			Positive	Positive Neut			Neut	ral	
Impact Type	Direct			Indirect				Induc	ed	
Impact Duration	Temporary	Temporary Short-te		-term		Long-term	า		Perma	nent
Impact Extent	Local	_ocal R						Intern	ational	
Impact Scale	Limited to tov	wer loc	ation,	approach i	oads	s and imm	edia	te surr	ounding	js
Frequency	Construction	phase	:							
Likelihood	Likely	_ikely								
Impact Magnitude	Positive	N	legligik	ole	Sma	all	Medium			Large
Resource Sensitivity (Agricultural lands)	Low	Low			Medium High					
Resource Sensitivity (Species)	Low			Medium		High		High		
lana et Ciamifica a	Not Significa	nt	Minor	or		Moderate			Major	
Impact Significance	Significance	of impa	act is c	onsidered	Mod	lerate for l	habi	tat and	l specie	s.
		Residu	ual Imp	oact Signi	ficar	псе				
Residual Impact Magnitude	Positive	Positive Negligible		Small		Medium	1		Large	
Residual Impact	Not Significa	nt	Mino	r		Moderate	:		Major	
Significance	Significance	of impa	act is c	onsidered	Min	or for habi	tats	and sp	oecies.	

4.5.2 Impacts during operation Phase

The context to the operation phase impacts are

Context

Context for impacts of various activities are provided as per Table 4.3

Table 4.5 Context of various impacts during operation phase

Impacts during operation phase	Context
Impacts due to electrocution and collision of avifaunal species with	Mortality by Electrocution: Electrocution may happen if the avifaunal species sitting on the conductor and touching two phase
conductor	Mortality by collision Mortality by collision may happen if the avifauna flying near the conductor did not spot the conductor and collides with it in full force, leading to physical injury (Like broken wings etc) resulting into death.
Disturbance to vegetation during maintenance of required ground clearance	Preventive and Corrective Maintenance of the transmission line and for maintenance of the mandatory vertical clearance between vegetation and lowest point of conductor sag. This will involve lopping and pruning of existing tree species leading to loss of nesting and perching sites
Electrocution of Arboreal mammals	The arboreal mammals in the study area may face changes in the movement within traditional corridors and mortality due to electrocution while moving from one canopy to another canopy with transmission line as barrier in between.

Receptors

The avifaunal species reportedly present within the study area and in the larger landscape of the wildlife sanctuary such as White stork (Ciconia cicollia), Eurasian Spoonbill (Platalea leucorodia), Malabar grey Hornbill (Ocyceros griseus)* Western Ghats endemic, Indian grey hornbill (Ocyceros biroslris) and Malabar Pied Hornbill (Anlhracoceros coronatus) and Great pied Hornbill (Buceros bicornis) have larger wingspan and face risk of electrocution while perching on the conductor and mortality due to collision while flying into conductor and getting injured.

Raptor species listed in Sch.I of the Indian Wildlife Protection Act, 1972 such as Black Baza (Ariceda leuphotes), Oriental Honey Buzzard (Pernis ptilorhyncus), Black winged Kite (Elanus careleus), Crested Serpent eagle (Spilornis cheela), Crested Goshawk (Accipiter trivirgatus), Shikra (Accipiter badius), Besra Sparrow Hawk (Accipiter virgatus), Eurasian Sparrowhawk (Accipiter nisus), White eyed Buzzard (Butastur teesa), Black Eagle (Icrillaellts malyanensis), Tawny Eagle(Aquila rapax) from the study area and larger landscape have a perching behaviour on the transmission line and may nest in transmission line tower. These are also under potential risk of mortality due to electrocution and collision with conductors.

Arboreal (Tree Dwelling) mammals such as Slender Loris (Loris tardigradus) Indian Giant Flying Squirrel (Petaurista philippensis), Indian/Malabar Giant Squirrel (Ratufa indica), Bonnet Macaque (Macaca radiate), Hanuman /Black-faced Langur (Semnopithecus entellus) may face barrier in movement due to transmission line.

Aerial mammalian species such as Fulvous Fruit Bat (Rousettus leschenaultia), Lesser False Vampire (Megaderma spasma), Indian Pipistrelle (Pipistrellus coromandra), Indian Pygmy Bat (Pipistrellus tenuis) and Lesser Dog-faced Fruit Bat (Cynopterus brachyotis) are also likely to get impacted due to collision with transmission line conductor.

Few IUCN listed species such as Dhole (Cuon alpinus), Slender Loris (Loris tardigradus), Indian Pangolin (Manis crassicaudata), listed as EN v2018-2 and Gaur (Bos gaurus), Sloth Bear (Melursus ursinus), Fishing Cat (Prionailurus viverrinus), Leopard (Panthera pardus) are listed as VU as per v2018-2 may be impacted for habitat disturbance due to routine and corrective maintenance.

Impact Significance

There is a potential of impacts on IUCN listed EN and VU species, Schedule I species of Indian Wildlife Protection Act, 1971 and endemic species from Western Ghats. The study area falls within the Bhagwan Mahaveer Wildlife Sanctuary with presence of significant number of Sch. I species, IUCN listed CR, EN and VU species, the resource sensitivity is **High** for habitats and species. The impacts described above will not cause a significant change in the population of these species as sufficient habitat is present in the study area and the larger landscape. The impact duration is Long term as the impacts will be applicable for entire project cycle. Hence the impact magnitude is deemed medium as effect may causes a substantial change in abundance and/or reduction in distribution of a population over one, or more generations, but does not threatened the long term viability/ function of that population dependent on it. Overall impact assessed for the operational phase is Major for habitat and species.

Residual Impacts

The residual impacts for the operational phase impacts are deemed as Moderate as the implementation of mitigation measures suggested will lower the impact magnitude from medium to small. (Refer Table 4.6)

Impact significance of Operational Activities Table 4.6

Impact	During Opera	ation P	hase							
Impact Nature	Negative			Positive	Neutral					
Impact Type	Direct			Indirect				Induc	ed	
Impact Duration	Temporary Short-te		:-term		Long-tern	n		Perma	nent	
Impact Extent	Local			Regional				Intern	ational	
Impact Scale	Routine and	Correc	tive M	aintenance	•					
Frequency	Operation ph	ase								
Likelihood	Likely	Likely								
Impact Magnitude	Positive	N	legligik	ole	Sma	all	Medium			Large
Resource Sensitivity (Agricultural lands)	Low			Medium	High					
Resource Sensitivity (Species)	Low			Medium	dium		High			
lung and Cinglifian and	Not Significa	nt	Minor	linor		Moderate		Major		
Impact Significance	Significance	of impa	act is c	onsidered	Maj	or for habi	tat a	nd spe	ecies.	
	ı	Residu	ıal İmp	oact Signi	ficar	се				
Residual Impact Magnitude	Positive	Neglig	jible	Small		Medium	า		Large	
Residual Impact	Not Significa	nt	Mino	ſ		Moderate			Major	
Significance	Significance	of impa	act is c	onsidered	Mod	lerate for	habi	tats an	ıd speci	es.

www.erm.com Version: 2.0 Project No.: 0476969

5. MITIGATION MEASURES

5.1 INTRODUCTION

"Mitigation Measures," refer to the actions that can be implemented to minimize the magnitude of the project related detrimental impacts on different physical, biological and social environments of the project area. Mitigation can carry on along three possible courses of actions, either by changing (1) at source, (2) path (3) and at the receiving end.

Overall impact statement identified impacts in construction and operation phase. The impact summary prom the previous chapter is provided in *Table 5.1.*

 Impact Description
 Impact Nature
 Impact Significance

 Without Mitigation
 Residual (With Mitigation)

 Construction Phase
 Negative
 Moderate

 Operation Phase
 Negative
 Major
 Moderate

Table 5.1 Impact Summary

The mitigation measures for the construction phase and operation phase as discussed hereunder;

5.2 Construction Phase Mitigation Measures

The proposed transmission line project is estimated to acquire a total of 11.54 ha. area of Bhagwan Mahaveer Wildlife Sanctuary which would result in the loss of forest habitat, change in species composition and change in abundance of faunal groups of the overall project area.

Section 1 of Transmission line (Refer **Figure 2.1**) falls in the lateritic plateaus habitat with west coast semi evergreen forest areas in fringes. The transmission tower locations are in the forest habitat. This section requires 2.53 ha. of forest land to be diverted.

Section 2 of the transmission line project (Refer **Figure 2.2**) falls in west coast semi evergreen forest and west coast tropical evergreen and moist deciduous forest area. The tower locations are in the dense to very dense forest area. This section required diversion of 9.01 ha of forest land area.

Mitigation measures suggested in the construction phase are discussed below;

- Habitat disturbances to be kept at minimum by using existing trails for transportation of man material and machinery;
- Any vegetation clearance required should be limited to the minimum area required for such passages;
- Compensatory afforestation in the area as instructed by the Forest department as per forest clearance conditions should be undertaken
- Alternate mode of transportation such as Rope-ways should be considered were ever feasible to the maximum extent;
- Tree enumeration for clearance should be undertaken in presence of trained botanist in order to seek guidance to avoid, restore and replant species of conservation significance such as IUCN listed threatened species, endemic species and medicinal plants as per **section 3.8**;
- Construction activity, man and material movement should be limited to the day time and early morning, late evening and night activity should be completely avoided to allow the unrestricted wildlife movement;
- No night stay at the construction site should be planned, proper planning of day work should be done;

- Movement within the wildlife area should be entirely regulated, each work force should be trained in do's and don't's and how to deal in a situation of wildlife encounter before entering the wildlife area.
- Tree felling should be in compliance of all the statutory requirements, tree felling in the nesting season (Refer *Table 3.19*) should carefully examine the active nest on trees before felling, relocation of active nest should be undertaken with the help of State Forest Department and/or wildlife NGO:
- Hunting, trapping and poaching by the employed work force should be completely banned and no poaching tolerance strategy should be covered under contractual obligations;
- On the approach road to the road end (Tambdi Surla Temple End) from the Sancordem to Mollem road, the driving speed of vehicle should be kept below 30km/hr as there are chances of road kills in this stretch;
- The vegetation clearance along the RoW of the transmission line will create a canopy break for the arboreal mammals (Tree dwelling) construction of canopy bridges at key locations (where such canopy breaks are very evident) are suggested. (Figure 5.1 b.)
- Proper housekeeping of the construction areas should be followed during and after construction phase is completed.
- Slope protection and soil conservation measures such as working in non rainly season, contour ploughing and mulching should be undertaken so that contamination of natural streams in the vicinity are not impacted;
- Construction noise from working of man and machine should be regulated. Working hours within the sanctuary area should be from morning 8 am to evening 5 pm.
- Independent monitoring agency (preferably a local wildlife NGO) should be appointed to oversee and guide the mitigation measure implementation during the construction phase and should periodically update the higher official of GTTPL.

5.3 Mitigation for Operational Phase

Operational Phase impacts will be associated to the routine and corrective maintenance, potential risk of electrocution and collision for avifaunal species and electrocution for arboreal mammalian species. In the routine maintenance, in order to require the mandatory vertical clearance, pruning and lopping of trees may be required within the RoW.

Mitigation measures suggested in the operation phase are discussed below;

- Any routine and corrective maintenance schedule planned should be undertaken only after prior information to the forest department;
- GTTPL should make arrangements for dedicated personal from forest department, trained in dealing situations of wildlife encounters, movement, rescue and rehabilitation (preferably reptiles and mammalians) while under taking such routine visits;
- Pre nest search before commencing any pruning and lopping to be undertaken;
- Artificial nest boxes along the transmission line route to mitigate the loss of nesting sites along the transmission line route;(Figure 5.1 a.)
- Periodic review of condition of canopy bridges and undertake required maintenance;
- Installation of bird diverters on the conductor and perch rejecters on transmission tower along the transmission line corridor; (Figure 5.1 c &d.)
- In addition to the above artificial nesting platform for raptor species to be built along the transmission line at a distance of 200 m;

- Structures to climb transmission towers should have a restriction guards (to avoid access to for arboreal species (Maccaques, Langurs, Loris, Giant Squirrels etc.)
- Rapid carcass search along the transmission line corridor for possible victims of collision and electrocution

The suggested mitigation structures are depicted in Figure 5.1.

Figure 5.1 Mitigation Structures for Transmission Line

 a. Artificial nesting platforms reduce electrical hazards and enhance habitat for breeding and roosting

b. Canopy bridge construction for arboreal mammals movement in canopy break area

c. Power line Bird Diverters

d. High temperature Power line Markers

6. BIODIVERSITY MANAGEMENT PLAN

6.1 Introduction

Where biodiversity values of importance to conservation are associated with a project site or its area of influence, the preparation of a Biodiversity Management Plan (BMP) provides a useful means to focus a project's mitigation and management strategy. The development of a BMP for transmission line project is a requirement for regulatory clearances as it documents the process, actions, responsibilities and budget allocation. It also gives the opportunities to investigate the effectiveness of the mitigation measures suggested and provides as chance to revisit them and make timely changes to update/upgrade the mitigation actions for better management of biodiversity.

6.2 BIODIVERSITY MANAGEMENT PLAN

The biodiversity management plan has been devised on the following aspects;

- Ecological Sensitivities along the transmission line corridor;
- Species of conservational significance along the transmission line corridor;
- Impacts during the construction and operation phase;
- Proposed mitigation measures;
- Parameters to be monitored;
- Measurement and frequency;
- Institutional responsibility;
- Implementation schedule

6.2.1 Ecological Sensitivity

The ecological sensitivities along the transmission line are;

Habitats: The transmission line passes through protected area, "**Bhagwan Mahaveer Wildlife Sanctuary**". This sanctuary contains pristine vegetation classified as West Coast tropical evergreen forests, West Coast semi-evergreen forests and moist deciduous forests. The evergreen forests are mainly seen at higher altitudes and along the river banks.

Species of Conservational Significance: The species of conservational significance (IUCN listed Critically Endangered, Endangered and Vulnerable species, Indian Wildlife Protection Act, 1971 listed Schedule I species observed and reported from the transmission line corridor are listed in *Table 6.1*.

The threatened species observed in the transmission line corridor and the buffer area are given as per *Table 6.1*;

Table 6.1 Threatened Species

Common Name	Scientific Name	IUCN v.2018.1	IWPA,1971	Observed /Reported	
Plants					
Tree	Diospyros paniculata Dalzell	VU		Observed	
Climber Hopea ponga (Dennst.) Mab		EN		Observed	
Amphibian					
Malabar Tree Toad	Pedostibes tuberculosus	EN	IV	Observed	
Marbled Ramanella	Uperodon mormorata	EN	IV	Reported	
Amboli Bush Frog	Pseudophilautus amboli	CR	IV	Observed	
Maharashtra Bush Frog	Raorchestes bombayensis	VU	IV	Observed	

Common Name	Scientific Name	IUCN v.2018.1	IWPA,1971	Observed /Reported
Reptiles				
Indian flapshell turtle	Lissemys punctata	LC	1	Reported
Indraneil's Day Gecko	Cnemaspis cf. indraneildasii	VU	IV	Observed
Bengal Monitor Lizard	Varanus bengalensis	LC	1	Reported
Indian rock python	Python molurus	VU	1	Observed
Avifauna				
Wooly-necked stork	Ciconia episcopus	VU	IV	Reported
Eurasian Spoonbill	Platalea leucorodia	LC	1	Reported
Black Baza	Ariceda leuphotes	LC	I (part III)	Reported
Oriental Honey Buzzard	Penlis ptilorhyncus	LC	I (part III)	Reported
Black shouldered Kite	Elanus careleus	LC	I (part III)	Reported
Crested Serpent eagle	Spilornis cheela	LC	I (part III)	Reported
Crested Goshawk	Accipiter trivirgatus	LC	I (part III)	Reported
Shikra	Accipiter badius	LC	I (part III)	Reported
Besra Sparrow Hawk	Accipiter virgatus	LC	I (part III)	Reported
Eurasian Sparrowhawk	Accipiter nisus	LC	I (part III)	Reported
White eyed Buzzard	Butastur teesa	LC	I (part III)	Reported
Black Eagle	Icrillaellts malyanensis	LC	I (part III)	Reported
Tawny Eagle	Aquila rapax	LC	I (part III)	Reported
Peregrine falcon	Falco peregrillus	LC	I (part III)	Reported
Nilgiri wood pegion	Columba eiphinstonii	VU	IV	Reported
Indian edible nest swiftlet	Collocalia unicolor	LC	I (part III)	Reported
Malabar Pied Hornbill	Anlhracoceros coronatus	NT	I (part III)	Observed
Great pied Hornbill	Buceros bicornis	NT	I (part III)	Reported
Sri Lanka frogmouth	Batrachostomus moniliger	LC	I (part III)	Observed
Mammals				
Sambar	Cervus unicolor	VU	III	Observed
Gaur	Bos gaurus	VU	I (Part I)	Observed
Dhole	Cuon alpinus	EN	II (Part I)	Reported
Sloth Bear	Melursus ursinus	VU	Sch I (Part I)	Reported
Leopard Cat	Prionailurus bengalensis	LC	Sch I (Part I)	Reported
Fishing Cat	Prionailurus viverrinus	VU	Sch I (Part I)	Reported
Leopard	Panthera pardus	VU	Sch I (Part I)	Reported
Mouse Deer	Moschiola meminna	LC	Sch I (Part I)	Reported
Slender Loris	Loris tardigradus	EN	Sch I	Reported
Indian Pangolin	Manis crassicaudata	EN	Sch I (Part I)	Reported

The plan is described in Table 6.2 below

Biodiversity Management Plan Table 6.2

Activity	Impact	Target species groups	Phase (Construction/ Operation)	Proposed mitigation measures	Parameters to be monitored	Measurement and frequency	Institutional responsibility
Route Survey and Planning	Habitat disturbance due to clearance of bushes while new	Faunal groups (Herpetofauna, Avifauna and Mammals)	Construction Phase	 Habitat disturbances to be kept at minimum by using existing trails for transportation of man material and machinery; Any vegetation clearance required should be limited to the minimum area required for such passages; Alternate mode of transportation such as Ropeways should be considered were ever feasible to the maximum extent 	Physical demarcation of the Right of Way before the vegetation clearance	Visual inspection on monthly basis during the construction phase	Third Party Inspection report to GTTPL
Impacts during vegetation clearance on approach roads and RoW	Habitat Loss and habitat disturbance, loss of nesting sites	Flora and Faunal groups	Construction Phase	 Tree cutting for the approach roads and RoW should be undertaken where it is only absolute necessary, Tree enumeration for clearance should be undertaken in presence of trained botanist/forest department in order to seek guidance to avoid, restore and replant species of conservation significance such as IUCN listed threatened species, endemic species and medicinal plants as per section 3.8; Tree felling should be in compliance of all the statutory requirements, tree felling in the nesting season (Refer Table 3.19) should carefully examine the active nests on trees before felling, relocation of active nest should be undertaken with the help of State Forest Department and/or wildlife NGO; Cleared wood material removal should be undertaken as per guidance of the state forest department; The ground dwelling fauna in the area should be approached carefully and removed from the direct path under trained experts, no direct attendance of the wildlife encounters 	Physical demarcation of the vegetation in approach roads before clearance	Visual inspection on weekly basis during the construction phase	Third Party Inspection report to GTTPL, GTTPL to prepare a clearance schedule based on tree enumeration survey

Activity	Impact	Target species groups	Phase (Construction/ Operation)	Proposed mitigation measures	Parameters to be monitored	Measurement and frequency	Institutional responsibility
Impacts during vegetation clearance on Tower locations	Habitat loss and Habitat disturbance	Floral and faunal groups	Construction phase	 The tower location needs 10 m radius working area for tower erection, vegetation clearance will be required. Clearance should be confinedwithin the designated area The various componenets of tower will be stored in the tower locations resulting in additional areas for clearance, the site manager will ensure that minimum area disturbance is made during tower erection; No night stays should be made inside the Sanctuary area, entire day activities should be planned in a way, early morning, night and late evening time is avoided. No blasting within the sanctuary area should be made for excavation of rocks for foundation, alternative less disruptive methods should be avaoided; The cleared vegetation should be removed from the construction area, a designated place for the storage of the cleared wood as per direction of forest department should be made; No wildlife should be harmed by the work force in the forest and sanctuary area. 	Third party verification during construction period	Visual inspection on weekly basis during the construction phase	Third Party Inspection report to GTTPL
Impacts during man and material transportation on each of the tower location	Habitat disturbances	Fauna group	Construction phase	 Material movement will be through trucks till the road end and further on tractor trolleys In case the last location is not approachable then material will be transported either on foot by labourers or through rope way lokely to be erected for transporation which required minimum disturbances; Man movement will be on foot, damage to flora and fauna should be avoided to maximum extent, Contractual obligations should clearly define zero tolearance to hunting, trapping and poaching. 	Material movement at each tower location	Visual inspection on weekly basis during the construction phase	Third Party Inspection report to GTTPL
Impacts during	Habitat disturbances	Fauna group	Construction phase	 Stringing on conductor will involve vegetation clearance for any construction during stringing and trees will be chopped, lopped and pruned as per 	Stringing the towers	Visual inspection	Third Party Inspection

Activity	Impact	Target species groups	Phase (Construction/ Operation)	Proposed mitigation measures	Parameters to be monitored	Measurement and frequency	Institutional responsibility
stringing of conductor				requirement. Before undertakeing such activity, it is to be ensured that the remaing tree left will grow further; In Nesting sites of avifaunal species to be avoided to the extent possible, if not then the nest translocation should be undertaken by trained wildlife personels, pre identification of nesting site should be under taken;		during stringing	report to GTTPL
Risk of mortality due to electrocution and collision	mortality in Species of conservational significance	Avifauna and Arboreal mammals	Operation Phase	 Any routine and corrective maintenance schedule planned should be undertaken only after pre informing the forest department; GTTPL should make an arrangement for dedicated personal from forest department, trained in dealing situations of wildlife encounters, movement, rescue and rehabilitation (preferably reptiles and mammalians) while under taking such routine visits; Structures to climb transmission towers should have a restriction guards (to avoid access to for arboreal species (Maccaques, Langurs, Loris, Giant Squirrels etc.) Rapid carcass search along the transmission line corridor for possible victims of collision and electrocution Installation of canopy bridges in the canopy break areas for zero hinderance movement of arboreal mammals. Periodic review of condition of canopy bridges and undertake required maintenance; Installation of bird diverters on the conductor and perch rejecters on transmission tower along the transmission line corridor; In addition to the above artificial nesting platform for raptor species to be built along the transmission line at a distance of 200 m; 	Species mortality and effectiveness to mitigation measures	Quaterly during first two years of energization and then six monthly during next two years	External Consultant and GTTPL
Vegetation removal for maintaining mandatory	Habitat loss and habitat disturbances	Floral and faunal groups	Operation Phase	 Pre nest search before commencing any pruning and lopping to be undertaken; 	Nesting frequency of avifaunal species	Quarterly during first two years of energization	External Consultant and GTTPL

BIA AND BMP FOR 400 KV TRANSMISSION LINE CORRIDOR PASSING THROUGH PROTECTED AREAS OF GOA STATE Final Report

Activity	Impact	Target species groups	Phase (Construction/ Operation)	Proposed mitigation measures	Parameters to be monitored	Measurement and frequency	Institutional responsibility
electrical safety vegetation clearance				 Suggesting artificial nest boxes along the transmission line route to mitigate the loss of nesting sites along the transmission line route; 		and then six monthly during next two years	

Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) www.erm.com Version: 2.0 Project No.: 0476969

Cost of the Biodiversity Management Plan 6.3

The cost for the implementation of the conservation plan is provided in *Table 6.3* below. There cost are indicative and will be updated in consultation of the state forest and wildlife department.

Cost of Implementation of BMP Table 6.3

Sn.	Activity	Budget in Rupees
1.	Professional and administrative support from Forest Department for vegetation clearance, monitoring and implementation and overall guidance	Rs. 20 Lakhs
2.	Biodiversity Monitoring during construction and operation phase	Rs.15.0 Lakhs
3.	Creation of Nest boxes nesting platforms and canopy bridges	Rs. 2.5 Lakhs
4.	Bird diverters along the transmission line	Rs. 15 .0 Lakhs
	Total	Rs. 52.5 Lakhs

APPENDIX A TOWER DESIGN DETAILS

www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) 14 January 2019

To,

Mr. Rajiv Ranjan, M/s Larsen & Toubro Ltd. Power Transmission & Distribution. Mount Poonamallee Road, Manapakkam, P.B. No. 979, Chennai -600089

Ref No: SPGVL/GTTPL/ENGG/L&T/22

Dated: 10th August'2018

PROJECT: 765 kV, 400 kV & 220 kV Transmission lines associated with Goa Tamnar

Transmission Project Limited

LOA No: SPGVL/17-18/LOA/009 Dated: 29-12-2017.

Subject: Issuance of Final Approved Tower Spotting data for 400kV D/C Quad AAAC Moose T/L (WZ-1 & WZ-2) including additional family of Towers.

Dear Sir,

This is with reference to 400kV D/C Quad AAAC Moose T/L (WZ-1 & WZ-2) for GTTPL Project. We are hereby releasing the below mentioned approved documents for your reference and use in same: -

Sr.No	Description	Document No.	Rev. No.
Tower	Spotting Data for WZ-1		
1.	400kV D/C Quad AAAC Moose T/L	DS-1003	1
Tower	Spotting Data for WZ-2		1
1.	400kV D/C Quad AAAC Moose T/L	DS-1008	1

Approval conveyed herein neither relieve M/s L&T of his contractual obligation & his responsibilities for correctness of dimension, materials of construction, weights, designed details, assembly fits, performance particulars & conformity of the supplies with the Indian statutory laws as may be applicable, nor does it limit the SPGVL rights under the contract.

Regards

Dr. Deepak Lakhapati Chief Design Officer

Encl: As Above

Copy to:

1. Mr. Amitanshu along with Encl

///Sterlite Power

Project:

400 KV D/C TRANSMISSION LINE

<u>Line :</u>

Xeldam- Narendra 400 KV D/C Transmission

Line with Quad AAAC Moose Conductor (WZ-

1)

Wind Zone:

I (33 m/s)

Owner:

Sterlite Power Grid Ventures Limited

<u>Description:</u>

TOWER SPOTTING DATA (Upto +9M)

ERLITE POWER GRID VENTURES LTD LEASED FOR CONSTRUCTION ONTROLLED COPY

Approved Vide Ref. Letter No.S.PGVL/GTTPL)

ENGG/L4T/22 Date: 10/03/2018
Engineering Deptt.
The above does not relieve the contractor from their contractual obligations

Document	Date	Davi			
	Date	Rev	Remarks	Desn	CTATHC
no.		no.	if any	by	STATUS
DS-1003	10-08-2018	01	Additional Tower Families Included	АМ	

2	HOLEGIA CHARACTER AND CHARACTE	(QUAD AAAC		(QUAL	U	MOOSE CONDUCTOR)	(MCTOR)								
2 -	DESCRIPTION	DA (0-2	DA (0-2 DEGREE)	DBN (0-8 DEGREE)	:GREE)	DB (0-15 D	EGREE)	DC (15-30 D	EGREE	DDN (30-45 DFGRFF)	DEGREE	I DD (30-40 DECEPTED	DECEDED	25 00 37	1100
	WAY ANGLE OF DEVIATION		2	1 8		15		8		45	,	09	(C)	VC (V-13 D)	GREE
N	VERTICAL LOAD LIMITATION ON WEIGHT	DOWNW.	ARDS ONLY	Ę,			UPWARD	DOWNWARD	UPWARD	DOWNWARD	UPWARD	DOWNWARD	UPWARD	DOWNWARD	HPWAPA
1.7	GROUNDWIRE FFFFCT	MAX	NIW W	MAX	Z Z	MAX	N.	MAX	Z	MAX	WIN	MAX	MIN	MAX	Z Z
ace.	III ON BOTH SPAN (AA)	400	000	907	000										
	ALL ONE SPAN (MA)	370	700	970	2007-	009	-200	009	-200	009	-200	009	-200	009	-200
2.2	CONDUCTOR EFFECT	200	001	200	301	360	-100	360	-100	360	-100	360	-100	360	-100
	III ON BOTH SPAN /M!	900	000	007	000	307	000								
	(II) ONE SPAN (M)	340	3 2	076	200	900	207-	009	-200	009	-200	009	-200	009	-20
6	WEIGHTS		32	200	3	360	001-	360	<u>8</u>	360	-100	360	-100	360	100
Г	GROUNDWIRE EFFECT														
	III ON BOTH SPAN IKG	280	07	000	100	000									
	ON THE CONTRACT OF THE CONTRAC	177	, ,	27.0	14.	DAZ.	\ <u>^</u>	290	-97	290	-67	290	-97	290	-97
32	CONDICTOR REFECT	1/4	47	1/4	4	1/4	-49	174	-49	174	-46	174	-49	174	4
	A ON BOTH CAME INC.	1000													
	III ONE SPAN INC.	38	334	000	-334	0001	-334	1000	-334	1000	-334	1000	-334	0007	6
T	III CINE SPAN (KG)	900	/91	009		909	-167	008	-167	009	-147	007	271-	200	3
4	PERMISSIBLE SUM OF ADJACENT SPANS IN	EVN ANG	SPAN	DEVN ANGLE	Ţ	DEVN ANGLE	T	DEVN ANGLE	SPAN	DEVN ANGLE	SPAN	DEVN ANGE	SPAN	DEVALANCIE	/01-
	M FOR VARIOUS DEVIATION ANGLES.	2	000	8	800	15	800	8	800	45	800	9	800	DEVIN ANGLE	27.7
	PERMISSIBLE ONE SPAN FOR VARIOUS		820	7	198	14	098	2%	098	44	857	92	843	> 2	3 5
	DEVIATION ANGLES SHOULD NOT EXCEED	0	900	9	922	13	921	28	920	43	914	35	300	2	₽
_	60% OF THE VALUE SHOWN FOR THE SUM			5	984	12	982	27	979	42	971	3 4	000		
_	OF ADJACENT SPANS SUBJECTED TO			4	1044	=	1042	26	1039	14	1028	32	1019		
Ì	AVAILABILITY OF GROUND CLERANCES.			3	1105	10	1104	25	1098	40	1084	3 52	1044		
				2	1166	٥	1164	24	1158	36	1141	3 2	1118		
					1227	80	1225	23	1216	88	1198	5 5	117		
				0	1288	7	1285	22	1276	37	1254	3 2	1001		
						9	1347	21	1335	88	1311	3 5	1070		
						5	1407	70	1393	35	1347	S	1330		
						4	1469	19	1453	34	1425	Q Q	1394		
						က	1529	<u>®</u> 1	1512	33	1482	48	1438		
_						2	1590	12	1572	33	1540	24	207		
						1 & below	1651	16	1631	33	1598	46	15.48		
4	DESICNI O 4D TO 100 IN TO							15	1691	8	1656	45 & Delow	5071		
T	SCHOOL COAD TENSION												200		
Т	OPGW -(32C AND Full Wind)							2374	2374.00 Kg						
1	Jr.G.W (32C AND 75% of Full Wind)							2045	2045 00 Kg						
1	OPGW -(OC AND 36% of Full Wind)							1748	1748 OD Ko						
77	CONDUCTOR-(32C AND Full Wind)							2694	00 KG						
4	CONDUCTOR-(32C AND 75% of Full Wind)							5004	200						
	CONDUCTOR-(0C AND 36% of Full Wind)							5024	5035 00 Kg						
80	BROKEN WIRE CONDITION (BROKEN ON THE	BIAC VIANVO	also >	A. 1787		A COLONIA		3	2						
S	SAME SIDE ON THE SAME SPAN)	CONDUCTOR	2010	GW+AD	GW+ANY ONE CO	ONDUCTOR OR ANY TWO CONDUCTORS	ANY TWO (CONDUCTORS		GW+	ANY TWO C	GW+ANY TWO CONDUCTORS OR ALL THREE CONDUCTORS	R ALL THREE	CONDUCTORS	
			:												

PROJECT DETAILS: 400 KV D/C TRANS. LINE WITH QUAD AAAC MOOSE CONDUCTOR (WZ-1) OWNER: STERLITE POWER GRID VENTURES LIMITED - NEW DELHI

SAG TENSION CALCULATIONS

Ruling span: (L) 400.00 m

Design Wind Pressure: (Pd): 346.00 N/Sq.mt

35.30 kg/\$q.mt

Gust response factor (for wire): Gc: 2.22 2.30

Final wind pressure (for wire): 79.00 kg/Sq.mt 98.00 kg/Sq.mt

2.52 kg/m 1.18 kg/m

Final wind pressure (for Insulator) : 106.00 kg/Sq.mt

<u>Particulars</u> <u>Conductor</u> <u>Earth-wire</u>

Code : AAAC Moose OPGW (24F)

Area, (A): 6.040 sq.cm 0.7737 sq.cm

Unit Wt : 1.666 kg/m 0.483 kg/m

Diameter : (D) 3.195 cms 1.200 cms

Tensile strength: (T) 17130.00 kgs 8410.00 kgs

Elast. Mod : (E) .5508E+06 kg/sq.cm .1417E+07 kg/sq.cm

Expns. Coef : (∞) .2300E-04 /Deg.Cnt .1380E-04 /Deg.Cnt

BASIC EQUATION OF SAG TENSION CALCULATIONS :-

F^2 [F - {K-∞*t*E}] = Z

STARTING CASE - (CASE: 1)

TEMP 32 0 WIND 0 0

K CAL BY FOS OR SAG FOS SAG FOS OR SAG REQ. 4.55

			Conducto	<u> yr</u>	<u>Eartl</u>	h-wire	
Loading Conditions		sag (m)	Ulf. Tension	% OF UTS	sag (m)	Uff. Tension	% OF UTS
0 - Dgr.	No - Wind	7.110	4686.07	27.36 %	6.399	1509.52	17.95 %
0 - Dgr.	36% - Wind	-	5034.25	29.39 %		1747.99	20.78 %
32 - Dgr.	No - Wind	8.841	3768.60	22.00 %	7.462	1294.54	15.39 %
32 - Dgr.	75% - Wind		5023.37	29.32 %		2044.76	24.31 %
32 - Dgr.	Full - Wind		5693.07	33.23 %	-	2373.67	28.22 %
53 - Dgr.	No - Wind		_		8.178	1181.29	14.05 %
85 - Dgr.	No - Wind	11.621	2867.16	16.74 %			

TOWER SPOTTING DATA FOR XELDAM- NARENDA 400 KV D/C TRANSMISSION LINE (WZ-1) [QUAD AAAC MOOSE CONDUCTOR]

(I) GENERAL DETAILS:

Normal Span (M) = 400

Design Wind Span (M) =

Type of Condition	DA	DBN	DB	DC	DDN	DD	DE
NC	400	400	400	400	400	400	260
BWC	240	240	240	240	240	240	156

(II) TOWER TYPES:

- a) Tower type "DA" Shall be used as Tangent tower with Double Suspension Insulator String.
- b) Tower type "DBN/DB/DC/DDN/DD" Shall be used as Tension tower with Quad Tension Insulator String.
- c) Tower type "DBN/DB" Shall also be used as Section tower.
- d) Dead End tower shall have provision of 0 to 15 Degree deviation on line side as well as slack side.
- e) Suitable Pilot String Shaft be Used for Tower type "DC". DC Tower shall not use as section tower.

(III) ELECTRICAL CLERANCES FOR RAILWAY CROSSING

- a) Crossing should be done with DDN/DD type tower with Quad tension insulator string with limiting span as 300m.
- b) The crossing shall normally be at right angle to the railway track.

Minimum Clerance between lowest point of 400 KV line conductor & Rail level shall be as below.

(1) For Existing Power Line Crossings:-	17.90 m	
(2) For New Power Line Crossings or Alteration to Existing Power Line Crossing in Electrified Sections:-	18.26 m 15.434 m	(Clearance at OHE structures in mm) (Clearance at Mid OHE span in mm)
(3) For Power Line Crossings in Non-Electrified Sections :-		(Line is not anticipated to be electrified) (Line to be electrified in future)
(4) For Highart Traction County-to-100 to 1		

5.49 m

(4) For Highest Traction Conductor & Lowest crossing conductor :-

However, approval of Railway Crossing from railway authority has to be obtained in each case.

(IV) MINIMUM CLERANCE FOR POWER LINE CROSSING WHEN CROSSING EACH OTHER For System 400 KV

For TTKV to 66 KV	5.49 m
For 110KV to 132 KV	5.49 m
For 220 KV	5.49 m
For 400 KV	5.49 m
For 765 KV	7.94 m
For 1200 KV	10.44 m
For 500 KV HVDC	6.79 m
For 800 KV HVDC	9.04 m

(V) TELECOMMUNICATION LINE CROSSING

The angle of crossing shall be as near to 90 deg as possible. However deviation to the extent of 30 deg may be permitted under exceptional difficult situation.

For 400 KV 4.48 m

(VI) SECTION TOWER

The No. of consective spans between the section points shall not exceed 15 or 5kms in plain terrain & 10 spans or 3kms in hilly terrain. A section point shall comprise of tension point with DBN/DB type tower.

(VII) Minimum ground clerance required = 8840 mm.

(VIII) For all national highways crossings, tension towers is to be used and crossing span is not to exceed 250 m

(IX) Way leave clerance: 26 m from the cl of tower on either side of tower.

(X) Maximum span of adjucent spans for various angle of deviation are subjected to the condition that minimum specified live metal clerances and minimum around clerances are available.

(XI) suspension towers shall be spotted such that vertical load of individual spans shall be acting downwards only, no uplift is permitted in suspension towers.

(XII) tower type "DC" shall be used for transposition with 0 deg. deviation with modification of cross arms.

(XIII) Intermediate spans in a section shall be as near as possible to the normal span.

(XIV) For Body & Leg Extensions Arrangement - Refer attached Annexture - I

Body Extensions : --3MBE, +0M BE, +3M BE & +6M BE

Leg Extensions : - -3.0M LE, -1.5M LE, +0.0M LE, +1.5M LE, +3.0M LE

These positive and negative extensions shall be used to achieve required ground clearance.

Maximum allowable difference in two legs at one tower is 4.5m.

(XV) Normal tower consists of Basic Body + (+0M B.E.) + (+0M L.E.).

(XVI) Height of bottom conductor from ground level for tower combination Basic Body + (+0M B.E.) + (+0M L.E.) is 20.900m.

Max. Individual Span Calculation

L = Normal Span (m)

400

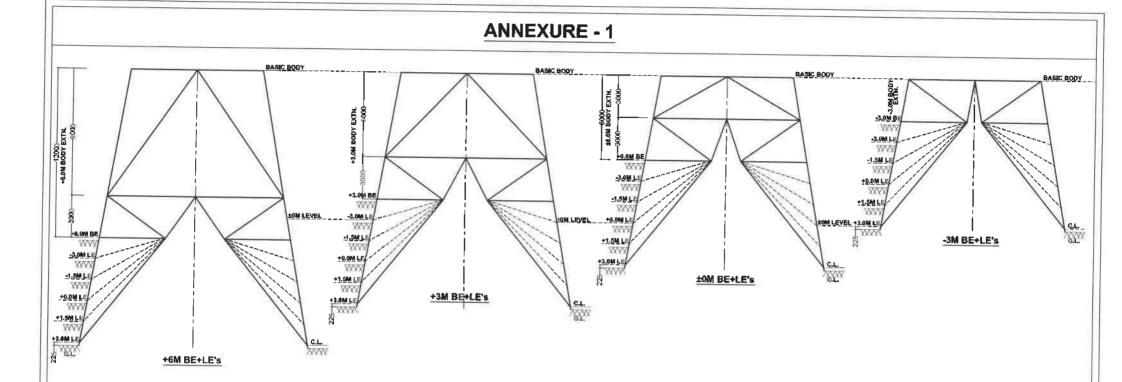
V = System voltage in kVs

400

S = Max. Sag (incliding Sag errror)(m)

11.621

$$L_{max} = L \sqrt{\frac{K}{s}}$$


K = Max. Sag factor corresponding to Max.Individual span & is given by the equation written Below

$$VS = 0.75\sqrt{K + SI} + \frac{V}{150}$$

VS = Vertical Seperation

SI = Suspension insulator Assembly Length

TOWER	VS	SI	K	L _{max} (m)	Span limit for permissible sum of adjacent span (m) (L _{max} x 2)
DA	8.45	4.8	54.661	868.0	1736.0
DBN	8.00	0	50.568	834.0	1668.0
DB	8.00	0	50.568	834.0	1668.0
DC	8.20	0	54.432	866.0	1732.0
DDN	8.35	0	57.423	889.0	1778.0
DD	8.35	0	57.423	889.0	1778.0

Notes:-

- 1. Body Extensions: -3M BE, -+0M BE, +3M BE & 6M BE.
- 2. Leg Extensions: -3.0M LE, -1.5M LE, +0.0M LE, +1.5M LE, +3.0M LE.
- 3. These positive and negative extensions shall be used to achieve required ground clearance.
- 4. Maximum allowable difference in two legs at one tower is 4.5m.
- 5. Normal tower consists of Basic Body + (+0M B.E.) + (+0M L.E.).
- 6. Height of bottom conductor from ground level for tower combination Basic Body + (+0M B.E.) + (+0M L.E.) is 20.900m.

GENERAL ARRANGEMENT FOR UNIVERSAL BODY & LEG EXTENSION COMBINATION

////Sterlite Power

Project:

400 KV D/C TRANSMISSION LINE

Line:

Xeldam- Mapusha 400 KV D/C Transmission

Line with Quad AAAC Moose Conductor (WZ-

2)

Wind Zone :

II (39 m/s)

Owner:

Sterlite Power Grid Ventures Limited

Description:

TOWER SPOTTING DATA (Upto +9M)

FERLITE POWER GRID VENTURES LTD ELEASED FOR CONSTRUCTION ONTROLLED COPY

Approved Vide Ref. Letter No. SPGNL/GTTPL/

ENGG/L4T/22 Date: 10/03/2013
Engineering Deptt.
the above does not relieve the contractor from their contractual obligations

Document no.	Date	Rev no.	Remarks if any	Desn by	STATUS
D\$-1008	10-08-2018	01	Additional Tower Families Included	АМ	

				[QUAD AA	AL MUU:	SE CONDUCTOR	()								
R, NO.	DESCRIPTION	DA (0-2 DE	GREE)	DBN (0-8 D	EGREE)	DB (0-15 D	EGREE)	DC (15-30 D	DEGREE)	DDN (30-45	DEGREE)	DD (30-60	DEGREE)	DE (0-15 D	EGREE!
1	MAX ANGLE OF DEVIATION	2		8	1100	15		30		45		60)	15	
2	VERTICAL LOAD LIMITATION ON WEIGHT SPAN	DOWNWARD	DS ONLY	DOWNWARD	UPWARD	DOWNWARD	UPWARD	DOWNWARD	UPWARD	DOWNWARD	UPWARD	DOWNWARD	UPWARD	DOWNWARD	UPWARE
		MAX	MIN	MAX	MIN	MAX	MIM	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
2.1	GROUNDWIRE EFFECT														
	(I) ON BOTH SPAN (M)	600	200	600	0	600	0	600	0	600	0	600	0	300	0
	(II) ONE SPAN (M)	360	100	360	-200	360	-200	360	-200	360	-300	360	-300	300	0
2.2	CONDUCTOR EFFECT														
	(I) ON BOTH SPAN (M)	600	200	600	0	600	0	600	0	600	0	600	0	300	0
	(i) ONE SPAN (M)	360	100	360	-200	360	-200	360	-200	360	-300	360	-300	300	0
	WEIGHTS										\	×			
3.1	GROUNDWIRE EFFECT														
	(1) ON BOTH SPAN (KG)	350	117	350	0	350	0	350	0	350	0	350	0	175	0
	(II) ONE SPAN (KG)	210	59	210	-117	210	-117	210	-117	210	-1 <i>7</i> 5	210	-175	175	0
3.2	CONDUCTOR EFFECT											200			
	(I) ON BOTH SPAN (KG)	1000	334	1000	0	1000	0	1000	0	1000	0	1000	0	500	0
	(II) ONE SPAN (KG)	600	167	600	-334	600	-334	600	-334	600	-500	600	-500	500	0
4	PERMISSIBLE SUM OF ADJACENT SPANS IN M FOR VARIOUS DEVIATION ANGLES.	DEVN ANGLE	SPAN	DEVN ANGLE		DEVN ANGLE	SPAN	DEVN ANGLE	SPAN	DEVN ANGLE		DEVN ANGLE	SPAN	DEVN ANGLE	
	PERMISSIBLE ONE SPAN FOR VARIOUS DEVIATION ANGLES SHOULD NOT EXCEED	2	800	8	800	15	800	30	800	45	800	60	800	0	800
	60% OF THE VALUE SHOWN FOR THE SUM OF ADJACENT SPANS SUBJECTED TO	1	840	7	851	14	851	29	850	44	848	59	844	15	800
	AVAILABILITY OF GROUND CLERANCES.	0	881	6	902	13	902	28	901	43	896	58	889		
				5	954	12	953	27	951	42	943	57	933		
				3	1004 1056	11	1003	26	1001	41	991	56	977		
				2		9	1055	25	1050	40	1038	55	1021		
				1	1107		1105	24	1100	39	1086	54	1066		
				,		8	1156	23	1149	38	1133	53	1110		1
		-		V	1209		1207 1258	22	1199 1248	37	1180	52	1154		
		-				5	1309	21	1248	36 35	1228	51	1199		
						4	1360	19	1346	34	1274 1322	50	1243 1288		
						3	1411	18	1396	33	1370	49	1333		
			-			2	1462	17	1446	32	1418	48	1333		
						1 & below	1513	16	1496	31	1467	46	1424		_
				_		I & DOWN	1515	15	1546	30	1515	45 & below	1424		_
5	DESIGN LOAD TENSION							15	1040	- 50	1313	43 & DOIOW	1470		_
	7/3.66 -(32C AND Full Wind)							3014.0	0 Ka						
	7/3.66 -(32C AND 75% of Full Wind)							2588.0							
	7/3.66 - (0C AND 36% of Full Wind)							2147.0			_				
5.2	OPGW - (32C AND Full Wind)							2880.0							
	OPGW - (32C AND 75% of Full Wind)							2442.0							
	OPGW - (OC AND 36% of Full Wind)							1921.0							
5.2	CONDUCTOR-(32C AND Full Wind)							6766.0							
	CONDUCTOR-(32C AND 75% of Full Wind)							5814.0							
	CONDUCTOR-(0C AND 36% of Full Wind)	74						5317.0							
6	BROKEN WIRE CONDITION (BROKEN ON THE SAME SIDE ON THE SAME SPAN)	GW/ANY CONDUC		GW-	ANY ONE	CONDUCTOR O	R ANY TWO		-	GW-	HANY TWO	CONDUCTORS (OR ALL THREE	CONDUCTORS	

Xeldam- Mapusha 400 KV D/C Transmission Line with Quad AAAC Moose Conductor (WZ-2) OWNER: STERLITE POWER GRID VENTURES LIMITED - NEW DELHI

SAG TENSION CALCULATIONS

Ruling span: (L) 400.00 m

Design Wind Pressure: (Pd): 483.00 N/Sq.mt

49.20 kg/Sq.mt

Gust response factor (for wire): Gc: 2.22 2.30

Final wind pressure (for wire): 110.00 kg/Sq.mt 136.00 kg/Sq.mt 3.51 kg/m 1.49 kg/m

Final wind pressure (for Insulator): 148.00 kg/\$q.mt

<u>Particulars</u> <u>Conductor</u> <u>Earth-wire</u>

Code: AAAC Moose 7/3.66

Area, (A): 6.040 sq.cm 0.7365 sq.cm

Unit Wt : 1.666 kg/m 0.583 kg/m

Diameter : (D) 3.195 cms 1.098 cms

Tensile strength: (T) 17130.00 kgs 6973.00 kgs

Elast. Mod : (E) .5508E+06 kg/sq.cm .1936E+07 kg/sq.cm

Expns. Coef : (∞) .2300E-04 /Deg.Cnt .1150E-04 /Deg.Cnt

BASIC EQUATION OF SAG TENSION CALCULATIONS :-

F^2 [F - (K-∞*t*E)] = Z

STARTING CASE - (CASE: 1)

TEMP 32 0. WIND 0 0

K CAL BY FOS OR SAG FOS SAG
FOS OR SAG REQ. 4.55 6.3999

		3	Conducto	<u>or</u>	<u>Earth</u>	n-wire	
Loading Conditio	ins -	sag (m)	Ulf. Tension	% OF UTS	sag (m)	Ult. Tension	% OF UT\$
0 - Dgr.	No - Wind	7.110	4686.07	27.36 %	6.399	1822.05	26.13 %
0 - Dgr.	36% - Wind	-	5316.60	31.04 %	•	2146.42	30.78 %
32 - Dgr.	No - Wind	8.841	3768.60	22.00 %	7.312	1594.66	22.87 %
32 - Dgr.	75% - Wind	-	5814.00	33.94 %		2587.54	37.11 %
32 - Dgr.	Full - Wind		6765.07	39.49 %	<u> </u>	3013.72	43.22 %
53 - Dgr.	No - Wind				7.923	1471.62	21.10 %
85 - Dgr.	No - Wind	11.621	2867.16	16.74 %	-	T •	

Xeldam- Mapusha 400 KV D/C Transmission Line with Quad AAAC Moose Conductor (WZ-2) OWNER: STERLITE POWER GRID VENTURES LIMITED - NEW DELHI

SAG TENSION CALCULATIONS

Ruling span: (L) 400.00 m

Design Wind Pressure: (Pd) : 483.00 N/Sq.mt

49.20 kg/Sq.mt

Gust response factor (for wire) : Gc: 2.22 2.30

Final wind pressure (for wire) : 110.00 kg/Sq.mt 136.00 kg/Sq.mt 1.66 kg/m

Final wind pressure (for Insulator): 148.00 kg/Sq.mt

<u>Particulars</u> <u>Conductor</u> <u>Earth-wire</u>

Code: AAAC Moose OPGW (24F)

Area, (A): 6.040 sq.cm 0.7565 sq.cm

Unit Wt : 1.666 kg/m 0.483 kg/m

Diameter : (D) 3.195 cms 1.220 cms

Tensile strength: (T) 17130.00 kgs 9032.00 kgs

Elast. Mod : (E) .5508E+06 kg/sq.cm .1417E+07 kg/sq.cm

Expns. Coef : (∞) .2300E-04 /Deg.Cnt .1380E-04 /Deg.Cnt

BASIC EQUATION OF SAG TENSION CALCULATIONS :-

F^2 [F - (K-∞*†*E)] = Z

STARTING CASE - (CASE: 1)

TEMP 32 0 WIND 0 0

K CAL BY FOS OR SAG FOS SAG
FOS OR SAG REQ. 4.55

			Conductor			<u>Earth-wire</u>	
Loading Conditions		sag (m)	Ult. Tension	% OF UTS	sag (m)	Ult. Tension	% OF UTS
0 - Dgr.	No - Wind	7.110	4686.07	27.36 %	6.399	1509.52	16.71 %
0 - Dgr.	36% - Wind		5316.60	31.04 %		1920.80	21.27 %
32 - Dgr.	No - Wind	8.841	3768.60	22.00 %	7.451	1296.43	14.35 %
32 - Dgr.	75% - Wind	-	5814.00	33.94 %		2441.18	27.03 %
32 - Dgr.	Full - Wind	-	6765.07	39.49 %		2879.04	31.88 %
53 - Dgr.	No - Wind		<u> </u>		8.161	1183.71	13.11 %
85 - Dgr.	No - Wind	11.621	2867.16	16.74%		Τ -	

TOWER SPOTTING DATA FOR XELDAM- MAPUSHA 400 KV D/C TRANSMISSION LINE (WZ-2) (QUAD AAAC MOOSE CONDUCTOR)

(I) GENERAL DETAILS:

Normal Span (M) = 400

Design Wind Span (M) =

Type of Condition	DA	DBN	DB	DC	DDN	DD	DE
NC	400	400	400	400	400		DE
BWC	240					400	260
7113	240	240	240	240	240	240	156

(II) TOWER TYPES:

- a) Tower type "DA" Shall be used as Tangent tower with Double Suspension Insulator String.
- b) Tower type "DBN/DB/DC/DDN/DD" Shall be used as Tension tower with Quad Tension Insulator String.
- c) Tower type "DBN/DB" Shall also be used as Section tower.
- d) Dead End tower shall have provision of 0 to 15 Degree deviation on line side as well as slack side.

(III) ELECTRICAL CLERANCES FOR RAILWAY CROSSING

(1) For Existing Designs Class Consists of

- a) Crossing should be done with DDN/DD type tower with Quad tension insulator string with limiting span as 300m.
- b) The crossing shall normally be at right angle to the railway track.

Minimum Clerance between lowest point of 400 KV line conductor & Rail level shall be as below.

(1) For Existing Power Line Crossings :-	17.90 m	
{2	?) For New Power Line Crossings or Alteration to Existing Power Line Crossing in Electrified Sections :-	18.26 m 15.434 m	(Clearance at OHE structures in mm) (Clearance at Mid OHE span in mm)
{3	For Power Line Crossings in Non-Electrified Sections :-		(Line is not anticipated to be electrified) (Line to be electrified in future)

(4) For Highest Traction Conductor & Lowest crossing conductor :- 5.49 m

However, approval of Railway Crossing from railway authority has to be obtained in each case.

(IV) MINIMUM CLERANCE FOR POWER LINE CROSSING WHEN CROSSING EACH OTHER For System 400 KV

For 11KV to 66 KV	5.49 m
For 110KV to 132 KV	5.49 m
For 220 KV	5.49 m
For 400 KV	5.49 m
For 765 KV	7,94 m
For 1200 KV	10.44 m
For 500 KV HVDC	6.79 m
For 800 KV HVDC	9.04 m

(V) TELECOMMUNICATION LINE CROSSING

The angle of crossing shall be as near to 90 deg as possible. However deviation to the extent of 30 deg may be permitted under exceptional difficult situation.

For 400 KV 4.48 m

(VI) SECTION TOWER

The No. of consective spans between the section points shall not exceed 15 or 5kms in plain terrain & 10 spans or 3kms in hilly terrain. A section point shall comprise of tension point with DBN/DB type tower.

- (VII) Minimum ground clerance required = 8840 mm.
- (VIII) For all national highways crossings, tension towers is to be used and crossing span is not to exceed 250 m
- (IX) Way leave clerance: 26 m from the cl of tower on either side of tower.
- (X) Maximum span of adjucent spans for various angle of deviation are subjected to the condition that minimum specified live metal clerances and minimum around clerances are available.
- (XI) suspension towers shall be spotted such that vertical load of individual spans shall be acting downwards only, no uplift is permitted in suspension towers.
- (XIII) tower type "DC" shall be used for transposition with 0 deg. deviation with modification of cross arms.
- (XIII) Intermediate spans in a section shall be as near as possible to the normal span.

Max. Individual Span Calculation

L = Normal Span (m)

400

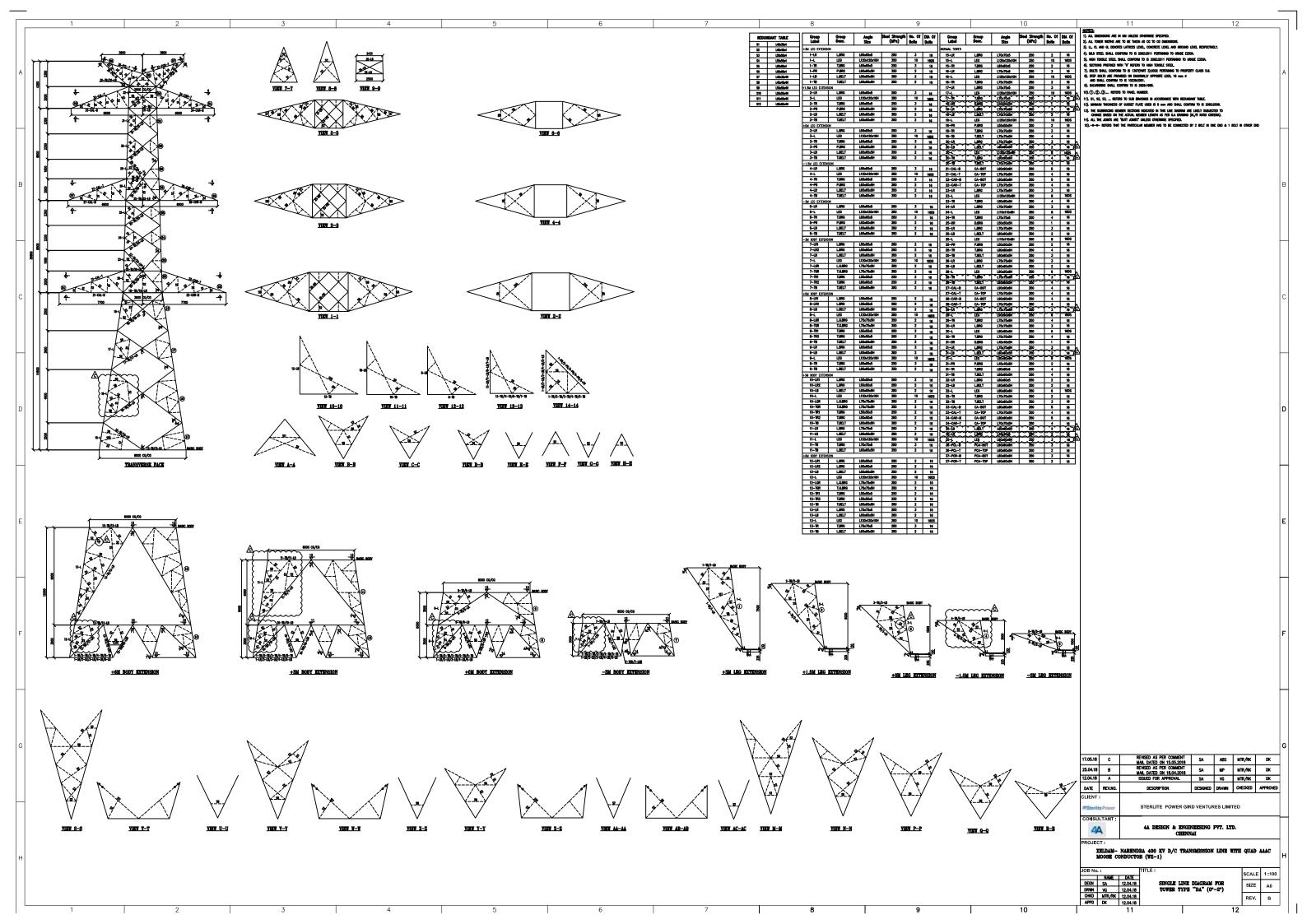
V = System voltage in kVs

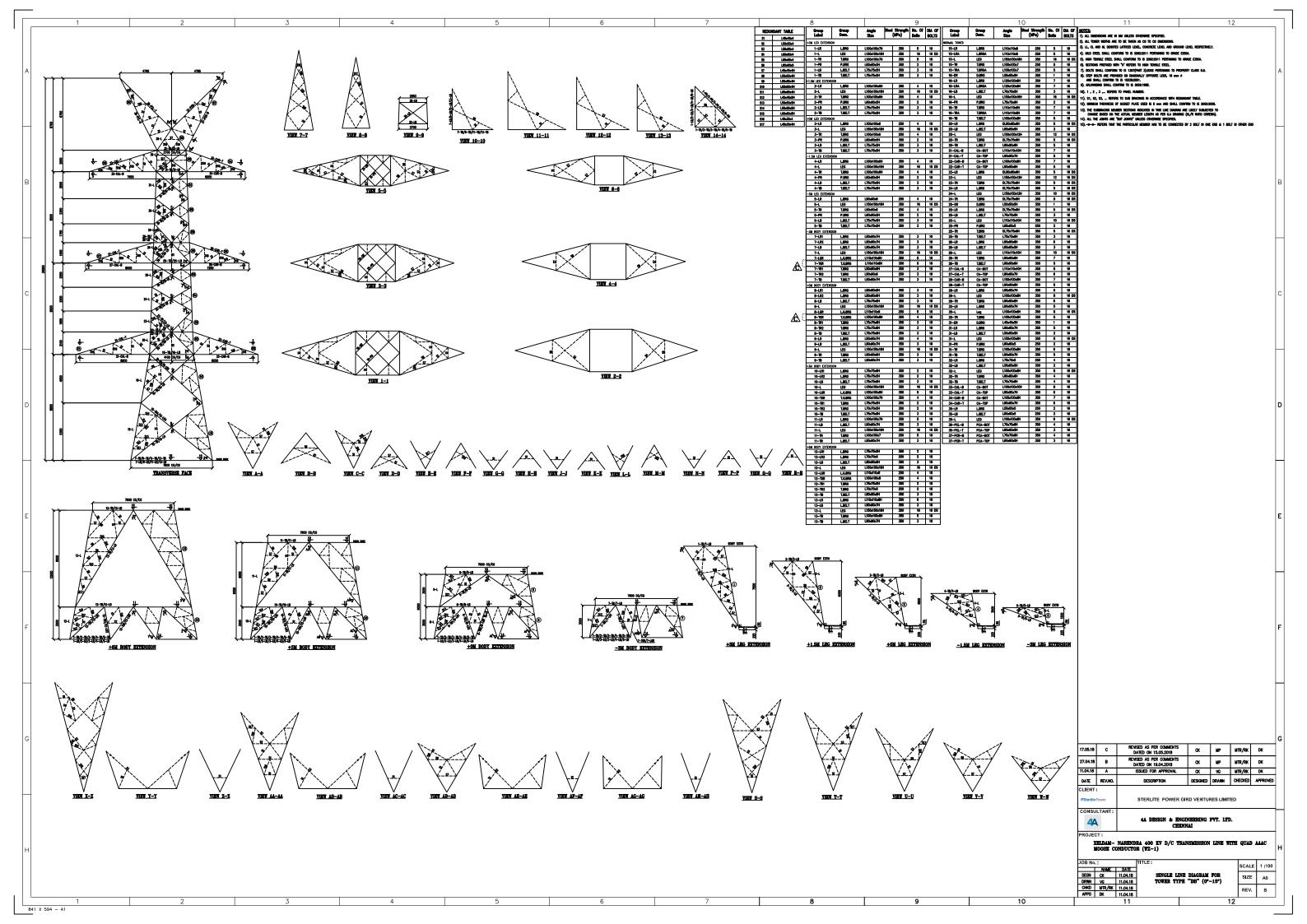
400

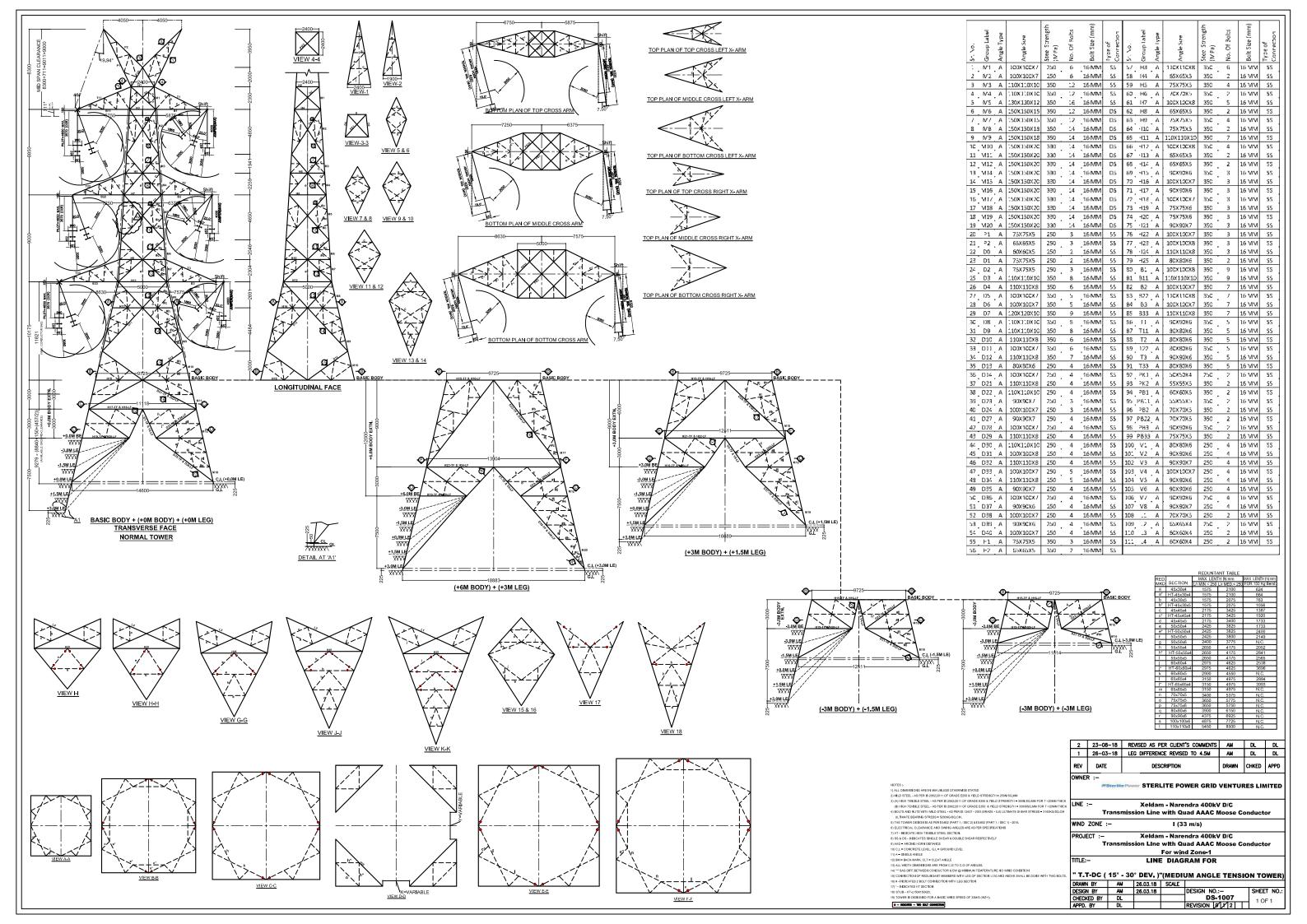
S = Max. Sag (incliding Sag errror)(m)

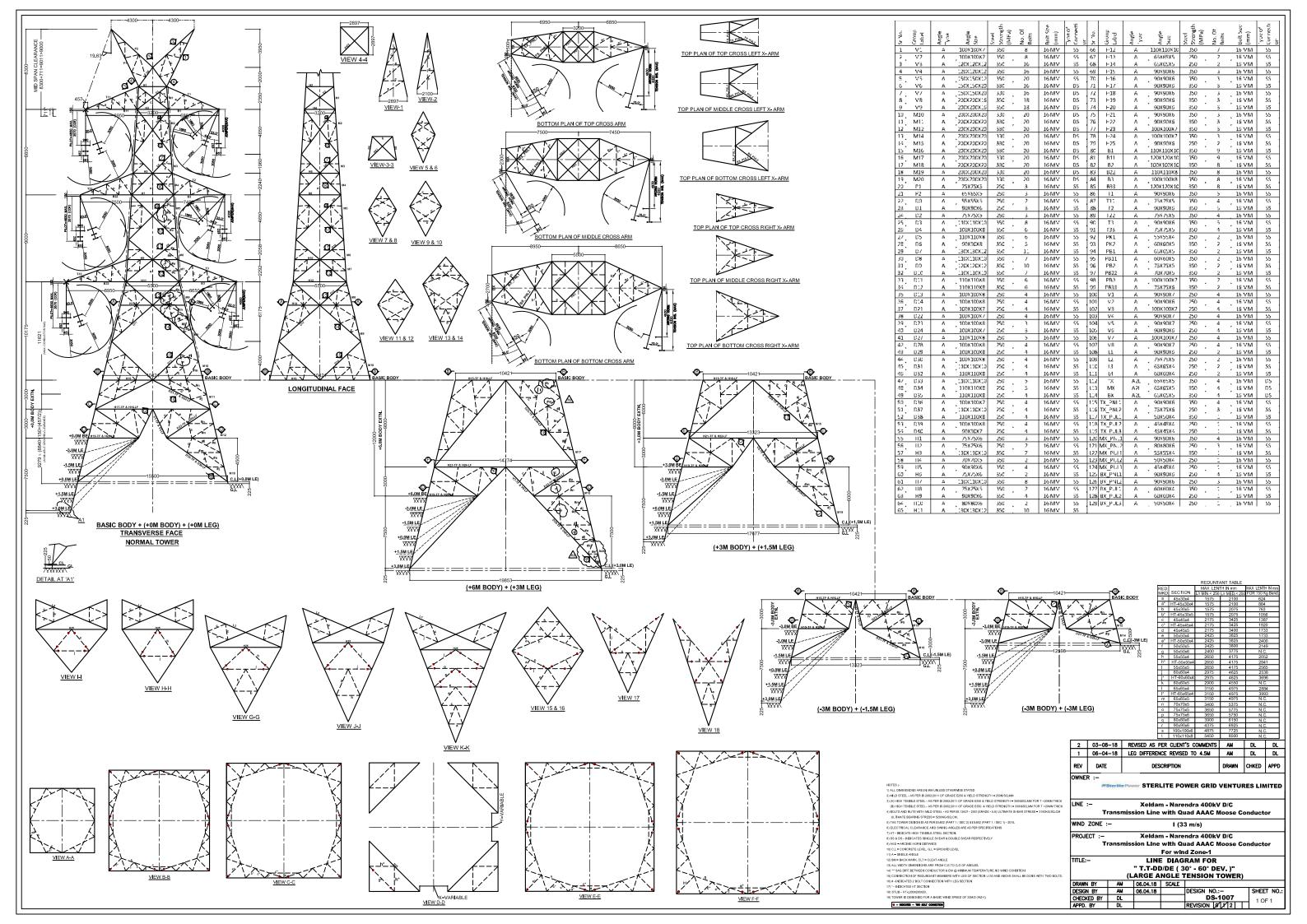
11.621

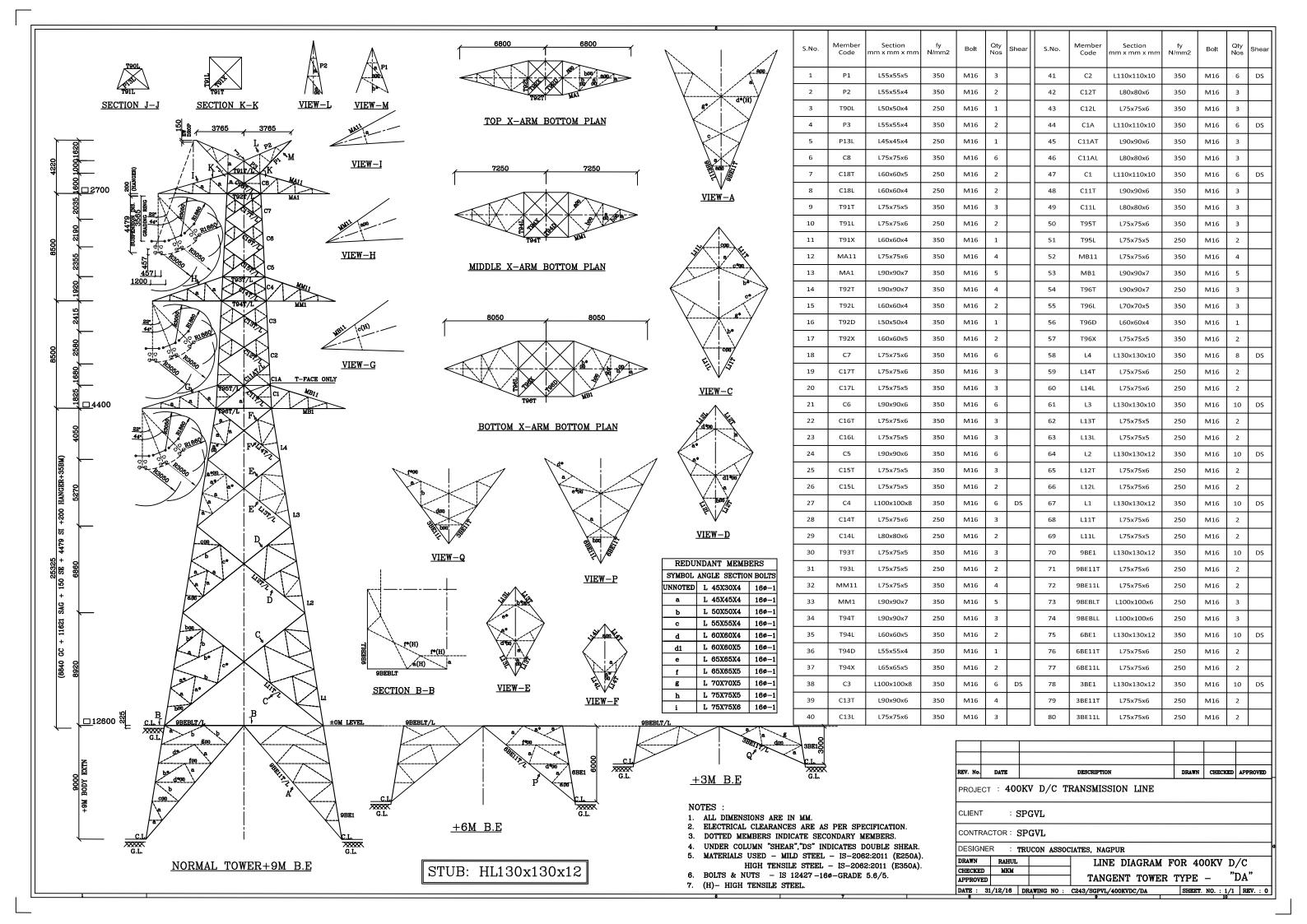
$$L_{1000x} = L\sqrt{\frac{K}{s}}$$

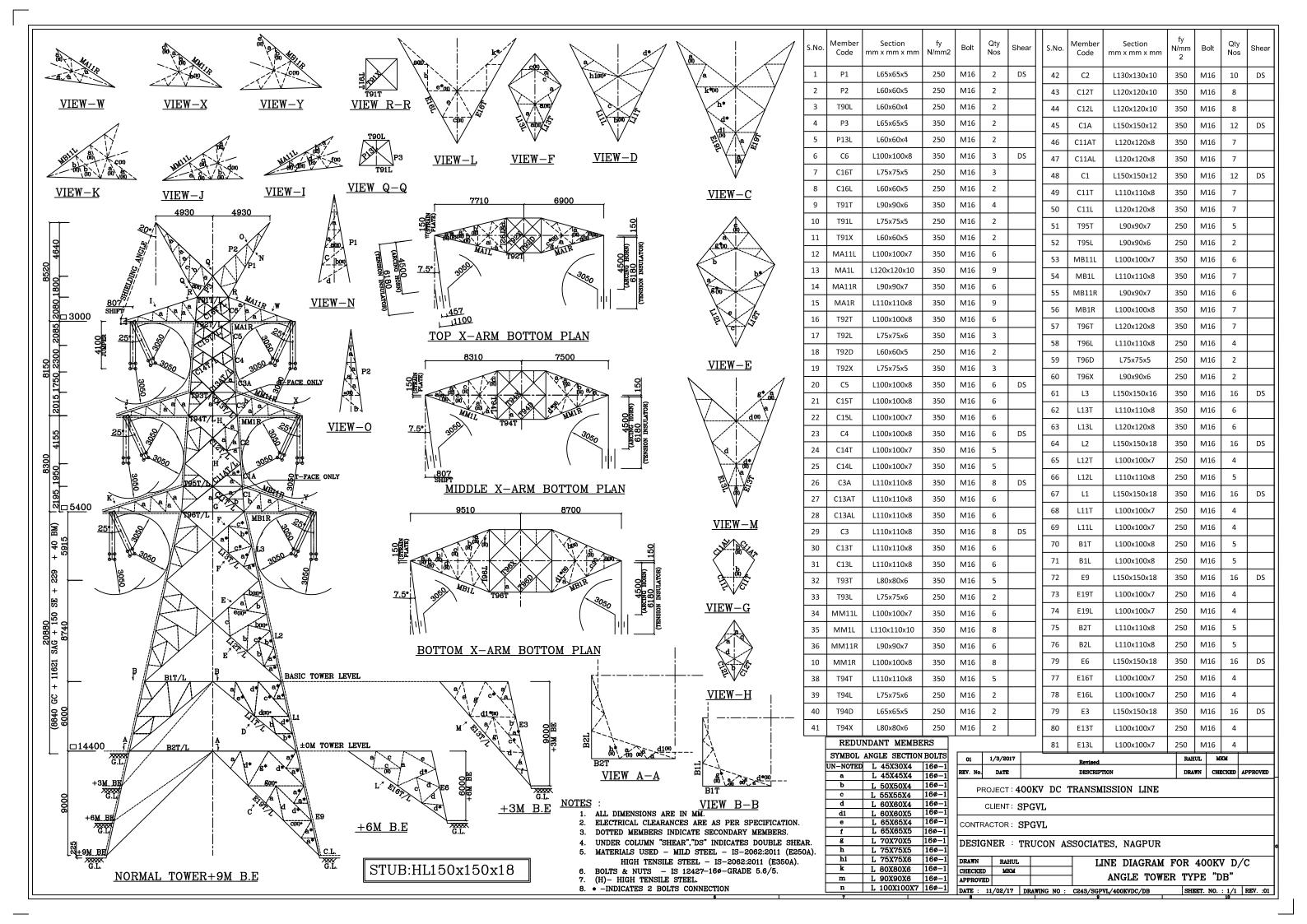

K = Max. Sag factor corresponding to Max.Individual span & is given by the equation written Below

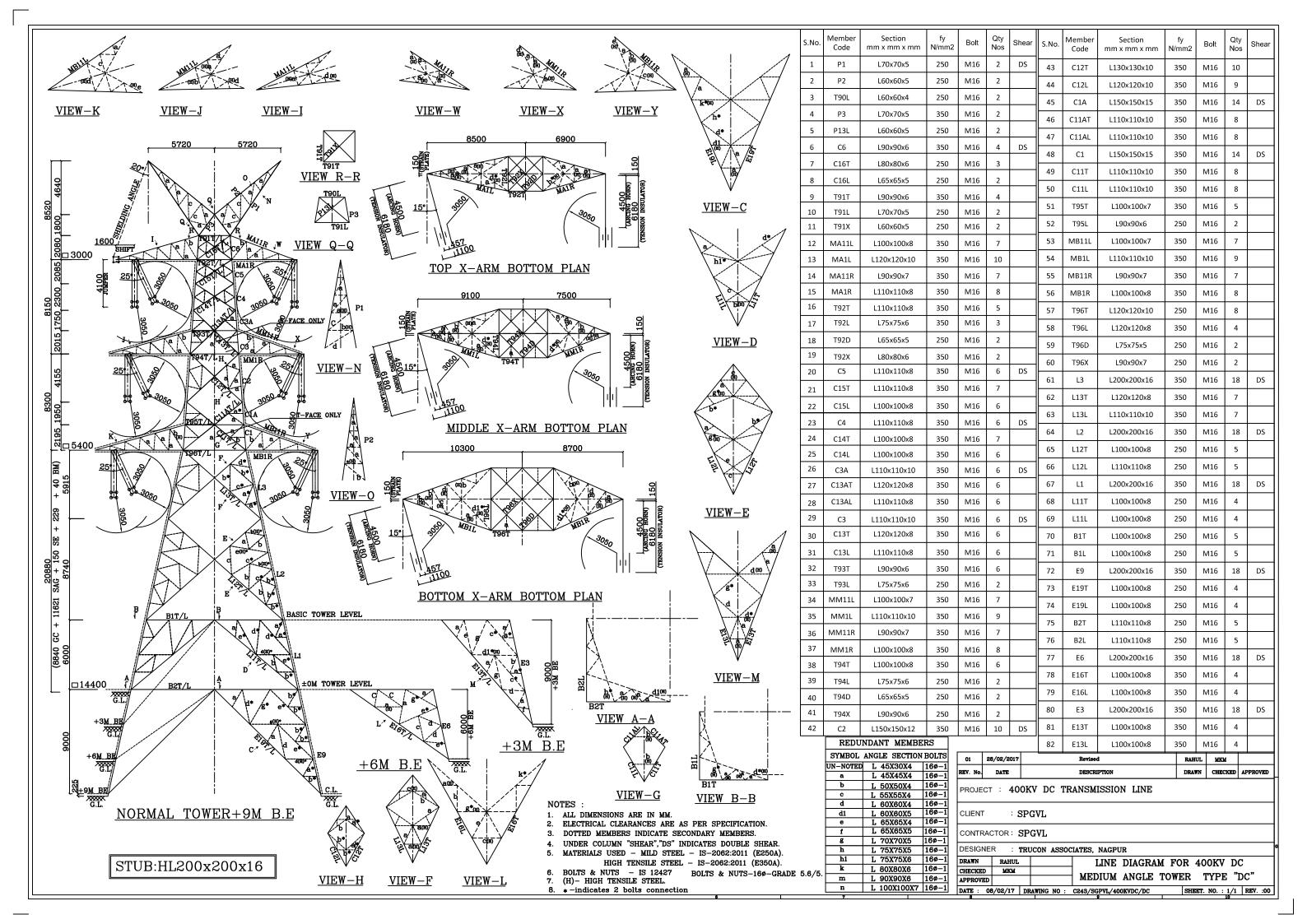

$$VS = 0.75\sqrt{K + SI} + \frac{V}{150}$$

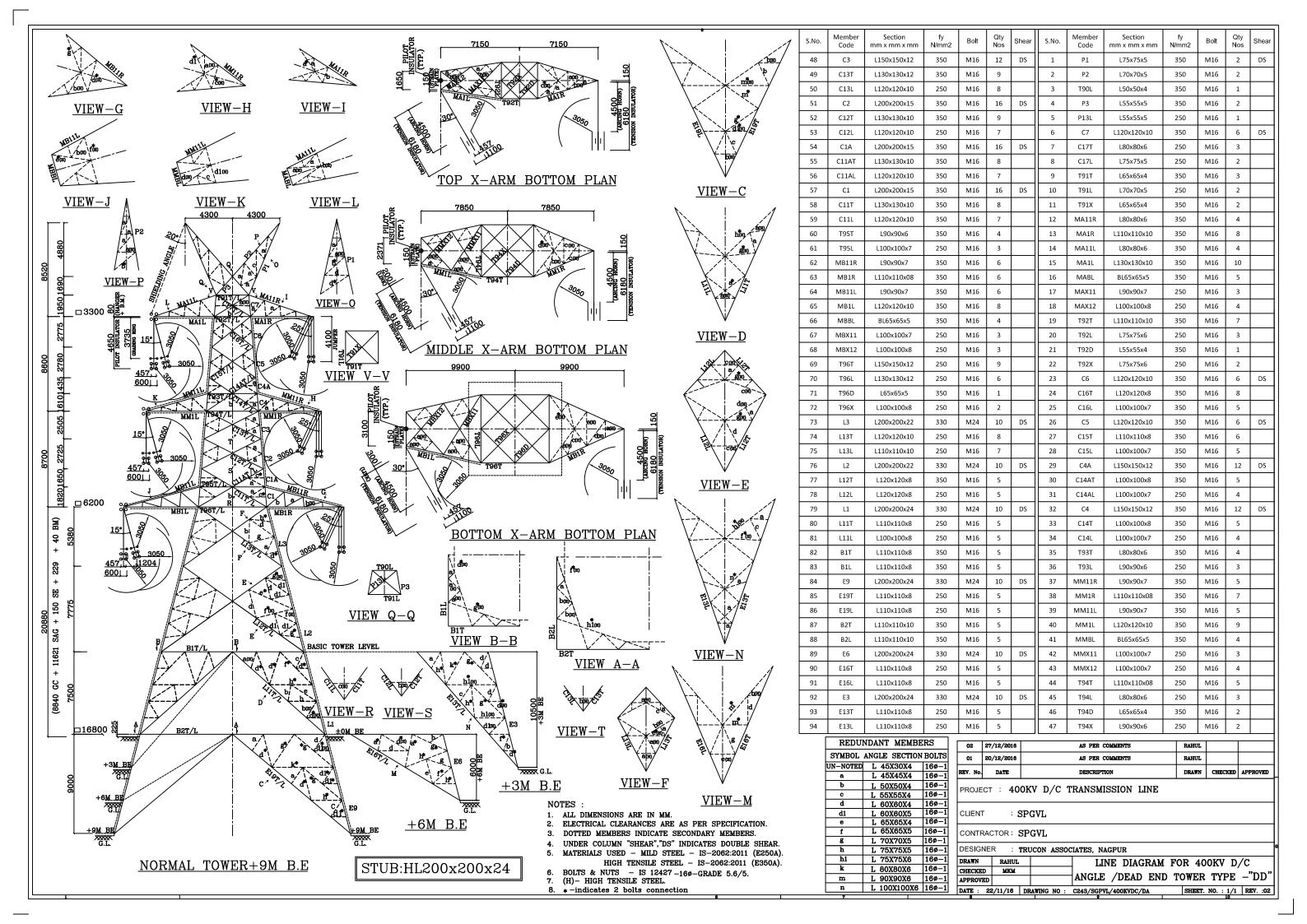

VS = Vertical Seperation

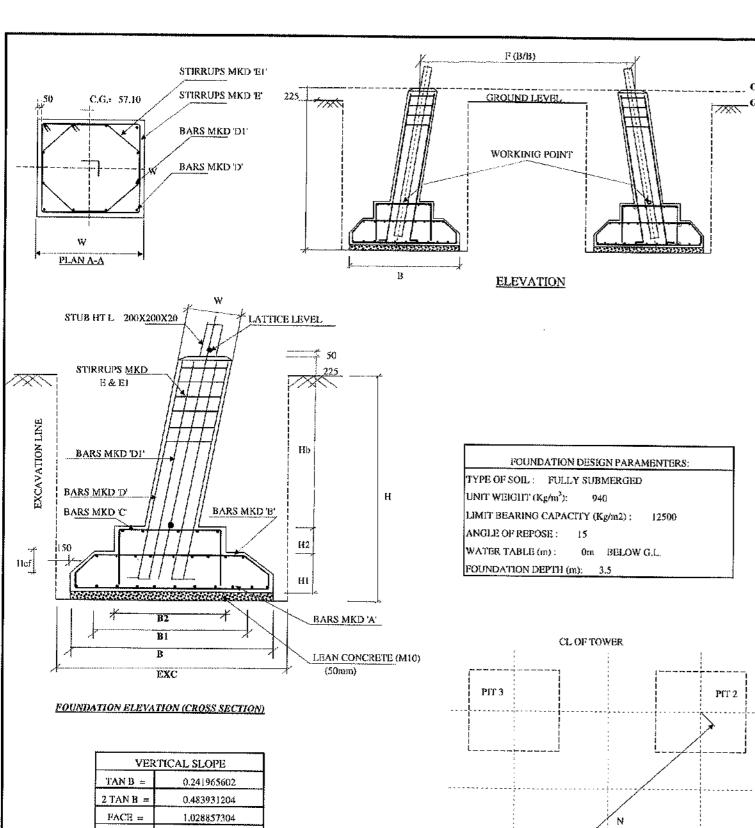

SI = Suspension insulator Assembly Length


TOWER	VS	SI	K	L _{max} (m)	Span limit for permissible sum of adjacent span (m) (L _{max} x 2)
DA	8.45	4.8	54.661	868.0	1736.0
DB	8.00	0	50.568	834.0	1668.0
DC	8.20	0	54.432	866.0	1732.0
DD	8.35	0	57.423	889.0	1778.0





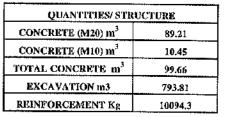


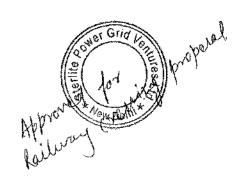


APPENDIX B FOUNDATION DESIGN DETAILS

www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) 14 January 2019

PIT 4


 EXC
 B
 H
 W
 B1
 B2
 H1
 H2
 Hcf
 Hb


 7530
 7230
 3500
 700
 6630
 2000
 400
 300
 300
 2750

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(110)	(mai)	(kg/m)	(kg)	(kg)
Λ	7130	PAD REINFORCEMENT	20	72	7130	2.46	1265.44	5061.76
В	6530 50 354 354 50	PAD REINFORCEMENT	16	76	7337	1.58	879.72	3518.86
c	1900 560 <u>50</u> 5 <u>0</u> 560	PAD REINFORCEMENT	16	20	3120	1.58	98.47	393,87
D	3503	CHIMNEY BAR	32	4	4003	6.31	101,04	404.17
DΙ	500	CHIMNEY BAR	28	8	4003	4.83	154.71	618,88
E	600 2 600	CHIMNEY SQUARE SPACER	8	13	2592	0.39	13.29	53,18
Ei	200 283	CHIMNEY SQUARE SPACER	8	13	2123	0.39	10,89	43,57
	7744				TOTAL RE	INFORCEMEN	NT/ TOWER=	10094,3

NOTES:

- LDRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4. REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL = 3300
- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7. FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED BARTH MUST BE DONE.

		T				т-		
REV NO	DATE			DESCRIPTION	DRAWN	СНК	D /	APPD
PRO	JECT	400K	V D/C XELDA	M-NARENDRA TRANSMISSION	LTD			
CLI	ENT	STER	LITE POWER	GRID VENTURES LIMITED				·
DESIG	GNER:	STER	LITE POWER	GRID VENTURES LIMITED				
DRWN	RT	21-09-	18	FOUNDATION DRAWING FOR TO	WER TYPE	····		
CHKD	AM	21-09-	18	DD-3/+0/+3/+6M 400KV D/C				
APPID	DL	21-09-	18	FULLY SUBMERGED SOIL (3.5)	•			
DATE	21-0	9-18	DRAWING NO.	GTTPL/400DC/WZ-1/DD/F-004A	SHEET NO.	1/2	REV	0

expension Stealine Grod Ltd. 2011. Al.J. REGITTS RUSHRVIGD.

No port of this copyrephoto instrintion, be appealined by transmitted in any from they any menus for any purpose without prior waithen periodisting of the owner. The Unintification less of any, will a mount to outringment and the infringer shall be held hidden for bravy-diameges and punishment with irreprisonment.?

PIT MARKING PLAN

PIT }

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

1.05692701

0.235178971

1.027282409

IN FACE SLOPE

TAN B =

Project GOA		400 K	.V D/C -		n (WZ-1) Pit dime				- FS (3.5	M DEPTH)		Client:	
uon.			1		-11 OHME	HOICH	IADL					SPGVL	
400 KV D/C-X-M & X	N- TT *DD*	* F * 8/8 of To 3MBE(+)-3N	ALE (TF)	*F " 8/8 of 1 3M8E(+)-3	BMLE (LF)	ļ	ction (HT)	Lattice Level to CL	ag	sec B1	2*Tan 8\$	sec 92	2°Tan B2
		1271	3 Y	127	713 r	200X2	200X20	50	57.1	1.028857	0.483931204	1.028857	0.483931
Tower Detail	Extra from -3MBE(+)/ 3MLE (mm)	cg-cg dim at CL (TF)	eg-eg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	В	E	F1	F2	н
-3MBE (+) -3M LE	. 0	12623	12623	7230	2750	225	7031	7031	9944	7530	10796	10796	3500
-3M8E (+) -1,5M LE	1500	13349	13349	7230	2750	225	7394	7394	10457	7530	11159	11159	3500
-3MBE (+) +0M LE	3000	14074	14074	7230	2750	225	7757	7757	10970	7530	11522	11522	3500
3MBE (+) +1.5M LE	4500	14800	14800	7230	2750	225	8120	8120	11483	7530	11885	11885	3500
-3MBE (+) +3M LE	6000	15526	15526	7230	2750	226	9483	8483	11997	7530	12248	12248	3500
+0MBE (+) -3M LE	3000	14074	14074	7230	2750	225	7757	7757	10970	7530	11522		3500
+0MBE (+) -1.5M LE	4500	14800	14800	7230	2750	225	8120	8120	11483	7530	11885	11522	
+0MBE (+) +0M LE	6000	15526	19526	7230	2750	225	B483	8483	11997	7530		11885	3500
+0M8E (+) +1.5M LE	7500	16252	16252	7230	2750	225	8846	8846	12510	7530	12248	12248	3500
+0MBE (+) +3M LE	9000	16978	16978	7230	2750	225	9209	8209			12611	12611	3500
+3MBE (+) -3M LE	6000	15526	15526	7230	2750	225	8483	8483	13023	7530	12974	12974	3500
+3MBE (+) -1.5M LE	7500	16252	18252	7230	2750	225		T	11997	7530	12248	12248	3500
+3MBE (+) +0M LE	9000	16978	16978	7230	2750	225	8848	8846	12510	7530	12611	12611	3500
+3MBE (+) +1.5M LE	10500	17704	17704	7230			9209	9209	13023	7530	12974	12974	3500
+3MBE (+) +3M LE	12000	18430	18430		2750	225	9572	9572	13537	7530	13337	13337	3500
+6MBE (+) -3M LE	9000	16978	16978	7230	2750	225	9935	9935	14050	7530	13700	13700	3500
+6MBE (+) -1.5M LE	10500	17704		7230	2750	225	9209	9209	13023	7530	12974	12974	3500
+6MBE (+) +0M LE	12000	18430	17704	7230	2750	225	9572	9572	13537	7530	13337	13337	3500
+6MBE (+) +1.5M LE	13500	19156	18430	7230	2750	225	9935	9935	14050	7530	13700	13700	3500
+6MBE (+) +3M LE	15000		19156	7230	2750	225	10298	10298	14563	7530	14063	14063	3500
FOR SE (T) TOWN EE	13000	19882	19882	7230	2750	225	10661	10661	15076	7530	14426	14426	3500
and the state of t	plt C			1	plt B	<u></u>	A2 F2	CL of fours		7	CL G.L.		
LONGITUDINAL FACE	pit D	B X	*	A1		Working Point A	A2 F2	Limit Boarin Weight of si Weight of se	oil (Ory porti oil (Wet part	tion)	1440 F 940 F	Kg/Sqm Kg/cum Kg/cum Deg	
,		F1		F1	1		:	Angle of Rep	ose (Wet par	tion)		Deg	
			'		-			Water Table				Below GL	

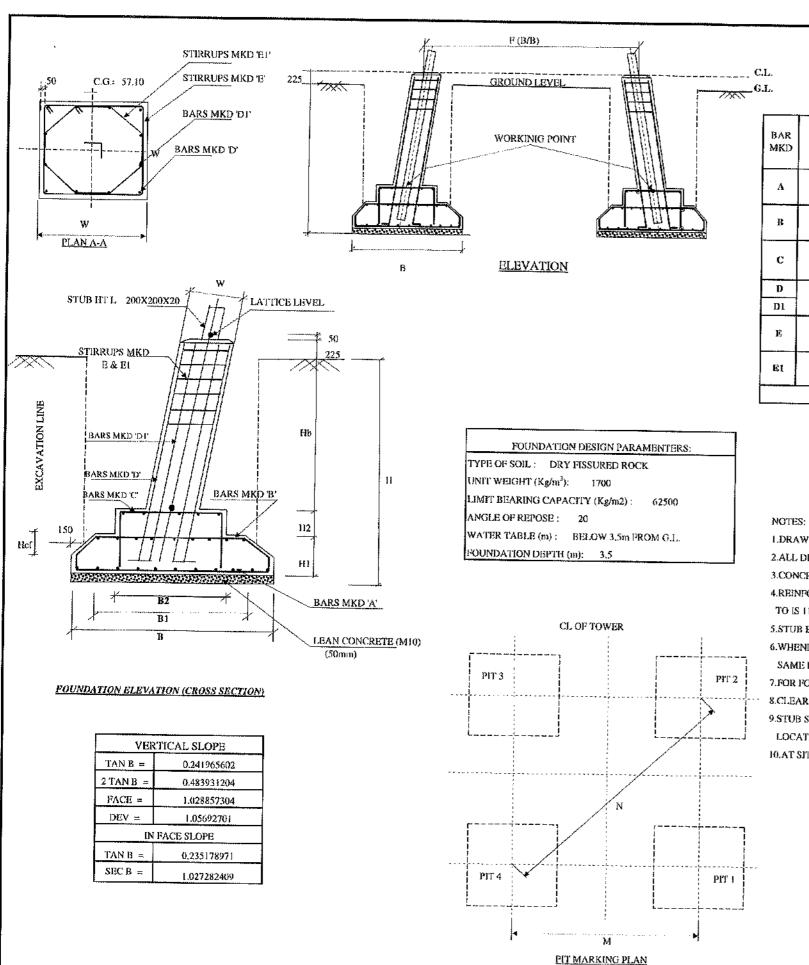
- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY,
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

VER	TICAL SLOPE
TAN B =	0.241965602
2 TAN E =	0.483931204
PACE =	1.028857304
DEV =	1.05692701
IN:	FACE SLOPE
TAN B	0.235178971
SEC B =	1.027282409

NOTES:

- I.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX MID.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =

3300 mm


- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

	<u></u>						ļ_
REV NO	DATE		DESCRIPTION	DRAWN	CB	KD	APPD
PRO	JECT	400KV D/C XE	LDAM-NARENDRA TRANSM	ISSION LTD			
CL	ENT	STERLITE POV	VER GRID VENTURES LIMITE	BD	***************************************		
DESI	GNER:	STERLITE POY	VER GRID VENTURES LIMITE	BD.			
DRWN	RT	21-09-18	FOUNDATION DRAWING	C EOD TOWERS	VDO		
CHKD	AM	21-09-18	DD-3/4(V+3/46M) 4(X		IIG		
APPD	DL	21-09-18	FULLY SUBMERGED S		H)		
DA'TE	21-09-14	DRAWING NO.	AHD-ADDWZ-E/DDW-GGA	SHEET NO.	2/2	REV	0

e-uphqAz Seels e RedE.J. 2021. ALL REOFIER RESEARTED.

No put of the a signification increase the bacqueet mode at recessor-less may form a year receive for may introne various press standar procession of the research for the putting workers press taken procession of the chapter for the chapter of the chapter of the third pressure of the chapter of the third pressure of the chapter of the chap

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR

SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

В	H	w	Bi	B2	Щ	H2	Hef	IJb
4860	3500	700	4260	2000	400	300	300	2750

4760	PAD REINFORCEMENT	(mm) 16	(110)	(mm)	('kg/m)	(kg)	/leas
	PAD REINFORCEMENT	16				VP	(kg)
4160			68	4760	1.58	510.68	2042.71
0 354 354 56	PAD REINFORCEMENT	16	32	4967	t. 5 8	250.80	1003,18
1900 568 50 5 <u>0</u> 568	PAD REINFORCEMENT	16	18	3†36	1.58	89.08	356.32
3511	CHIMNEY BAR	32	4	4011	6.31	101.24	404.98
509	CHIMNEY BAR	28	8	4011	4.83	155.02	620.11
600	CHIMNEY SQUARE SPACER	8	(3	2592	0.39	13.29	53.18
200 283	CHIMNEY SQUARE SPACER	8	13	2123	0.39	10,89	43.55
5	68 50 50 568 3511 500 600 283	68 50 50 568 PAD REINFORCEMENT 3511 CHIMNEY BAR CHIMNEY BAR CHIMNEY SQUARE SPACER 200 283 CHIMNEY SQUARE	68 50 50 568 PAD REINFORCEMENT 16 3511 CHIMNEY BAR 32 CHIMNEY BAR 28 600 CHIMNEY SQUARE 8 200 283 CHIMNEY SQUARE	68 50 50 568 PAD REINFORCEMENT 16 18 3511 CHIMNEY BAR 32 4 500 CHIMNEY BAR 28 8 600 CHIMNEY SQUARE SPACER 8 13 200 283 CHIMNEY SQUARE 8	68 50 50 568 PAD REINFORCEMENT 16 18 3136 3511 CHIMNEY BAR 32 4 4011 500 CHIMNEY BAR 28 8 4011 600 CHIMNEY SQUARE 8 13 2592 200 283 CHIMNEY SQUARE 8 13 2592	Se Se Se PAD REINFORCEMENT 16 18 3136 1.58	68 50 50 568 PAD REINFORCEMENT 16 18 3136 1.58 89.08 3511 CHIMNEY BAR 32 4 4011 6.31 101.24 500 CHIMNEY BAR 28 8 4011 4.83 155.02 600 CHIMNEY SQUARE 8 13 2592 0.39 13.29 200 283 CHIMNEY SQUARE 8 13 2592 0.39

LDRAWING NOT TO SCALE

2.AUL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/nam²)

5.STUB BELOW GROUND LEVEL = 3300

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7. FOR POUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

LOCATION OF TOWER.

ogh Sterile Gud Ltd. 2011. ALJ, RIGHTS RESERVED

life for heavy dameges and punishment with impossionings. ?

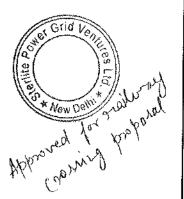
open in this copyrighted no reinform by reported or tanasained in any from yony means for any propose without prior walket pertubstion of the owner of themstorised use if any, will amount to rathingment and the inhinger stell be held

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

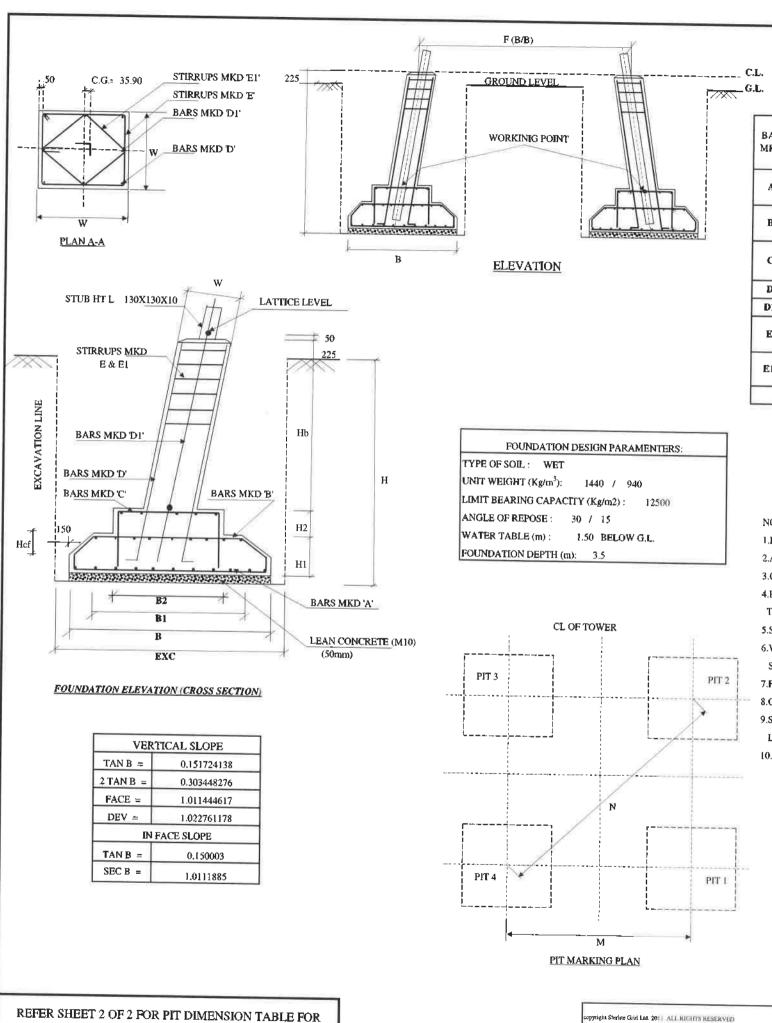
QUANTITIES/STRU	CTURE
CONCRETE (M20) m ³	45.07
CONCRETE (M10) m ³	4.72
TOTAL CONCRETE 1013	49.79
EXCAVATION m3	293,64
REINFORCEMENT Kg	4524.0

REV NO	DATE			DESCRIPTION	DRAWN	Clik	D /	APP
PROJ	ECT	400KV	V D/C XELDAN	M-NARENDRA TRANSMISSION	LTD			
CLIE	ENT	STER	LITE POWER (GRID VENTURES LIMITED			•••	
DESIG	NER:	STER	LITE POWER (GRID VENTURES LIMITED				
DRWN	RT	21-09-	18	FOUNDATION DRAWING FOR TO	With more			
CHKD	AM	21-09-	18	DD-3/+0/+3/+6M 400KV D/C (
APPD	DI.	21-09-	18	M DEPTH)				
DATE	21-0	9-18	DRAWING NO.	GTTPL/400DC/WZ-1/DD/F-005A	SHEET NO.	1/2	REV	n

Project GOA		400 K	/ D/C -X		I (WZ-1) PIT DIME				DFR (3.	5M DEPTH)		Client: SPGVL	
400 KV D/C-X-M & X-	-N- TT "DD"	* F * B/B of To 3MBE(+)-3N	ALE (TF)	F ' B/B of T 3MBE(+)-:	MLE (LF)	Stub Sec	otion (HT)	Lattice Level to CL	cg	sec B1	2°⊤an 81	sec 82	2°Tan B2
	T	1271	3	127	713	200X2	200X20	50	57,1	1.028857	0.483931204	1.028857	0.483931
Tower Detail	Exin from -SMBE(+)- SMLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G,L, TO C.L.	A1	A2	В	E	F1	F2	н
-3MBE (+) -3M LE	0	12623	12623	4860	2750	225	7031	7031	9944	4860	9461	9461	3500
-3MBE (+) -1.5M LE	1500	13349	19349	4860	2750	225	7394	7894	10457	4860	9824	9824	3500
-3MBE (+) +0M LE	3000	14074	14074	4860	2750	225	7757	7757	10970	4860	10187	10187	3500
-9MBE (+) +1.5M LE	4500	14800	1.4800	4860	2750	225	8120	8120	11483	4860	10550	10550	3500
-3MBE (+) +3M LE	6000	15526	15826	4860	2750	225	8483	8483	11997	4860	10913	10913	3500
+0MBE (+) -3M LE	3000	14074	14074	4860	2750	225	775?	7757	10970	4860	10187	10187	3500
+0MBE (+) -1.5M LE	4500	14800	1480n	4860	2750	225	8120	8120	11483	4860	10550	10550	3500
+0MBE (+) +0M LE	6000	15526	15526	4860	2750	225	8483	8483	11997	4860	10913	10913	3500
+0MBE (+) +1.5M LE	7500	18252	16252	4860	2750	225	8846	8846	12510	4860	11276	11276	3500
+0MBE (+) +3M LE	9000	16978	16978	4860	2750	225	9209	9209	13023	4860	11639	11639	3500
+3M8E (+) -3M LE	6000	16526	15526	4860	2750	225	8483	8483	11997	4860	10913	10913	3500
+3MBE (+) -1.5M LE	7500	18292	16252	4860	2750	225	8846	8846	12510	4860	11276	11276	
+3MBE (+) +0M LE	9000	16978	16978	4860	2750	225	9209	9209	13023	4860	11639	11639	3500
+3MBE (+) +1.5M LE	10500	17704	17704	4960	2750	225	9572	9572	13537	4860	12002		3500
+3MBE (+) +3M LE	12000	18430	18430	4860	2750	225	9935	9935	14050	4860	12365	12002	3500
+6MBE (+) -3M LE	9000	1697ñ	16978	4860	2750	225	9209	9209	13023	4860		12365	3500
+6MBE (+) -1,5M LE	10500	17704	17704	4860	2750	225	9572	9572	13537	4860	11639	11639	3500
+6MBE (+) +0M LE	12000	16430	18430	4860	2750	225	9935	9935	14050	4860	12002	12002	3500
+6M8E (+) +1,5M LE	13500	19156	19156	4860	2750	225	10298	10298	14563	4860	12728	12365	3500
+6MBE (+) +3M LE	15000	19882	19882	4850	2750	225	10661	10661	15076	4860			3500
LONGITUDINAL FACE	pit D	В 		Al	p t 8	Working Point A	A2 F2	CL of lounc	IEC X-X g Capacity oil (Ory portion) (Wet portion)	Working Point A	1700 F	13091 Kg/Sqm Kg/Sqm Kg/cum Kg/cum	3600
1		F1	1	F1				Angle of Rep	ose (Wel por	lion}		Deg	
			•					Water Table)		3.5№ 8	Below GL	


NOTE

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING THAM FOR CORRECTIVE ACTION.
- 2, FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.


VI	ERFICAL SLOPE
TAN b =	0.241965602
2 TAN B #	0.483931204
PACE =	1.028857304
DTiV ≈	1.05692701
	N FACE SLOPE
TAN B =	0.235176971
SEC B =	1.027282409

- LDRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =

- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STERRUPS SAME IS TO BE ADJUSTED AT SITE.
- 7. FOR FOUNDATION DESIGN REPER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN BACH LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

	1						,	
REV NO	DATE		DESCRIPTION	DRAWN		fRD	APPD	
PRO	JECT	400KV D/C XE	LDAM-NARENDRA TRANSM	· · · · · · · · · · · · · · · · · · ·			<u>JAS FD</u>	
CLI	ENT	STERLITE POV	WER GRID VENTURES LIMITI	ED				
DESIG	ONER:	STERLITE POV	VER GRID VENTURES LIMITE	3D				
DRWN	RT	21-09-18	FOUNDATION DRAWING	O DOD TOUGH				
TIKD:	KD AM 21-09-18		FOUNDATION DRAWING FOR TOWER TYPE DD-3/40/43/46M 400KV D/C (WZ-1)					
PPD DL 21-69-18			DRY FISSURED ROCK		'H)			
DATI!	21-09-18	DRAWING NO.	OTTPL/400DC/WZ-1/DD/F-005A	SHEET NO.	2/2	REV	a	

EXC	В	Н	W	B1	B2	H1	H2	Hcf	НЬ	1
3250	2950	3500	420	2650	1410	250	200	150	3000	1

BAR MKD	BAR BENDING SKETCH	BAR-DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	(ˈkg/m)	(kg)	(kg)
A	2850	PAD REINFORCEMENT	12	30	2850	0.89	75,93	303.72
В	2550 50 141 141 50	PAD REINFORCEMENT	10	24	2933	0.62	43.42	173.70
С	1310 326 50 50 326	PAD REINFORCEMENT	10	18	2062	0,62	22.90	91.61
D	3531	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
D1	300	CHUMNEY BAR	20	4	3831	2.46	37.77	151.11
E	320	CHIMNEY SQUARE SPACER	8	13	1472	0.39	7.55	30.21
E1	226 226	CHIMNEY SQUARE SPACER	8	13	1097	0.39	5.62	22,52
					TOTAL REI	NFORCEMEN	T/ TOWER=	924.0

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3300

6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.

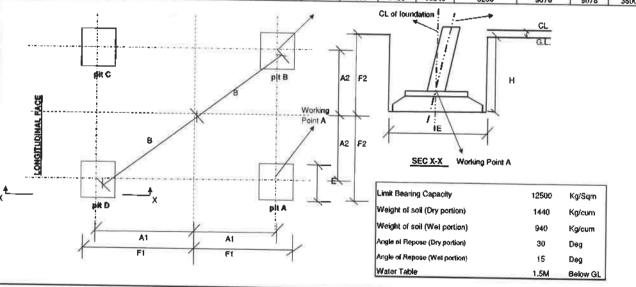
7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	12.06
CONCRETE (M10) m ³	1.74
TOTAL CONCRETE m ³	13.8
EXCAVATION m3	147.88
REINFORCEMENT Kg	924.0


STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY the above does not relieve

		T -				_	_					
REV NO	DATE			DESCRIPTION	DRAWN	СНК	D A	APP				
PRO.	JECT	400K	V D/C XELDAI	M-NARENDRA TRANSMISSION	LTD							
CLI	ENT	STER	LITE POWER	GRID VENTURES LIMITED								
DESIG	GNER:	STER	LITE POWER (GRID VENTURES LIMITED				-				
DRWN	RT	03-08-	-18	FOUNDATION DRAWING FOR TO	LIED WATER	-		_				
CHKD	AM	03-08-	18	FOUNDATION DRAWING FOR TOWER TYPE DAL-3/+0/+3/+6M 400KV D/C (WZ-1) WET SOIL (3.5M DEPTH)								
APPD	DL	03-08-	18									
DATE	03-0	8-18	DRAWING NO.									

SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

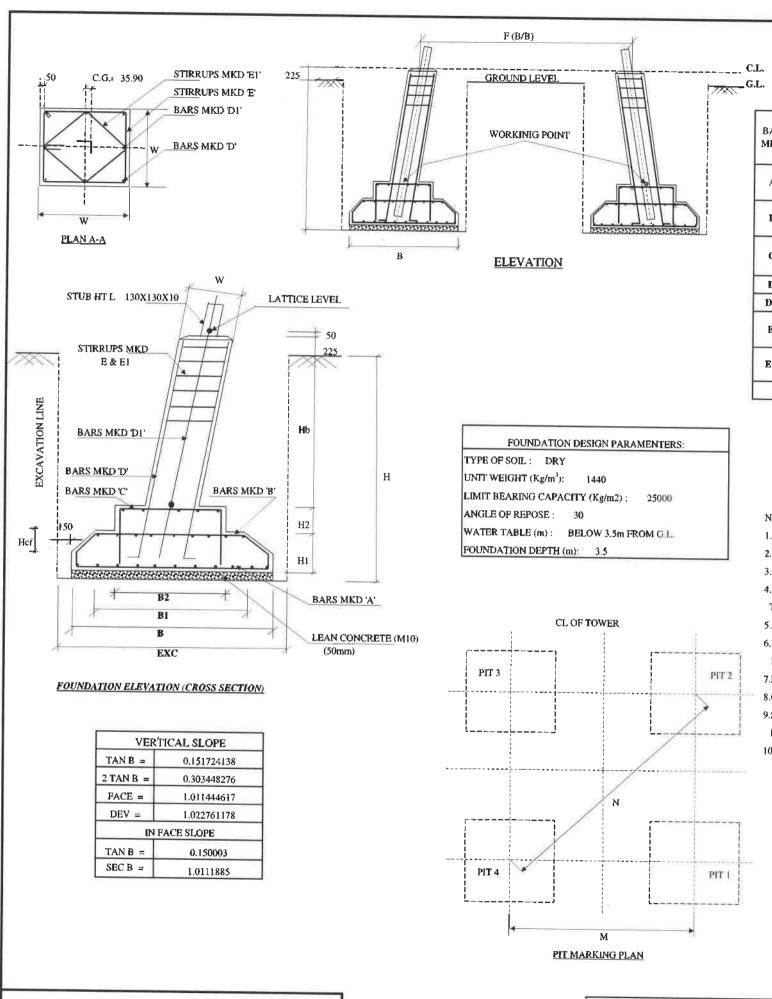
opyright Sterlite Grid Ltd. 2011 ALL RIGHTS RESERVED No part or this copyrighted materializate he reproduced to transmitted in any form by any means for any purpose without prior written permassion of the owner. The Unauthorised use, if any, will amount to intringment and the infringer shall be held. ble for beavy dameges and pointstanent with imprisonment.

Project GOA			400 KV	D/C -X-M F	WHO TIE	WZ-1) - '	TT "DA	L" SOIL	Client: SPGVL				
400 KV D/C-X-M & X-	N- TT "DAL"	*F *B/B of Tower at 3MBE(+)-3MLE (TF) 3MBE(+)-3MLE (LF)				Stub Section (HT) Lattice			cg	sec B1	2*Tan Bf	sec B2	2"Tan B2
	-	9438	2	943	32	130X1	30X10	50	35.9	1.011445	0.303448276	1.011445	0.303448
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	og-og dim at CL (TF)	eg-eg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L,	A1	A2	В	E	F1	F2	н
-3MBE (+) -3M LE	0	9375	9375	2950	3000	225	5177	5177	7321	3250	6802	6802	3500
-9MBE (+) -1.5M LE	1500	9830	9830	2950	3000	225	5404	5404	7643	3250	7029	7029	3500
-3MBE (+) +0M LE	3000	10285	10285	2950	3000	225	5632	5632	7965	3250	7257	7257	3500
-3MBE (+) +1,5M LE	4500	10741	10741	2950	3000	225	5860	5860	8287	3250	7485	7485	3500
3MBE (+) +3M LE	6000	11196	11196	2950	3000	225	6087	6087	8609	3250	7712	7712	3500
+OMBE (+) -3M LE	3000	10285	10285	2950	3000	225	5632	5632	7965	3250	7257	7257	3500
+OMBE (+) -1.5M LE	4500	10741	10741	2950	3000	225	5860	5860	8287	3250	7485	7485	3500
OMBE (+) +OM LE	6000	11196	11196	2950	3000	225	6087	6087	8609	3250	7712	7712	3500
+0MBE (+) +1.5M LE	7500	11651	11651	2950	3000	225	6315	6315	6930	3250	7940	7940	3500
-OMBE (+) +3M LE	9000	12106	12106	2950	3000	225	6542	6542	9252	3250	8167	8167	3500
3MBE (+) -3M LE	6000	11196	11196	2950	3000	225	6087	6087	8609	3250	7712	7712	3500
3MBE (+) -1.5M LE	7500	11651	11651	2950	3000	225	6315	6315	8930	3250	7940	7940	3500
3MBE (+) +0M LE	9000	12106	12106	2950	3000	225	6542	6542	9252	3250	8167	8167	3500
3MBE (+) +1.5M LE	10500	12561	12561	2950	3000	225	6770	6770	9574	3250	8396	8395	3500
3MBE (+) +3M LE	12000	13016	13016	2950	3000	225	6998	6998	9896	3250	8623	8623	3500
6MBE (+) -3M LE	9000	12106	12106	2950	3000	225	6542	6542	9252	3250	8167	8167	3500
6MBE (+) -1.5M LE	10500	12561	12561	2950	3000	225	6770	6770	9574	3250	8395	8395	
6MBE (+) +OM LE	12000	13016	13016	2950	3000	225	6998	6998	9696	3250	8623	8623	3500 3500
6MBE (+) +1.5M LE	13500	13472	13472	2950	3000	225	7225	7225	10218	3250	8850	8850	
6MBE (+) +3M LE	15000	13927	13927	2950	3000	225	7453	7453	10540	3250	9078	9078	3500 3500

NOTE

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

VE	RTICAL SLOPE
TAN B =	0.151724138
2 TAN B =	0.303448276
FACE =	1.011444617
DEV =	1.022761178
11	FACE SLOPE
TAN B =	0.150003
SEC B =	1.0111885


STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY
Approved Vide Ref. Letter No S (5) VL 67777 L
GHG/G/LAT/23
Date: 13/881.0

Engineering Deptt.
the above does not relieve the centractor from their contractual obligations

NOTES:

- LDRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
 5.STUB BELOW GROUND LEVEL =
- 3300 mm
- $\textbf{6.WHENEVER} \ \textbf{NECESSARY} \ \textbf{TO} \ \textbf{CLEAR} \ \textbf{STUB} \ \textbf{CLEAT} \ \textbf{FROM BARS} \ \& \ \textbf{STIRRUPS}$
- SAME IS TO BE ADJUSTED AT SITE,
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10. AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

REV NO	DATE		DESCRIPTION DRAWI								
PRO			ELDAM-NARENDRA TRANSMI			HKD	APPD				
CL			WER GRID VENTURES LIMITE	D							
DESI	GNER:	STERLITE POV	WER GRID VENTURES LIMITEI	D							
DRWN	RT	03-08-18	EQUIDATION OF AUTO								
CHKD	KD AM 03-08-18		DAL-3/+0/+3/+6M 400	NG FOR TOWER TYPE							
APPD			WET SOIL (3.5M								
DATE			GTTPL/400DC/WZ-1/DAL/F-002	SHEET NO.	2/2	REV	0				

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR

SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

EXC	В	Н	W	BI	B2	H1	H2	Hef	НЬ
2450	2150	3500	420	1850	1410	250	200	150	3000

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	(ˈkg/m)	(kg)	(kg)
A	2050	PAD REINFORCEMENT	12 24		2050	0.89	43.72	174.87
В	1750 50 141 141 50	PAD REINFORCEMENT	10	14	2133	0.62	18.45	73.80
С	1310 326 50 50 326	PAD REINFORCEMENT	10	18	2062	0.62	22.90	91.61
D	3531	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
D1	300	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
Е	320	CHIMNEY SQUARE SPACER	8	13	1472	0.39	7.55	30.21
E1	226 226	CHIMNEY SQUARE SPACER	8	13	1097	0.39	5.62	22.52
					TOTAL REI	INFORCEMEN	NT/ TOWER=	695.2

NOTES:

copyright Starlite Crind Ltd 2011. ALL, RIGHTS RESERVED

No part of this oppylighted unaverlalence be reproduced or transituted in any Joyan by any means for any purpose without prior written permission of the owner to Unauthorized until any, will amount so lufringment and the infringer shall be held liable for beavy damages and punishment with imprisonment.

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/num²)
- 5.STUB BELOW GROUND LEVEL = 3300
- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	8.12
CONCRETE (M10) m ³	0.92
TOTAL CONCRETE m ³	9.04
EXCAVATION m3	84.04
REINFORCEMENT Kg	695.2

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION CONTROLLED CORY the above does not refier contractual obligations

REV NO DATE DESCRIPTION DRAWN CHKD APPD	PROJECT		400KV D/C XELDAM-NARENDRA TRANSMIS	SION LTD		
	REV NO	DATE	DESCRIPTION	DRAWN	CHKD	APPD

STERLITE POWER GRID VENTURES LIMITED **CLIENT**

DESIGNER: STERLITE POWER GRID VENTURES LIMITED

DRWN RT 03-08-18 CHKD AM 03-08-18 APPD 03-08-18 DL

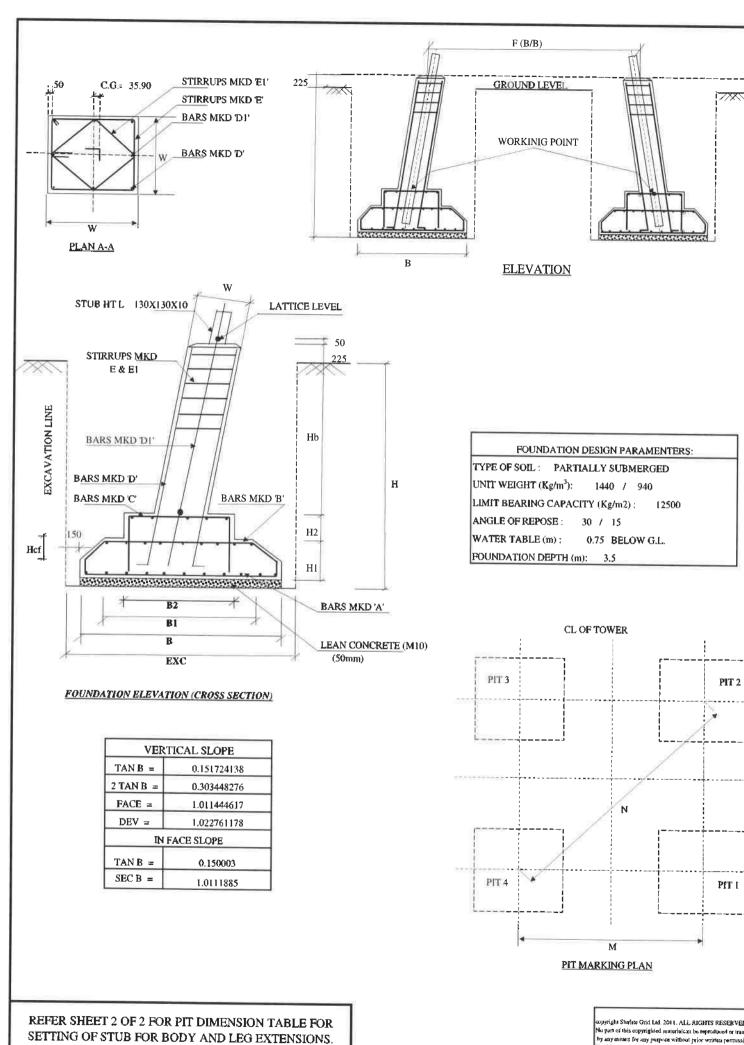
FOUNDATION DRAWING FOR TOWER TYPE DAL-3/+0/+3/+6M 400KV D/C (WZ-1)

DRY SOIL (3.5M DEPTH) DATE 03-08-18 DRAWING NO. GTTPL/400DC/WZ-1/DAL/F-001 SHEET NO. 1/2 REV 0

Project GOA			.50 1	D/C -X-M	SIT DIME	NSION	TABLE	L SUIL	. TPE-	URY		Client: SPGVL	
400 KV D/C-X-M & X-	N- TT "DAL"	" F " B/B of To 3MBE(+)-3h		" F " B/B of T 3MBE(+)-3		Stub Sec	otion (HT)	Lattice Level to CL	og	sec B1	2*Tan B1	sec B2	2*Tan B
		943	2	943	32	130X1	30X10	50	35.9	1.011445	0.303448276	1.011445	0.303448
Tower Detail	Exin from -3MBE(+)- 3MLE (mm)	cg-cg dim al CL (TF)	eg-eg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO G.L.	A1	A2	В	E	F1	F2	Н
-3MBE (+) -3M LE	0	9375	9375	2150	3000	225	5177	5177	7321	2450	6402	0400	0500
-3MBE (+) -1.5M LE	1500	9830	9830	2150	3000	225	5404	5404	7643	2450	8629	6402	3500
3MBE (+) +0M LE	3000	10285	10285	2150	3000	225	5632	5632	7965	2450	6857	6629	3500
3MBE (+) +1.5M LE	4500	10741	10741	2150	3000	225	5860	5860	8287	2450	7085	6857	3500
3MBE (+) +3M LE	6000	11196	11196	2150	3000	225	6087	6087	8609	2450		7085	3500
+0MBE (+) -3M LE	3000	10285	10285	2150	3000	225	5632	5632	7965	2450	7312	7312	3500
+0MBE (+) -1.5M LE	4500	10741	10741	2150	3000	225	5860	5860	8287	2450	6857	6857	3500
+0M8E (+) +0M LE	6000	11196	11196	2150	3000	225	6087	6087	8609		7085	7085	3500
+OMBE (+) +1.5M LE	7500	11651	11651	2150	3000	225	6315	6315	8930	2450	7312	7312	3500
OMBE (+) +3M LE	9000	12106	12106	2150	3000	225	6542			2450	7540	7540	3500
3MBE (+) -3M LE	6000	11196	11196	2150	3000	225		6542	9252	2450	7767	7767	3500
3MBE (+) -1.5M LE	7500	11651	11651	2150	3000	225	6087	6087	8609	2450	7312	7312	3500
3MBE (+) +0M LE	9000	12106	12106	2150	3000	225	6315	6315	8930	2450	7540	7540	3500
3M8E (+) +1.5M LE	10500	12561	12561	2150	3000	225	6542	6542	9252	2450	7767	7767	3500
3MBE (+) +3M LE	12000	13016	13016	2150	3000	225	6770	6770	9574	2450	7995	7995	3500
6MBE (+) -3M LE	9000	12106	12106	2150	3000		6998	6998	9896	2450	8223	8223	3500
6MBE (+) -1.5M LE	10500	12561	12561	2150		225	6542	6542	9252	2450	7767	7767	3500
GMBE (+) +OM LE	12000	13016	13016	2150	3000	225	6770	6770	9574	2450	7995	7995	3500
6MBE (+) +1.5M LE	13500	13472	13472		3000	225	6998	6998	9896	2450	8223	8223	3500
6MBE (+) +3M LE	15000	13927	13927	2150	3000	225	7225	7225	10218	2450	8450	8450	3500
	12000	13561	15821	2150	3000	226	7453	7453	10540	2450	8678	8678	3500
UDNAL PACE	ak C	8	*	/8		Vorking Point A	12 F2	CL of foung	/ IE	H	CL G.L.		
ТОМЕКТИ	pit 0	A1 Fr	<u> </u>	A1 F1	pit A	-		Limit Bearing Weight of so Weight of so Angle of Repo	g Capacity oil (Dry portio oil (Wet portio ose (Dry portio ose (Wet portio	on)	1440 K 940 K 30 D 15 D	(g/Sqm (g/cum (g/cum eg eg	

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

VER	TICAL SLOPE
TANB =	0.151724138
2 TAN B =	0.303448276
FACE =	1.011444617
DEV =	1.022761178
IN	FACE SLOPE
TAN B =	0.150003
SEC B =	1,0111885


STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY CONTROLLED CCPY
Approved Vide Ref. Letter No. Str. Co. L. L. Co. TTPL
Engineering Deptt.
the above does not refleveling contractual obligations.

NOTES:

- I DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =

- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER,
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

	1	T			-		,
REV NO	DATE		DESCRIPTION	DRAWN	CH	IKD	APPD
PRO	JECT	400KV D/C XE	LDAM-NARENDRA TRANSM	ISSION LTD			4
CLI	ENT	STERLITE POV	VER GRID VENTURES LIMITE	ED ED			
DESIG	GNER:	STERLITE POV	VER GRID VENTURES LIMITE	ED			
DRWN	RT	03-08-18	FOUNDATION DRAWING	C EOD WOMEN IN	1/00	-	-
CHKD	AM	03-08-18	DAL-3/+0/+3/+6M 40				
APPD	DŁ	03-08-18	DRY SOIL (3.5				
DATE	03-08-18	DRAWING NO.	GFTPL/400DC/WZ-I/DAL/F-001	SHEET NO	2/2	REV	0

EXC	В	Н	W	BI	B2	Hi	H2	Hcf	Hb
3550	3250	3500	420	2950	1410	250	200	150	3000

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	('kg/m)	(kg)	(kg)
A	3150	PAD REINFORCEMENT	12	36	3150	0.89	100.69	402.75
В	2850 50 141 141 50	PAD REINFORCEMENT	10	28	3233	0.62	55.83	223,32
c	1310 326 50 50 326	PAD REINFORCEMENT	10	18	2062	0.62	22.90	91.61
D	3531	CHIMNEY BAR	20	4	3831	2,46	37.77	151.11
Di	300	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
E	320	CHIMNEY SQUARE SPACER	8	13	1472	0.39	7.55	30.21
E1	226 226	CHIMNEY SQUARE SPACER	8	13	1097	0.39	5.62	22.52
					TOTAL REI	INFORCEMEN	√T/ TOWER=	1072.6

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3300

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/ STRUCTURE					
CONCRETE (M20) m ³	13.86				
CONCRETE (M10) m ³	2.11				
TOTAL CONCRETE m ³	15.97				
EXCAVATION m3	176.44				
REINFORCEMENT Kg	1072.6				

STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION Engineering Deptt.
the above does not releval
contractual obligations

SHEET NO. 1/1 REV 0

		1			_		
REV NO	DATE			DESCRIPTION	DRAWN	CHKD	APPD
PRO	JECT	400KV D	/C XELDAI	M-NARENDRA TRANSMISSION L	TD		
CLI	ENT	STERLIT	E POWER (GRID VENTURES LIMITED			
DESIG	SNER:	STERLIT	E POWER (GRID VENTURES LIMITED			
DRWN	RT	03-08-18		FOUNDATION DRAWING FOR TOW	ED TVDE		
CHKD	AM	03-08-18		DAL-3/+0/+3/+6M 400KV D/C (W			
APPD	DL	03-08-18		PARTIALLY SUBMERGED SOIL (3.5N			
DATE	03-0	8-18 DF	AWING NO.	GTTPL/400DC/WZ-1/DAL/F-003	SHEET NO.	1/1 RE	v o

GTTPL/400DC/WZ-1/DAL/F-003

opyright Sterlite Grid Ltd. 2011. ALL RIGHTS RESERVED

to part of this copyrighted material can be reproduced or transmitted in any form
they means for any purpose without price written permission of the owner
the Unemberted used any, will amount to indiringuence and the indringer shall be held
table for heavy degrees and punishment with imprisonment.

Project GOA			400 K	V D/C -X-I	M & X-N	(WZ-1) ENSION	TABLE	AL" SOI	L TYPE ·	· P\$		Client: SPGVL	
400 KV D/C-X-M & X-	N- TT "DAL"	" F " B/B of To 3MBE(+)-3M		* F * B/B of 1 3MBE(+)-(Slub Se	ction (HT)	Lattice Level to CL	cg	sec B1	2°Tan B1	sec B2	2*Tan B
		943	2	94	32	130X	130X10	50	35.9	1.011445	0.303448276	1.011445	0.30344
Tower Oetail	Extn from -3MBE(+)- 3MLE (mm)	og-og dim at CL (TF)	og-og dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	В	E	F1	F2	Н
-3MBE (+) -3M LE	0	9375	9375	3250	3000	225	5177	5177	7321	3550	6952	6952	3500
-3MBE (+) -1.5M LE	1500	9830	9830	3250	3000	225	5404	5404	7643	3550	7179	7179	3500
-3MBE (+) +0M LE	3000	10285	10285	3250	3000	225	5632	5632	7965	3550	7407	7407	3500
-3MBE (+) +1,5M LE	4500	10741	10741	3250	3000	225	5860	5860	8287	3550	7635	7635	3500
-3MBE (+) +3M LE	6000	11196	11196	3250	3000	225	6087	6087	8609	3550	7862	7862	3500
+0MBE (+) -3M LE	3000	10285	10285	3250	3000	225	5632	5632	7965	3550	7407	7407	3500
+0MBE (+) -1.5M LE	4500	10741	10741	3250	3000	225	5860	5860	8287	3550	7635		
+0MBE (+) +0M LE	6000	11196	11196	3250	3000	225	6087	6087	8609	3550		7635	3500
+0MBE (+) +1.5M LE	7500	11651	11651	3250	3000	225	6315	6315	8930	3550	7862	7862	3500
+0MBE (+) +3M LE	9000	12106	12106	3250	3000	225	6542	6542	9252		8090	8090	3500
-3MBE (+) -3M LE	6000	11196	11196	3250	3000	225	6087	6087	8609	3550	8317	8317	3500
3MBE (+) -1.5M LE	7500	11651	11651	3250	3000	225	6315	6315	8930	3550	7862	7862	3500
3MBE (+) +0M LE	9000	12106	12106	3250	3000	225	6542	6542		3550	8090	8090	3500
3MBE (+) +1.5M LE	10500	12561	12561	3250	3000	225	6770		9252	3550	8317	8317	3500
3MBE (+) +3M LE	12000	13016	13016	3250	3000	225	6998	6770	9574	3550	8545	8545	3500
6MBE (+) -3M LE	9000	12106	12106	3250	3000	225	6542	6998	9896	3550	8773	8773	3500
6MBE (+) -1.5M LE	10500	12561	12561	3250	3000	225	6770	6542	9252	3550	8317	8317	3500
-6MBE (+) +0M LE	12000	13016	13016	3250	3000	225	6998	6770 6998	9574	3550	8545	8545	3500
6MBE (+) +1.5M LE	13500	13472	13472	3250	3000	225	7225	7225	9896	3550	8773	8773	3500
6MBE (+) +3M LE	15000	13927	13927	3250	3000	225	7453	7453	10218	3550	9000	9000	3500
	:		1	0200	3000	7	7403	CL of found	10540 Jakion	3550	9228	9228	3500
<u></u>	##C				p t B		A2 F2			н	G.L.		
LONGITUDINAL FACE		В	×	/ B		Working Point A	A2 F2	<u>s</u>	EC X-X	Working Point A			
<u> </u>		*				1	_	Limit Searin	g Capacity		12500 K	g/Sqm	
	pit D				pit A		- 2	Weight of so	oil (Dry portio	n)	1440 K	g/cum	
Fig.	1		X		Y			Weight of so	oil (Wet portio	on)	940 K	g/cum	
	/	A1		A1				Angle of Flepo	ose (Dry portio	en)	30 D	eg	
9		F1		F1	1				itroq feW) esc	on)	15 D	eg	
								Water Table	,		0.75M B	elow GL	

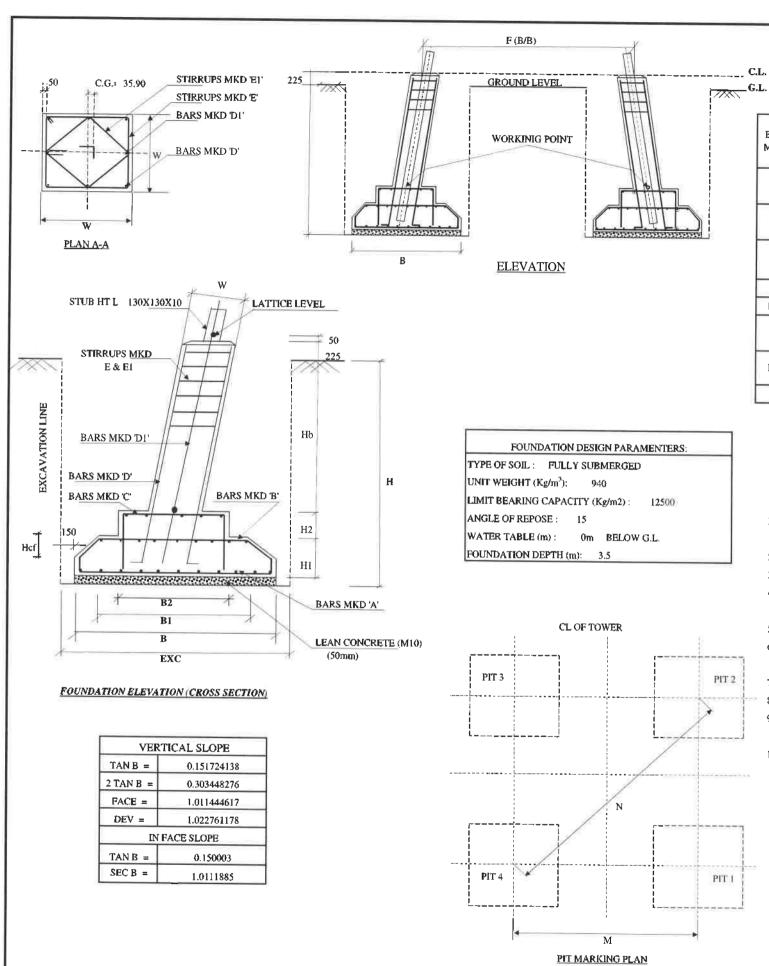
- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

	VERTICAL SLOPE
TAN B =	0.151724138
2 TAN B =	0.303448276
FACB =	1.011444617
DEV =	1.022761178
	IN FACE SLOPE
TAN B =	0,150003
SEC B =	1.0111885

NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =
- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

3300 mm


- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS SOMM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

REV NO	DATE		D.P.				
PRO	JECT	400KV D/C XE	LDAM-NARENDRA TRANSM	ISSION LTD	I CE	IKD	APPD
CLI	ENT	STERLITE POV	WER GRID VENTURES LIMITE	ED .			
DESIG	GNER:	STERLITE POV	VER GRID VENTURES LIMITE	ED .			
RWN	RT	03-08-18	FOUNDATION DRAWING	A DOB BAHAR -		_	
нкъ	AM	03-08-18	DAL-3/+0/+3/+6M 40				
APPD Q441	DL	03-08-18	PARTIALLY SUBMERGER	D SOIL (3.5M DE	PTH)		
ATE	03-08-18	DRAWING NO.	GTTPL/400DC/WZ-L/DAL/F-003	SHEET NO.	2/2	REV	0

conyliste Nocine Onia Let. 2011. ALL ROHLIS RESERVED.

No part of this cognition annexistor to expendence or extention at any form, by our contact for any purpose voltage gives write premission of the owner.

The Unexpressed uses if my: will account to distinguished and the sufficient shall be be been allowed to the company of the com

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR

SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

EXC	В	Н	w	Bì	B2	H1	H2	Hef	Hb
3940	3640	3500	420	3340	14[0	250	200	150	3000

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	('kg/m)	(kg)	(kg)
A	3540	PAD REINFORCEMENT	12	42	3540	0.89	131.99	527.97
В	3240 50 141 141 50	PAD REINFORCEMENT	12	26	3623	0.89	83.63	334,54
c	1310 326 50 50 326	PAD REINFORCEMENT	12	14	2062	0.89	25.65	102.59
D	3531	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
Di	300	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
E	320	CHIMNEY SQUARE SPACER	8	13	1472	0.39	7.55	30.21
E1	226 226	CHIMNEY SQUARE SPACER	8	13	1097	0.39	5.62	22.52
					TOTAL RE	INFORCEMEN	NT/ TOWER=	1320.0

NOTES:

gright Sterlite Grid Ltd. 2011 ALL RIGHTS RESERVED We past of this copyrighted insterial can be reproduced or incannated in any form by any means for any purpose without prior written permission of the owner.

Unauthorised use, if any, will amount to intringment and the infringer shall be held

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING TO IS 1139/1786(Grade Fe - 500N/mm²)
- 5.STUB BELOW GROUND LEVEL = 3300
- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	16.48
CONCRETE (M10) m ³	2.65
TOTAL CONCRETE m ³	19.13
EXCAVATION m3	217.33
REINFORCEMENT Kg	1320.0

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY CONTROLLED CCPY
Approved Vide Ref. Letter No. S POTVL GT T PL EHG6/LBT/23 Engineering Deptt.
the above does not release the contractual obligations

		T									
REV NO	DATE			DESCRIPTION	DRAWN	CHKD	APPD				
PRO	JECT	400KV	/ D/C XELDA	M-NARENDRA TRANSMISSION	LTD						
CLI	ENT	STERI	LITE POWER	GRID VENTURES LIMITED							
DESIG	GNER:	STERI	LITE POWER	GRID VENTURES LIMITED							
DRWN	RT	03-08-	18	FOUNDATION DRAWING FOR TO	WER TYPE						
CHKD	AM	03-08-	18	DAL-3/+0/+3/+6M 400KV D/C (WZ-1)							
APPD	DL	03-08-	18	FULLY SUBMERGED SOIL (3.5M DEPTH)							
DATE	03-0	8-18	DRAWING NO.	RAWING NO. GTTPL/400DC/WZ-1/DAL/F-004 SHEET NO. 1/2 REV							

Project GOA			400 K	V D/C -X-I	M & X-N PIT DIME				L TYPE	- FS		Client: SPGVL	
400 KV D/C-X-M & X-	N- TT "DAL"	* F * B/B o! To 3MBE(+)-3M				Stub Se	ection (HT)	Lattice Level to CL	cg	sec B1	2°Tan B1	sec B2	2°Tan Ba
		943	2	94	32	130X	130X10	50	35.9	1.011445	0.303448276	1.011445	0.303448
Tower Detail	Exin from -3MBE(+)- 3MLE (mm)	og-og dim at OL (TF)	eg-eg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	В	E	F1	F2	Н
-3MBE (+) -3M LE	0	9375	9375	3640	3000	225	5177	5177	7321	3940	7147	7147	3500
-3MBE (+) -1.5M LE	1500	9830	9830	3640	3000	225	5404	5404	7643	3940	7374	7374	3500
-3MBE (+) +0M LE	3000	10285	10285	3640	3000	225	5632	5632	7965	3940	7602	7602	3500
-3MBE (+) +1.5M LE	4500	10741	10741	3640	3000	225	5860	5860	8287	3940	7830	7830	3500
-3MBE (+) +3M LE	6000	11196	11196	3640	3000	225	6087	6087	8609	3940	8057	8057	3500
+0MBE (+) -3M LE	3000	10285	10285	3640	3000	225	5632	5632	7965	3940	7602	7602	3500
+0MBE (+) -1.5M LE	4500	10741	10741	3640	3000	225	5860	5860	8287	3940	7830	7830	3500
+0MBE (+) +0M LE	6000	11196	11196	3640	3000	225	6087	6087	8609	3940	8057	8057	3500
+0MBE (+) +1.5M LE	7500	11651	11651	3640	3000	225	6315	6315	8930	3940	8285	8285	
+0MBE (+) +3M LE	9000	12106	12106	3640	3000	225	6542	6542	9252	3940			3500
+3MBE (+) -3M LE	6000	11196	11196	3640	3000	225	6087	6087	8609	3940	8512	8512	3500
+3MBE (+) -1.5M LE	7500	11651	11651	3640	3000	225	6315	6315	8930	3940	8057	8057	3500
+3MBE (+) +0M LE	9000	12106	12106	3640	3000	225	6542	6542	9252		8285	8285	3500
+3MBE (+) +1.5M LE	10500	12561	12561	3640	3000	225	6770			3940	8512	8512	3500
+3MBE (+) +3M LE	12000	13016	13016	3640	3000	225	6998	6770	9574	3940	8740	8740	3500
+6MBE (+) -3M LE	9000	12106	12106	3640	3000	225		6998	9896	3940	8968	8968	3500
+6MBE (+) -1.5M LE	10500	12561	12561	3640	3000		6542	6542	9252	3940	8512	8512	3500
+6MBE (+) +0M LE	12000	13016	13016	3640	3000	225	6770	6770	9574	3940	8740	8740	3500
-6MBE (+) +1.5M LE	13500	13472	13472	3640		225	6998	6998	9896	3940	8968	8968	3500
-6MBE (+) +3M LE	15000	13927	13927		3000	225	7225	7225	10218	3940	9195	9195	3500
TOMOL (F) TOM CC	15000	13927	1392/	3640	3000	225	7453	7453	10540	3940	9423	9423	3500
			ŝ		1 3	1		CL of found	dation		CL		
			1	ĺ			1		11		G.L.		
				*********	×								
	plit C								/ /				
				6	pit B		A2 F2	_		_			
HACE.	ĺ			/"	į.				1				
			\times			Working Point A	-	7	1!				
DINA		. /				1		1	IE \				
킬		В			/		A2 F2	-1		7			
LONGITUDII				ſ		1		<u>s</u>	EC X-X	Working Point A			
						- =	<u></u>						
-		x					_	Limit Bearin	g Capacity		12500	Kg/Sqm	
	pit D	718			plt A		300	Weight of s	oll (Dry porti	on)	1440	Kg/cum	
	X		Y		Y			Weight of s	oil (Wet port	ion)	940	Kg/cum	
		A1 F1	1	A1 F1		ē		Angle of Rep	ose (Dry porti	ion)	30 (Deg	

Water Table

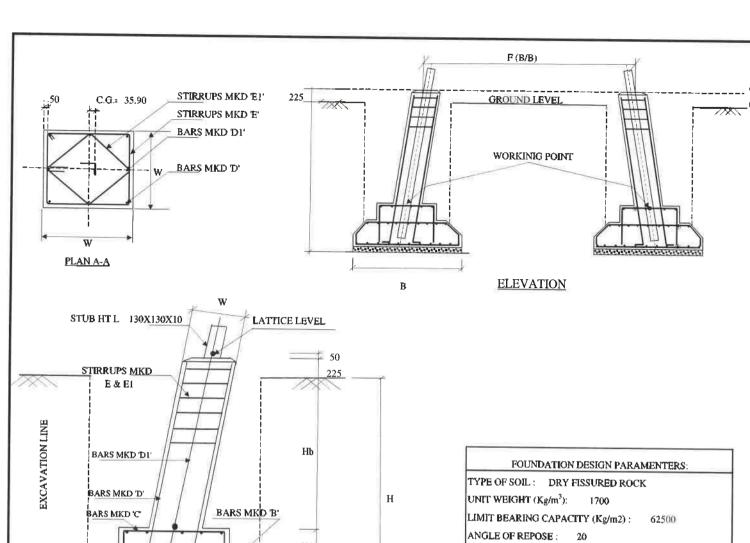
0.0M

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- $2.\,\mbox{FOUNDATION}$ SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

VER	TICAL SLOPE
TAN B =	0.151724138
2 TAN B =	0.303448276
FACE =	1.011444617
DEV =	1.022761178
IN	FACE SLOPE
TANB =	0.150003
SEC B =	1.0111885

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =

3300 mm

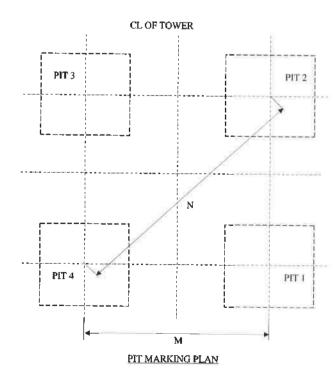

- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- $10.\mathrm{AT}$ SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

RBV NO	DATE		DESCRIPTION	DRAWN	СН	IKD	APPD	
PRO	JECT	400KV D/C XE	ELDAM-NARENDRA TRANSMI	SSION LTD				
CLI	ENT	STERLITE PO	WER GRID VENTURES LIMITE	D				
DESI	GNER:	STERLITE PO	WER GRID VENTURES LIMITE	D				
DRWN	RT	03-08-18	EQUINDATION OF AWAYS	POR TOURS TO	truc	-		
СНКФ	AM	03-08-18	FOUNDATION DRAWING FOR TOWER TYPE DAL-3/+0/+3/+6M 400KV D/C (WZ-1)					
APPD	APPD DL 03-08-18		FULLY SUBMERGED SO	OIL (3.5M DEPTI	T)			
DATE	03-08-18	DRAWING NO.	GTTPL/400DC/WZ-3/DAL/F-004	SHEET NO.	2/2	REV	0	

empredia Surface Crisi Lut. 2011. ALL REFILITS RESERVED.

No pain of date copylighted intersectance or equalization or transmissed at 1.017 form
they are present or any paragraphic prior viring equations of the numer.

The Granification for any pages of the production of the infraregraphic test to be left
table for the reservations or any productions of the dispressions of the production of the production of the productions of the productions of the productions of the production of the product



H2

BARS MKD 'A'

(50mm)

LEAN CONCRETE (M10)

WATER TABLE (m): BELOW 3.5m FROM G.L.

FOUNDATION DEPTH (m): 3.5

В	Н	W	B1	B2	H1	H2	Hcf	Нь
2170	3500	420	1870	1410	250	200	150	3000

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	(ˈkg/m)	(kg)	(kg)
A	2070	PAD REINFORCEMENT	10	26	2070	0.62	33.23	132.90
В	1770 50 141 141 50	PAD REINFORCEMENT	10	16	2153	0.62	21.28	85.10
С	1310 330 50 5 <u>0</u> 330	PAD REINFORCEMENT	10	18	2070	0.62	22.99	91.96
D	3535	CHIMNEY BAR	20	4	3835	2.46	37.81	151.27
D1	300	CHIMNEY BAR	20	4	3835	2.46	37.81	151.27
E	320	CHIMNEY SQUARE SPACER	8	13	1472	0.39	7.55	30.21
E1	226 226	CHIMNEY SQUARE SPACER	8	13	1097	0.39	5.62	22.50
		***			TOTAL REI	NFORCEMEN	T/ TOWER=	665.2

NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING TO IS 1139/1786(Grade Fe - 500N/mm²)
- 5.STUB BELOW GROUND LEVEL = 3300
- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE,

QUANTITIES/STRU	CTURE
CONCRETE (M20) m ³	8.2
CONCRETE (M10) m ³	0.94
TOTAL CONCRETE m ³	9.14
EXCAVATION m3	50.04
REINFORCEMENT Kg	665.2

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY

Engineering Deptt.
the above does not relieve contractual obligations

REV NO	DATE	DESCRIPTION D	DRAWN	CHKD	APPD			
PRO	JECT	400KV D/C XELDAM-NARENDRA TRANSMISSION LTD						
CLIENT		STERLITE POWER GRID VENTURES LIMITED						

CHKD To part of this copyrighted quaternalican be reproduced or transmitted in any form APPD by any means for any purpose without price written permission of the owner.
The Unauthorised use, if any, will amount to intringthem and the infringer shall be held. e for heavy damages and punishment with impresources?

STERLITE POWER GRID VENTURES LIMITED DESIGNER: DRWN RT 03-08-18 FOUNDATION DRAWING FOR TOWER TYPE AM 03-08-18 DAL-3/+0/+3/+6M 400KV D/C (WZ-1) DRY FISSURED ROCK SOIL (3.5M DEPTH) DL 03-08-18 DATE 03-08-18 DRAWING NO. GTTPL/400DC/WZ-1/DAL/F-005 SHEET NO. 1/2 REV 0

TAN B =	0.151724138				
2 TAN B =	0.303448276				
FACE =	1.011444617				
DEV =	1.022761178				
IN	FACE SLOPE				
TANB =	0.150003				

B1

FOUNDATION ELEVATION (CROSS SECTION)

Hef

VERTICAL SLOPE SEC B = 1.0111885

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR

SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

Project GOA				D/C -X-M	PIT DIME					DEN		Client: SPGVL	
400 KV D/C-X-M & X-	N- TT "DAL"	* F * 8/8 of To 3MBE(+)-3h	ALE (TF)	* F * B/B of T 3MBE(+)-3		Stub Sec	Stub Section (HT)		cg	sec B1	2"Tan B1	sec B2	2°Tan B
		943	2	94	32	130X1	30X10	50	35.9	1.011445	0.303448276	1.011445	0.303448
Tower Detail	Exts from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	eg-eg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	В	E	F1	F2	Н
-3MBE (+) -3M LE	0	9375	9375	2170	3000	225	5177	5177	7321	2170	6262	6262	3500
-3MBE (+) -1.5M LE	1500	9830	9830	2170	3000	225	5404	5404	7643	2170	6489	6489	3500
3MBE (+) +0M LE	3000	10285	10285	2170	3000	225	5632	5632	7965	2170	6717	6717	3500
-3MBE (+) +1.5M LE	4500	10741	10741	2170	3000	225	5860	5860	8287	2170	6945	6945	3500
3MBE (+) +3M LE	6000	11196	11196	2170	3000	225	6087	5087	8609	2170	7172	7172	3500
+0MBE (+) -3M LE	3000	10285	10285	2170	3000	225	5632	5632	7965	2170	6717	6717	
+0MBE (+) -1.5M LE	4500	10741	10741	2170	3000	225	5860	5860	8287	2170	6945		3500
+0MBE (+) +0M LE	6000	11196	11196	2170	3000	225	6087	5087	8609	2170		6945	3500
OMBE (+) +1.5M LE	7500	11651	11651	2170	3000	225	6315	6315			7172	7172	3500
OMBE (+) +3M LE	9000	12106	12106	2170	3000				8930	2170	7400	7400	3500
+3MBE (+) -3M LE	6000	11198	11196	2170		225	6542	6542	9252	2170	7627	7627	3500
3MBE (+) -1.5M LE	7500				3000	225	6087	6087	8609	2170	7172	7172	3500
3MBE (+) +0M LE	9000	11651	11651	2170	3000	225	6315	6315	8930	2170	7400	7400	3500
		12106	12106	2170	3000	225	6542	6542	9252	2170	7627	7627	3500
-3MBE (+) +1.5M LE	10500	12561	12561	2170	3000	225	6770	6770	9574	2170	7855	7855	3500
3MBE (+) +3M LE	12000	13016	13016	2170	3000	225	6998	6998	9896	2170	8083	8083	3500
-6MBE (+) -3M LE	9000	12106	12106	2170	3000	225	6542	6542	9252	2170	7627	7627	3500
6MBE (+) -1.5M LE	10500	12561	12561	2170	3000	225	6770	6770	9574	2170	7855	7855	3500
-6MBE (+) +0M LE	12000	13016	13016	2170	3000	225	6998	6998	9896	2170	8083	8083	3500
6MBE (+) +1.5M LE	13500	13472	13472	2170	3000	225	7225	7225	10218	2170	8310	8310	3500
8MBE (+) +3M LE	15000	13927	13927	2170	3000	225	7453	7453	10540	2170	8538	8538	3500
NNAL PACE	pin C		*	8		Working Point A	A2 F2	CL of found	dation	1	G.L		
IGUTENOT	pit D	A1 F1		A1 F1	pit A		N2 F2	Limit Bearin Weight of so Weight of so Angle of Repo	g Capacity oil (Ory portic oil (Wet porti	ion)	1700 H 940 H 20 C	(g/Sqm (g/cum (g/cum)eg	
			1.00					Water Table				-	

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD, IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

	VERTICAL SLOPE					
TAN B =	0.151724138					
2 TAN B =	0.303448276					
FACE =	1.011444617					
DEV =	1.022761178					
	IN FACE SLOPE					
TAN B =	0.150003					
SEC B = 1.0111885						

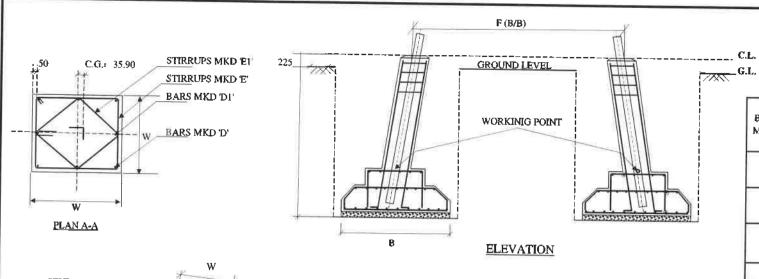
STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION RELEASED FOR CONSTRUCTION CONTROLLED COPY
Approved Vide Ref. Letter No. Str. Ut. V. L. 17 TTP L

FNGIDI/LOT/23

Date/3/CP/(18)

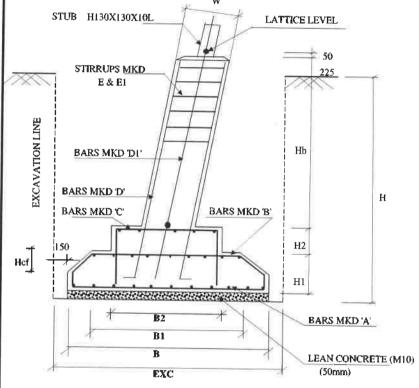
Engineering Depti
the above does not relieve the contractor from their contractual obligations

NOTES:


- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =
- 3300 mm
- $6. WHENEVER \, \text{NBCESSARY} \, \text{TO} \, \text{CLEAR} \, \text{STUB} \, \text{CLEAT} \, \text{FROM BARS} \, \& \, \text{STIRRUPS}$
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER,

repright Scalle Cqi47xd 2011 ALL RECITYS RESERVED.

No peri of the engergleat Larenthican be equelyted by transment in any loyes by any second for any period to the second period of the company of the


10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

		T						
REV NO	DATE		DESCRIPTION	DDAWAY				
			DESCRIPTION	DRAWN	L CH	IKD	APPD	
PRO	DIECT	400KV D/C XE	LDAM-NARENDRA TRANSMI	ISSION LTD				
CL	IENT	STERLITE POV	WER GRID VENTURES LIMITE	D				
DESI	GNER:	STERLITE POV	WER GRID VENTURES LIMITE	D .				
DRWN	RT	03-08-18	FOINDATION DEAWNG	EOD TOUED TO	VDP.			
CHKD	AM	03-08-18	FOUNDATION DRAWING FOR TOWER TYPE DAL-3/+0/+3/+6M 400KV D/C (WZ-1)					
APPD	DL	03-08-18	DRY FISSURED ROCK SOIL (3.5M DEPTH)					
DATE	03-08-18	DRAWING NO.	GTTPL/400DE/WZ-1/DAL/F-005	SHEET NO.	2/2	REV	0	

EXC	В	Н	w	B1	B2	Н1	H2	Hcf	Hb
2400	2100	3500	420	1800	1410	250	200	150	3000

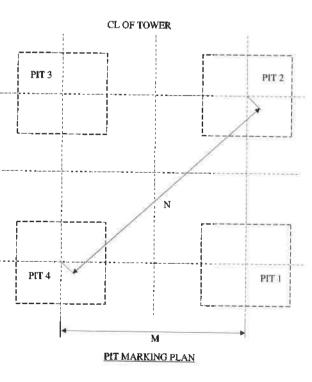
BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	(ˈkg/m)	(kg)	(kg)
A	2000	PAD REINFORCEMENT	10	26	2000	0.62	32.10	128.41
В	1700 50 141 141 50	PAD REINFORCEMENT	10	14	2083	0.62	18.02	72.08
С	1310 330 50 5 <u>0</u> 330	PAD REINFORCEMENT	01	18	2070	0.62	22.99	91.96
D	3535	CHIMNEY BAR	20	4	3835	2.46	37.81	151.27
D1	300	CHIMNEY BAR	20	4	3835	2.46	37.81	151.27
E	320	CHIMNEY SQUARE SPACER	8	13	1472	0.39	7.55	30.21
E1	226 226	CHIMNEY SQUARE SPACER	8	13	1097	0.39	5.62	22.52
					TOTAL REI	NFORCEMEN	T/ TOWER=	647.7

FOUNDATION ELEVATION (CROSS SECTION)

E	XCAVATION I	LAN DETAIL		
	STUB =	H130X130X10L		
TO	WER SLOPE =	9.26	2*TAN	x= 0.32620278
B/B WIDTH	AT C.L.(mm) =	11588.3		
CG O	F STUB(mm) =	35.9		
CG TO CG WIDTH	AT C.L.(mm) =	11517		
TOWER TYPE	F B/B AT C.L.	M (CG TO CO AT WORKING		N
N = NORMAL TOWER	11588	12569		17775
3M BE = ATTACHED TO NT	12567	13548		19[60
6M BE = ATTACHED TO NT	13546	14526		20543
9M BE = ATTACHED TO NT	14524	15505		21928

FOUNDATION DESIGN PARAMENTERS:

TYPE OF SOIL: DRY


UNIT WEIGHT (Kg/m³); 1440

LIMIT BEARING CAPACITY (Kg/m2): 25000

ANGLE OF REPOSE: 30

WATER TABLE (m): BELOW 3.5m FROM G.L.

FOUNDATION DEPTH (m): 3.5

copyright Shafne Grid Ltd. 20 J. ALL RIGHTS RESERVED.

No part of this copyrighted materialism be reproduced or transmitted in any form by any means for any purpose without prior written permission of the swiner.

The Unauthoristic suc.id may, will amount to intringenent and the infringer shall be held liable for beavy damager and punishment with imprisaments?

NOTES:

LDRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3300

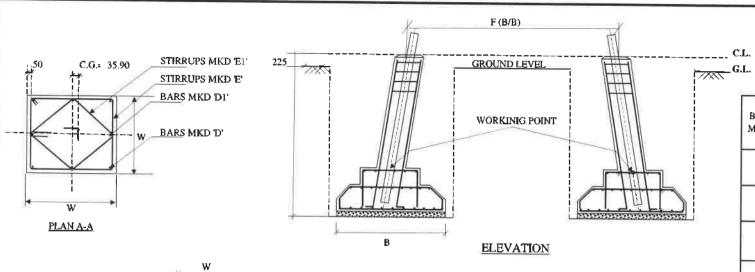
6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH


LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

CONCRETE (M20) m ³	7.92
CONCRETE (M10) m ³	0.88
TOTAL CONCRETE m ³	8,8
EXCAVATION m3	80.64
REINFORCEMENT Kg	647.7

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CCPY
Approved Vide Ref. Letter No. SPAYLIGTTP
ENGG. L. 23. Date: 13. 68. 18
Engineering Deptt
the above does no relieve the above the

							_		
REV NO	DATE				DESCRIPTION	DRAWN	СНК	D A	PPD
PROJECT 400KV D/C XELDAM - NARENDRA TRANSMISSION LTD									
CLIENT STERLITE POWER GRID VENTURES LIMITED									
DESIG	NER:	STER	LIT	E POWER (GRID VENTURES LIMITED				
DRWN	RT	03-08	-18		FOUNDATION DRAWING FOR TOWN	D TVDE			
CHKD	AM	03-08	-18		DA+0/+3/+6/+9M 400KV D/C (W/				- 1
APPD	DL	03-08	-18		DRY SOIL (3.5M DEPTH)	,			
DATE	03-0	8-18	DR	AWING NO.	WING NO. KTL/400DC/WZ-1/DA/F-001 S			REV	0

EXC	В	Н	W	B 1	B2	Hì	H2	Hef	Hb
3150	2850	3500	420	2550	1410	250	200	150	3000

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	(kg/m)	(kg)	(kg)
A	2750	PAD REINFORCEMENT	12	26	2750	0.89	63.51	254.03
В	2450 50 141 141 50	PAD REINFORCEMENT	10	20	2833	0.62	34.96	139.85
С	1310 326 <u>50</u> <u>50</u> 326	PAD REINFORCEMENT	10	18	2062	0.62	22.90	91.61
D	3531	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
D1	300	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
E	320	CHIMNEY SQUARE SPACER	8	13	1472	0.39	7.55	30.21
E1	226 226	CHIMNEY SQUARE SPACER	8	13	1097	0.39	5.62	22.52
		·			TOTAL RE	INFORCEMEN	VT/ TOWER=	840.4

STUB H130X130X10L LATTICE LEVEL STIRRUPS MKD E & EI BARS MKD 'DI' BAR\$ MKD 'D' BARS MKD 'C' BARS MKD 'B' H2 Hef inerarentennenganan antanan antanan BARS MKD 'A' B1 LEAN CONCRETE (M10) (50mm) EXC

FOUNDATION ELEVATION (CROSS SECTION)

E	XCAVATION F	PLAN DETAIL		
	STUB =	H130X130X10L		
TO	WER SLOPE =	9.26	2*TAN	α= 0.32620278
B/B WIDTH	AT C.L.(mm) =	11588.3		
CG O	FSTUB(mm) =	35.9		
CG TO CG WIDTH.	AT C.L.(mm) =	11517		
TOWER TYPE	F B/B AT C.L	M (CG TO C AT WORKING	-/	N
N = NORMAL TOWER	11588	12569		17775
3M BE = ATTACHED TO NT	12567	13548		19160
6M BE = ATTACHED TO NT	13546	14526		20543
9M BE = ATTACHED TO NT	14524	15505		21928

FOUNDATION DESIGN PARAMENTERS:

TYPE OF SOIL: WET

UNIT WEIGHT (Kg/m³); 1440 / 940

LIMIT BEARING CAPACITY (Kg/m2): 12500

ANGLE OF REPOSE: 30 / 15

WATER TABLE (m): 1.50 BELOW G.L.

FOUNDATION DEPTH (m): 3,5

	CL OF TOWER	1
PIT 3		PIT 2
		>
	; 	
	N	/
÷- 		[
PIT 4		PIT 1
	Ψ M	\
	PIT MARKING P	LAN

pyright Sterlite Qnd Ltd. 2011 ALL RIGHTS RESERVED

NOTES:

I.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3300

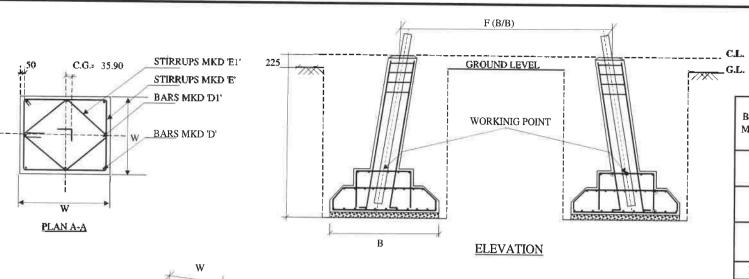
6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.

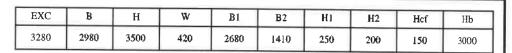
7.FOR POUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.


QUANTITIES/ STRUCTURE				
CONCRETE (M20) m ³	11.49			
CONCRETE (M10) m ³	1.62			
TOTAL CONCRETE m ³	13.11			
EXCAVATION m3	138.92			
REINFORCEMENT Kg	841.0			


STERLITE POWER GRID VENTURES LTD.

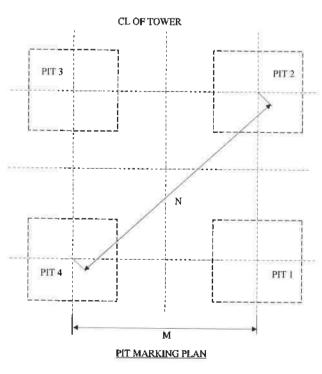
RELEASED FOR CONSTRUCTION
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. CT. V.L. GTT P.

Engineering Deptt
the above does not relieve the above the

REV NO	DATE			DESCRIPTION	DRAWN	СНК	D A	APPD	
PRO	JECT	400KV	V D/C XELDAI	XELDAM - NARENDRA TRANSMISSION LTD					
CLI	CLIENT STERLITE POWER GRID VENTURES LIMITED								
DESIG	GNER:	STER	LITE POWER	GRID VENTURES LIMITED					
DRWN	RT	03-08-	-18	FOUNDATION DRAWING FOR TOW	ER TYPE				
CHKD	AM	03-08-	18	DA+0/+3/+6/+9M 400KV D/C (W					
APPD	DL	03-08-	18	WET SOIL (3.5M DEPTH)					
DATE	03-0	8-18	DRAWING NO.	O. KTL400DC/WZ-1/DA/F-002 SHEET NO. 1/1 RE				0	

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	(ˈkg/m)	(kg)	(kg)
A	2880	PAD REINFORCEMENT	12	30	2880	0.89	76.73	306.91
В	2580 50 141 141 50	PAD REINFORCEMENT	10	20	2963	0.62	36.57	146.26
с	1310 326 50 5 <u>0</u> 326	PAD REINFORCEMENT	10	18	2062	0.62	22.90	91.61
D	3531	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
D1	300	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
E	320	CHIMNEY SQUARE SPACER	8	13	1472	0.39	7.55	30.21
E1	226 226	CHIMNEY SQUARE SPACER	8	13	1097	0.39	5.62	22.52
					TOTAL RE	INFORCEMEN	NT/ TOWER=	899.7

STUB H130X130X10L LATTICE LEVEL STIRRUPS MKD E & El Hb BARS MKD 'DI' BARS MKD 'D' BARS MKD 'C' BARS MKD 'B' H2 Hcf H1 निर्देशकाराम् । स्थापनिर्देशकाराम् । स्थापनिर्देशकाराम् । स्थापनिर्देशकाराम् । स्थापनिर्देशकाराम् । स्थापनिर्द BARS MKD 'A' B1 LEAN CONCRETE (M10) (50mm) EXC


FOUNDATION ELEVATION (CROSS SECTION)

	EXCAVATION I	PLAN DETAIL		
	STUB =	H130X130X10L		
TC	OWER SLOPE =	9.26	2*TAN α=	0.32620278
B/B WIDTH	AT C.L.(mm) =	11588.3		
CGC	OF STUB(mm) =	35.9		
CG TO CG WIDTH	AT C.L.(mm) =	11517		
TOWER TYPE	F B/B AT C.L	M (CG TO CG) AT WORKING P		N
N = NORMAL TOWER	11588	12569		17775
3M BE = ATTACHED TO NT	12567	13548		19160
6M BE = ATTACHED TO NT	13546	14526		20543
9M BE = ATTACHED TO NT	14524	15505		21928

TYPE OF SOIL: PARTIALLY SUBMERGED UNIT WEIGHT (Kg/m³): 1440 / 940 LIMIT BEARING CAPACITY (Kg/m2): 12500 ANGLE OF REPOSE: 30 / 15 WATER TABLE (m): 0.75 BELOW G.L.

FOUNDATION DEPTH (m): 3.5

FOUNDATION DESIGN PARAMENTERS:

NOTES:

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3300

6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

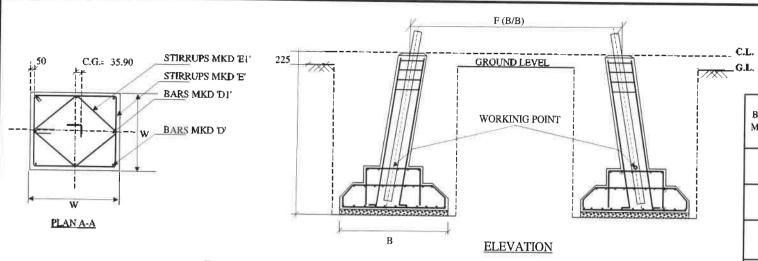
SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

LOCATION OF TOWER.


10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	12.23
CONCRETE (M10) m ³	1.78
TOTAL CONCRETE m ³	14.91
EXCAVATION m3	150.62
REINFORCEMENT Kg	899.7

STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION Approved Vide Ref. Letter No S P. L. L. 177 CONTROLLED CORY

		T								
REV NO	DATE		DESCRIPTION DRAWN CHKD					OD A	APPD	
PROJECT 400KV D/C XELDAM - NARENDRA TRANSMISSION LTD										
CLIENT STERLITE POWER GRID VENTURES LIMITED										
DESIG	GNER:	STER	LIT	E POWER (GRID VENTURES LIMITED					
DRWN	RT	03-08	-18		FOUNDATION DRAWING FOR TOW	ER TYPE				
CHKD	AM	03-08	-18		DA+0/+3/+6/+9M 400KV D/C (W	_				
APPD	DL	03-08	-18		PARTIALLY SUBMERGED SOIL (3.5M DEPTH)					
DATE	03-0	8-18	DR	AWING NO.	AWING NO. KTL/400DC/WZ-1/DA/F-003 SHEET NO. 1/1 REV					

pyright Sterlite Grid Ltd. 2011. ALE REGHTS RESERVED No part of this copyrighted materialcumbe reproduced or manufitted in any form by any means for any purpose without prior written permission of the owner. The Unauthorised use, if any, will amount to intringement and the infringer shall be held. ble for heavy dameges and punishment with imprisonment. ?

EXC	В	Н	W	B 1	B2	H1	H2	Hef	Hb
3650	3350	3500	420	3050	1410	250	200	150	3000

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	('kg/m)	(kg)	(kg)
A	3250	PAD REINFORCEMENT	12	32	3250	0.89	92.35	369.38
В	2950 50 141 141 50	PAD REINFORCEMENT	10	26	3333	0.62	53.45	213.79
c	1310 326 50 50 326	PAD REINFORCEMENT	10	18	2062	0.62	22.90	91.61
D	3531	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
Dt	300	CHIMNEY BAR	20	4	3831	2.46	37.77	151.11
E	320	CHIMNEY SQUARE SPACER	8	13	1472	0.39	7.55	30.21
E1	226 226	CHIMNEY SQUARE SPACER	8	13	1097	0.39	5.62	22.52
					TOTAL REI	INFORCEMEN	VT/ TOWER=	1029.7

STUB H130X130X10L LATTICE LEVEL STIRRUPS MKD E & E1 BARS MKD 'DI' BARS MKD 'D' BARS MKD 'C' BARS MKD 'B' H2 Hcf BARS MKD 'A' **B**1 LEAN CONCRETE (M10) (50mm) EXC

FOUNDATION ELEVATION (CROSS SECTION)

E	XCAVATION I	LAN DETAIL		
	STUB =	H130X130X10L		
то	WER SLOPE =	9.26	2*TAN α=	0.32620278
B/B WIDTH	AT C.L.(mm) =	11588.3		
CG OI	F STUB(mm) =	35.9		
CG TO CG WIDTH	AT C.L.(mm) =	11517		
TOWER TYPE	F B/B AT C.L	M (CG TO CO AT WORKING		N
N = NORMAL TOWER	11588	12569		17775
3M BE = ATTACHED TO NT	12567	13548		19160
6M BE = ATTACHED TO NT	13546	14526		20543
9M BE = ATTACHED TO NT	14524	15505		21928

FOUNDATION DESIGN PARAMENTERS:

TYPE OF SOIL: FULLY SUBMERGED

UNIT WEIGHT (Kg/m³): 940

LIMIT BEARING CAPACITY (Kg/m2): 12500

ANGLE OF REPOSE: 15

WATER TABLE (m): 0m BELOW G.L.

FOUNDATION DEPTH (m): 3.5

PIT 3

PIT 1

PIT 1

PIT 1

copyright Stetline Grid Ltd. 2011. ALL RIGHTS RESERVED.

No part of this copyrighted insterial can be reporduced or transmitted in any form by any means for any pitrpose without price written permission of the owner. The Unauthorated energing and lamounts to infringence and the infringer shall be held liable for heavy-dameges and punishment with impelsonment?

NOTES:

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

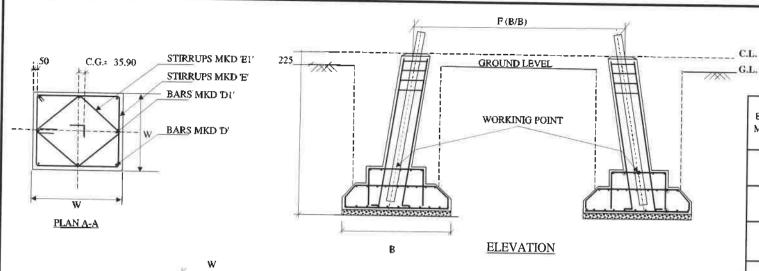
4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

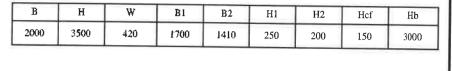
TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3300

6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.

7. FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.


8.CLEAR COVER TO REINFORCEMENT IS 50MM


9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	14.5
CONCRETE (M10) m ³	2.24
TOTAL CONCRETE m ³	16.74
EXCAVATION m3	186.52
REINFORCEMENT Kg	1029.7

							1		
REV NO	DATE			DESCRIPTION	DRAWN	СНІ	XD A	APPD	
PROJECT 400KV D/C XELDAM - NARENDRA TRANSMISSION LTD									
CLIENT STERLITE POWER GRID VENTURES LIMITED									
DESIGNER: STERLITE POWER GRID VENTURES LIMITED				GRID VENTURES LIMITED					
DRWN	RT	03-08-18	3	FOUNDATION DRAWING FOR TOV	/ER TYPE				
CHKD	AM	03-08-18	3	DA+0/+3/+6/+9M 400KV D/C (WZ-1)					
APPD	DL	03-08-18	3	FULLY SUBMERGED SOIL (3.5M DEPTH)					
DATE	03-0	8-18	DRAWING NO.	RAWING NO. KTL/400DC/WZ-1/DA/F-004 SHEET NO. 1/1 REV					

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	('kg/m)	(kg)	(kg)
A	1900	PAD REINFORCEMENT	10	26	1900	0.62	30.50	122.01
В	1600 50 141 141 50	PAD REINFORCEMENT	10	14	1983	0.62	17.16	68.63
С	1310 330 50 5 <u>0</u> 330	PAD REINFORCEMENT	10	18	2070	0.62	22.99	91.96
D	3535	CHIMNEY BAR	20	4	3835	2,46	37.81	151.27
DI	300	CHIMNEY BAR	20	4	3835	2.46	37.81	151.27
E	320	CHIMNEY SQUARE SPACER	8	13	1472	0.39	7.55	30.21
E1	226 226	CHIMNEY SQUARE SPACER	8	13	1097	0.39	5.62	22.50
					TOTAL RE	INFORCEMEN	VT/ TOWER=	637.8

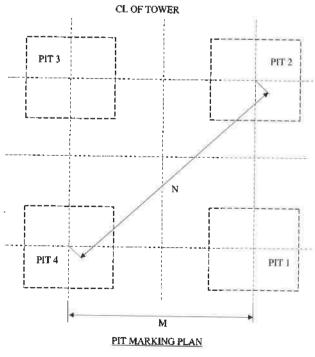
STUB H130X130X10L LATTICE LEVEL STIRRUPS MKD E & E1 **EXCAVATION LINE** HЪ BARS MKD 'D1' BARS MKD 'D' BARS MKD C BARS MKD B' H2 H! BARS MKD 'A' **B**1 LEAN CONCRETE (M10) (50mm)

FOUNDATION ELEVATION (CROSS SECTION)

E	EXCAVATION	LAN DETAIL		
	STUB =	H130X130X10L		
TO	WER SLOPE =	9.26	2*TAN	α= 0.32620278
B/B WIDTH	AT C.L.(mm) =	11588.3		
CG O	F STUB(mm) =	35.9		
CG TO CG WIDTH	AT C.L.(mm) =	11517		
TOWER TYPE	F B/B AT C,L	M (CG TO C AT WORKING	- /	N
N = NORMAL TOWER	11588	12569		17775
3M BE = ATTACHED TO NT	12567	13548		19160
6M BE = ATTACHED TO NT	13546	14526		20543
9M BE = ATTACHED TO NT	14524	15505		21928

FOUNDATION DESIGN PARAMENTERS:

TYPE OF SOIL; DRY FISSURED ROCK UNIT WEIGHT (Kg/m³); [700


LIMIT BEARING CAPACITY (Kg/m2): 62500

ANGLE OF REPOSE: 20

WATER TABLE (m): BELOW 3.5m FROM G.L.

FOUNDATION DEPTH (m): 3.5

CL OF TOWER

opyright Sterlite Grid Ltd. 2011 ALL REGHTS RESERVED.

No port of this copyrighted materials can be reprovidued or transmitted in any foculi by any needs for any purpose without prior written permission of the owner. The Unauthorized uself any, will amount to infringement and the infringer shall be held liable for heavy damages and punishment with impressionment. To

NOTES:

LDRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm²)

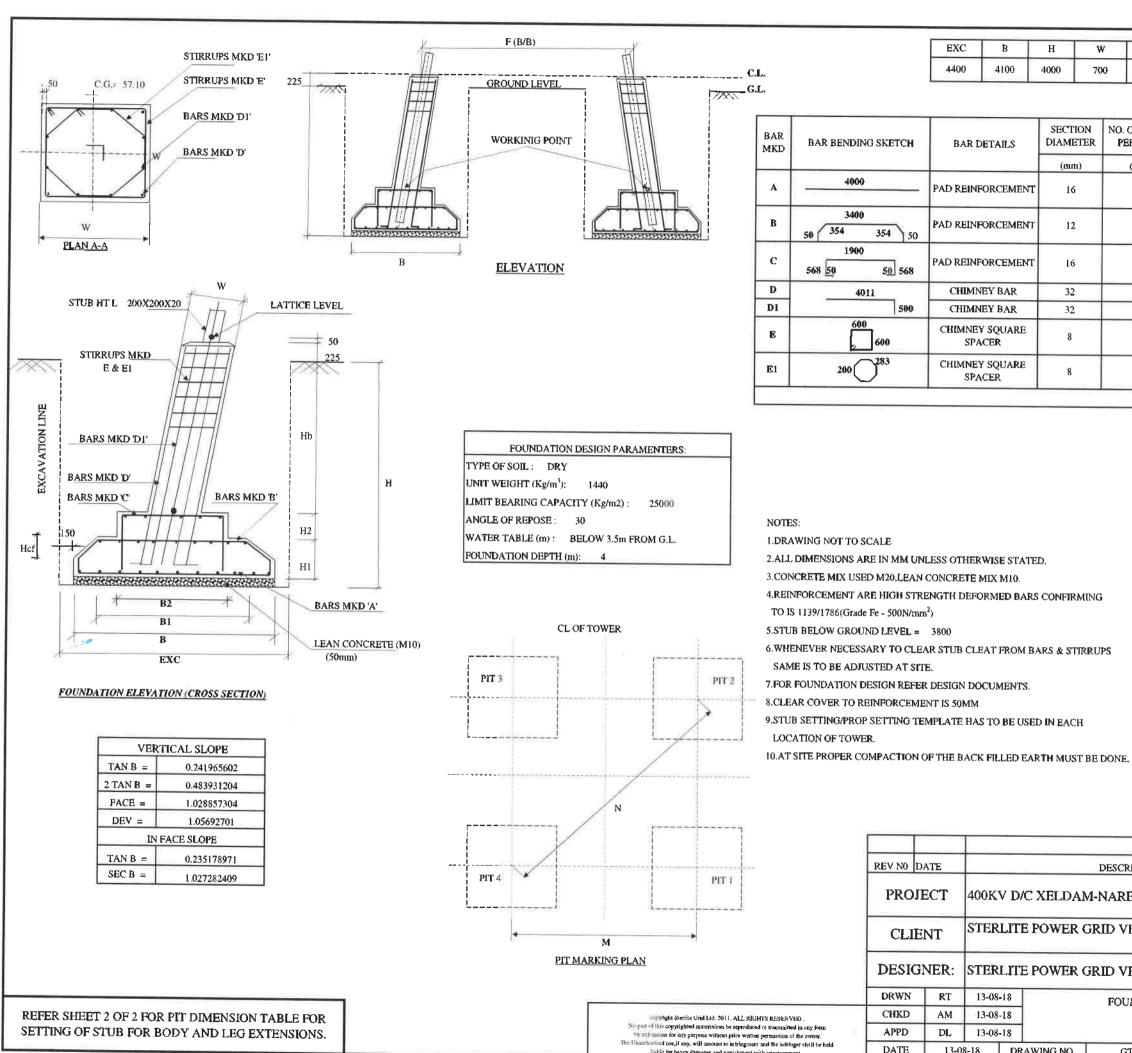
5.STUB BELOW GROUND LEVEL = 3300

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7. FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM


9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/ STRUC	CTURE
CONCRETE (M20) m ³	7.52
CONCRETE (M10) m ³	0.8
FOTAL CONCRETE m ³	8.32
EXCAVATION m3	41.44
REINFORCEMENT Kg	637.8

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CCPY
Approved Vide Ref. Letter No S (517) CTTP
CHG L&T 23
Date: 3.03
Engineering Deptt.
the above does not relieve the contractual obligations

REV NO	DATE		DESCRIPTION DRA					D A	APPD
PROJECT 400KV D/C XELDAM - NARENDRA TRANSMISSION LTD									
CLIENT STERLITE POWER GRID VENTURES LIMITED									
DESIC	NER:	STER	LIT	E POWER (GRID VENTURES LIMITED				
DRWN	RT	03-08	-18		FOUNDATION DRAWING FOR TOW	ED TVDE			-
CHKD	AM	03-08	-18		DA+0/+3/+6/+9M 400KV D/C (V				
APPD	DL	03-08	-18		DRY FISSURED ROCK SOIL (3.5M DEPTH)				
DATE	03-0	8-18	DR	AWING NO. KTL/400DC/WZ-1/DA/F-005 SHEET NO. 1/1 REV					0

EXC	В	Н	W	Bl	B2	H)	H2	Hef	НЬ
4400	4100	4000	700	3500	2000	400	300	300	3250

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	('kg/m)	(kg)	(kg)
A	4000	PAD REINFORCEMENT	16	50	4000	1.58	315.57	1262.27
В	3400 50 354 354 50	PAD REINFORCEMENT	12	36	4207	0.89	134.45	537.79
С	1900 568 50 5 <u>0</u> 568	PAD REINFORCEMENT	16	16	3136	1.58	79.18	316.74
D	4011	CHIMNEY BAR	32	4	4511	6.31	113.86	455.46
D1	500	CHIMNEY BAR	32	8	4511	6.31	227.72	910.90
E	600	CHIMNEY SQUARE SPACER	8	14	2592	0.39	14.31	57.27
E1	200 283	CHIMNEY SQUARE SPACER	8	14	2123	0.39	11.72	46.92
					TOTAL REI	NFORCEMEN	NT/ TOWER=	3587.3

liable for beavy damages and punishment with imprise

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	35.7
CONCRETE (M10) m ³	3.36
FOTAL CONCRETE m ³	39.06
EXCAVATION m3	309.76
REINFORCEMENT Kg	3587.3

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY

the above does not relevant contractual obligations

SHEET NO. 1/2 REV 0

	T					1		
REV NO	DATE				DESCRIPTION	DRAWN	CHKD	APPD
PRC	DJECT	400K	V D/C XE	ELDAN	M-NARENDRA TRANSMISSION L	TD		
CL	ENT	STER	LITE PO	WER (GRID VENTURES LIMITED			
DESI	GNER:	STER	LITE PO	WER (GRID VENTURES LIMITED			
DRWN	RT	13-08-	-18		FOUNDATION DRAWING FOR TOW	FR TYPE		
CHKD	AM	13-08-	-18		DD-3/+0/+3/+6M 400KV D/C (W.			
APPD	DL	13-08-	-18		DRY SOIL (4.0M DEPTH)			
DATE	13-0	8-18	DRAWIN	G NO.	GTTPL/400DC/WZ-1/DD/F-001	SHEET NO.	1/2 R	EV 0

GTTPL/400DC/WZ-1/DD/F-001

Project GOA		400 K	/ D/C -X		(WZ-1) PIT DIME				DRY (4.	OM DEPTH)		Client: SPGVL	
400 KV D/C-X-M & X-	-N- TT *DO*	* F * B/B of To 3MBE(+)-3h	ALE (TF)	* F * B/B of T 3MBE(+)-3		Stub Sec	ction (HT)	Lattice Level to GL	¢g	sec B1	2*Tan B1	sec B2	2*Tan B2
		1271	3	12713		200X200X20		50	57.1	1.028857	0.483931204	1.028857	0.483931
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	og-og dim at CL (LF)	Foundation Base Width	work pt	G.Ł. TO C.L.	A1	A2	8	E	F1	F2	н
-3MBE (+) -3M LE	0	12623	12623	4100	3250	225	7152	7152	10115	4400	9352	9352	4000
-3MBE (+) -1.5M LE	1500	19349	13349	4100	3250	225	7515	7515	10628	4400	9715	9715	4000
-3MBE (+) +0M LE	3000	14074	14074	4100	3250	225	7878	7878	11141	4400	10078	10078	4000
-3MBE (+) +1,5M LE	4500	14800	14800	4100	3250	225	8241	8241	11655	4400	10441	10441	4000
-3MBE (+) +3M LE	6000	15526	15526	4100	3250	225	8604	8604	12166	4400	10804	10804	4000
+0MBE (+) -3M LE	3000	14074	14074	4100	3250	225	7878	7878	11141	4400	10078	10078	4000
+0M8E (+) -1.5M LE	4500	14800	14800	4100	3250	225	8241	8241	11655	4400	10441	10441	4000
+0MBE (+) +0M LE	6000	15526	15526	4100	3250	225	8604	8604	12168	4400	10804	10804	4000
+0MBE (+) +1.5M LE	7500	16252	16252	4100	3250	225	8967	8967	12681	4400	11167	11167	4000
+0MBE (+) +3M LE	9000	16978	16978	4100	3250	225	9330	9330	13194	4400	11530	11530	4000
+3MBE (+) -3M LE	6000	15526	15526	4100	3250	225	8604	8604	12168	4400	10804	10804	4000
+3MBE (+) -1.5M LE	7500	16252	16252	4100	3250	225	8967	8967	12681	4400	11167	11167	4000
+3MBE (+) +0M LE	9000	16978	16978	4100	3250	225	9330	9330	13194	4400	11530	11530	4000
+3MBE (+) +1.5M LE	10500	17704	17704	4100	3250	225	9693	9693	13708	4400	11893	11893	4000
+3MBE (+) +3M LE	12000	18430	18430	4100	3250	225	10056	10056	14221	4400	12256	12256	4000
+6MBE (+) -3M LÉ	9000	16978	16978	4100	3250	225	9330	9330	13194	4400	11530	11530	4000
+6MBE (+) -1.5M LE	10500	17704	17704	4100	3250	225	9693	9693	13708	4400	11893	11893	4000
+6MBE (+) +0M LE	12000	18430	18430	4100	3250	225	10056	10056	14221	4400	12256	12256	4000
+6MBE (+) +1.5M LE	13500	19156	19156	4100	3250	225	10419	10419	14734	4400	12619	12619	4000
+6MBE (+) +3M LE	15000	19882	19882	4100	3250	225	10782	10782	15248	4400	12982	12982	4000
								CL of found	dation ! r				
LONGITUDINAL FACE	ph C		*	8		Working Point A	A2 F2		SEC X-X	H Working Point A	G.L.		
<u>-3</u>	pit D	A1 F1	\	A1 F1	pit A			Weight of s Weight of s Angle of Rep	ng Capacity oil (Dry porti oil (Wet port oose (Dry port oose (Wet por	tion)	1440 940 30 15	Kg/Sqm Kg/cum Kg/cum Deg Deg Below GL	

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

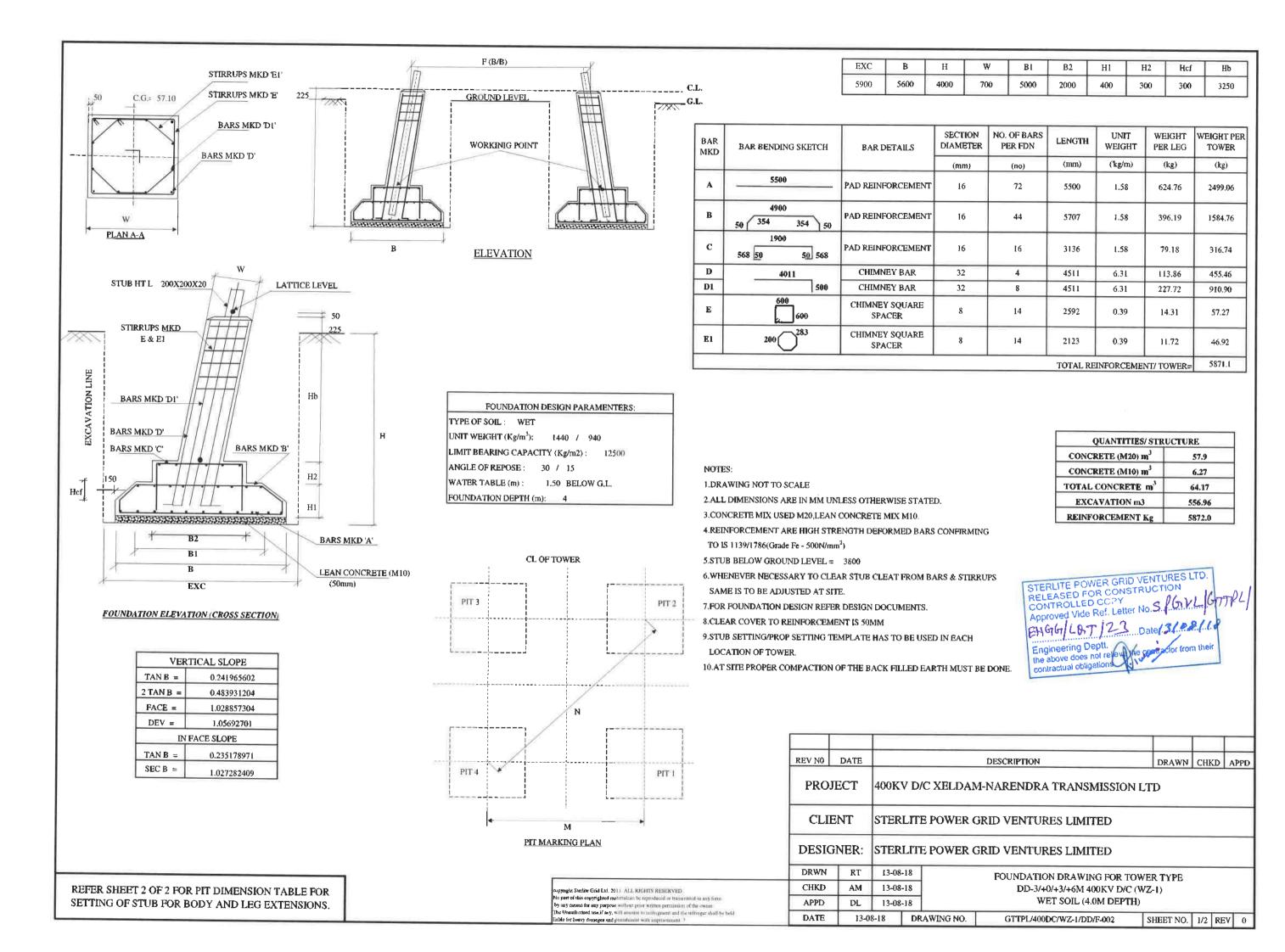
	VERTICAL SLOPE
TAN B =	0.241965602
2 TAN B =	0.483931204
FACE =	1.028857304
DBV =	1.05692701
	IN FACE SLOPE
TAN B =	0.235178971
SEC B =	1.027282409

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CCPY
Approved Vide Ref. Letter No. S. by L. by TTP L
ENGINEERING Deptt.
the above does not relieve the contractual obligations

NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =

3800 mm


- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SIFE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- $8.\mathrm{CLEAR}$ Cover to reinforcement is 50Mm
- $9.8 {\rm TUB}$ SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.

regargin Seates Cinel List. 2011. AJJ. ROCITS RBSORVED:

Mu port of data copylighted in instantial to the operationed or instantial to the upylighted by the present of the appropriate dataset pair writing reasonate of the content.

The Unitative List of the appropriate dataset is also described by the dataset of all appropriate that the lets' balanciated use if any "will instant to alinguested with the proposational or and the appropriate that the proposational content and the appropriate that the proposational content and the appropriate that the proposational content and the appropriate that the proposation of the appropriate that the proposation of the appropriate that
10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

REV NO	DATE		DESCRIPTION	DRAWN	CH	IKD	APPD
PRO	JECT	400KV D/C XE	LDAM-NARENDRA TRANSMIS	SSION LTD			
CLI	ENT	STERLITE POV	WER GRID VENTURES LIMITED)			
DESIG	GNER:	STERLITE POV	WER GRID VENTURES LIMITEI)			
DRWN	RT	13-08-18	FOUNDATION DRAWING	EOD TOWER T	VDT7		
CHKD	AM	13-08-18	DD-3/+0/+3/+6M 400k		IFE		
APPD	DL	13-08-18	DRY SOIL (4.0M	DEPTH)			
DATE	13-08-16	DRAWING NO.	GTTPL/400DC/W2-1/DD/F-001	SHEET NO.	2/2	REV	0

Project GOA		400 K\	/ D/C -X	-W & X-N	(WZ-1) PIT DIME	TT "DD ENSION	" SOIL TABLE	. TYPE -	WET (4.	OM DEPTH)		Client: SPGVL	
400 KV D/C-X-M & X	-N- TT "DD"	* F * B/B of To 3MBE(+)-3f		" F " B/B of T 3MBE(+)-3		Stub Sec	ction (HT)	Lattice Level to CL	cg	sec B1	2*Tan B1	sec B2	2*Tan B2
		1271	3	127	13	20000	200X20	50	57.1	1.028857	0.483931204	1.028857	0.483931
Tower Detail	Extri from -3M8E(+)- 3MLE (mm)	og-og dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	В	E	F1	F2	н
3MBE (+) -3M LE	0	12623	12623	5600	3250	225	7152	7152	10115	5900	10102	10102	4000
3MBE (+) -1.5M LE	1500	13349	13349	5600	3250	225	7515	7515	10628	5900	10465	10465	4000
3MBE (+) +0M LE	3000	14074	14074	5600	3250	225	7878	7676	11141	5900	10828	10828	4000
3MBE (+) +1.5M LE	4500	14800	14800	5600	3250	225	8241	8241	11655	5900	11191	11191	4000
3MBE (+) +3M LE	6000	15526	15526	5600	3250	225	8604	8604	12168	5900	11554	11554	4000
-OMBE (+) -3M LE	3000	14074	14074	5600	3250	225	7878	7878	11141	5900	10828	10828	4000
OMBE (+) -1.5M LE	4500	14800	14800	5600	3250	225	8241	8241	11655	5900	11191	11191	4000
-OMBE (+) +0M LE	6000	15526	15526	5600	3250	225	8604	8604	12168	5900	11554	11554	4000
OMBE (+) +1.5M LE	7500	16252	16252	5600	3250	225	8967	8967	12681	5900	11917	11917	4000
OMBE (+) +3M LE	9000	16978	16978	5600	3250	225	9330	9330	13194	5900	12280	12280	4000
3MBE (+) -3M LE	6000	15526	15526	5600	3250	225	8604	8604	12168	5900	11554	11554	4000
3MBE (+) -1.5M LE	7500	16252	16252	5600	3250	225	8967	8967	12681	5900	11917	11917	4000
3MBE (+) +0M LE	9000	16978	16978	5600	3250	225	9330	9330	13194	5900	12280	12280	
3MBE (+) +1.5M LE	10500	17704	17704	5600	3250	225	9693	9693	13708	5900	12643		4000
3MBE (+) +3M LE	12000	18430	18430	5600	3250	225	10056	10056	14221	5900		12643	4000
6MB€ (+) -3M LE	9000	16978	16978	5600	3250	225	9330	9330	13194	5900	13006	13006	4000
6MBE (+) -1.5M LE	10500	17704	17704	5600	3250	225	9693	9693	13708	5900	12280	12280	4000
6MBE (+) +0M LE	12000	18430	18430	5600	3250	225	10056	10056	14221	5900	12643	12643	4000
6MBE (+) +1.5M LE	13500	19156	19156	5600	3250	225	10419	10419	14734	5900	13006	13006	4000
6M8E (+) +3M LE	15000	19882	19882	5600	3250	225	10782	10782	15248	5900	13369	13369	4000
LONGITUDINAL PACE	pit C	B X	*	8		Working Point A	A2 F2	Limit Bearin	/ IE	Working Point A		(g/Sqm	
,	r ř	A1 F1	+	A1 F1	+	ki.		Weight of s	oil (Wet port ose (Dry port ose (Wet port	ion)	940 F 30 C 15 C	(g/cum Deg Deg Selow GL	

- BEFORE START OF THE POUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION
 PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ
 AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE
 INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

ERTICAL SLOPB
0.241965602
0.483931204
1.028857304
1.05692701
IN FACE SLOPE
0.235178971
1.027282409

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC?Y
Approved Vide Ref. Letter No S. CONL. DTTTL

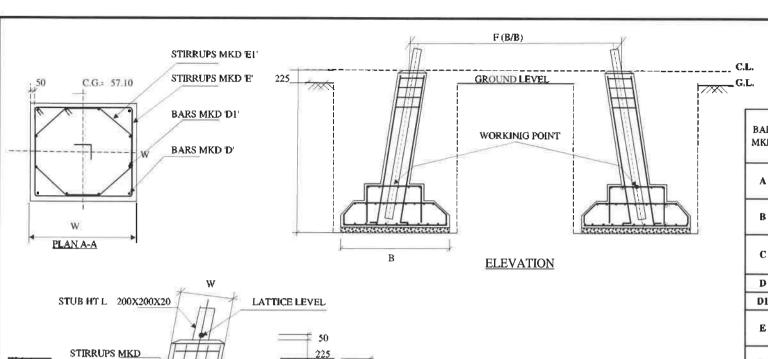
Engineering Deptt.
the above does not relevance confractor from their contractual obligations.

NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10,
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =

3800 mm

- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH


LOCATION OF TOWER,

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

REV NO	DATE		DESCRIPTION							
KEY NO	DATE		DESCRIPTION	DRAWN	CI	HKD	APPD			
PRO	DJECT	400KV D/C XE	ELDAM-NAR EN DRA TRANSMI	SSION LTD						
CL	IENT	STERLITE PO	STERLITE POWER GRID VENTURES LIMITED							
DESI	GNER:	STERLITE PO	WER GRID VENTURES LIMITEI	D						
DRWN	RT	13-08-18	FOUNDATION DRAWING	FOR TOWER T	VDE					
CHKD	AM	13-08-18	DD-3/+0/+3/+6M 4001		11.2					
APPD	DL	13-08-18	WET SOIL (4.0M	4 DEPTH)						
DATE	13-08-18	DRAWING NO.	GTTPL/400pC/WZ-1/DD/F-002	SHEET NO.	2/2	REV	0			

ceptricite Stories Guid Lea 2011. ALL RECIDEN RESERVED.

Ne part of the corporation inventions to consortion of transposited in reg from the company of the control of the

EXC	В	Н	W	B1	B2	H1	H2	Hef	Hb
6400	6100	4000	700	5500	2000	400	300	300	3250

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	(kg/m)	(kg)	(kg)
A	6000	PAD REINFORCEMENT	16	80	6000	1.58	757.28	3029.11
В	5400 50 354 354 50	PAD REINFORCEMENT	16	52	6207	1.58	509.23	2036.92
c	1900 568 50 5 <u>0</u> 568	PAD REINFORCEMENT	16	18	3136	1.58	89.08	356.32
D	4011	CHIMNEY BAR	32	4	4511	6.31	113.86	455.46
D1	500	CHIMNEY BAR	32	8	45t1	6.31	227.72	910.90
E	600	CHIMNEY SQUARE SPACER	8	14	2592	0.39	14.31	57.27
Ei	200 283	CHIMNEY SQUARE SPACER	8	14	2123	0.39	11.72	46.92
					TOTAL RE	INFORCEMEN	NT/TOWER=	6892.9

FOUNDATION DESIGN PARAMENTERS:

CL OF TOWER

TYPE OF SOIL: PARTIALLY SUBMERGED

UNIT WEIGHT (Kg/m³): 1440 / 940 LIMIT BEARING CAPACITY (Kg/m2): 12500

ANGLE OF REPOSE: 30 / 15

WATER TABLE (m): 0.75 BELOW G.L.

FOUNDATION DEPTH (m): 4

NOTES:

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3800

6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/ STRUCTURE						
CONCRETE (M20) m ³	66.9					
CONCRETE (M10) m ³	7.44					
TOTAL CONCRETE m ³	74.34					
EXCAVATION m3	655.36					
REINFORCEMENT Kg	6892.9					

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION Engineering Deptt. the above does not relie

VERT	ICAL SLOPE
TANB =	0.241965602
2 TAN B =	0.483931204
FACE =	1.028857304
DEV =	1.05692701
IN F	ACE SLOPE
TAN B =	0.235178971
SEC B =	1.027282409

BARS MKD B

BI

EXC

H2

BARS MKD 'A'

LEAN CONCRETE (M10)

PIT 3				PIT
				•
	4		\ <i>-</i>	
		N		
PIT 4	4			PIT
			į	<u> </u>
4		M		>

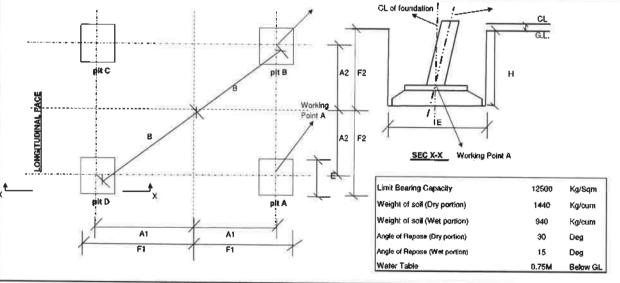
		_								_	_			
REV NO	DATE				DESCRIPTION DRAWN CHKD A									
PRO	PROJECT 400KV D/C XELDAM-NARENDRA TRANSMISSION LTD													
CLIENT STERLITE POWER GRID VENTURES LIMITED														
DESI	GNER:	STER	LITI	E POWER (GRI	D VENTURES LIMITED								
DRWN	RT	13-08	-18			FOUNDATION DRAWING FOR T	OWER TY	PE.						
CHKD	AM	13-08	-18		DD-3/+0/+3/+6M 400KV D/C (WZ-1)									
APPD	DL	13-08	-18		PARTIALLY SUBMERGED SOIL (4.0M DEPTH)									
DATE	12.0	9 10	DB	A SUINIG NO	NG NO CTIDI MOOD CONTA INDICANA SHEETE NO 10 DEN									

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

E & E1

BARS MKD 'D1'

BARS MKD 'D'


BARS MKD 'C'

H¢f

gbr Sterline Grid Ltd. 2011. ALL RIGHTS RESERVED o part of this copyrighted materializati be reproduced or transcribed in any figury means for any purpose without prior written permission of the owner. Unauthorized use; if any, will amount to infringment and the infringer shall be held to for heavy damages and punishment with impressimment?

13-08-18 DRAWING NO. GTTPL/400DC/WZ-1/DD/F-003 | SHEET NO. | 1/1 | REV | 0 |

Project GOA		400 K	V D/C -:		(WZ-1) PIT DIME				PS (4.0	M DEPTH)	Client: SPGVL		
400 KV D/C-X-M & X-	-N- ТТ "DD"	* F * 8/B of To 3MBE(+)-3M			" F " B/8 of Tower at 3MBE(+)-3MLE (LF)		Stub Section (HT)		¢g	sec B1	2*Tan B1	sec B2	2*Tan B2
		12713		12713		200X200X20		50	57.1	1.028857	0.483931204	1.028857	0.483931
Towar Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-og dim at CL (TF)	og-og dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	8	E	F1	F2	н
-3MBE (+) -3M LE	0	12623	12623	6100	3250	225	7152	7152	10115	6400	10352	10352	4000
-3MBE (+) -1,5M LE	1500	13349	13349	6100	3250	225	7515	7515	10628	6400	10715	10715	4000
-3MBE (+) +0M LE	3000	14074	14074	6100	3250	225	7876	7878	11141	6400	11078	11078	4000
-3MBE (+) +1.5M LE	4500	14800	14800	6100	3250	225	8241	8241	11655	6400	11441	11441	4000
-3MBE (+) +3M LE	6000	15526	15526	6100	3250	225	8604	8604	12168	6400	11804	11804	4000
+0MBE (+) -3M LE	3000	14074	14074	5100	3250	225	7878	7878	11141	6400	11078	11078	4000
+0MBE (+) -1.5M LE	4500	14800	14800	6100	3250	225	8241	8241	11655	6400	11441	11441	4000
+0MBE (+) +0M LE	6000	15526	15526	6100	3250	225	8604	8604	12168	6400	11804	11804	4000
+0MBE (+) +1.5M LE	7500	16252	16252	6100	3250	225	8967	8967	1268‡	6400	12167	12167	4000
+0MBE (+) +3M LE	9000	16978	16978	6100	3250	225	9330	9330	13194	6400	12530	12530	4000
+3MBE (+) -3M LE	6000	15526	15526	6100	3250	225	8604	8604	12168	6400	11804	11804	4000
+3MBE (+) -1.5M LE	7500	16252	16252	6100	3250	225	6967	8967	12681	6400	12167	12167	4000
+3MBE (+) +0M LE	9000	16978	16978	6100	3250	225	9330	9330	13194	6400	12530	12530	4000
+3MBE (+) +1.5M LE	10500	17704	17704	6100	3250	225	9693	9693	13708	6400	12893	12893	4000
+3MBE (+) +3M LE	12000	18430	18430	6100	3250	225	10056	10056	14221	6400	13256	13256	4000
+6MBE (+) -3M LE	9000	16978	16978	6100	3250	225	9330	9330	13194	6400	12530	12530	4000
+6MBE (+) -1.5M LE	10500	17704	17704	6100	3250	225	9693	9693	13708	6400	12893	12893	4000
+6MBE (+) +0M LE	12000	18430	18430	6100	3250	225	10056	10056	14221	6400	13256	13256	4000
+6MBE (+) +1.5M LE	13500	19156	19156	6100	3250	225	10419	10419	14734	6400	13619	13619	4000
+6MBE (+) +3M LE	15000	19882	19882	5100	3250	225	10782	10782	15248	6400	13982	13982	4000
			-			,	1	CL of found		7	CL GL	10002	4000

- I. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

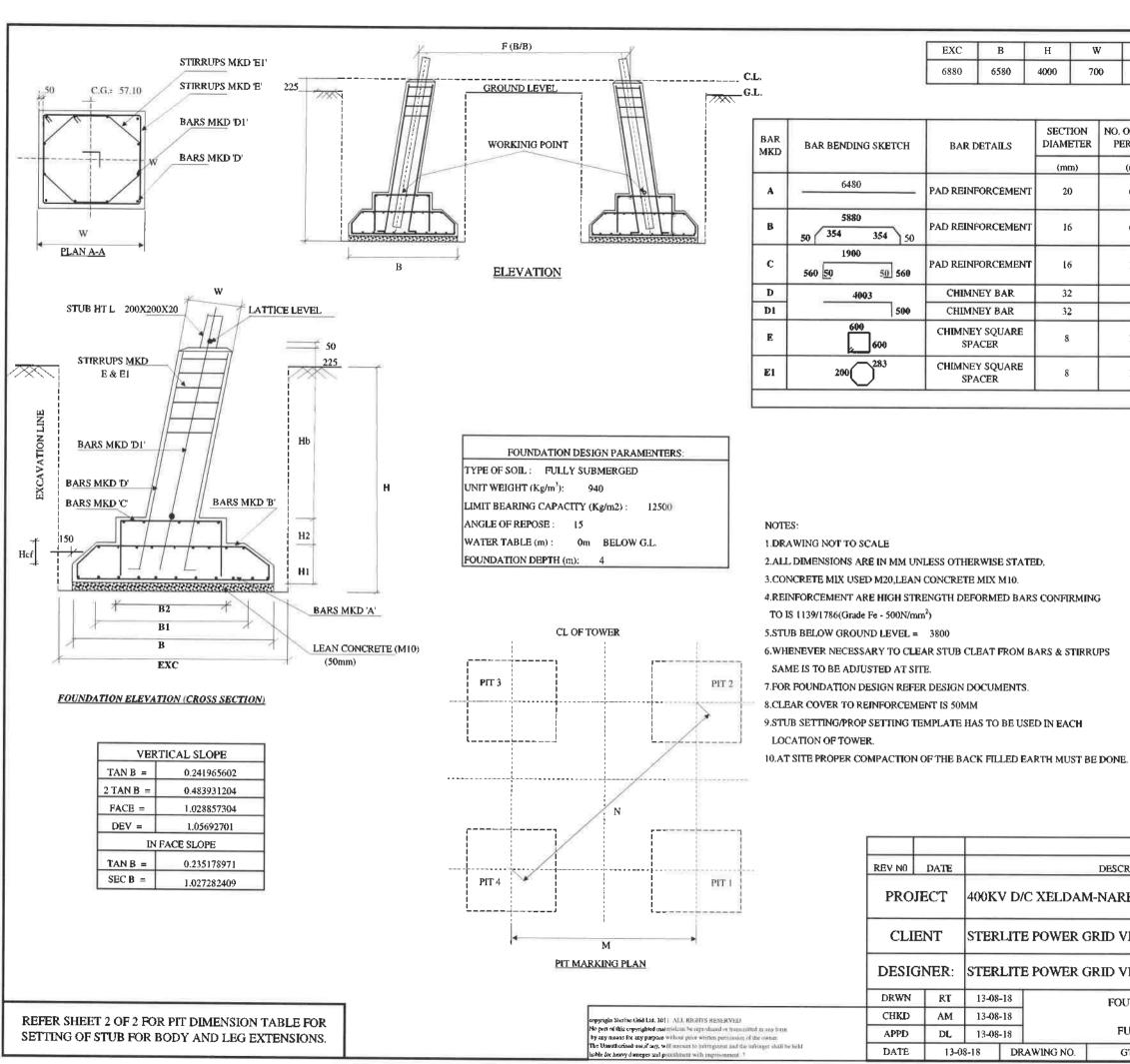
RTICAL SLOPE
0.241965602
0.483931204
1.028857304
1.05692701
FACE SLOPE
0.235178971
1.027282409

Engineering Deptt.
the above does not relieve the contractor from their contractual obligations

NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =

3800 mm


- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

REV NO	DATE		DESCRIPTION	DRAWN	СН	KD	APPD
PRO	JECT	400KV D/C XEI	LDAM-NARENDRA TRANSM	ISSION LTD			
CL	ENT	STERLITE POV	VER GRID VENTURES LAMITE	ED			
DESI	GNER:	STERLITE POV	VER GRID VENTURES LIMITE	ED			
DRWN	RT	13-08-18	FOUNDATION DRAWING	G FOR TOWER T	YPE		
THKD	AM	13-08-18	DD-3/+0/+3/+6M: 40				
APPD	· DL	13-08-18	PARTIALLY SUBMERGE	D SOIL (4,0M DE	PTH)		
STAC	13-08-18	DRAWING NO.	GTTPL/400DC/WZ-1/DD/F-003	SHEET NO.	2/2	REV	0

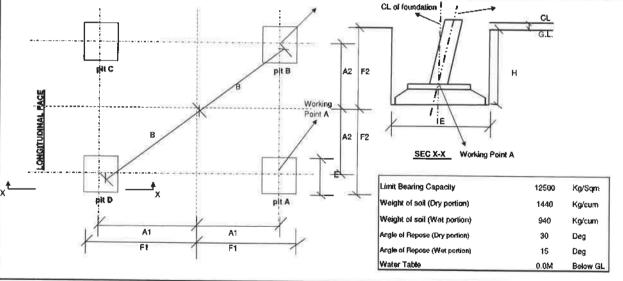
orgaziato Sociae Cast C.M. 2011. A.L. RIGHTS RESERVED.

No para of the emprighted in normalization to expectation of extraordinate has spicious to year proteon for a type proposed makes parter information perspectives of the owner. The Unstatewind west if may well amount to adistagate to add the adiagn shall be held.

Also for the electry dateging and professiones well suppressioned.

EXC	В	Н	w	B1	B2	H1	H2	Hcf	Нь
6880	6580	4000	700	5980	2000	400	300	300	3250

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	(kg/m)	(kg)	(kg)
A	6480	PAD REINFORCEMENT	20	60	6480	2.46	958.41	3833.65
В	5880 50 354 354 50	PAD REINFORCEMENT	16	62	6687	1.58	654.10	2616.39
С	1900 560 <u>50</u> <u>50</u> 560	PAD REINFORCEMENT	16	18	3120	1.58	88.62	354.50
D	4003	CHIMNEY BAR	32	4	4503	6.31	113.66	454.65
D1	500	CHIMNEY BAR	32	8	4503	6.31	227.32	909.29
E	600	CHIMNEY SQUARE SPACER	8	13	2592	0.39	13.29	53.18
E1	200 283	CHIMNEY SQUARE SPACER	8	13	2123	0.39	10.89	43.57
					TOTAL RE	INFORCEME	NT/ TOWER=	8265.2


6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

QUANTITIES/ STRUCTURE								
CONCRETE (M20) m ³	76.29							
CONCRETE (M10) m ³	8.66							
TOTAL CONCRETE m ³	84.95							
EXCAVATION m3	757.35							
REINFORCEMENT Kg	8265.2							

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION CONTROLLED COPY contractual obligations

							T	
REV NO	DATE			DESCRIPTION	DRAWN	СНК	D A	APPD
PRO.	ECT	400KV	D/C XELDAN	M-NARENDRA TRANSMISSION I	ЛD			
CLIENT STERLITE POWER GRID VENTURES LIMITED								
DESIG	INER:	STERI	LITE POWER	GRID VENTURES LIMITED				
DRWN	RT	13-08-	18	FOUNDATION DRAWING FOR TOW	ER TYPE			
CHKD	AM	13-08-	18	DD-3/+0/+3/+6M 400KV D/C (V	VZ-1)			
APPD	DL	13-08-	18	FULLY SUBMERGED SOIL (4.0M	DEPTH)			
DATÉ	13-0	8-18	DRAWING NO.	GTTPL/400DC/WZ-1/DD/F-004	SHEET NO.	1/2	REV	0

Project GOA		400 K	V D/C -		I (WZ-1) PIT DIME				- FS (4.0	M DEPTH)		Client: SPGVL	
400 KV D/C-X-M & X-N- TT "DD"		"F" B/B of Tower at 3MBE(+)-3MLE (TF) 3MBE(+)-3MLE (LF)				Stub Ser	Stub Section (HT) Level to CL		cg	sec B1	2°Tan B1	sec B2	2*Tan B
		1271	3	12713		200X200X20		50	57.1	1.028857	0.483931204	1.028857	0.48393
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO	A1	A2	В	E	F1	F2	н
-3MBE (+) -3M LE	0	12623	12623	6580	3250	225	7152	7152	10115	6880	10592	10592	4000
-3MBE (+) -1.5M LE	1500	13349	13349	6580	3250	225	7515	7515	10628	6880	10955	10955	4000
3MBE (+) +0M LE	3000	14074	14074	6580	3250	225	7878	7878	t1141	6880	11318	11318	4000
-3MBE (+) +1,5M LE	4500	14800	14800	6580	3250	225	8241	8241	11655	6880	11681	11681	4000
-3MBE (+) +3M LE	6000	15526	15526	6580	3250	225	8604	8604	12168	6880	12044	12044	4000
+0MBE (+) -3M LE	3000	14074	14074	6580	3250	225	7878	7878	11141	6850	11318	11318	4000
+0MBE (+) -1.5M LE	4500	14800	14800	6580	3250	225	8241	8241	11655	6880	11681	11681	4000
+OMBE (+) +OM LE	6000	15526	15526	6580	3250	225	8604	6604	12168	6880	12044	12044	4000
+0MBE (+) +1.5M LE	7500	16252	16252	6580	3250	225	8967	8967	12681	6880	12407	12407	4000
+0MBE (+) +3M LE	9000	16978	16978	6580	3250	225	9330	9330	13194	6880	12770	12770	4000
+3MBE (+) -3M LE	6000	15526	15526	6580	3250	225	8604	8604	12168	6880	12044	12044	4000
+3MBE (+) -1.5M LE	7500	16252	16252	6580	3250	225	8967	8967	12681	6880	12407	12407	4000
+3MBE (+) +0M LE	9000	16978	16978	6580	3250	225	9330	9330	13194	6880	12770	12770	4000
+3MBE (+) +1.5M LE	10500	17704	17704	6580	3250	225	9693	9693	13708	6880	13133	13133	4000
+3MBE (+) +3M LE	12000	18430	18430	6580	3250	225	10056	10056	14221	6880	13496	13496	4000
6MBE (+) -3M LE	9000	16978	16978	6580	3250	225	9330	9330	13194	6880	12770	12770	4000
+6MBE (+) -1.5M LE	10500	17704	17704	6580	3250	225	9693	9693	13708	6880	13133	13133	4000
-6MBE (+) +0M LE	12090	18430	18430	6580	3250	225	10056	10056	14221	6880	13496	13496	4000
6MBE (+) +1.5M LE	13500	19156	19156	6580	3250	225	10419	10419	14734	6880	13859	13859	4000
6MBE (+) +3M LE	15000	19882	19882	6580	3250	225	10782	10782	15248	6880	14222	14222	4000
***					1	<i>*</i> >		CL of found	fation	7	CL G.L.		

NOTE

- 1. BEFORE START OF THE POUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

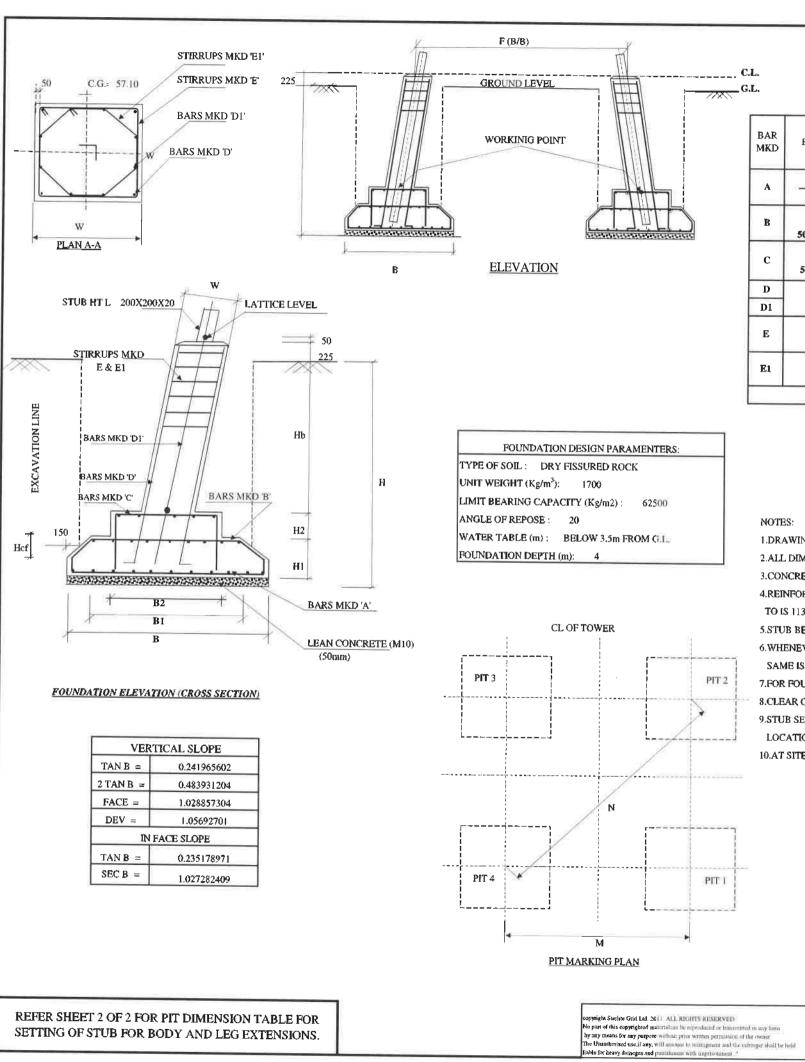
VE	RTICAL SLOPE					
TAN B = 0.241965602						
2 TAN B =	0.483931204					
FACE =	1.028857304					
DEV =	1.05692701					
1N	FACE SLOPE					
TAN B =	0.235178971					
SEC B = 1.027282409						

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY
Approved Vide Ref. Letter No. S. LT. V.L. O. J.T. P.L.
CHGN/LBT/23 Date: (3.6.2.18)
Engineering Deptt.
the above does not relieve be contracted obligations

NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20.LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =

3800 mm


- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER,
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

					-		_
REV NO	DATE		DESCRIPTION	DRAWN	CH	łKD	APPD
PRO	DJECT	400KV D/C XE	LDAM-NARENDRA TRANSM	ISSION LTD			
CL	IENT	STERLITE POV	WER GRID VENTURES LIMITE	ED			
DESI	GNER:	STERLITE POV	WER GRID VENTURES LIMITE	ED .			
DRWN	RT	13-08-18	FOUNDATION DRAWING	G EOR TOWER T	VDE		
СНКЪ	CHKD AM 13-08-18		DD-3/+0/+3/+6M 40		IFE		
APPD DL 13-08-18		FULLY SUBMERGED S	SOIL (4.0M DEPT	H)			
DATE	13-08-18	DRAWING NO.	GTTPL/400DC/V/Z-1/DD/F-004	SHEET NO.	2/2	REV	0

organizat Succian Celal Est. 2014; A.J.J. RECHITS RESERVED:

No pier of this contrigition distriction be approximated at transmission in any form
by any measure for any purpose valuous prime refere processive of this colon.

The Manifestinate dest of may will recognize to additionate and the officing that he half
hable the body during our depositions are will recognize.

Н В1 B2 Н1 H2 Hcf Нb 4300 4000 700 3700 2000 400 300 300 3250

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
			(mm)	(no)	(mm)	('kg/m)	(kg)	(kg)
A	4200	PAD REINFORCEMENT	16	54	4200	1.58	357.85	1431.38
В	3600 50 354 354 50	PAD REINFORCEMENT	12	40	4407	0.89	156.48	625.91
С	1900 568 50 50 568	PAD REINFORCEMENT	16	16	3136	1.58	79.18	316.74
D	4011	CHIMNEY BAR	32	4	4511	6.31	113.86	455.46
D1	500	CHIMNEY BAR	32	8	4511	6.31	227.72	910.90
E	600	CHIMNEY SQUARE SPACER	8	14	2592	0.39	14.31	57.27
El	200 283	CHIMNEY SQUARE SPACER	8	14	2123	0.39	11.72	46.90
					TOTAL RE	INFORCEMEN	T/ TOWER=	3844.6

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO I\$ 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3800

 $6.\mbox{WHENEVER}$ NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	38.24
CONCRETE (M10) m ³	3.7
TOTAL CONCRETE m ³	41.94
EXCAVATION m3	258.24
REINFORCEMENT Kg	3844.6

			_							
REV NO	DATE		DESCRIPTION DRAWN CHKD AF							
PROJECT 400KV D/C XELDAM-NARENDRA TRANSMISSION LTD										
CLIENT STERLITE POWER GRID VENTURES LIMITED										
DESIG	GNER:	STER	LITI	E POWER (GRID VENTURES LIMITED					
DRWN	RT	13-08-	-18		FOUNDATION DRAWING FOR TOW	/FR TVDE				
CHKD	AM	13-08-	-18		DD-3/+0/+3/+6M 400KV D/C (WZ-1)					
APPD	DL	13-08-	-18		DRY FISSURED ROCK SOIL (4.0M DEPTH)					
DATE	13-0	8-18	DR	AWING NO. GTTPL/400DC/WZ-1/DD/F-005 SHEET NO. 1/2 REV						

Project GOA		400 K	/ D/C •)		PIT DIME				DFR (4.0	OM DEPTH)		Client: SPGVL	
400 KV D/C-X-M & X	-N- T⊤ "DD*	* F * B/B of To 3MBE(+)-3N		* F * B/B of 1 3MBE(+)-:		Stub Se	ction (HT)	Lattice Level to CL	¢g	sec B1	2*Tan B1	sec B2	2*Tan E
		1271	3	127	713	200X	200X20	50	57.1	1.028857	0.483931204	1.028857	0.48393
Tower Detail	Extra from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	В	E	F1	F2	н
-3MBE (+) -3M LE	0	12623	12623	4300	3250	225	7152	7152	10115	4300	9302	0000	4000
-3MBE (+) -1,5M LE	1500	13349	13349	4300	3250	225	7515	7515	10628	4300		9302	4000
-3MBE (+) +0M LE	3000	14074	14074	4300	3250	225	7878	7878	11141	4300	9665	9665	4000
-3MBE (+) +1.5M LE	4500	14800	14800	4300	3250	225	8241	8241	11655	4300	10028	10028	4000
-3MBE (+) +3M LE	6000	15526	15526	4300	3250	225	8604	8604	12168		10391	10391	4000
+0MBE (+) -3M LE	3000	14074	14074	4300	3250	225	7878	7878		4300	10754	10754	4000
+0MBE (+) -1.5M LE	4500	14800	14800	4300	3250	225	8241	8241	11141	4300	10028	10028	4000
+0MBE (+) +0M LE	6000	15526	15526	4300	3250	225	8604	8604	11655	4300	10391	10391	4000
+0MBE (+) +1,5M LE	7500	16252	16252	4300	3250	225	8967		12168	4300	10754	10754	4000
+OMBE (+) +3M LE	9000	16978	16978	4300	3250			8967	12681	4300	11117	11117	4000
+3MBE (+) -3M LE	6000	15526	15526	4300		225	9330	9330	13194	4300	11480	11480	4000
+3MBE (+) -1.5M LE	7500	16252	16252	4300	3250	225	8604	8604	12168	4300	10754	10754	4000
3MBE (+) +0M LE	9000	16978	16978		3250	225	8967	8967	12681	4300	11117	11117	4000
3MBE (+) +1.5M LE	10500	17704		4300	3250	225	9330	9330	13194	4300	11480	11480	4000
+3MBE (+) +3M LE	12000		17704	4300	3250	225	9693	9693	13708	4300	11843	11843	4000
6MBE (+) -3M LE	9000	18430	18430	4300	3250	225	10056	10056	14221	4300	12206	12206	4000
-6MBE (+) -1.5M LE	10500	16978	16978	4300	3250	225	9330	9330	13194	4300	11480	11480	4000
-6MBE (+) +0M LE	12000	17704	17704	4300	3250	225	9693	9693	13708	4300	11843	11843	4000
6MBE (+) +1.5M LE	13500	18430	18430	4300	3250	225	10056	10056	14221	4300	12206	12206	4000
6MBE (+) +3M LE		19156	19156	4300	3250	225	10419	10419	14734	4300	12569	12569	4000
OUNDE (+) +3MILE	15000	19882	19882	4300	3250	225	10782	10782	15248	4300	12932	12932	4000
PACE	pit C			/8		Working	A2 F2	CL of found		H	G.L.		
LONGITUDINAL	pit D	B X			pltA	Point A	A2 F2	Limit Bearing Weight of so Weight of so	g Capacity oil (Dry portic oil (Wet porti	on)	1700 H	⟨g/Sqiπ ⟨g/cum ⟨g/cum	
,	Z !	At F1	1	A1 F1				Angle of Fleps			20 [Deg	
				FI				Angle of Repo			10 E		

- I. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

VE	RTICAL SLOPE
TAN B =	0.241965602
2 TAN B =	0.483931204
FACE =	1.028857304
DEV =	1.05692701
IN	FACE SLOPE
TAN B =	0.235178971
SEC B =	1.027282409

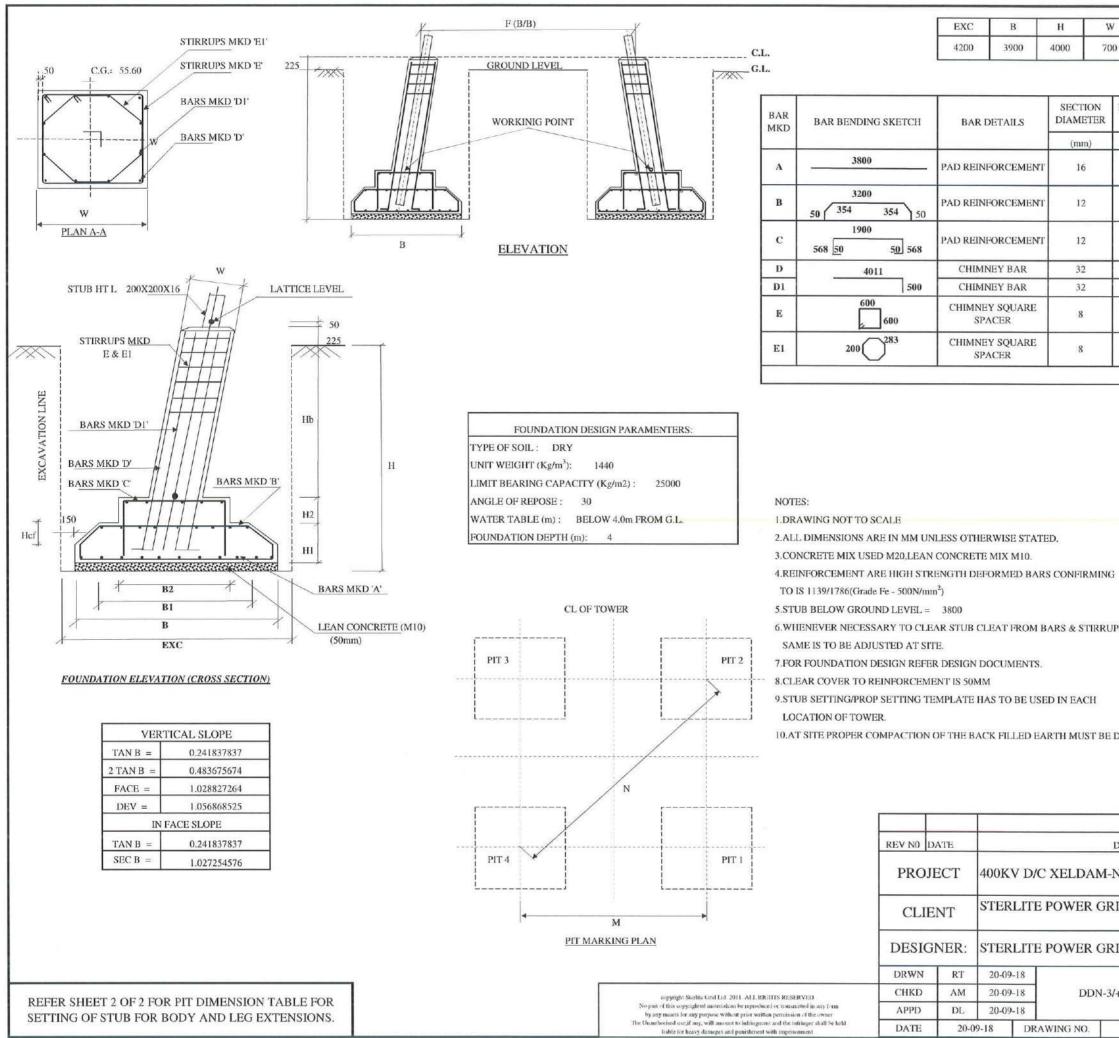
STERLITE POWER GRID VENTURES LTD.

RELEASED FOR CONSTRUCTION
CONTROLLED CCPY
Approved Vide Ref. Letter No. S. GYYGTT L

Engineering Deptt.
The above does not relieve to contractual obligations

NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =
- 3800 mm
- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER,
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.


					Г				
REV NO	DATE		DESCRIPTION	DRAWN	CF	IKD	APPD		
PRO	JECT	400KV D/C XE	LDAM-NARENDRA TRANSMI	SSION LTD					
CLI	ENT	STERLITE POV	VER GRID VENTURES LIMITE	D					
DESIG	GNER:	STERLITE POV	VER GRID VENTURES LIMITE	D					
DRWN	RT	13-08-18	FOUNDATION DE AWING	FOR TOWER T	VDE				
CHKD	AM	13-08-18		FOUNDATION DRAWING FOR TOWER TYPE DD-3/+0/+3/+6M 400KV D/C (WZ-1)					
APPD	DL	13-08-18		DRY FISSURED ROCK SOIL (4.0M DEPTH)					
DATE	13-08-18	DRAWING NO.	GTTPL/400DC/WZ-L/DD/F-005	SHBET NO.	2/2	REV	0		

Outputs States Cityl List. 2011. ALL RICHET RESERVED

No year of the explicition for interests to be reproduced or unatamized in pay form
by any means into any payees, whose pairs watering previousness of the contest.

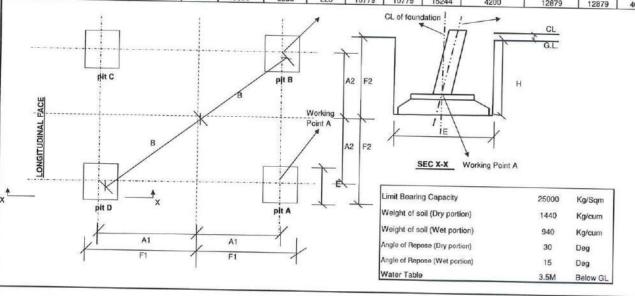
The Constitutional use of any, will amount to infringestors and the infringer shall be hell

Light for beeny-sharpers and pursationers. Park jumps sometimes.

EXC	В	Н	W	B1	B2	H1	H2	Hef	Hb
4200	3900	4000	700	3300	2000	400	300	300	3250

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
MIXD			(mm)	(no)	(mm)	('kg/m)	(kg)	(kg)
A	3800	PAD REINFORCEMENT	16	42	3800	1.58	251.83	1007.34
В	3200 50 354 354 50	PAD REINFORCEMENT	12	28	4007	0.89	99.61	398.45
С	1900 568 50 5 <u>0</u> 568	PAD REINFORCEMENT	12	28	3136	0.89	77.95	311.79
D	4011	CHIMNEY BAR	32	4	4511	6.31	113.86	455.46
D1	500	CHIMNEY BAR	32	8	4511	6.31	227.72	910.90
E	600	CHIMNEY SQUARE SPACER	8	14	2592	0.39	14.31	57.27
El	200 283	CHIMNEY SQUARE SPACER	8	14	2123	0.39	11.72	46.92
					TOTAL RE	INFORCEME	NT/ TOWER=	3188.1

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS


10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/STRU	CTURE
CONCRETE (M20) m ³	33.28
CONCRETE (M10) m ³	3.04
TOTAL CONCRETE m ³	36.32
EXCAVATION m3	282.24
REINFORCEMENT Kg	3188.1

REV NO	DATE			DESCRIPTION	DRAWN	CHKD	APPI			
PRO	JECT	400KV I	D/C XELDAN	M-NARENDRA TRANSMISSION	LTD					
CL	ENT	STERLI	TE POWER	POWER GRID VENTURES LIMITED						
DESI	GNER:	STERLI	TE POWER (GRID VENTURES LIMITED						
DRWN	RT	20-09-18		FOUNDATION DRAWING FOR TO	OWER TYPE					
CHKD	AM	20-09-18	DDN	DDN-3/+0/+3/+6M (30-45 DEG, DEV, ANGLE) 400KV D/C (WZ-1)						
APPD	DL	20-09-18		DRY SOIL (4.0M DEPTH	1)					
DATE	20-	09-18	DRAWING NO.	AWING NO. GTTPL/400DC/WZ-1/DDN/F-001 SHEET NO. 1/2						

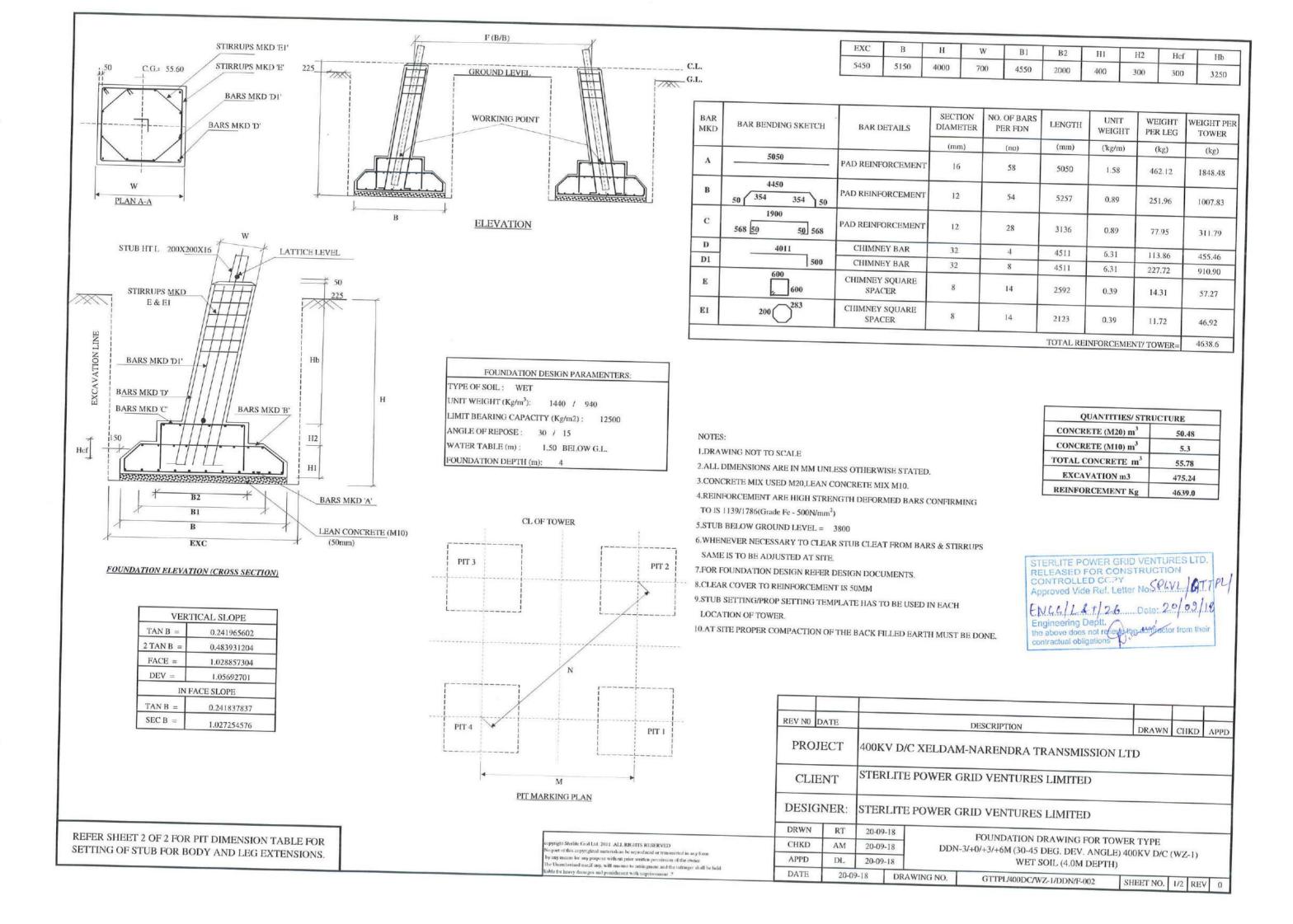
Project GOA		400 KV D	/C X-N	(VV Z-1) 	"DDN"	(30-45 I	TABLE	V.) SOI	L - DRY (4.0M DEPT	H)	Client: SPGVL	
400 KV D/C -X-N-	TT "DDN"	" F " B/B of To 3MBE(+)-3M		" F " B/B of T 3MBE(+)-3		Stub Se	ction (HT)	Lattice Level to	cg	sec B1	2*Tan B1	sec B2	2*Tan B2
		1271	0	127	10	200X	200X16	50	55.6	1.028827	0.483675674	1.028827	0.483675
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	В	E	F1	F2	H
-3MBE (+) -3M LE	0	12623	12623	3900	3250	225	7152	7152	10114	4200	9252	2050	
-3MBE (+) -1.5M LE	1500	13348	13348	3900	3250	225	7515	7515	10627	4200		9252	4000
-3MBE (+) +0M LE	3000	14074	14074	3900	3250	225	7877	7877	11140	nana-	9615	9615	4000
-3MBE (+) +1.5M LE	4500	14800	14800	3900	3250	225	8240	8240	11653	4200	9977	9977	4000
-3MBE (+) +3M LE	6000	15525	15525	3900	3250	225	8603	8603		4200	10340	10340	4000
+0MBE (+) -3M LE	3000	14074	14074	3900	3250	225	7877	7877	12166	4200	10703	10703	4000
+0MBE (+) -1.5M LE	4500	14800	14800	3900	3250	225	8240		11140	4200	9977	9977	4000
+0MBE (+) +0M LE	6000	15525	15525	3900	3250	225		8240	11653	4200	10340	10340	4000
+0MBE (+) +1.5M LE	7500	16251	16251	3900	3250		8603	8603	12166	4200	10703	10703	4000
+0MBE (+) +3M LE	9000	16976	16976	3900		225	8966	8966	12679	4200	11066	11066	4000
+3MBE (+) -3M LE	6000	15525			3250	225	9328	9328	13192	4200	11428	11428	4000
+3MBE (+) -1.5M LE	7500		15525	3900	3250	225	8603	8603	12166	4200	10703	10703	4000
+3MBE (+) +0M LE	9000	16251	16251	3900	3250	225	8966	8966	12679	4200	11066	11066	4000
+3MBE (+) +1.5M LE		16976	16976	3900	3250	225	9328	9328	13192	4200	11428	11428	4000
+3MBE (+) +3M LE	10500	17702	17702	3900	3250	225	9691	9691	13705	4200	11791	11791	4000
ON CONTROL OF THE PARTY OF THE	12000	18427	18427	3900	3250	225	10054	10054	14218	4200	12154	12154	4000
6MBE (+) -3M LE	9000	16976	16976	3900	3250	225	9328	9328	13192	4200	11428	11428	4000
6MBE (+) -1.5M LE	10500	17702	17702	3900	3250	225	9691	9691	13705	4200	11791	11791	4000
6MBE (+) +0M LE	12000	18427	18427	3900	3250	225	10054	10054	14218	4200	12154	12154	4000
6MBE (+) +1.5M LE	13500	19153	19153	3900	3250	225	10417	10417	14731	4200	12517	12517	4000
6MBE (+) +3M LE	15000	19878	19878	3900	3250	225	10779	10779	15244	4200	12879	12879	4000

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

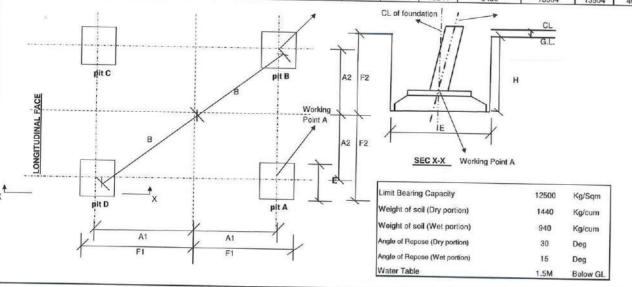
VER	CTICAL SLOPE
TAN B =	0.241837837
2 TAN B =	0.483675674
FACE =	1.028827264
DEV =	1.056868525
IN	FACE SLOPE
TAN B =	0.241837837
SEC B =	1.027254576

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC.?Y
Approved Vide Ref. Letter No. SPGV1 LAT TPL/
ENGLE AT 26. Date: 2 a 9 18
Engineering Deptt.
the above does not relieve the contractual obligations

NOTES:


- LDRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =
- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
 - OCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

REV NO	DATE		DESCRIPTION	DRAWN	CF	HKD	APPE
PRO	JECT	400KV D/C X	ELDAM-NARENDRA TRANSM	ISSION LTD			
CLI	ENT	STERLITE PO	WER GRID VENTURES LIMITE	ED			
DESI	GNER:	STERLITE PO	WER GRID VENTURES LIMITE	ED			
DESI	GNER:	STERLITE PO					
PRWN	1		FOUNDATION DRAWING	FOR TOWER T	YPE V D/C	(W7	13
180011000	RT	20-09-18		G FOR TOWER T V. ANGLE) 400K	YPE V D/C	(WZ-	1)


empinia Nordee Craft et 1611 ALL ROHTE RESERVER

No prist of des soppinghout inserreficials her appealisand or transmitted in any form
by sop means for my purpose werborg prise weeten pursuam of the control

the Uninfracted trait day, well amount to altraquent and the infrage shall be hald
belt for theory diseases and a mindrant entire in the control

Project GOA		400 KV D	/C X-N	(WZ-1) TT	"DDN" PIT DIME	(30-45 E ENSION	DEG. DE	V.) SOI	L - WET (4.0M DEPT	H)	Client:	
400 KV D/C -X-N-	TT "DDN"	" F " B/B of To 3MBE(+)-3M		" F " B/B of T 3MBE(+)-3	ower at		ction (HT)	Lattice Level to	cg	sec B1	2*Tan B1	SPGVL	2*Tan B
		1271	0	127	10	200X	200X16	50	55.6	1.028827	0.483675674	1.028827	0.483675
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	В	E	F1	F2	0.483678 Н
-3MBE (+) -3M LE	0	12623	12623	5150	3250	225	7152	7152	10114	5450	9877	9877	1000
-3MBE (+) -1.5M LE	1500	13348	13348	5150	3250	225	7515	7515	10627	5450	10240	10240	4000
-3MBE (+) +0M LE	3000	14074	14074	5150	3250	225	7877	7877	11140	5450	10602	10602	4000
-3MBE (+) +1.5M LE	4500	14800	14800	5150	3250	225	8240	8240	11653	5450	10965	10965	4000
-3MBE (+) +3M LE	6000	15525	15525	5150	3250	225	8603	8603	12166	5450	11328	11328	4000
+0MBE (+) -3M LE	3000	14074	14074	5150	3250	225	7877	7877	11140	5450	10602	10602	4000
+0MBE (+) -1.5M LE	4500	14800	14800	5150	3250	225	8240	8240	11653	5450	10965	1	4000
+0MBE (+) +0M LE	6000	15525	15525	5150	3250	225	8603	8603	12166	5450	500000	10965	4000
+0MBE (+) +1.5M LE	7500	16251	16251	5150	3250	225	8966	8966	12679	5450	11328	11328	4000
+0MBE (+) +3M LE	9000	16976	16976	5150	3250	225	9328	9328	13192		11691	11691	4000
+3MBE (+) -3M LE	6000	15525	15525	5150	3250	225	8603	8603	12166	5450	12053	12053	4000
+3MBE (+) -1.5M LE	7500	16251	16251	5150	3250	225	8966	8966		5450	11328	11328	4000
+3MBE (+) +0M LE	9000	16976	16976	5150	3250	225	9328		12679	5450	11691	11691	4000
+3MBE (+) +1.5M LE	10500	17702	17702	5150	3250	225	9691	9328	13192	5450	12053	12053	4000
-3MBE (+) +3M LE	12000	18427	18427	5150	3250	225	COMPRESSION	9691	13705	5450	12416	12416	4000
6MBE (+) -3M LE	9000	16976	16976	5150	3250	225	10054	10054	14218	5450	12779	12779	4000
6MBE (+) -1.5M LE	10500	17702	17702	5150	3250		9328	9328	13192	5450	12053	12053	4000
6MBE (+) +0M LE	12000	18427	18427	5150		225	9691	9691	13705	5450	12416	12416	4000
6MBE (+) +1.5M LE	13500	19153	19153		3250	225	10054	10054	14218	5450	12779	12779	4000
6MBE (+) +3M LE	15000	19878	19878	5150	3250	225	10417	10417	14731	5450	13142	13142	4000
THE TANK AND THE	10000	13010	198/8	5150	3250	225	10779	10779	15244	5450	13504	13504	4000

- BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

VE	RTICAL SLOPE
TAN B =	0.241965602
2 TAN B =	0.483931204
FACE =	1.028857304
DEV =	1.05692701
IN	FACE SLOPE
TAN B =	0.241837837
SEC B =	1.027254576

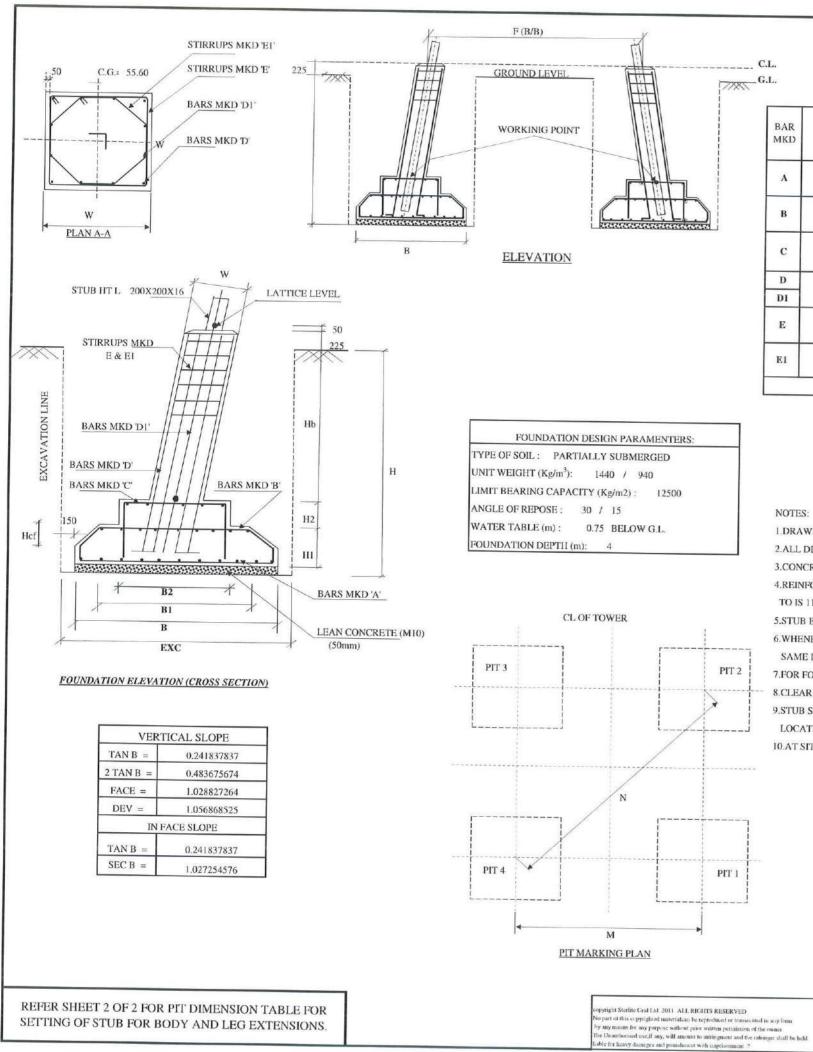
STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC.3Y
Approved Vide Ref. Letter No.S. PAV.L. G.T. TPL/
ENGL. L. L. T. 26. Date: 2.9.9.18
Engineering Deptt.
The above does not releve the available from their contractual obligations.

NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm2)
- 5.STUB BELOW GROUND LEVEL =

3800 mm

- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.


	T					
REV NO	DATE		DESCRIPTION	DRAWN		
PRO	JECT	400KV D/C X	ELDAM-NARENDRA TRANSM		CHKD	APPD
CLI	ENT	STERLITE PO	WER GRID VENTURES LIMITE	ED		
DESIG	GNER:	STERLITE PO	WER GRID VENTURES LIMITE	ED		
DRWN	RT	20-09-18	POUR IN A THOU PAR A THURS		mise	
HKD	AM	20-09-18	FOUNDATION DRAWING DDN-3/+0/+3/+6M (30-45 DEG. DE	G FOR TOWER TY V. ANGLE) 400K V	PE	13
PPD	DL	20-09-18	WET SOIL (4.0	M DEPTH)	DIC (WZ	-11
DATE	20-09-18	DRAWING NO.	GTTPL/400DC/WZ-1/DDN/F-002	SHEET NO	20 PEV	T 0

Oppings Sortee GoALat. 241 ALL RIGHTS RESERVED.

No join of the copyrighted substants by expendent of transacted in my force
by any means for east propose without pure writer parameter of the owne.

The Unrelevand case deep, will know to infraporat and the strange shall be held.

Life for theory data para and premishear with approximant.

EXC	В	Н	W	B1	В2	HI	H2	Hef	Hb
5930	5630	4000	700	5030	2000	400	300	300	3250

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
\rightarrow	2000 PM		(mm)	(no)	(mm)	('kg/m)	(kg)	(kg)
A	5530	PAD REINFORCEMENT	16	62	5530	1.58	540.93	2163.74
В	4930 50 354 354 50	PAD REINFORCEMENT	12	68	5737	0.89	346.23	1384.93
С	1900 568 <u>50</u> 5 <u>0</u> 568	PAD REINFORCEMENT	12	28	3136	0.89	77.95	311.79
D	4011	CHIMNEY BAR	32	4	4511	6.31	113.86	455.46
D1	500	CHIMNEY BAR	32	8	4511	6.31	227.72	910.90
Е	600	CHIMNEY SQUARE SPACER	8	14	2592	0.39	14.31	57.27
E1	200 283	CHIMNEY SQUARE SPACER	8	14	2123	0.39	11.72	46.92

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3800

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

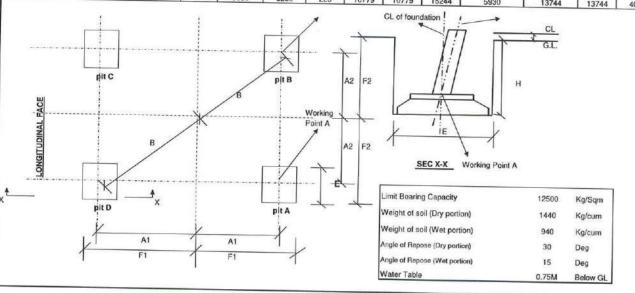
SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

LOCATION OF TOWER.


10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	58.42
CONCRETE (M10) m ³	6.34
TOTAL CONCRETE m ³	64.76
EXCAVATION m3	562.64
REINFORCEMENT Kg	5331.0

STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED CC.PY Approved Vide Ref. Letter No.SPAVL/GT

		1						
REV NO	DATE				DESCRIPTION	DRAWN	CHKD	APP
PRO	JECT	400K	V D/C X	ŒLDAN	M-NARENDRA TRANSMISSION	LTD		
CLI	ENT	STER	LITE PO	OWER (GRID VENTURES LIMITED			
DESI	GNER:	STER	LITE PO	OWER (GRID VENTURES LIMITED			
DRWN	RT	20-09-	-18		FOLINDATION DRAWING FOR TO	William mr.m.		_
CHKD	AM	20-09-	-18	DDN	FOUNDATION DRAWING FOR TO 1-3/+0/+3/+6M (30-45 DEG, DEV, ANGL		(W7.1)	
APPD	DL	20-09-	-18		PS SOIL (4.0M DEPTH)	D) TOURY DIC	(1125-1)	
DATE	20-0	9-18	DRAWI	NG NO.	GTTPL/400DC/WZ-1/DDN/F-003	SHEET NO.	1/2 RE	v n

Project GOA		400 KV	J/C X-N	(VVZ-1) I	PIT DIME	NSION	DEG. D	EV.) SO	IL - PS (4	.0M DEPTH		Client: SPGVL	
400 KV D/C -X-N-	TT "DDN"	" F " B/B of To 3MBE(+)-3M		" F " B/B of T 3MBE(+)-3		Stub Se	ction (HT)	Lattice Level to CL	cg	sec B1	2"Tan B1	sec B2	2*Tan B2
	_	1271	0	127	10	200X	200X16	50	55.6	1.028827	0.483675674	1.028827	0.483675
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	В	Е	F1	F2	Н
-3MBE (+) -3M LE	0	12623	12623	5630	3250	225	7152	7152	10114	5930	10117	10447	
-3MBE (+) -1.5M LE	1500	13348	13348	5630	3250	225	7515	7515	10627	5930	10480	10117	4000
-3MBE (+) +0M LE	3000	14074	14074	5630	3250	225	7877	7877	11140	5930	10842	10480	4000
-3MBE (+) +1.5M LE	4500	14800	14800	5630	3250	225	8240	8240	11653	5930	11205	10842	4000
-3MBE (+) +3M LE	6000	15525	15525	5630	3250	225	8603	8603	12166	5930	11568	11205	4000
+0MBE (+) -3M LE	3000	14074	14074	5630	3250	225	7877	7877	11140	5930	10842	11568	4000
+0MBE (+) -1.5M LE	4500	14800	1.4800	5630	3250	225	8240	8240	11653	5930	11205	10842	4000
+0MBE (+) +0M LE	6000	15525	15525	5630	3250	225	8603	8603	12166	5930	11568	11205	4000
+0MBE (+) +1,5M LE	7500	16251	16251	5630	3250	225	8966	8966	12679	5930		11568	4000
+0MBE (+) +3M LE	9000	16976	16976	5630	3250	225	9328	9328	13192		11931	11931	4000
+3MBE (+) -3M LE	6000	15525	15525	5630	3250	225	8603	8603	12166	5930 5930	12293	12293	4000
+3MBE (+) -1,5M LE	7500	16251	16251	5630	3250	225	8966	8966	12679	2500000	11568	11568	4000
+3MBE (+) +0M LE	9000	16976	16976	5630	3250	225	9328	9328	13192	5930	11931	11931	4000
+3MBE (+) +1.5M LE	10500	17702	17702	5630	3250	225	9691	9691	13705	5930	12293	12293	4000
-3MBE (+) +3M LE	12000	18427	18427	5630	3250	225	10054	10054		5930	12656	12656	4000
6MBE (+) -3M LE	9000	16976	16976	5630	3250	225	9328		14218	5930	13019	13019	4000
-6MBE (+) -1.5M LE	10500	17702	17702	5630	3250	225	9691	9328	13192	5930	12293	12293	4000
6MBE (+) +0M LE	12000	18427	18427	5630	3250	225	10054	9691	13705	5930	12656	12656	4000
6MBE (+) +1.5M LE	13500	19153	19153	5630	3250	225	120.00000000000000000000000000000000000	10054	14218	5930	13019	13019	4000
6MBE (+) +3M LE	15000	19878	19878	5630	3250		10417	10417	14731	5930	13382	13382	4000
			10070	3030	3250	225	10779	10779	15244	5930	13744	13744	4000

NOTE

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

VE	TICAL SLOPE
TAN B =	0.241837837
2 TAN B =	0.483675674
FACE =	1.028827264
DEV =	1.056868525
1N	FACE SLOPE
TAN B =	0.241837837
SEC B =	1.027254576

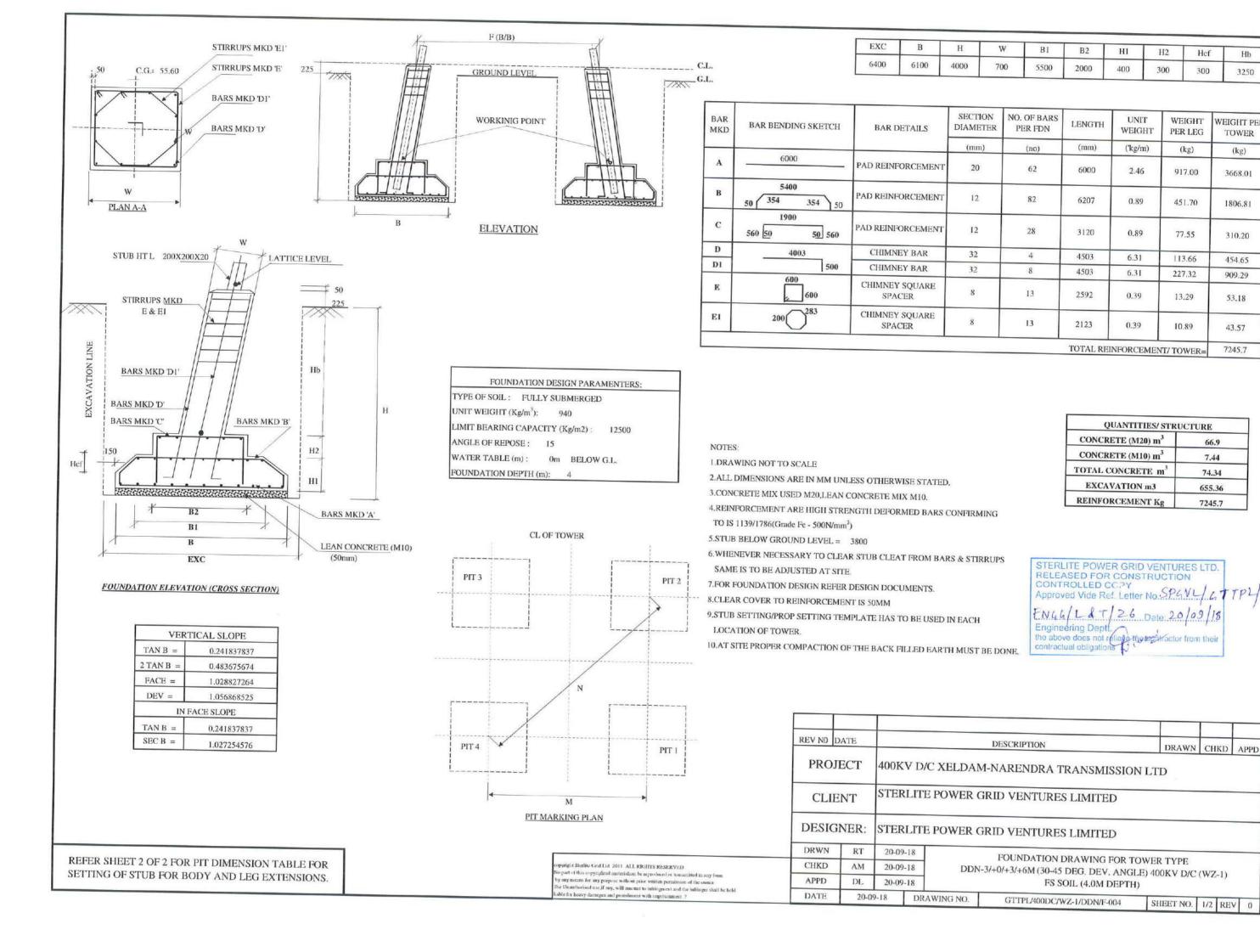
STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC.?Y
Approved Vide Ref. Letter No. S.P.G.V.L. G.T. T.P.L.
N. G.C. L. L. T. 2.6.... Date: 20/19/16
Engineering Deptt.
the above does not relieve the contractor from their contractual obligations.

NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =

3800 mm

- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.


REV NO	EV NO DATE		DESCRIPTION	DRAWN	СН	D	APPD
PRO	JECT	400KV D/C X	ELDAM-NARENDRA TRANSM	ISSION LTD			
CLI	ENT	STERLITE PO	WER GRID VENTURES LIMITE	BD			
DESIG	GNER:	STERLITE PO	WER GRID VENTURES LIMITE	ED			
DRWN	RT	20-09-18	EQUINDATION DRAWN		Y25,254.74	_	
HKD	KD AM 20-09-18		FOUNDATION DRAWING DDN-3/+0/+3/+6M (30-45 DEG. DE	G FOR TOWER T	YPE	W7 1	v
PPD	DL	20-09-18	PS SOIL (4.0M	DEPTH)			
ATE	20-09-18	DRAWING NO.	GTTPL/400DC/WZ-1/DDN/F-003	SHEET NO.	2/2	REV	0

coppight Status Guld Lat 2011 ALL RESULTS RESERVED

No part of the supportful contribute the reproduct of transaction may force
by its means for any coppies soften prior section permanents of the second.

The Unarcharced and only will result to the represent on the infrage of all the hold.

Life for heavy datagets and puradicular with tage content.

Hb

3250

WEIGHT PER

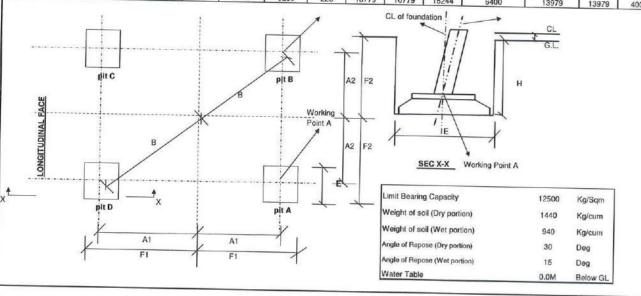
TOWER

(kg)

3668.01

1806.81

310.20


454.65

909.29

53.18

43.57

Project GOA		400 KV	D/C X-N	(VVZ-1) 1	PIT DIME	(30-45 ENSION	TABLE	EV.) SC	IL - FS (4	I.OM DEPTH	1)	Client:	
									_			SPGVL	
400 KV D/C -X-N-	TT "DDN"	" F " B/B of To 3MBE(+)-3M	ALE (TF)	* F * B/B of T 3MBE(+)-3		Stub Se	ction (HT)	Lattice Level to CL	cg	sec B1	2*Tan B1	sec B2	2*Tan B
	_	1271	0	127	10	200X	200X16	50	55.6	1.028827	0.483675674	1.028827	0.483675
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	В	E	F1	F2	Н
-3MBE (+) -3M LE	0	12623	12623	6100	3250	225	7152	7152	10114	6400	10352	10050	
-3MBE (+) -1.5M LE	1500	13348	13348	6100	3250	225	7515	7515	10627	6400	10715	10352	4000
-3MBE (+) +0M LE	3000	14074	14074	6100	3250	225	7877	7877	11140	6400	W/98524	10715	4000
-3MBE (+) +1.5M LE	4500	14800	14800	6100	3250	225	8240	8240	11653	6400	11077	11077	4000
-3MBE (+) +3M LE	6000	15525	15525	6100	3250	225	8603	8603	12166		11440	11440	4000
+0MBE (+) -3M LE	3000	14074	14074	6100	3250	225	7877	7877	11140	6400	11803	11803	4000
+0MBE (+) -1.5M LE	4500	14800	14800	6100	3250	225	8240	8240		6400	11077	11077	4000
+0MBE (+) +0M LE	6000	15525	15525	6100	3250	225	8603	8603	11653	6400	11440	11440	4000
+0MBE (+) +1.5M LE	7500	16251	16251	6100	3250	225	8966	8966	12166	6400	11803	11803	4000
+0MBE (+) +3M LE	9000	16976	16976	6100	3250	225			12679	6400	12166	12166	4000
+3MBE (+) -3M LE	6000	15525	15525	6100	3250	V1011000 II	9328	9328	13192	6400	12528	12528	4000
+3MBE (+) -1.5M LE	7500	16251	16251	6100	CHANGE TO	225	8603	8603	12166	6400	11803	11803	4000
+3MBE (+) +0M LE	9000	16976	16976	6100	3250 3250	225	8966	8966	12679	6400	12166	12166	4000
3MBE (+) +1.5M LE	10500	17702	17702	1000000		225	9328	9328	13192	6400	12528	12528	4000
-3MBE (+) +3M LE	12000	18427	18427	6100	3250	225	9691	9691	13705	6400	12891	12891	4000
6MBE (+) -3M LE	9000	16976		6100	3250	225	10054	10054	14218	6400	13254	13254	4000
-6MBE (+) -1.5M LE	10500		16976	6100	3250	225	9328	9328	13192	6400	12528	12528	4000
6MBE (+) +0M LE		17702	17702	6100	3250	225	9691	9691	13705	6400	12891	12891	4000
6MBE (+) +1.5M LE	12000	18427	18427	6100	3250	225	10054	10054	14218	6400	13254	13254	4000
	13500	19153	19153	6100	3250	225	10417	10417	14731	6400	13617	13617	4000
6MBE (+) +3M LE	15000	19878	19878	6100	3250	225	10779	10779	15244	6400	13979	13979	4000

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

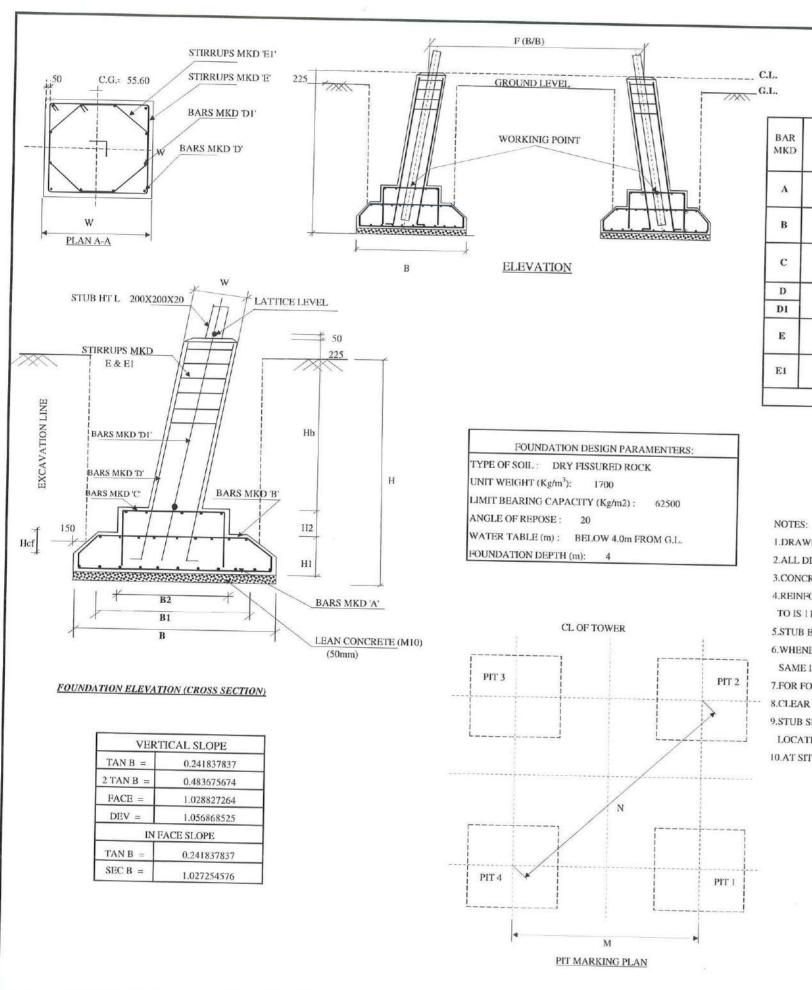
VER	TICAL SLOPE
TAN B =	0.241837837
2 TAN B =	0.483675674
FACE =	1.028827264
DEV =	1.056868525
IN	FACE SLOPE
TAN B =	0.241837837
SEC B =	1.027254576

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC.?Y
Approved Vide Ref. Letter No. SPLVL/GTT PL/
ENG.4/LAT/26 Date: 20/09/18
Engineering Deptt.
the above does not relevel by contractor from their contractual obligations

NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =

3800 mm


- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

				1	1				
REV NO	DATE		DESCRIPTION DRAWN	СНКО	APPD				
PRO	JECT	400KV D/C X	ELDAM-NARENDRA TRANSMISSION LTD						
CLI	ENT	STERLITE PO	OWER GRID VENTURES LIMITED						
DESIG	GNER:	STERLITE PO	WER GRID VENTURES LIMITED						
DRWN	RT	20-09-18	POLINICATION						
СНКО	AM	20-09-18	FOUNDATION DRAWING FOR TOWER DDN-3/+0/+3/+6M (30-45 DEG, DEV, ANGLE) 400	TYPE					
APPD	DL	20-09-18	FS SOIL (4.0M DEPTH)	FS SOIL (4.0M DEPTH)					
DATE	20-09-18	DRAWING NO.	GTTPL/400DC/WZ-1/DDN/F-004 SHEET NO 2/2 REV						

reprint Social Cutles 2011 All RIGHTS RESERVED.

No part of this superighted neutralism to reproduced or transmitted in any form by any motion for any purpose without prove metric permant or of the amount.

Better the contraction of any or of the contraction of the decision of the contraction of t

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR

SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

В	Н	W	B1	B2	Hl	H2	Hef	Нь
3910	4000	700	3310	2000	400	300	300	3250

BAR MKD	BAR BENDING SKETCH	BAR DETAILS	SECTION DIAMETER	NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER
-			(mm)	(no)	(mm)	('kg/m)	(kg)	(kg)
A	3810	PAD REINFORCEMENT	16	42	3810	1.58	252.50	1009.99
В	3210 50 354 354 50	PAD REINFORCEMENT	12	28	4017	0.89	99.86	399,44
С	1900 568 50 5 <u>0</u> 568	PAD REINFORCEMENT	12	28	3136	0.89	77.95	311.79
D	4011	CHIMNEY BAR	32	4	4511	6.31	113.86	444.00
D1	500	CHIMNEY BAR	32	8	4511	04.90%	THE STORMS	455.46
Е	600	CHIMNEY SQUARE SPACER	8	14	2592	0.39	227.72 14.31	910.90 57.27
EI	200 283	CHIMNEY SQUARE SPACER	8	14	2123	0.39	11.72	46.90
					TOTAL REI	NFORCEMEN	T/ TOWER=	3191.7

LDRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3800

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

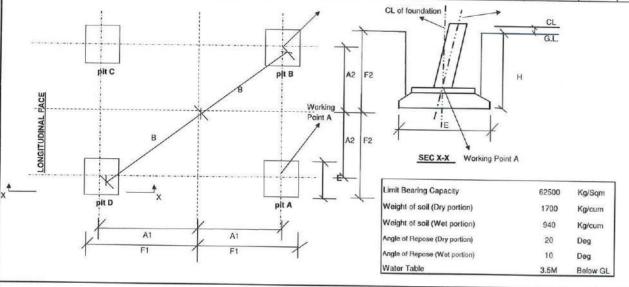
8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

LOCATION OF TOWER.

yright Sterlite Grid Ltd. 2011. ALL RIGHTS RESERVED
part of this copyrighted inaterialcan be reproduced or transmitted in any form

by any means for any purpose without prior written permission of the owner. the Unamborused useral any, will amount to intringuent and the infringer shall be held table for heavy duneges and punishment with imprisonment. 2


10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	33.4
CONCRETE (M10) m ³	3.06
TOTAL CONCRETE m ³	36.46
EXCAVATION m3	210.52
REINFORCEMENT Kg	3191.7

STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED CCPY Approved Vide Ref. Letter No SPGVL/GTTPL Engineering Deptt. the above does not relieve the contractor from their contractual obligation

REV NO	DATE			DESCRIPTION	DRAWN	CHKD	APP		
PRO	JECT	400K	V D/C XELDAN	M-NARENDRA TRANSMISSION					
CLI	ENT	STER	TERLITE POWER GRID VENTURES LIMITED						
DESIG	GNER:	STERI	LITE POWER (GRID VENTURES LIMITED					
DRWN	RT	20-09-	18	POLINDATION DE LUCIO	Santa de Caractería de Car				
CHKD	AM	20-09-	18 DDN	FOUNDATION DRAWING FOR TO -3/+0/+3/+6M (30-45 DEG. DEV. ANGL	OWER TYPE	(11/17 1)			
APPD	DL	20-09-	18	DFR SOIL (4.0M DEPTH	E) 400K V D/C (I)	(WZ-1)			
DATE	20-0	09-18	DRAWING NO.	GTTPL/400DC/WZ-1/DDN/F-005	SHEET NO	t/a Dr	7 0		

Project GOA		400 KV D	/C X-N	(WZ-1) TT F	"DDN" PIT DIME	(30-45 D	EG. DE	EV.) SOI	L - DFR (4.0M DEPT	H)	Client: SPGVL		
400 KV D/C -X-N-	IT "DDN"	" F " B/B of To 3MBE(+)-31		* F * B/B of T 3MBE(+)-3		Stub Sec	ction (HT)	Lattice Level to CL	cg	sec B1	2"Tan B1			
		1271	10	127	10	200X2	200X16	50	55.6	1.028827	0.483675674	1.028827	0.483675	
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	В	E	F1	F2	Н	
-3MBE (+) -3M LE	0	12623	12623	3910	3250	225	7152	7152	10114	3910	9107	9107	4000	
-3MBE (+) -1.5M LE	1500	13348	13348	3910	3250	225	7515	7515	10627	3910	9470	9470	4000	
-3MBE (+) +0M LE	3000	14074	14074	3910	3250	225	7877	7877	11140	3910	9832	9832	4000	
-3MBE (+) +1.5M LE	4500	14800	14800	3910	3250	225	8240	8240	11653	3910	10195	10195	4000	
-3MBE (+) +3M LE	6000	15525	15525	3910	3250	225	8603	8603	12166	3910	10558	10558	4000	
+0MBE (+) -3M LE	3000	14074	14074	3910	3250	225	7877	7877	11140	3910	9832	9832	4000	
+0MBE (+) -1.5M LE	4500	14800	14800	3910	3250	225	8240	8240	11653	3910	10195	10195	4000	
+0MBE (+) +0M LE	6000	15525	15525	3910	3250	225	8603	8603	12166	3910	10558	10558	4000	
+0MBE (+) +1.5M LE	7500	16251	16251	3910	3250	225	8966	8966	12679	3910	10921	10921	4000	
+0MBE (+) +3M LE	9000	16976	16976	3910	3250	225	9328	9328	13192	3910	11283	11283	4000	
3MBE (+) -3M LE	6000	15525	15525	3910	3250	225	8603	8603	12166	3910	10558	10558	4000	
+3MBE (+) -1.5M LE	7500	16251	16251	3910	3250	225	8966	8966	12679	3910	10921	10921	4000	
+3MBE (+) +0M LE	9000	16976	16976	3910	3250	225	9328	9328	13192	3910	11283	11283	4000	
-3MBE (+) +1.5M LE	10500	17702	17702	3910	3250	225	9691	9691	13705	3910	11646	11646	4000	
3MBE (+) +3M LE	12000	18427	18427	3910	3250	225	10054	10054	14218	3910	12009	12009	4000	
-6MBE (+) -3M LE	9000	16976	16976	3910	3250	225	9328	9328	13192	3910	11283	11283	4000	
6MBE (+) -1.5M LE	10500	17702	17702	3910	3250	225	9691	9691	13705	3910	11646			
6MBE (+) +0M LE	12000	18427	18427	3910	3250	225	10054	10054	14218	3910	12009	11646	4000	
6MBE (+) +1.5M LE	13500	19153	19153	3910	3250	225	10417	10417	14731	3910	12372	12009	4000	
6MBE (+) +3M LE	15000	19878	19878	3910	3250	225	10779	10779	15244	3910	12734	12372	4000	

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

VEF	RTICAL SLOPE
TAN B =	0.241837837
2 TAN B =	0.483675674
FACE =	1.028827264
DEV =	1.056868525
IN	FACE SLOPE
TAN B =	0.241837837
SEC B =	1.027254576

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC.PY
Approved Vide Ref. Letter No.S.P.GVL/G.TT.PL/
ENG.G/L L LT/ 26. Date 20/09/18
Engineering Deptt.
the above does not relevable contractor from their contractual obligations

NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =

3800 mm

- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.

empagin Sortine Cost Let. 2011. ALL REGITS RESERVED.

No pain of our opting fact interplaces be expended or transmitted in my force.

By any means for any paymow where previously previously previously means are of the shear.

The Unsafestive of used any of the source for the fact force shear.

The Unsafestive of used any of the source to unknown and the infrarer shall be held.

Like for the every descript on of printerbasts with a grave-trained.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

	-					
REV NO	DATE		DESCRIPTION	DRAWN	CHKD	APPD
PRO	DJECT	400KV D/C X	ELDAM-NARENDRA TRANSM	IISSION LTD		
CL	JENT	STERLITE PO	WER GRID VENTURES LIMIT	ED		
DES	IGNER:	STERLITE PO	WER GRID VENTURES LIMIT	ED		
DRWN	RT	20-09-18	FOUNDATION DRAWIN	C POR TOURS OF		
CHKD	AM	20-09-18	FOUNDATION DRAWING FOR TOWER TYPE DDN-3/+0/+3/+6M (30-45 DEG. DEV. ANGLE) 400KV DA		YPE V D/C /WZ	13
APPD	DL	20-09-18	DFR SOIL (4.0	OM DEPTH)	THE THE	-17
DATE	20-09-18	DRAWING NO.	GTTPL/400DC/WZ-1/DDN/F-005	SHEET NO.	2/2 REV	Ι ο

ERM has over 160 offices across the following countries and territories worldwide

New Zealand Argentina Australia Panama Belgium Peru Brazil Poland Canada Portugal China Puerto Rico Colombia Romania France Russia Germany Singapore South Africa Hong Kong South Korea Hungary India Spain Indonesia Sweden Taiwan Ireland Italy Thailand Japan UAE Kazakhstan UK Kenya US Malaysia Vietnam

Mexico

The Netherlands

ERM India Private Limited

Building 10,

4th Floor, Tower A,

DLF Cyber City,

Gurgaon - 122002

India

www.erm.com

