

E. EXECUTIVE SUMMARY

E.1 Introduction

The Government of India has envisaged to create a world-class infrastructure facility, to boost the economic development in the country, for which Ministry of Road Transport and Highways (MORTH) plays a key role. MORTH has been entrusted to implement the development of some of the stretches of National Highways under National Highway Development Programme (NHDP) on EPC/BOT basis. As part of this endeavor, the Public Works Department (PWD) of Government of Goa has decided for the development of "Four Laning of Existing Maharashtra/Goa Border - Goa/Karnataka Border of NH-17 from Km 475/040 to 611/000 in the state of Goa on BOT (Toll) basis under NHDP-III (Patradevi to Pollem section)".

Public Works Department (PWD) of Goa has appointed M/s Aarvee Associates Architects Engineers & Consultants Pvt. Ltd., Hyderabad to provide consultancy services for detailed engineering study for the above road section.

The project stretch excludes following reaches:

- 1. From Km 515.000 to Km 518.000 (Mandovi Bridge Reach)
- 2. From Km 523.000 to Km 535.000 (Zuari Bridge Reach)
- 3. From Km 545.000 to Km 554.000 (Margaon Bypass Reach)
- 4. From Km 586.000 to Km 603.000 (Canacona Bypass reach)

E.2 Project Description

The Project Highway is a section of NH-17 between Patradevi and Pollem, passing through villages Torxem, Tamboxem, Uguem, Poroscodem, Casnem, Pernem, Virnoda, Dargalim, Colvale, Acola, Mapusa, Bastora, Guirim, Porvorim, Panaji, Santa Cruz Bambolim, Siridao, Palem, Cortalim, Nagoa, Verna, Nuvem, Fatorda, Margao, Navelim, Sirlim, Chinchinim, Panzarconi, Cuncolim, Tiloi, Canacona, Macem, Kalmath, Pollem. It connects Panvel (South of Mumbai city) to Kochi in Kerala, passing through the states of Maharashtra, Goa, Karnataka, and Kerala. The Project stretch is an important link connecting the states of Maharashtra, Goa and Karnataka starts at Patradevi Maharashtra-Goa border to Pollem, Goa-Karnataka border with length of 135.96 km. It has a great potential of growth in the passenger as well as freight

movement in future due to tourism, agriculture and industrial growth in the project influence area. From Km 475.040 to Km 545.000, the right of way ranges from 8 m to 45m, from Km 555.000 to 585.000 the ROW ranges from 8m to 10m and Km 603.000 to Km 611.000 it is 10m to 30m. From Km 570.000 to Km 585.000 the alignment passes through Ghat Section. The entire alignment passes through hilly and rolling terrain except few reaches in plain terrain. The Index Map of the project stretch is given as Figure E-1.

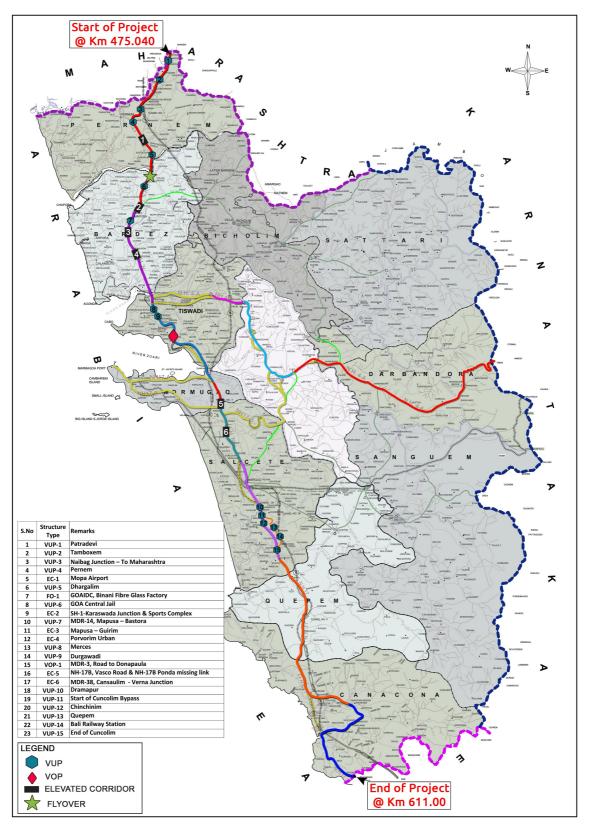


Figure: E.1 Index Map

E.3 Alignment Option Study

Reconnaissance, map studies and detailed investigations of the influence area were carried out for identifying the existing road network, land use pattern and industrial activities along the project corridor. Different alignment options are considered, evaluated and the improvement scheme of the options are mentioned below.

The Project road has inconsistent terrain conditions with a mix of hilly, highly rolling and plain topography. The following standards have been followed for improving the horizontal geometry. For the purpose of horizontal design, the project road is divided in to following sections

Section I: From Km 475.040 to Km 514.800 (Rolling/Plain terrain).

The Project Highway starts with a mix of rolling/plain terrain from Km 475+040 at Goa/Maharashtra border. Existing alignment has substandard horizontal geometry. The existing speed on the highway is about 50 to 60 kmph. Minor realignments are proposed to meet the minimum design speed of 80KMPH at following locations.

- 1. From Km 477.500 to Km 478.000
- 2. From Km 485.000 to Km 490.000

The existing alignment in Naibag location has substandard horizontal & vertical curves in particularly from Km 486.500 to Km 490.500.

Section II: From Km 514.800 to Km 518.400 - Mandovi Bridge

Four Lane bridge construction is under progress on the River Mandovi from Km 514.800 to Km 518.400.

Section III: From Km 518.400 to Km 523.500 - Bambolim

The project highway passes through plain to rolling terrain in the urban area of Panaji. Vehicular Overpass is proposed in this project stretch.

Section IV: From Km 523.500 to Km 535.500 – Zuari Bridge

The Project stretch constitutes a major bridge Zuari which is in the initial stage of construction taken up by the Public works department.

Section V: From Km 535.500 to Km 545.000

The Project stretch passes through Verna Industrial area. The Proposed alignment follows the existing alignment with minor curve improvements within the available

ROW. Elevated Corridor is proposed in this location to segregate the Airport traffic and Verna Industrial Estate traffic plying on NH-17B.

Section VI: From Km 545.000 to Km 555.000

The Project stretch constitutes Margao bypass which is under construction taken up by Public works department to bypass the heavily congested Margao City traffic.

Section VII: From Km 555.000 to Km 586.000

In this stretch the project highway passing through the congested villages namely Chinchinim, Panzorconi, Cuncolim and Bali from Km 557.800 to Km 567.700. Thereafter it is passing through the dense forest area of Kharmal Ghat from Km 572.000 to Km 582.000. The existing alignment in Kharmal Ghat stretch has substandard horizontal & vertical curves in particularly from Km 579 to Km 582.

There are some minor realignments has been proposed to improve the geometry or make use of existing 4 Lane RUBs at following locations.

- 1. From Km 569.200 to Km 570.600: existing 4 lane RUB in skew.
- 2. From Km 573.700 to Km 574.000:
- 3. From Km 574.300 to Km 574.700:
- 4. From Km 575.500 to Km 576.000:
- 5. From Km 577.100 to Km 578.100:
- 6. From Km 578.600 to Km 579.000:
- 7. From Km 582.200 to Km 583.700:
- Substandard existing curves.
- Substandard existing curve.
 - Substandard existing curves.
 - Substandard existing curves.
 - Substandard existing curves.
- Substandard existing curves.

Section VIII: From Km 587.000 to Km 603.000

The Project Stretch from Km 587.000 to Km 603.000 is awarded and is under construction.

Section IX: From Km 603.000 to Km 611.000

In this stretch the project highway passes through rolling terrain. The consultants have proposed realignment from Km 606.100 to Km 607.000 to improve the existing horizontal curves.

E.4 Surveys and Investigations

The studies and investigations carried out during the feasibility study comprised mainly of the following:

- Detailed Inventory & Condition Surveys for Road
- Detailed Inventory & Condition Survey for Bridges
- Topographic Surveys along the existing alignment
- Traffic surveys viz., Classified Traffic Volume Count, Turning Movement Count, Axle Load, Origin Destination and Commodity Movement, Willingness to Pay etc., including collection of secondary data for traffic projections
- Investigations of the existing pavement and sub grade involving BBD test
- Collection and laboratory testing of soil samples from pits adjacent to the existing road
- Identification of borrow areas for different types of pavement and bridge construction material, collection of samples and their analysis
- Environmental baseline studies
- Public Consultations

E.5 Existing Condition of Road & Bridges

E.5.1 Inventory & Condition surveys for Existing Road

The existing NH-17 is having two lane and four lane configuration. Carriageway width was measured at every 100m interval. Width of shoulders on either side was measured separately along with carriageway measurements. The overall condition of pavement is good and is of flexible type. The existing two lane carriageway width is 7.0m with earthen shoulders of about 0.3 to 2.0m width on either side and paved shoulder exists of around 0.4 to 5.0m width on either side and at few parts of the stretch are existing with 4 lane road also.

S. No.	Existing Ch	ainage (Km)	Length	Lane Configuration	Condition of
5. NO.	From	То	(m)	Lane Configuration	the Road
1	475.000	489.100	14100	2 lane carriageway	Good
2	489.100	490.100	1000	4 lane carriageway	Good
3	490.100	507.100	17000	2 lane carriageway	Good
4	507.100	510.800	3700	4 lane carriageway	Good
5	510.800	513.000	2100	2 lane carriageway	Good
6	513.000	515.000	2000	4 lane carriageway	Good
7	515.000	521.500	6500	2 lane carriageway	Good
8	521.500	522.800	1300	4 lane carriageway	Good
9	535.000	537.000	2000	2 lane carriageway	Good

S. No.	Existing Chainage (Km)		Length	Lane Configuration	Condition of
5. NO.	From	То	(m)		the Road
10	537.000	538.400	1400	4 lane carriageway	Good
11	538.400	542.800	4400	2 lane carriageway	Good
12	555.000	557.200	2200	2 lane carriageway	Good
13	570.000	585.000	15000	2 lane carriageway	Good
14	603.000	611.000	8000	2 lane carriageway	Good

E.5.2 Inventory & Condition surveys for Bridges

The detailed inventory and condition survey of structures are discussed in Volume-II Investigation Report. Total numbers of Structures on the Site are noted below:

- 1no
- 1nos.
- 3nos.
- 18nos.
- 88nos.
- 235nos.
- Nil
- 1 (2 Lane)

E.6 Traffic Studies

Based on reconnaissance studies, the locations for conducting various traffic surveys were finalized. The traffic surveys viz., Classified Traffic Volume Count, Turning Movement Count, Axle Load, Origin Destination and Commodity Movement, Willingness to Pay, etc., including collection of secondary data for traffic projections were carried out in the month of June in 2015. Secondary data was collected for the purpose of determining the Seasonal Variation Factors and Growth Rates at various count stations for different vehicle categories.

E.6.1 Average Annual Daily Traffic (AADT)

The Annual Average Daily Traffic (AADT in no of vehicles) at the survey locations is obtained by multiplying the Average Daily Traffic (ADT) with the seasonal correction factor. The AADT of vehicles for the year 2015 at eight survey locations of traffic volume count survey along the Project corridor is presented below.

Mode		Km 493.0	Km 511.0	Km 522.0	Km 537.0	Km 544.0	Km 556.0	Km 588.0	Km 610.0
Two Wheelers		6132	17062	12232	9385	11411	10243	5777	3390
Three	Wheelers	12	154	68	37	54	108	196	4
Car / Jeep / Van		5231	16337	14586	10892	13092	9386	4754	2166
Car Ye	ellow board	176	2026	4647	2169	2026	527	808	148
Tata N	1agic	19	9	3	59	2	4	54	11
RTC B	us	155	474	767	461	595	189	257	91
Privat	e Bus	237	655	330	406	455	487	402	45
Schoo	I/College bus	3	15	8	9	7	14	25	9
Mini B	us	80	148	272	270	171	109	146	18
2 Axle	2	706	738	110	143	1660	310	255	146
3 Axle		149	293	29	21	488	171	179	82
M Axle		197	186	2	5	318	66	150	83
HEM		15	72	7	5	21	13	56	2
LCV/L	GV	787	1539	711	931	1451	543	486	127
Mini L	CV	466	1803	1605	1591	2069	750	621	140
Three	Wheeler goods	2	42	39	18	23	46	64	7
Tracto	r	5	2	6	0	2	5	6	1
Tracto	or with trailer	2	12	5	5	0	1	1	0
Non-M	lotorized Vehicles	7	20	11	31	19	56	56	25
Govt.	Exempted Vehicles	28	193	147	55	47	42	52	8
Tollab	le Traffic (vehicles)	8220	24294	23079	16960	22355	12567	8192	3069
Tollab	le Traffic (PCU's)	11894	30389	26091	19672	30761	15510	11463	4187
Total	Motorized	14400	41758	35575	26459	33892	23012	14288	6479
Vehi-	Non-Motorized	7	20	11	31	19	56	56	25
cles	Total Traffic	14407	41778	35586	26490	33911	23068	14344	6504
	Motorized	15024	39439	32573	24522	36615	20853	14687	5905
Total PCUs	Non-Motorized	26	20	8	25	10	44	30	12
	Total Traffic	15050	39459	32581	24547	36625	20897	14717	5917

Table E.2: Average Annual Daily Traffic

E.6.2 Zuari Bridge Traffic (Heavy Vehicle Traffic)

Zuari Bridge, the main connecting link between North & South Goa is closed for heavy vehicular traffic (above 12 tonnes) since 1997 as it was found structurally not sound to cater to heavy traffic loads prevailing.

As per above context, the Consultants presumed that once Zuari bridge construction gets completed and is thrown open to traffic, the truck traffic which is currently plying on alternative routes is expected to use this bridge again. Considering this, Consultants have collected traffic census data when Zuari Bridge was open to heavy

vehicular traffic and the same has been projected to 2015 the base year, with a growth rate of 5% per annum.

S. No.	Vehicles	Traffic when Zuari bridge is under operation	Regular Traffic (Actual)	Total Traffic							
	Km 493, Malpem										
1	Trucks (2 or 3 AT)	1282	857	2139							
2	Multi Axle Trucks	314	212	526							
3	Total	1596	1069	2665							
		Km 511, Porvorim	l								
1	Trucks (2 or 3 AT)	1403	1042	2445							
2	Multi Axle Trucks	371	258	629							
3	Total	1774	1300	3074							
		Km 537, Cortalim									
1	Trucks (2 or 3 AT)	1289	174	1463							
2	Multi Axle Trucks	171	10	181							
3	Total	1460	184	1644							
	k	(m 556, Navelim/Dhari	mapur								
1	Trucks (2 or 3 AT)	554	482	1036							
2	Multi Axle Trucks	611	79	690							
3	Total	1164	561	1725							
	·	Km 588, Canacona	1								
1	Trucks (2 or 3 AT)	560	437	997							
2	Multi Axle Trucks	259	206	465							
3	Total	818	643	1461							

Table E.3: Heavy Vehicle Traffic along Project Stretch when Zuari Bridge is

under Operation

E.6.3 Vehicle Damage Factors (VDF)

The VDF calculated for different categories of commercial vehicles are shown below and the detailed analysis is presented in Traffic Report.

Table E.4: Vehicle Damage Factor (VDF)

S.	Mode	К	m 475.000)	Km 610.000			
No.		To Panaji	То	Adopted	То	То	Adopted	
	/1024		0		Ren aar	vee ass	ociates	

			Patradevi		Karwar	Canacona	
1	2 Axle	3.37	1.02	3.37	2.40	3.78	3.78
2	3 Axle	3.74	3.91	3.91	3.53	4.53	4.53
3	M axle	6.28	4.92	6.28	4.58	5.19	5.19
4	LCV	2.41	1.14	2.41	0.33	0.74	0.74

E.6.4 Traffic Growth Rates (%)

Traffic growth rates are an important parameter for projecting the traffic for the design life of pavement. The projected traffic, in turn, will form the basis for capacity assessment, pavement design, and financial viability analysis.

c		2	3	Carel			Т	Trucks	
S. No.	Period	Wheeler	Wheeler	Cars/ Jeeps	Buses	2 Axle 3 Ax		M Axle	LCV and Mini LCV
1	Up to 2016	7.0	5.0	10.0	8.0	5.0	5.0	5.0	5.0
2	2017 -2021	6.5	5.0	9.5	7.5	5.0	5.0	5.0	5.0
3	2022 - 2026	6.0	5.0	9.0	7.0	5.0	5.0	5.0	5.0
4	2027 - 2031	5.5	5.0	8.5	6.5	5.0	5.0	5.0	5.0
5	Beyond 2031	5.0	5.0	8.0	6.0	5.0	5.0	5.0	5.0

Table E.5: Traffic Growth Rates (%)

E.6.5 Capacity of the Highway

The project road has been divided into homogeneous road sections on the basis of traffic generation and dispersal nodes located along the project road. Considering the above mentioned traffic generation/ distribution points, total project road are divided into three homogeneous road sections for the purpose of analysis and presentation of traffic and travel characteristics.

S.No.	Sections	HS	From (Km)	To (Km)	Length (Km)	Remarks
1	NH-17: From Patradevi	HS-1	475.040	503.250	28.210	SH-1 to Bicholim
2	to Pollem	HS-2	503.250	517.500	14.250	NH-4A, Old Goa- Belgaum Road
3		HS-3	517.500	533.400	15.900	NH-17A to Vasco
4		HS-4	533.400	537.500	4.100	NH-17B to Vasco
5		HS-5	537.500	546.850	9.350	Arlem Bypass, SH-5 to Borim & Ponda
6		HS-6	546.850	563.500	16.650	Cuncolim

 Table E.6: Traffic Homogeneous sections (HS)

S.No.	Sections	HS	From (Km)	To (Km)	Length (Km)	Remarks
7		HS-7	563.500	592.300	28.800	Canacona, MDR-50
8		HS-8	592.300	611.000	18.700	End of Project Stretch

The Highway Capacity Manual has introduced the concept of "Level of Service" to denote the level of facility one can derive from a road under different operating conditions and traffic volumes. It is defined as a qualitative measure describing the operational conditions with in a traffic stream and their perception by motorists. The level of service for urban and suburban roads can be related to the flow conditions, average overall travel speed, load factor at intersections, peak hour factor and service volume to capacity ratio. National and State Highways in rural areas are normally designed for LOS B giving a design service volume of 40000 PCUs per day for 4 lane divided carriageway and 57000 PCUs per day for 6 lane divided carriageway based on level of service criteria with a V/C ratio less than 0.5. If we go for V/C ratio criteria, we can go up to LOS C with V/C ratio of less than 0.7. The LOS and capacity analysis for the proposed project stretch is presented.

S.	S. No. HS	Chainage		Present Traffic		15,00 (Capacit	Attaining 00 PCU's ty of 2 lane	Year Attaining 40,000 PCU's (Capacity of 4 Iane	
NO.		From Km	To Km.	PCUs	Year	PCUs	LOS B) Year	With PCUs	LOS B) Year
1	HS-1	475.040	503.250	20316	2015	-	-	38713	2025
2	HS-2	503.250	517.500	45298	2015	-	-	45298	2015
3	HS-3	517.500	533.400	38817	2015	-	-	38817	2015
4	HS-4	533.400	537.500	29169	2015	-	-	39192	2019
5	HS-5	537.500	546.850	36522	2015	-	-	39323	2016
6	HS-6	546.850	563.500	25263	2015	-	-	38855	2021
7	HS-7	563.500	592.300	17501	2015	-	-	39551	2027
8	HS-8	592.300	611.000	8754	2015	15669	2024	39379	2039

By considering 75% of cars, 2W, 3W, Tractors and Slow moving vehicles on service roads from Km 503.250 to Km 546.850 (Urban portion from Karaswada Junction to

Arlem Bypass) where 4 lane with service roads are proposed and the 6 lane requirement shall be after year 2030.

E.7 Pavement Design

E.7.1 Introduction

The Preliminary Pavement design is done for both flexible and rigid options. The flexible pavement is designed as per IRC: 37-2012. The rigid pavement is designed using IRC and CMA methods. The Sub grade CBR for the new carriage way is considered 10%. Sub grade thickness of 500 mm is considered for both flexible and rigid pavement options.

E.7.2 Million Standard Axles (MSA)

Design traffic in terms of Million Standard Axles has been determined at 8 locations based on traffic homogeneous sections, where volume count and axle load surveys were conducted.

S.N o.	Homogeneous Sections	From (Km)	To (Km)	Length (Km)	5 Years MSA	10 Years MSA	15 Years MSA	20 Years MSA
1	HS-1	475.040	503.250	28.210	13	30	50	76
2	HS-2	503.250	517.500	14.250	18	40	70	105
3	HS-3	517.500	533.400	15.900	12	26	45	70
4	HS-4	533.400	537.500	4.100	10	23	40	60
5	HS-5	537.500	546.850	9.350	16	35	60	95
6	HS-6	546.850	563.500	16.650	10	20	35	55
7	HS-7	563.500	592.300	28.800	10	20	30	46
8	HS-8	592.300	611.000	18.700	6	12	20	31

Table E.8: Million Standard Axles (MSA)

E.7.3 Flexible Pavement

For the design traffic estimated for a life of 15 years and a sub grade CBR of 10%, the pavement composition with granular base & sub-base option as follows:

	Rea	ach	Eff.	Design		Bitume	Cr	ust Co	omposi	tion in	mm
HS	From	То	CBR (%)	Life in Years	MSA	n Grade	вс	DBM	WM M	GSB	Total
HS-1	475.04	503.25	10%	15 Y	50	VG-40	40	95	250	200	585
HS-2	503.25	517.50	10%	15 Y	70	VG-40	40	105	250	200	595

 Table E.9: Pavement Composition details for Main Carriageway

HS-3	517.50	537.50	10%	15 Y	45	VG-40	40	95	250	200	585
HS-4	537.50	546.85	10%	15 Y	60	VG-40	40	100	250	200	590
HS-5	546.85	592.30	10%	15 Y	35	VG-40	40	95	250	200	585
HS-6	592.30	611.00	10%	15 Y	20	VG-30	40	80	250	200	570

E.7.4 Rigid Pavement

For the design traffic estimated for a life of 30 years and a sub grade CBR of 10%, the pavement composition with granular base & DLC is as follows:

S.No.	Item	Km 475 to Km 592.3	Km 592.3 to Km 611.0
1	PQC of M40 grade, mm	270	250
2	DLC of M10 grade, mm	150	150
3	GSB, mm	150	150
4	Dia. of Dowel bar, mm	36	32
5	Length of Dowel bar, mm	450	450
6	Spacing of Dowel bar, mm	300	300
7	Dia. of Tie bar, mm (Plain bars)	12	12
8	Length of tie bar, mm	580	580
9	Spacing of tie bar, mm	415	445

 Table E.10: Rigid Pavement Design with Tied Concrete Shoulders

E.7.5 Recommended Pavement Option

Based on the life cycle cost analysis, Net Present Value (NPV) of rigid pavement is less than the flexible pavement. The life cycle cost for 30 years' period analysed for flexible pavement comes to Rs. 746.84 crores. Whereas for rigid pavement the cost comes to Rs. 718.64 crores.

As per **MoRTH** circular no. RW/NH-33044/53/2013-S&R(R) Pt. dated 20th November, 2013 (Appendix IIA) has advocated the use of environment friendly construction practices for reduction of greenhouse gases and had also iner-alia specified the life cycle cost analysis as an essential component of infrastructure design.

"Considering the issue related to longer service life, fuel consumption, resistance to extreme weather condition, saving of natural resources and maintenance etc. the obvious advantages of rigid pavement cannot be denied."

MoRTH circular no. RW/NH-33044/31/2014-S&R(R) Pt. dated 04th August, 2014 states that "The price of cement vis-à-vis bitumen varies widely in different parts of

13

the country depending upon the lead from the production centers/refineries etc. This variation would be required to be mapped out and unless there is price comparison within an acceptable limit up to 20%, the use of flexible pavements may perhaps require to be continued." It means that rigid pavement could be considered when the cost of construction with rigid pavement doesn't exceed that of flexible pavement by more than 20%.

By considering the life cycle cost analysis, heavy load traffic and as mentioned in Ministry circulars it is recommended to construct Rigid pavement for the entire stretch.

E.7.6 Crust Composition for Service Roads

Design of pavement for service road has been carried out in accordance with clause 5.5.5 of IRC: SP:84-2014 for a design traffic 10 msa and CBR of 10%.

HS	Eff.	MSA	Bitumen		Crust (Composi	tion in m	m
пэ	CBR	МЭА	Grade	BC	DBM	wмм	GSB	Total
Service Roads	10%	10	VG-30	40	50	250	200	540

Table E.11: Pavement Composition for Service Roads

E.7.7 Design of Shoulders

<u>Paved Shoulder</u>: The shoulder would be useable during all seasons of the year and hence as per Clause 5.10 of IRC:SP:84-2014, the crust composition and specification of paved shoulder shall be same as of the main carriageway.

Earthen Shoulder: Earthen shoulder shall be covered with 150 mm thick layer of granular material confirming to the requirements given in Clause 401 of MORTH specifications.

E.7.8 Crust Composition for Bus bays

Bus bays have been designed for 10 MSA and shall be of a flexible pavement. The crust composition for the bus bay is same as service road crust and given in table above.

E.7.9 Crust Composition for Truck Lay Byes

Pavement Design for Truck Lay byes shall be same as that for main carriageway in the relevant sections.

```
AA/HD/1824
```


E.8 Highway Improvement Proposals

E.8.1 General

Primarily, the scope of the project is '4laning' of the existing 2-lane carriageway. The project corridor is to be designed as a 'partially access controlled highway' by providing service roads, grade separated intersections, acceleration and deceleration lanes, vehicular and pedestrian underpasses / overpasses etc. with an objective to segregate the local traffic from the through traffic.

The various upgrades required for enhancing the project road to 4 lane configuration as per the guidelines given in the Four laning manual (IRC-SP:84-2014) are brought out. In congested locations, various alternative upgrade options such as bypasses or elevated highway have been considered before recommending the feasible option.

E.8.2 Typical Cross Sections

It is proposed to widen the existing 2-Lane carriageway to 4-lane carriageway with two lane service road on either side of the project highway where ever required. The existing right of way varies from 8 m to 65 m for the project stretch. Typical Cross Sections (TCS) have been developed duly considering various aspects. From Km 572.000 to Km 585.000 the alignment passes through Karmal Ghat Section where right of way ranges from 7 m to 10 m and acquiring the land will be difficult as it comes under Reserve Forest/Wild Life Sanctuary. The entire alignment passes through hilly and rolling terrain except few reaches in plain terrain. Description of each type of cross section is listed in the Table shown below.

TCS	Description
type	
I	4 Lane Cross section-Concentric widening-4m median-45m PROW
II	4 Lane Cross section-Symmetrical widening-1.5m median-Service roads on both sides-45m PROW
III	4 Lane Cross section-Eccentric Widening (LHS)-4.0m median-45m PROW
IV	4 Lane Cross section-Eccentric Widening (RHS)-4.0m median-45m PROW
V	4 Lane Cross section-Realignment/Bypass-4.0m median-45m PROW
VI-a	6 Lane Cross section-Approaches to PUP/ LVUP/VUP/Flyover -0.6m median- Slip roads(7.0m) on both sides-45m PROW in Existing Alignment
VI-b	6 Lane Cross section-Approaches to PUP/ LVUP/VUP/Flyover -0.6m median- Slip roads(7.0m) on both sides-45m PROW in Bypass
VII	6 Lane Cross section-Approaches to VOP-1.5m median-Slip roads(7.0m) on both sides-60m PROW

Table E.12: Typical Cross Section (TCS)

TCS type	Description
	4 Lane Cross section for Mountainous terrain in cut and fill sections-1.5m median-30m PROW
	4 Lane Cross section for Mountainous terrain in cut section(both sides)-1.5m median-30/45m PROW
Х	4/6 Lane Cross section with Elevated Corridor in Urban Area-30m PROW
XI	6 Lane Twin Tunnel Cross Section in Ghat Section-65m PROW

E.8.3 Service Roads/Slip Roads

As per clause 2.1.ii (a) of four lane manual (IRC: SP-84-2014), service roads shall be provided on both sides of the main highway in built-up areas and interconnected through underpasses, overpasses and grade separators. However, keeping the project viability in view, service roads have been proposed at built-up locations and major villages along the project corridor on both sides of the 4 lane carriageway depending on the nature and extent of village/town development. Service roads are designed to carry two-way traffic with turning areas where required and are linked to the main carriageway by one-way deceleration and acceleration lanes with 'taper-merge' arrangements. Service roads are generally kept at existing ground level to serve the adjacent properties, whereas the main carriageway is constructed as per the requirements of design vertical profile of highway. Service roads are proposed in the following locations as shown in Table below.

S.		ainage m)	De. Chainage (km)		Slip/ Service	Remarks	
No.	From	То	From	То	Length	Road	
1	475.000	475.800	475.000	475.800	0.800	Slip Road	VUP (to Patradevi)
2	479.900	480.510	480.100	480.710	0.610	Slip Road	VUP (to Mopa village and Tambosa village)
3	481.000	481.700	481.300	482.000	0.700	Slip Road	CUP (Uguem village & Temple)
4	483.850	484.910	484.200	485.260	1.060	Slip Road	VUP Road to MH border (Naibag junction)
5	489.824	490.494	487.190	487.860	0.670	Slip Road	VUP Pernem
6	490.494	491.934	487.860	489.300	1.440	Slip Road	LVUP – Govt. College
7	494.036	494.816	491.380	492.160	0.780	Slip Road	Fly Over (Road to Mopa New Airport)
8	495.420	495.950	492.720	493.250	0.530	Slip Road	PUP (School)
9	495.950	496.900	493.250	494.200	0.950	Slip Road	VUP (Road to Industrial Area, Tuem village)
10	498.535	499.085	495.790	496.340	0.550	Slip Road	LVUP (Colvale-

Table E.13: Service Roads/Slip Roads

EXECUTIVE SUMMARY

S.	Ex. Cha	-	De. (Chainage ((km)	Slip/ Service	Remarks
No.	From	То	From	То	Length	Road	Kemarko
							Chicali)
11	499.085	499.915	496.340	497.170	0.830	Slip Road	2 Lane PUP
12	499.915	500.585	497.170	497.840	0.670	Slip Road	FO/Viaduct (GOAIDC, Binani Fibre Glass Factory)
13	500.585	502.245	497.840	499.500	1.660	Slip & Service Road	VUP (Road to Central Jail)
14	502.245	504.595	499.500	501.850	2.350	Slip Road	Fly Over (Karaswada Jn.)
15	504.595	506.315	501.850	503.570	1.720	Slip Road	VUP (Bastora- Mapusa
16	506.315	509.465	503.570	506.720	3.150	Slip Road	Fly Over to Mapusa and LVUP Guirim
17	509.465	514.920	506.720	512.120	5.400	Service Road	EC (Urban Porvorim)
18	518.400	520.250	518.400	520.250	1.850	Service Road	VUP (Road to Merces)
19	520.250	520.970	520.250	520.970	0.720	Slip Road	VUP (Road to Durgawadi)
20	520.970	522.800	520.970	522.840	1.870	Slip Road	VOP (Road to Donapaula on RHS)
21	535.600	538.660	535.600	538.660	3.060	Service Road	EC (NH-17B, Vasco Road & NH-17B Ponda missing link)
22	538.660	542.800	538.660	542.840	4.180	Service Road	EC (Cansaulim Junction, Verna Rly. Station road
23	554.801	555.131	554.900	555.230	0.330	Service Road	End of Margao Bypass
24	555.760	556.580	555.900	556.720	0.820	Slip Road	VUP (Dramapur)
25	556.580	557.536	556.720	557.700	0.980	Slip Road	Start of Cuncolim Bypass
26	558.736	559.686	558.900	559.850	0.950	Slip Road	VUP (Chinchinim)
27	564.236	564.836	564.400	565.000	0.600	Slip Road	VUP (Quepem)
28	567.446	567.806	567.610	568.200	0.590	Slip Road	VUP (Bali)
29	567.284	567.834	568.200	568.750	0.550	Slip Road	Cuncolim bypass end
30	603.640	604.490	603.600	604.450	0.850	Slip Road	LVUP (Mashem)
31	607.350	608.100	606.950	607.700	0.750	Slip Road	LVUP (Loliem)

E.8.4 Underpass/Overpass/Elevated Corridors

In order to avoid conflict of traffic on project road with the traffic on cross roads, Vehicular underpasses (VUPs) or Vehicular Overpass (VOPs) or Elevated Corridors are proposed at the intersections of major cross roads with the project highway. It is proposed to provide 15 no's of VUPs, 4 no's of LVUPs, 4 no's of PUP/CUPs, 1 no's

VOPs, 4 Fly Over and 3 no's Elevated Corridors along the project highway at the following locations as given in below.

S. No.	Existing Chainage (Km)	Design Chainage (Km)	Span / Opening (m)	Underpass	Remarks
1	475.400	475.400	1 x 20.0 x 5.5	VUP	To Patradevi
2	480.829	480.526	1 x 20.0 x 5.5	VUP	To Mopa -
3	481.800	481.600	1 x 10.5 x 4.5	CUP	To Uguem
4	486.100	485.320	1 x 20.0 x 5.5	VUP	To Shiroda
5	490.200	488.357	1 x 20.0 x 5.5	VUP	To Pernem
6	491.600	489.744	1 x 10.5 x 4.5	LVUP	To Govt. Colleae
7	495.500	493.650	1 x 7.0 x 3.0	PUP	To School
8	496.400	494.446	1 x 20.0 x 5.5	VUP	To Industrial Area
9	497.800	495.864	1 x 7.0 x 3.0	CUP	Access for
10	498.850	496.908	1 x 10.5 x 4.5	LVUP	To Colvale - Colvale
11	499.450	497.459	1 x 7.0 x 3.0	PUP	Existing 2 Lane PUP
12	501.850	499.901	1 x 40.0 x 5.5	VUP	To Central Jail
13	505.900	503.932	1 x 20.0 x 5.5	VUP	To Bastora - Mapusa
14	519.800	519.811	1 x 20.0 x 5.5	VUP	To Merces
15	520.600	520.612	1 x 20.0 x 5.5	VUP	To Durgawadi
16	556.200	556.280	1 x 20.0 x 5.5	VUP	To Dramapur
17	557.261	557.400	1 x 20.0 x 5.5	VUP	Cuncolim Bypass
18	-	559.350	1 x 20.0 x 5.5	VUP	To Chinchinim
19	_	564.660	1 x 20.0 x 5.5	VUP	To Quepem
20	-	567.800	1 x 20.0 x 5.5	VUP	To Bali
21	567.556	568.450	1 x 20.0 x 5.5	VUP	Cuncolim Bypass
22	604.000	603.980	1 x 10.50 x 4.5	LVUP	Mashem
23	607.651	607.250	1 x 10.50 x 4.5	LVUP	Pollem

Table E.14: Vehicular Underpasses (VUP)

Table E.15 (a): Vehicular Overpasses (VOP)

SI. No.	Existing Chainage (Km)	Design Chainage (Km)	Span / Opening (m)	Remarks
1	521.900	521.770	1 x 30.00 x 5.5	To Donapaula – MDR 3

Table E.15 (b): Fly Over

SI. No.	Design Chainage (Km)	Span / Opening (m)	Remarks
1	492.554	15 + 30 + 15	Mopa Airport
2	496.209	15 + 30 + 15	Binani – GOA IDC
3	501.300	15 + 30 + 15	Karaswada Jn
4	505.920	15 + 30 + 15	Mapusa- Green Park

Table E.16: Elevated Corridors

S. No.	I Acation (Design Chanages) (Kiii)		Proposed Span	Total width of		
NO.		From	То	Length	Arrangement	Structure
1	Porvorim	508.644	512.344	3700	30+47x50+40+65 +40+13x50+40+6 5+40+7x50+30	29
2	Airport Link	537.540	538.390	850	30+50+40+65+40 +8x50+40+65+40 +50+30	29
3	Verna	539.297	540.897	1600	30+12x50+40+65 +40+12x50+40+6 5+40+50+30	29

E.9 Structures Improvement Proposals

Recommendation of structure improvements, including widening, repair and reconstruction / new construction of bridges, other cross drainage structures and the proposals are given below. Where Minor bridges are proposed to be widened, it is recommended that the existing railing to be replaced with RCC crash barrier by chipping the edge of deck and exposing the reinforcement and then casting the RCC crash barrier.

Widening of existing pipe culverts smaller than 900 mm shall be replaced with 1200 mm dia Pipe Culverts. Existing 900 mm dia pipe culverts can be widened using 900 mm dia pipes.

E.9.1 Rehabilitation scheme for Existing Structures

Rehabilitation measures for existing bridges & other structures are described briefly below:

The basic measures to be taken into account are:

- Repair of existing scour protection/bed protection or slope protection (wherever necessary).
- Replace existing wearing coat on all structures
- Replace expansion joints in all bridges.
- Replace bearings for bridges.
- Repair corroded reinforcement.
- Repair of cracks by epoxy injection RCC elements.
- Repair of cracks by PMC mortar Stone masonry elements.

E.9.2 Major Bridge

A) Construction of New Major Bridge

SI. No	Ex. Chainag	nag chainag structural structure span		Total W th structu	e		
NO	e Km	e km	on structure type	arrangement	LHS	RHS	
1	481+385	481+045	4 lane width	PSC I- girder	3x25.0	12.5	12.5

B) Rehabilitation & Repair of Existing Major Bridges

S. No	Ex. Chainage Km	Design chainage km	Proposed structural Configuration	Proposed structure	Propose d span arrange		Width of the ture(m)
			Configuration	type	ment	LHS	RHS
1	498+253	495+600	2 lane width	PSC Box girder	1x51+3x 60+ 1x21	12.5	Existing

Note: RR = Repair and Rehabilitation

E.9.3 Minor Bridge

A) New Construction and Reconstruction of New Minor Bridges

S. No.	Existing chainage	Design Chainage (Km)	Proposed structural Type	Existing span arrangement (m)	Proposed span arrangement (m)	Total width (m)
1	-	477+665	Box	-	1x8	12.5+3+12.5
2	-	485+085	Box	-	1x10	12.5+3+12.5

3	492+267	489+620	PSC Girder	2x5.8	1x25	12.5+3+12.5
4	500+520	497+750	Box	1x7.5	1x7.5	12.5+3+12.5
5	505+550	502+800	RCC Girder	13x1.4 dia	3x18	12.5+3+12.5
6	506+580	503+825	RCC Girder	13x1.4 dia	3x18	12.5+3+12.5
7	541+045	541+075	Box	1x6.0	1x6.0	12.5+3+12.5
8	-	558+600	Box	-	1x10	12.5+3+12.5
9	-	562+340	Box	-	1x6	12.5+3+12.5
10	-	562+790	Box	-	1x6	12.5+3+12.5
11	-	563+950	PSC Girder	-	1x25	12.5+3+12.5
12	-	564+805	Box	-	1x6	12.5+3+12.5
13	-	566+550	Box	-	1x10	12.5+3+12.5
14	570+200	571+190	Box	1x10.5	1x10.5	12.5+3+12.5
15	570+830	571+780	Box	1x6.0	1x6.0	12.5+3+12.5
16	-	577+200	PSC Girder	-	1x25	12.5+3+12.5
17	-	578+320	RCC Girder	-	1x20	12.5+3+12.5

B) Widening, Repairs and Rehabilitation of Existing Minor Bridges:

	Design Structural Type Existing span			Widening		
Existing chainage	Chainage (Km)	Existing	Proposed	arrangement Proposed spa		width
540+120	540+150	Box	Box	1x6.0	1x6.0	12.5
542+575	542+625	Box	Box	1x6.0	1x6.0	12.5
555+620	555+725	slab	Slab	5x8.5	5x8.5	12.5
571+560	572+500	slab	Box	1x10.5	1x10.5	12.5
584+800	584+125	slab	Box	1x10.0	1x10.0	12.5
	540+120 542+575 555+620 571+560 584+800	Existing chainage Chainage (Km) 540+120 540+150 542+575 542+625 555+620 555+725 571+560 572+500 584+800 584+125	Existing chainage Chainage (Km) Existing 540+120 540+150 Box 542+575 542+625 Box 555+620 555+725 slab 571+560 572+500 slab 584+800 584+125 slab	Existing chainageChainage (Km)ExistingProposed540+120540+150BoxBox542+575542+625BoxBox555+620555+725slabSlab571+560572+500slabBox	Existing chainageChainage (Km)ExistingProposedarrangement (m)540+120540+150BoxBox1x6.0542+575542+625BoxBox1x6.0555+620555+725slabSlab5x8.5571+560572+500slabBox1x10.5584+800584+125slabBox1x10.0	Existing chainage chainage (Km)Existing ExistingProposedarrangement (m)Proposed span arrangement (m)540+120540+150BoxBox1x6.01x6.0542+575542+625BoxBox1x6.01x6.0555+620555+725slabSlab5x8.55x8.5571+560572+500slabBox1x10.51x10.5584+800584+125slabBox1x10.01x10.0

Note: 1) RR= Repair and rehabilitation

E.9.4 Road Over Bridge

SI. No	Existing Chainage	Proposed Chainage	Proposed structure	Proposed structure	Proposed Span ar-		otal th(m)	
NO	(km)	(km)	configuration	Туре	rangement (m)	LHS	RHS	
	-Nil-							

E.10 Project Facilities

The project facilities are summarized below:

Table E.18: Project Facilities

S. No.	Design Chainage (Km)	Location	Side (LHS/RHS)					
	Toll Plaza							
1	507.050	Toll Plaza - 1						
2	583.700	Toll Plaz	za - 2					
	Tr	uck Lay-bye						
1	498.300	Truck Lay-bye RHS						
2	498.450	Truck Lay-bye LHS						

S. No.	. No. Design Chainage Location (Km)		Side (LHS/RHS)
3	541.400	Truck Lay-bye	LHS
4	541.500	Truck Lay-bye	RHS
5	605.500	Truck Lay-bye	LHS

S. No.	Bus bay(BB) or Bus shelter (BS)	Design Chainage (Km)	Name of Village	Side (LHS/RHS)
1	BS	475.250	Patradevi	LHS
2	BS	475.550	Patradevi	RHS
3	BS	480.400	Tamboxem	LHS
4	BS	480.610	Tamboxem	RHS
5	BS	481.470	Uguem	LHS
6	BS	481.770	Uguem	RHS
7	BS	484.440	Naibag Junction	LHS
8	BS	485.500	Naibag Junction	RHS
9	BS	487.350	Pernem Rural	LHS
10	BS	487.670	Pernem Rural	RHS
11	BS	488.802	Bhutwadi Junction	LHS
12	BS	489.135	Bhutwadi Junction	RHS
13	BS	491.600	Mopa Airport	LHS
14	BS	492.000	Mopa Airport	RHS
15	BS	492.780	Dhargalim	LHS
16	BS	493.010	Dhargalim	RHS
17	BS	493.550	Industrial Area	LHS
18	BS	493.850	Industrial Area	RHS
19	BS	495.950	Colvale	LHS
20	BS	496.000	Colvale	RHS
21	BS	496.550	Colvale	LHS
22	BS	496.820	Colvale	RHS
23	BS	497.265	GOAIDC	LHS
24	BS	497.440	GOAIDC	RHS
25	BS	498.958	Central Jail	LHS
26	BS	499.288	Central Jail	RHS
27	BS	500.310	Karaswada Junction	LHS
28	BS	500.700	Karaswada Junction	RHS
29	BS	502.980	Basthora	LHS
30	BS	503.300	Mapusa	RHS
31	BS	505.250	Mapusa	LHS
32	BS	506.055	Mapusa	RHS
33	BS	507.980	Porvorim	LHS

EXECUTIVE SUMMARY

S. No.	Bus bay(BB) or Bus shelter (BS)	Design Chainage (Km)	Name of Village	Side (LHS/RHS)
34	BS	511.350	Porvorim	RHS
35	BS	519.663	Merces Junction	LHS
36	BS	519.963	Merces Junction	RHS
37	BS	520.460	Durgawadi	LHS
38	BS	520.760	Durgawadi	RHS
39	BS	521.640	Bambolim	LHS
40	BS	521.900	Bambolim	RHS
41	BS	537.700	Airport	LHS
42	BS	538.240	Airport	RHS
43	BS	539.400	Cansaulim	LHS
44	BS	540.700	Cansaulim	RHS
45	BS	556.130	Dramapur	LHS
46	BS	556.430	Dramapur	RHS
47	BS	559.200	Chinchinim	LHS
48	BS	559.500	Chinchinim	RHS
49	BS	564.510	Quepem	LHS
50	BS	564.850	Quepem	RHS
51	BS	567.700	Bali	LHS
52	BS	567.900	Bali	RHS
53	BS	568.300	Cuncolim	LHS
54	BS	568.620	Cuncolim	RHS
55	BS	603.850	Mashem	LHS
56	BS	604.200	Mashem	RHS
57	BS	607.100	Loliem	LHS
58	BS	607.400	Loliem	RHS

E.11 Estimation and Costing

E.11.1 General

Based on the improvement options considered, the quantities are estimated for:

- Rehabilitation of existing carriageway
- Construction of new carriageway
- Road side furniture including safety devices
- Passenger amenities and toll gates
- Project facilities

The pavement quantities are worked out for the adopted Rigid pavement design made based on the traffic data and other design criteria. The analysis of rates has been carried out as per the Standard Data Book of MORT&H.

E.11.2 Unit Rates

The Unit rates of all items of construction work have been analyzed as per the guidelines given in Standard Data Book of MORT&H. The rates of materials are obtained from the SOR of Goa - 2014. Market rates are adopted for items for which the rates are not available in SOR. The location of material quarries like gravel, sand, crushed aggregate are obtained from the material investigations. In respect of hourly hire and operating cost of various road construction machinery and equipment, rates given in MORT&H Standard Data Book and SOR are considered. For machinery and equipment not covered by these two, the prevailing market rates are considered. The labour rates are taken from SOR. Unit rates so arrived have been compared with reference to the rates of similar items in the ongoing projects under NHAI and are found comparable.

E.11.3 Construction Quantities

The quantities of earthwork in cut and fill are calculated based on the highway design. The pavement quantities like Sub grade, GSB, DLC, PQC, WMM, DBM and BC are computed using the Pavement design and the typical cross section adopted. Adequate provision is made for road side furniture including safety devices and miscellaneous items.

The summary of cost is as given below and detailed computations are furnished in Volume-IV Preliminary Costing.

The second se	De als 1	De als D	Tatal American
Item Description	Pack-1 Km 475 to Km 541	Pack-2 Km 541 to Km 611	Total Amount
			(0.200
BILL NO: 1 - SITE CLEARANCE	4	20,295,	69,266,
	8,971,353	461	815
BILL NO: 2 - EARTHWORKS	1,21	1,185,341,	2,397,703,
	2,362,550	333	883
BILL NO: 3 - SUB-BASE AND	98	463,739,	1,450,353,
BASE COURSES	6,614,811	089	900
BILL NO: 4A - BITUMINOUS	43	162,802,	598,421,
WORKS FOR FLEXIBLE PAVEMENT	5,619,770	179	949
BILL NO: 4B - RIGID PAVEMENT	3,14	3,020,582,	6,161,846,
	1,263,899	487	387
BILL NO: 5 - CULVERTS	20	194,998,	398,838,
	3,839,987	348	335
BILL NO: 6 (A) - BRIDGES	8,28	425,817,	8,715,306,
	9,488,753	511	264
BILL NO: 6 (B) - REPAIR AND RE-		7,685	15,370,
HABILITATION OF EXISTING	7,685,381	,381	761
BRIDGES		,	
BILL NO: 7 - DRAINAGE AND	3,32	2,864,147,	6,192,376,
PROTECTION WORKS	8,229,226	269	496
BILL NO: 8 – JUNCTIONS	10	96,056,	201,218,
	5,162,761	058	819
BILL NO: 9 - TRAFFIC SIGNS,	34	147,341,	495,264,
MARKINGS AND APPURTENANCES	7,923,034	698	732
BILL NO: 10 – MISCELLANEOUS	30	153,960,	455,537,
	1,577,108	548	656
BILL NO: 11- MAINTENANCE	4	34,309,	75,744,
DURING CONSTRUCTION	1,435,237	227	464
BILL NO: 12	1,88	3,542,000,	5,428,000,
	6,000,000	000	000
Extra 5% for detail design during	40	246,381,	653,105,
Final Feasibility	6,723,477	532	009
Total Construction Cost	20,742	12,565,458,1	33,308,355,4
	,897,349	21	70
			/0

Table E.19: Item wise Costing

E.12 Toll Revenue & Financial Analysis

E.12.1 Approach to Financial Evaluation

The main objective of financial analysis is to examine the viability of implementing the project on BOT basis. The analysis attempts to ascertain the extent to which the investment can be recovered through toll revenue and the gap, if any, be funded through Grant / Subsidy. This covers aspects like financing through debt and equity,

loan repayment, debt servicing, taxation, depreciation, etc. The viability of the project is evaluated on the basis of Project FIRR (Financial Internal Rate of Return) on total investment). The FIRR is estimated on the basis of cash flow analysis, where both costs and revenue have been indexed to take account of inflation. Financial analysis has been carried out for the entire project road with debt equity ratio of 70:30. The basic indicators for assessing the Financial Viability of the project are as follows.

NPV (Net Present Value): The NPV for the project should be positive when a discount rate representing the opportunity cost along with a risk premium is applied in the financial analysis.

FIRR (Financial Internal Rate of Return): The FIRR should have a value above the discount rate (opportunity cost).

E.12.2 Model Concession Agreement

Financial analysis was carried out based on following Assumptions:

Time Assumptions:

- Concession Period has been fixed to the year in which the projected traffic would cross the design capacity of the Project Road.
- 2. Concession Period included the time required for construction also.

Economic Assumptions:

3. Annual Inflation rate of 5% has been considered for determining the Project Cost, Routine Maintenance and Periodic Maintenance.

Project Cost Assumptions*:

- 1. Contingency cost has been taken as 1% of the civil construction cost.
- 2. IC&Pre-Operative Expenses cost has been taken as 1% of Estimated Project Cost.
- 3. Financing Cost has been taken as:

Civil Cost	% on Debt amount
Up to 500 crores	2%
Between 500 crores to 1000 crores	1.5%
More than 1000 crores	1%

- 4. Interest rate for calculation of Interest during Construction has been taken as 12.5% (Base rate 10%+2.5% as per MoRTH Circular dated 16/06/14)
- 5. The Construction cost for the up gradation of the Project road does not include the Environmental, Social, Land Acquisition, Utility relocation and Tree cutting cost for the purpose of Financial Analysis.

Reference*: Guidelines/circular – NHAI Policy matter: Technical (70/2010) circulated vide NHAI, HQ letter No. 11041/218/2007-Admin, dated 08/12/2010.

Financing Assumptions:

- a) The Debt has been considered as 70% of the Net Project Cost.
- b) The Equity has been considered as 30% of the Net Project Cost.
- c) Maximum Government/Client Contribution (Grant) is 40% of TPC.
- d) Toll rates have been rounded to nearest 5 rupees.

Expenditure Assumptions:

- a) Cost of Routine Maintenance and Periodic Maintenance has been taken from NHAI circular (NHAI/11033/CGM(Fin.)/2011 dated 29/04/11)
- b) Interest rate on Debt has been considered as 12.50% per annum.

Other Assumptions:

- a) Loan Repayment Period- 10 Years.
- b) Tax Exemption/Tax Holiday- 10 Years of Concession Period to get maximum advantage of tax exemption. The MAT rate has been made applicable in those years.
- c) Income Tax rate- 33.063% & MAT- 20.389%

E.12.3 Location of Toll Plaza

The fee levied and collected for use of a National highway shall be due and payable at the toll plazas. The toll revenue has been calculated considering the proposed toll plazas at the following locations as shown below.

Table E.21: Location of Toll Plazas and their tolling lengths

Toll Plaza(TP)	Existing	Chainage	s (km)	Bypass	Structures Length
	From	То	Length	Length (km)	(km)
TP-1 at Km 509.500 near Ex. TP (Guirim, North Goa)	475.040	541.000	66.00	-	5.98
TP-2 at Km 584.5 near Chapoli Dam (South Goa)	541.000	611.000	70.00	11+8+9 =28 Margaon, Cuncolim & Canacona	0.125

E.12.4 Tollable Traffic

The classified traffic volume count data collected has been analyzed to assess the traffic intensity at all the proposed toll plaza locations (reaches). The summary of Annual Average Daily Traffic (AADT in number of vehicles) at the proposed toll plaza location is given below.

Table E.22: Tollable Traffic

Location of Toll	Tollable Traffic								
Plazas	Cars	M. Bus	Bus	LCV	2 AT	3 AT	M AT	M. LCV	Total
TP-1 @ Km 509.5	5426	80	395	787	1091	1047	526	466	9818
TP-2 @ Km 584.5	5616	146	683	486	426	571	465	621	9014

E.12.5 Toll Revenue

A summary of Toll revenues has been presented below.

Table E.23: Toll Revenu	e
-------------------------	---

Yea	ars	TP-1 at Kr	n 509.500	TP-2 at Km 584.500		
From	То	Rs Crores/ Year	Rs Lakhs / Day	Rs Crores/ Year	Rs Lakhs / Day	
2015	2016	83.32	22.83	42.25	11.58	
2016	2017	93.53	25.62	47.96	13.14	
2017	2018	105.29	28.85	54.10	14.82	
2018	2019	117.58	32.21	60.08	16.46	
2019	2020	131.23	35.95	67.81	18.58	
2020	2021	147.56	40.43	76.34	20.92	
2021	2022	165.90	45.45	86.03	23.57	
2022	2023	185.00	50.68	96.87	26.54	
2023	2024	207.73	56.91	108.98	29.86	
2024	2025	232.91	63.81	124.14	34.01	

Ye	ars	TP-1 at Kr	m 509.500	TP-2 at Km 584.500		
From	То	Rs Crores/ Year	Rs Lakhs / Day	Rs Crores/ Year	Rs Lakhs / Day	
2025	2026	261.29	71.59	139.45	38.20	
2026	2027	292.81	80.22	156.21	42.80	
2027	2028	327.96	89.85	175.27	48.02	
2028	2029	366.49	100.41	198.82	54.47	
2029	2030	412.17	112.92	222.16	60.86	
2030	2031	460.59	126.19	251.29	68.85	
2031	2032	517.38	141.75	283.89	77.78	
2032	2033	580.76	159.11	320.07	87.69	
2033	2034	650.75	178.29	356.16	97.58	
2034	2035	728.44	199.57	400.36	109.69	
2035	2036	818.99	224.38	454.49	124.52	
2036	2037	915.19	250.74	509.99	139.72	
2037	2038	1027.53	281.52	571.22	156.50	
2038	2039	1152.76	315.82	646.16	177.03	
2039	2040	1292.93	354.23	723.22	198.14	
2040	2041	1455.41	398.74	815.24	223.35	
2041	2042	1635.93	448.20	919.13	251.82	
2042	2043	1838.60	503.73	1034.14	283.33	
2043	2044	2064.13	565.51	1172.00	321.10	
2044	2045	2325.68	637.17	1317.24	360.89	
2045	2046	2615.73	716.64	1488.30	407.75	

E.12.6 Tax Calculation Model

According to the scheme under section 80-IA, 100% of the profit is deductible for the continuous period of ten years out of the concession period. However the benefit deduction is available only for ten consecutive assessment years falling within the concession period. The tax rate adopted for this study is 33.063% (30% tax + 7%surcharge + 3% education cess) following the deduction of depreciation and amortization. Minimum Alternate Tax (MAT) of 20.389% (18.5% tax + 7% surcharge + 3% education cess) has been taken into account for the total concession period.

E.12.7 Civil Cost of the Project and Interest during construction (IDC)

The cost of Civil works of the project including the improvement of existing carriageway and cost of toll plaza and details are given below:

	Package	Costing Length in km	Stretches excluded in project cost	Civil Cost (Crores)		
AA/HD/1824		29	aarvee associate			

Table E.24: Cost Summary

Package-1	From Km 475.040 to Km 541.000	46.96	Mandovi Bridge (3km) Zuari Bridge (13km)	2075
Package-2	From Km 541.000 to Km 611.000	39.53	Margaon Bypass (10km) Canacona Bypass 17km)	1257

The interest during construction, which is on the cost of funding incurred on the project, has been calculated on the basis of an interest rate of 12.50% per annum as per the present trends.

The total landed cost for the project at the end of the construction period has been estimated by adding the (capitalizing) interest during construction (IDC). The total landed cost at the time of commissioning is thus estimated and is given below

Concessionaire Cost	TP-1	TP-7
Total Civil Construction cost in 2017 year	2178 75	1319 85
Contingencies/OC @ 1 N% of TPC	21 79	13 20
Total FPC Cost	2200 54	1333 05
IC & Pre-onerative expenses @1% of FPC	22 በ1	13 33
Financing Cost @ 1 0 % on Deht	11 50	7 0
Escalation @ 5% Per Anum	248 49	150 53
Interest During Construction	181 89	110 16
TOTAL PROJECT COST in crores	2664	1614

 Table E.25: Summary of Concessionaire cost in Crores

E.12.8 Financial Analysis Considerations

The main objective of undertaking this study is to assess whether the project is financially viable or not. It is important to note that the proposal should be an attractive proposition for private sector participation under Build, Operate and Transfer (BOT) system. The basic methodology followed for estimating the financial viability of the project is to calculate the FIRR (Financial Internal Rate of Return) on the investment for the project.

Following assumptions are taken into consideration for the financial analysis: -

- a) Debt Equity ratio :- 70:30
- b) Subsidy/Grant 40% (maximum)
- c) Concession period (Including construction period) 20 years.
- d) Escalation 5%
- e) Interest on Debt 12.5%
- f) Project Phasing: First year 20%, Second year 40% and Third year -40%
- g) Loan Repayment period 10 years

- h) Tax rebate-10 years(100% exemption for 10 years out of block of 20 years).
- i) Depreciation by Straight line method 100% for Concession Period
- j) Depreciation by Written down value method 10%
- k) Financing cost 1.0% of TPC.

E.12.9 Financial Viability on BOT Toll Basis

Based on the project structure traffic study and toll rate analysis, financial feasibility analysis has been carried out as per the methodology outlined in earlier sections. The objective of the financial analysis is to ascertain the existence of sustainable project returns, which shall successfully meet the expectations of its financial investors. The analysis reveals various FIRR values corresponding to each year of toll operation. FIRR for the Returns on Investment and Returns on Equity for the concession period of 20 years has been examined and tabulated below.

Toll Plaza	Tolling Lengths (km)			Grant	Conce ssion	Project FIRR	Equity
	From	То	Length	(%)			FIRR (%)
TP-1 @ Km 509.5	475.040	541.000	66.00	40%	20Y	11.55%	13.20%
TP-2 @ Km 584.5	541.000	611.000	70.00	40%	20Y	5.37%	11.04%

Table E.26: Financial Analysis Results

The Equity IRR under BOT-Toll model comes lower than the minimum requirement of 15%, hence the Project is not viable under BOT-Toll model.

E.12.10 Financial Viability on Hybrid Annuity Mode

1. Bid Project Cost

The Parties expressly agree that the cost of construction of the Project, as on the Bid Date, which is due and payable by the Authority to the Concessionaire, shall be deemed to be the "Bid Project Cost". The Parties further agree that the Bid Project Cost for payment to the Concessionaire shall be inclusive of the cost of construction, interest during construction, working capital, physical contingencies and all other costs, expenses and charges for and in respect of construction of the Project, save and except any additional costs arising on account of variation in Price Index, Change of Scope, Change in Law, Force Majeure, which costs shall be due and payable to the

Concessionaire in accordance with the provisions of the Agreement.

2 Adjusted Bid Project Cost

2.1 The Bid Project Cost specified above shall be revised from time to time in accordance with the variation in Price Index occurring after the Reference Index Date immediately preceding the Bid Date.

2.2 The Bid Project Cost adjusted for variation between the Price Index occurring between the Reference Index Date preceding the Bid Date and the Reference Index Date immediately preceding the Appointed Date shall be deemed to be the Bid Project Cost at commencement of construction.

2.3 For every month occurring after the Appointed Date, the Authority shall compute the variation in Price Index occurring between the Reference Index Date preceding the Bid Date and the Reference Index Date preceding the date of Invoice, and shall express the latter as a multiple of the former (the "Price Index Multiple"). All Invoices to be submitted by the Concessionaire to the Authority for and in respect of the Construction Period shall be the product of the relevant proportion of the Bid Project Cost and the Price Index Multiple applicable on the date of Invoice.

3 Payment of Bid Project Cost

3.1 [40% (forty per cent)] of the Bid Project Cost, adjusted for the Price Index Multiple, shall be due and payable to the Concessionaire in 5 (five) equal installments of [8% (eight per cent)].

3.2 The remaining Bid Project Cost, adjusted for the Price Index Multiple, shall be due and payable in [30 (thirty)] biannual installments commencing from the 180th (one hundred and eightieth) day of COD.

4 Payment during Construction Period

Upon receiving a report from the Independent Engineer certifying the achievement of the below mentioned Payment Milestones, the Authority shall disburse, within 15 (fifteen) days of the receipt of each such report, an installment equal to 8% (eight per cent) of the Bid Project Cost, adjusted for the Price Index Multiple as applicable on the Reference Index Date preceding the date of that report.

The Payment Milestone for release of payment during Construction Period shall be as under:

- a) I (first) Payment Milestone On achievement of 20% Physical Progress
- b) II (second) Payment Milestone On achievement of 40% Physical Progress
- c) III (third) Payment Milestone On achievement of 60% Physical Progress

d) IV (fourth) Payment Milestone – On achievement of 75% Physical Progress

e) V (fifth) Payment Milestone – On achievement of 90% Physical Progress Provided that in case of Change of Scope, the Physical Progress shall be recalculated to account for the changed scope.

5 Annuity Payments during Operation Period

The (the "Completion Cost" shall be the summation of A, B, C, D, E, and F below:

- A. 20% of the Bid Project Cost adjusted for the Price Index Multiple as applicable on the Reference Index Date preceding the date of report confirming 20% Physical Progress.
- B. Another 20% of the Bid Project Cost adjusted for the Price Index Multiple as applicable on the Reference Index Date preceding the date of report confirming 40% Physical Progress.
- C. Another 20% of the Bid Project Cost adjusted for the Price Index Multiple as applicable on the Reference Index Date preceding the date of report confirming 60% Physical Progress.
- D. Another 15% of the Bid Project Cost adjusted for the Price Index Multiple as applicable on the Reference Index Date preceding the date of report confirming 75% Physical Progress.
- E. Another 15% of the Bid Project Cost adjusted for the Price Index Multiple as applicable on the Reference Index Date preceding the date of report confirming 90% Physical Progress.
- F. Another 10% of the Bid Project Cost adjusted for the Price Index Multiple as applicable on the Reference Index Date preceding the COD.

The Parties acknowledge and agree that the Authority has paid a portion of the Completion Cost as payments during Construction Period. The balance Completion Cost remaining shall be due and payable during the Operation Period.

The Completion Cost remaining to be paid in pursuance of the provisions of above shall be due and payable in biannual installments over a period of [15 (fifteen)] years commencing from COD, (the "Annuity Payments"). The 1st (first) installment of Annuity Payments shall be due and payable within 15 (fifteen) days of the 180th(one hundred and eightieth) day of COD and the remaining installments shall be due and payable within 15 (fifteen) days of the use and payable within 15 (fifteen) days of completion of each of the successive six months ("the Annuity Payment Date"). Each of the Annuity Payments due and payable during the years following the COD shall be as under:

Annuity following the COD	Percentage of Completion Cost remaining to
Annuity following the COD	be paid on COD
1st Annuitv	2 10%
2nd Annuity	2.17%
3rd Annuity	2 24%
4th Annuity	2 31%
5th Annuity	2.38%
6th Annuity	2.45%
7th Annuitv	2.52%
8th Annuity	2 60%
9th Annuity	2.68%
10th Annuity	2.76%
11th Annuitv	2.84%
12th Annuitv	2.93%
13th Annuity	3 በ2%
14th Annuitv	3.11%
15th Annuity	3.20%
16thAnnuitv	3.30%
17th Annuity	3.40%
18th Annuity	3 5በ%
19th Annuity	3.61%
20th Annuity	3 72%
21st Annuity	3.83%
22nd Annuity	3.94%
23rd Annuity	4 በ6%
24th Annuitv	4.18%
25th Annuity	4 25%
26thAnnuitv	4.25%
27th Annuitv	4.44%
28th Annuity	4 71%
29th Annuity	4.75%
30th Annuity	4 75%

Each of the biannual installments payable hereunder shall be paid along with interest. Interest shall be due and payable on the reducing balance of Completion Cost at an interest rate equal to the applicable Bank Rate [plus 3% (three per cent)]. Such interest shall be due and payable biannually along with each installment.

6.0 O&M Payments

All O&M Expenses shall be borne by the Concessionaire and in lieu thereof; a lump sum financial support in the form of biannual payments shall be due and payable by the Authority, which shall be computed on the amount quoted by the selected bidder under its O&M Bid. The Parties further acknowledge and agree that any O&M

Expenses in excess of the O&M Payments shall be borne solely by the Concessionaire, save and except as expressly provided.

The O&M Payments due and payable to the Concessionaire shall be paid in 2 (two) equal biannual installments and disbursed by the Authority together with the corresponding installments of Annuity Payments.

Each installment of O&M Payment shall be the product of the amount **determined** in accordance with the Price Index Multiple on the Reference Index Date preceding the due date of payment thereof.

	Tolling Lengths (km)			Const.	Concosa	Bid Parameters		
Toll Plaza	From	То	Length	Support (%)	Concess ion Period	Bid Project Cost	First Year O&M	
TP-1 @ Km 509.5	475.0	541.0	66.00	13.20%	15Y	2800	13.58	
TP-2 @ Km 584.5	541.0	611.0	70.00	11.04%	15Y	1700	12.35	

Table E.27: Financial Analysis Results on Hybrid Annuity Mode (HAM)

E.12.11 Conclusion

A minimum return on equity of around 15% could be considered satisfying the requirement of prospective concessionaire. In view of this, it can be concluded that both the Toll Plazas @ Km 509.500 and @ Km 584.500 are financially not viable with a maximum grant of 40% and a general concession period of 20 year.

Hence, it is proposed to let out this project for development under EPC Mode or Hybrid Annuity Mode.