

REPORT FOR THE PROPOSED PROJECT ON

Rehabilitation and Upgradation of NH 565 from KM 133.922 to 154.900 to two lanes with paved shoulder in the State of Andhra Pradesh under NHDP IV

Located: Davupally in Guntur district and ends near Mallepalem Junction in Prakasam district) for 20.978 Km Road length

BY

GREENTECH ENVIROS, # 17-1-391/S/505, Road no. 12, Flat no 201, S.R. Residency, Singareni Officers Colony, Saidabad, Hyderabad, Telangana, India 500059 Phone: 9290516935, 8247298769 Email: greentechenviros@gmail.com

STUDY PERIOD: November, 2021

Acknowledgments

We acknowledge the support from the Principle Chief Conservator of Forests (Wildlife) and Chief Wildlife Warden, Govt. of Andhra Pradesh, Conservator of Forest, Guntur, Divisional Forest Officer, Markapur Wildlife management Division and the field staff during our field survey. We are thankful to Forest department for all required permissions and extending necessary support during our field survey.

Table of Contents

1.	IN	IRODUCTION	5
	1.1. IM	PORTANCE OF BIOLOGICAL SURVEY AND NEED FOR THE PRESENT STUDY	5
	1.2. PR	OJECT BACKGROUND	5
	1.3. PR	OJECT DESCRIPTION	6
	1.4. GU	IDELINES FOR WILDLIFE ISSUES DURING LINEAR EXPANSION PROJECTS	8
	1.5. SC	OPE OF THE STUDY:	9
	1.6. I H	E KEY OBJECTIVES OF THE STUDY:	10
2.	ST	UDY AREA	11
	2.1. BIO	DGEOGRAPHIC DESCRIPTION OF THE STUDY AREA	12
	2.2. PR	OTECTED AREAS & ECO-SENSITIVE AREAS IN THE CORE AND BUFFER ZONES (UPTO	TO
	10	KM RADIUS)	13
	2.3. IM	PORTANCE TO THE COUNTRY, REGION	15
3.	MI	ETHODS ADOPTED	18
	3.1. sou	JRCES OF DATA COLLECTION:	18
	3.2. Eq	UIPMENT / INSTRUMENTS DEPLOYED	18
	3.3. Ve	GETATION SURVEY METHOD	18
	3.4. FAU	UNAL SURVEY METHOD:	19
4.	SU	RVEY RESULTS	20
	4.1. KE	Y FINDINGS OF BIODIVERSITY MONITORING	20
	4.2. VE	GETATION FOUND DURING THE FIELD STUDY:	20
	4.3. FA	UNA OF THE STUDY AREA	25
5.	IN	IPACTS OF PROJECT ACTIVITIES AND MITIGATION PLAN	27
	5.1. Jus	TIFICATION OF THE PROJECT:	27
	5.2. Spe	CIES SPECIFIC IMPACTS:	27
	5.3. WI	LDLIFE RELATED ISSUES:	29
	5.3.1.	Impact study for Direct habitat loss:	30
	5.3.2.	Impact on barrier effect:	30
	5.3.3.	Impact on disturbance leading to displacement of animal groups:	35
	5.3.4.	Impact on collision risk:	36
	5.4. Ime	PACTS VS MITIGATION MEASURES OF THE REGION	40
	5.5. pro	DJECT CONTRACTORS CONDITIONS DURING CONSTRUCTION PHASE:	49
	5.6. UN	DERPASSES FOR WILDLIFE MOVEMENT	50
6.	PR	OJECT SPECIFIC MITIGATION PLAN WITH FINANCIAL OUTLAY	52
	6.1. мп	IGATION MEASURES	52
	6.1.1.	Plantation and other habitat improvement activities within the forest areas.	52
	6.1.2.	Development of infrastructure	53
	6.1.3.	Habitat enrichment works	53
	6.1.4.	Wildlife research and monitoring works	53

	6.1.5.	Protection of wildlife	54
	6.1.6.	Publicity and Awareness	54
	6.1.7.	Species specific general mitigation measures	54
	6.2. FI	NANCIAL PLAN	55
7.	7. REFERENCES		59
8.	A	NNEXURES	60
	8.1. A	NNEXURE 1 (LIST OF EXISITNG AND PROPOSED STRUCTURES)	60
	8.2. An	NNUXURE -2 (LIST OF FLORA)	64
	8.3. AI	NNUXURE –3 (LIST OF FAUNA)	70
	8.3.1.	Mammals	70
	8.3.2.	Aves	70
	8.3.3.	Reptiles	72
	8.3.4.	Amphibians	73
	8.3.5.	Butterflies	73

1.1. IMPORTANCE OF BIOLOGICAL SURVEY AND NEED FOR THE PRESENT STUDY

Roads especially highways have been recognized as arteries providing a range of services and carrying vital goods and people that are key drivers of the growing economy. Roads are known to boost economic growth in many sectors, like the farm sector through faster and timely of farm produce to markets and the tourism sector, particularly to remote locations, India has also embarked on developing and expanding the road network, as part of infrastructure development for its growing needs.

1.2. PROJECT BACKGROUND

Roads & Building Department of (NH Division) of Andhra Pradesh has been entrusted to implement an ambitious plan for the development of various national highway corridors to augment their capacity adequately for safe and speedy movement of traffic taking into account the traffic growth in such corridors in future decades. Such a network of good national highways is projected to be the minimum basic requirement for providing a level playing field for the producers and manufacturers in different regions of the country. The project road starts near Davupally at Km 133.922 of NH-565 and ends at Km 154.900 near Mallapalem Junction in the state of Andhra Pradesh. It passes through Guntur and Prakasam Districts of Andhra Pradesh.

The primary objective of the project road widening is to cater to the increased demand of traffic and address the safe & efficient movement of the traffic in forthcoming years. The other objective of widening and strengthening of project road is to promote economic development in the project region. The Project is proposed for 2 Lane with Paved Shoulder configuration interlinking different National Highways connecting Prakasam and Guntur

Districts of Andhra Pradesh. The proposed National Highway will provide better connectivity to several towns and cities viz. Macherla, Markapuram, and Yerragondapalem give an infrastructure fillip to the states of Andhra Pradesh, Telangana, and Tamil Nadu. ToR was obtained for the proposed project vide (10-2/2019-IA.III) dated 5th March 2019 and EIA has been prepared as per the approved ToR.

1.3. PROJECT DESCRIPTION

The project road is located in the Andhra Pradesh State. It passes through Guntur and Prakasam Districts of Andhra Pradesh. Majorly, it passes through Markapur WLM Forest division. Also, the road is within 10 km radius of NSTR (Nagarjunasagar- Srisailam Tiger Reserve) Zone. The land along the project road is mostly forest land and the remaining are agricultural land, except in built-up areas, where there is nominal barren land. Educational institutions and religious structures exist in some of the villages.

Rehabilitation and Up-gradation of NH-565 from KM 133.922 to 154.900 to two lanes with the paved shoulder in the State of Andhra Pradesh under NHDP IV with a total of 20.978 Km is in urgent need to improve the road network and conditions. Infact, less than 200/0 of all the census villages in the state are connected by all-weather roads. Even the existing roads lack longitudinal and cross drainage, retaining walls, roadside parapets and good road geometrics leading to longer journey times, slow speeds, and increased wear-tear of vehicles.

To reduce traveling time and to ensure faster movement of perishable farm produce (fruits and vegetables), better roads are the only feasible alternative resulting in greater utilization of resources and socio-economic development of the people. The success of the various investments by the government in the different sectors depends to a great extent on the adequacy of the transport infrastructure i.e. road network in the state.

Nature of the Project: 2-lane with paved shoulder configuration NH-565 from 133.922 km to 154.900 km. The entire project road traverses through rolling terrain except at isolated hill sections and settlements. The carriageway, in general, is of single lane with an average

lane width of 3.6 m. At present, the connectivity between Macharla and Markapuram is either via SH-56 or SH-88 which is two-lane with paved shoulder. The new proposed National Highway shall bring down the travel time distance. Moreover, the new National Highway facility is access controlled and hence will provide good riding quality, better safety, and reliable infrastructure. All of these elements will result in cost savings and efficiency improvement. The ToR was obtained for the proposed project vide (10-2/2019-IA.III) dated 5th March 2019 and EIA has been prepared as per the approved ToR.

The project road passes through Mutukuru Reserve Forest (KM 134/922 to KM 143/000) Guntur district and Markapur Reserve Forest (KM 143/000 to KM 154/900) Prakasam district.

- It starts near Davupally and ends near Mallapalem Junction village. It passes through Guntur and Prakasam districts in the state of Andhra Pradesh. 8.3 km of this project is passing through the Guntur District (Mandal Veladurthy) and 12.6 km is passing through Prakasam District (Mandal Pullalacheruvu)
- ♦ An area of 54 Ha. of Forest land is required for diversion.
- The proposed project road passes through the buffer zone of Nagarjunsagar Srisailam Tiger Reserve also known as "Rajiv Gandhi Wild Life Sanctuary". Hence Wildlife Clearance is required. The process for Wildlife Clearance has been initiated.
- ✤ The geographical coordinates of the proposed road between 16016"21.626"N, 79019"16.226"E to 1608"7.396"N, 79020"3.498"E
- The railway station (Donakonda) is located at a distance of 37.2km, from the proposed site.
- The nearest airport to the project site is located at Vijaywada at a distance of about 143km away
- The project area falls under Seismic Zone-III as per Indian Standards, IS: 1893 (Part-1) 2002.

Wildlife encompasses both animals and plants. Wildlife conservation is not just aiming to protect Rare, Endangered, and Threatened species but also to achieve well-recognized means of achieving ecological security, human well-being, and sustainable development in any country. Wildlife habitat is considered the environment used by an animal and is essential for food, mating, cover, and other requirements for survival. Whereas, linear projects such as roads are important to the country for economic growth and to meet the transportation needs of the people. Hence, incorporating ecological considerations into modern design techniques will result in a favorable win-to-win approach to safeguard the interests of both wildlife and people.

Through this mitigation plan, we could be able to minimize long-term impacts on flora and fauna of the region and also useful for habitat improvement activities, afforestation, research works, wildlife monitoring, awareness programs, and forest protection activities. Few potential infrastructure facilities proposed in this plan would certainly enrich conservation activities within the forest core areas. In this plan certain direct and indirect impacts were identified under different phases of the proposed activity and suggested certain mitigation measures. Certain guidelines are also given to persons involved in the construction activities which can be monitored by forest authorities.

1.4. GUIDELINES FOR WILDLIFE ISSUES DURING LINEAR EXPANSION PROJECTS

Mitigation strategies:

Mitigation strategies should be considered and applied in the planning stages of the project cycle.

Data collections and survey guidelines:

For existing facilities, which generally undergo enlargement or upgrading, the focus should be on any necessary repair or rehabilitation of prior environmental damage. For example, a road/railway passing near or through a wildlife area. special attention would be paid to the provision of wildlife mitigation measures.

Site-specific issues: Consideration of habitats, geographical location, topography, and vicinity of the existing road line to sites of high biodiversity value.

Species-specific issues: Surveys should be targeted to species of flora and fauna of high biodiversity value, those with a special international or national conservation status, endemic species, and species that are at elevated risk of impact from the proposed project facilities. For example, species with a relatively high collision risk of Carnivores and Herbivores of the region.

- Species with a relatively high risk of crossing the roads shall be listed out.
- Some species may be attracted to feeding areas, which could further increase the potential for collision. The habitats for food and water for animals on both sides of the track shall be considered. The areas having meagre food resources must be treated under critical habitat zones.
- Species at risk of habitat fragmentation and associated structures.
- Species with a relatively high risk of disturbance from noise (traffic movement and horn sound).

Season-specific issues: Surveys should take into consideration certain periods during the year when the project site may have a greater or different ecological function or value (e.g., migration, breeding season, or winter seasons). Surveys should usually be conducted for at least one season when at-risk wildlife is identified. Tiger and other major carnivore's breeding and mating seasons shall be considered.

Longer surveys may sometimes be necessary for areas with exceptional aggregations of atrisk migratory animals and where existing biodiversity data are limited. This would be determined during the project construction phase by the forest department. Surveys should be designed and implemented to adequately guide the underpasses to minimize collision risks to wild species. This is normally expected to entail gathering relatively precise information on the spatial patterns of site utilization by at-risk wildlife species as well as consideration of the locations of certain topographic, ecological, or other landscape features that may attract or otherwise concentrate the activity of movement of wildlife within the project area and its surrounding landscape.

1.5. SCOPE OF THE STUDY:

To prepare a wildlife mitigation plan by conducting a rapid assessment survey (one season Flora and fauna monitoring survey) in and around the proposed project area up to 10 km radius to identify REET (Rare, Endangered, Endemic, and Threatened) species of the area through direct and indirect methods.

1.6. THE KEY OBJECTIVES OF THE STUDY:

The objectives of the Mitigation plan are as follows:

- ✓ To conduct the biodiversity monitoring study in and around 10 km radius of the proposed project and quantify the biodiversity indices and identify the Rare, endangered, endemic, and threatened wildlife for IUCN and Scheduled- I species of the region.
- ✓ To predict impacts of the proposed project on direct habitat loss, barrier effect, disturbance leading to the displacement of animal groups, and collision risk in the study area.
- ✓ To assess potential animal crossing zones along the existing and proposed road track and to suggest wildlife crossings (Underpasses) at suitable places, which are comfortable and conducive for wildlife movement across the proposed road.
- ✓ To identify areas to build structures such as crossings, culverts, water holes, etc so as not to disrupt the wildlife behaviour and its activities.
- ✓ To suggest mitigation measures to minimize/avoid adverse impacts due to projectspecific, site-specific and species-specific issues.
- ✓ To prepare budgetary on each component identified/suggested by the forest department for the next 10 years from project implementation.

2.STUDY AREA

Chapter 2

FIGURE 2 1: LOCATION OF THE PROJECT SITE

2.1. BIOGEOGRAPHIC DESCRIPTION OF THE STUDY AREA

The project study area is situated adjoining to Nagarjunasagar Srisailam Tiger Reserve (NSTR). This sanctuary is situated in the Nallamalais - an offshoot of Southern Eastern Ghats of Andhra Pradesh, the sanctuary is hilly terrain with plateaus, ridges, gorges and deep valleys which support tropical mixed dry deciduous forests with an undergrowth of Bamboo and Grass. The Project Tiger Circle, Srisailam is mainly constituted with the Nagarjunasagar Srisailam Tiger reserve, Rollapadu wildlife sanctuary and Gundla Braheswaram Wildlife Sanctuary. It spreads over Kurnool, Prakasam and Guntur Districts and is headed by the Field Director, Project Tiger Circle, Srisailam. The Circle consists of (4) wildlife/Territorial Divisions i.e., Atmakur WLM, Markapur WLM, Flying Squad and Bio-Diversity Research Division at Srisailam.

Climate

Nallamalais fall under dry region of Peninsular India. The hot period is from March to May, the temperature reaching up to 45°C. The average annual rainfall for whole of Nallamalais is about 74 cm. The full impact of rainfall is on Gundlabrahmeswaram plateau, which receives about 127 cm.

Rocks and Soils

The rocks fall into two distinctly recognizable formations, viz., the Cuddapah and Kurnool formations of the archean age. Sandstones in mixtures of quartzites, shales and outcrops of barites and manganese ores occur. There are three types of soil: red, mixed varieties and black. The red and mixed varieties occur along the bases of Nallamalais. Towards the interior of the forests, the soil is red with calcareous shales. The humus content is almost negligible. The black soil occurs in plains where cultivation is practised (Krishnan, 1956).

Flora and fauna of the region:

Champion and Seth (1968) classified the forest types of India under 16 type groups. But, due to heavy physical and anthropogenic influences the degraded stages of original climax vegetation types are hardly distinguishable. The following types were recognized in the study area. The tiger reserve harbours endemic species like *Andrographis nallamalayana*, *Eriolaena lushingtonii*, *Crotalaria madurensis var*, *Dicliptera beddomei and premna hamitonii* making it a prospective germ plasm bank. It has been estimated that there are 1581 taxa spread over 149 families occuring in Nallamala which include 29 grass species and 353 medicinal species. Over 80 species of mammals,303 species of Birds, 54 species of reptiles ,20 amphibians, 55 fishes, 101 Butterfiles, 57 species of Moths,45 species of Coleopterans, 35 species of Odonata and numerous other forms of insects are found in the area. The recent Bio-systematic studies carried out by the scientists of Eco-Research and monitoring laboratories led to the discovery of certain new species which were hitherto not recorded. (Source : https://forests.ap.gov.in/tiger-res.phpest Department (ap.gov.in)).

The main types of forest biomes in the reserve are: southern tropical dry mixed deciduous forest, Hardwickia forest and Deccan thorn scrub forests with much Euphorbia scrub. Important plant species here are: *Anogeissus latifolia* (axle wood), *Cleisthanthus collinus* (odcha), *Terminalia* spp., *Pterocarpus marsupium, Hardwickia binata* (anjan tree), *Boswellia serrata* (Indian frankincense or salai), *Tectona grandis* (teak), *Mundulea sericea and Albizia* spp. (silk plants).

The main mammals in the reserve are: Bengal tiger, Indian leopard, Sloth bear, Ussuri dhole, Indian pangolin, chital, Sambar deer, Chevrotain, Blackbuck, Chinkara and Chowsingha. Lesser fauna includes Mugger crocodile, Indian python, Indian cobra, Rat snake, Bengal monitor, Indian star tortoise and Indian peafowl. Endemic reptiles like the skinks Ashwamedh writhing skink, Sharma's mabuya lizards and the Nagarjun Sagar racer snake, Wildboar, Mongoose, Porcupine are particular highlights of this region.

2.2. PROTECTED AREAS & ECO-SENSITIVE AREAS IN THE CORE AND BUFFER ZONES (UPTO TO 10 KM RADIUS)

The present study carried for the presence of important wildlife habitats and protected areas, breeding and nesting habitats of fauna and grassland area from core area. These important areas such as Protected areas (National Park, Wildlife Sanctuaries, Conservation Reserves etc. Wetlands of national importance, Ramsar sites, Important Bird Areas (IBAs),

classified by the Birdlife International and Bombay Natural History Society etc. Data collected and information gathered from primary and secondary sources on flora, fauna, protected area, natural habitats, wildlife species etc., were analysed and results are presented as follows.

Ecological sensitive habitat	Direction and Distance from the project site.
Protected Areas	Yes, Nagarjunasagar Srisailam Tiger Reserve (Adjoining to the site) Sirigiripadu beat, Komarolu and Mallapalem beats. Rajiv Gandhi Wildlife sanctuary
Reserved Forests	Yes
Wildlife Corridors & Routes	Yes, (Adjoining to the site)
Wetlands / Water bodies	Yes, (Adjoining to the site)
Ramsar Site	NIL

Table 2.1: Details of protected areas, forests & ecologically sensitive areas

Details of Forest Areas

The details of forest blocks are presented in Table-2.2. The major composition of degraded forest is *Acacia leucophloe*, *Acacia horrida*, *Boswellia serrata Dalbergia sisoo*.

TABLE 2.2 : DETAILS OF FORESTS IN STUDY AREA

S. No.	Details Forests	Distance from Site (km)
1	Mutukuru RF	Adjacent
2	Markapur RF	Adjacent
3	Eastern Nallamala RF	3.6
4	Kandlagunta RF	3.9

As per State Forest Report 2014, Markapur (WL) Forest Division lies in the south-eastern part of Prakasam district between latitudes 15^o 23'1'' and 16^o18'16'' N and longitudes 78^o 47'48'' and 79^o 57'56'' E. Geographical area of the Division is 7,218 Km² which is 25.1% of the area of the district. The seasonal rivers like Gundlakamma, Sagileru, Musi, Paleru

and Manneru flow through the Division. The Gundlakamma River rises in Nallamala hills and the famous Cumbum Tank is formed across this river.

The total number of trees found along the project road is 1322. The right-hand side is 58 and the Left-hand side is 740. Various trees like Neem, Teak, and Bushes are found along the road. The climate of this Division is dry and salubrious, with temperatures ranging from 190C to 400C; the annual rainfall is about 871 mm, received mainly from Southwest monsoons. Sandstone mixed with quartzite and occasional shales are the characteristic rock formations on the Veligondas and at their extremes, bordering Kanigiri, the rocks gradually change into Gneisses or Granite composition. Outcrops of Barytes and Manganese ores occur in Veligondas. The soil types found mainly are red loamy, black cotton, sandy loam, and sandy. The population of the Division is 0.86 million (2011 Census), the per capita forest area is 0.26 Ha and the population density is 155 persons per Km2. There are about 48 Beats in the Division. The Sirigiripadu beat, Komarolu, and Mallapalem beat come under the project road.

2.3. IMPORTANCE TO THE COUNTRY, REGION

The Project is proposed for 2 Lane with Paved Shoulder configuration interlinking different National Highways connecting Prakasam and Guntur Districts of Andhra Pradesh. The proposed National Highway will provide better connectivity to several towns and cities viz. Macherla, Markapuram, and Yerragondapalem give an infrastructure fillip to the states of Andhra Pradesh, Telangana, and Tamil Nadu. The National Highway will be accesscontrolled and ensure high-speed traffic movement from Prakasam District to Guntur District. The proposed alignment is selected to cover one of the most important south arterial connectivity in the country, further interspersed with feeder highways on either side.

At present, the connectivity between Macharla and Markapuram is either via SH-56 or SH-88 which is two lanes with paved shoulder. The new proposed National Highway shall bring down the travel time distance. Moreover, the new National Highway facility is access controlled and hence will provide good riding quality, better safety, and reliable infrastructure. All of these elements will result in cost savings and efficiency improvement.

The Project will further have the following benefits at the national and regional levels:

- High-speed connectivity and access: The projected National Highway is a proposed 2-lane with a paved shoulder. This will avoid traffic congestion and speed up the freight movement. It is expected that overall, the proposed National Highway will reduce the travel time.
- Aiding economic growth: The seamless connectivity will provide better access to vehicles as a link to the National Highways. The Project will reduce travel time and provide a boost to trade and commerce linked to the regions connected through this National Highway.
- Growth of backward areas: The biggest strength of the alignment is that it plans to cover backward districts of Andhra Pradesh. As a result of connectivity and access to other parts of the country, these backward areas will be aided to integrate with other parts of India. Further, freight and passenger traffic on the National Highway will help promote the ancillary economy of these regions.
- Decongestion of existing National and State Highways: The proposed National Highway will take away traffic pressures from Roads. Also, long-distance traffic will shift to the proposed National Highway, thereby leaving the SH for regional and local usage.
- Usage shift: Long-distance traffic will shift from existing road to the proposed National Highway, resulting in lesser congestion on these highways
- Improved safety: Due to access control, the Roadway & Travel Safety of the traffic connecting the cities will be enhanced as there will be minimum distractions & conflict zones
- Support to industry: Different types of industries like Manufacturing, Tourism, etc. along the proposed National highway will be facilitated in their business operation and reachability.

The following major types of traffic load are expected on the Project:

- Commercial and Industrial: Traffic on the existing roads is driven by local, commercial and industrial traffic. Industries such as cement, chemicals, and minerals are present along and around the proposed National Highway. These industries are expected to benefit from the National Highway.
- Tourist: Passenger traffic will be generated due to many places of tourist interest in the districts connected by the National Highway. Apart from places of historical importance such as forts and palaces, traffic would be augmented due to several famous religious places such as the Srisailam and wildlife parks and safaris like Amarabad Tiger Reserve.
- Health and Education: Faster connectivity and accessibility to AP will help in a higher flow of traffic from Telangana state, especially for higher education, tertiary healthcare, and specialized treatments. Reduction in travel time will allow patients to avail OPD / other medical services from the capital region.

3.METHODS ADOPTED

Chapter 3

3.1. SOURCES OF DATA COLLECTION:

- Primary field survey of flora and fauna near Core (up to 1 sq. km) and buffer (up to 10 sq. km radial distance) zones during site visit.
- Secondary data sources from forest department staff, road staff working in the track side, authentic websites, publications etc.

3.2. EQUIPMENT / INSTRUMENTS DEPLOYED

- Digital Camera (NIKON 42 X zoom)
- ✤ GPS (Available in Mobile and inbuilt camera)
- Binoculars (OLYMPUS 10 X 50 DPSI)
- ✤ Field observation book, Field guides, Pen, Measuring tape etc

The site visit undertaken from 12th to 15th November, 2021 by experts from M/s Greentech Enviros, and accompanied by the staff members of Satra Infrastructure Pvt Ltd. Seven sampling locations are studied in the study area and collected list of flora and fauna by using quadrant method and belt transect method.

3.3. VEGETATION SURVEY METHOD

Vegetation in the seven sampling locations has been estimated by direct counting of Tree species, their number, GBH value and distance and direction in Row. The status of each identified species was given in terms of four categories such as "Common", "Sporadic", and "Rare". This status is mainly based on Density, Frequency and Abundance estimated during the field visit for Trees, Shrubs and Herbs.

Number of quadrates or belt transacts are finalized based on the Area – Species graph. 20 m X 20 m for tree species, 5 m X 5 m quadrates for shrubs and 1 m X 1 m quadrates for

herbs. In locations where the quadrants are not possible such as hilly areas and agricultural, plantation areas a belt transects of 100m X 10m are applied.

The above parameters are used to determine the following.

- Determining frequency, abundance, relative frequency, relative density, relative dominance and importance value indices using Mueller-Dombois-Ellenberge [1974] Method.
- The flora data collected from 7 sampling points are analysed quantitatively from MS Excel and PAST softwares.
- The biodiversity indices such as Shannon Index, Simpson index, A/F value, Dominance and Evenness e^AH/S are statistically analysed and interpreted the data on ecosystem quality.

3.4. FAUNAL SURVEY METHOD:

Mammalian surveys were conducted by using line transect method in all major habitats and recorded the species through direct and indirect evidences. Bird surveys were be carried out through **Point count method** preferably during **dawn and desk**. Secondary data collected from forest department and local people in the study area.

Chapter 4

4.1. KEY FINDINGS OF BIODIVERSITY MONITORING

- The present study was carried out in Winter season for the direct observation in the selected habitats of the study area and analysed the possible impacts on animals of the proposed road expansion and suggested mitigation measures.
- ◆ The entire study area was analysed on hypothetical cluster-based analysis.
- Mammals monitoring plan relay on direct field observations, indirect evidence, authentic information, the desktop study of available relevant literature as well as subject expert's professional judgment. After a review of relevant secondary information available for the area habitat and point surveys were undertaken in Monitoring surveys up to 10 km radius of the project area.

4.2. VEGETATION FOUND DURING THE FIELD STUDY:

Trees: The most common tree species occurring are *Adina cordifilia*, *Alangium* salviifolium

Angeissus latifolia, Azadirachta indica, Bridelia retusa, Cassia fistula, Cassine glauca, Chloroxylon swietenia, Cleistanthus collinus, Cochlospermum religiosum, Dalbergia lanceolaria, Diospyros melanoxylon, Gardenia turgida, Ehretia Leavis, Givotia moluccana, Haldinia cordifolia, Lagerstroemia parviflora, Litsea glutinosa, Madhuca longifolia, Millettia pinnata, Morinda pubescens, Phyllanthus emblica, Prosopis juliflora, Pterocarpus marsupium, Strychnos nux-vomica, Tectona grandis, Terminalia alata, Terminalia chebula, Wrightia arborea, Wrightia tinctoria, Xylia xylocarpa, Ziziphus xylopyrus

Shrubs: The most common shrubs are Lantana camera, Hyptis suaveolens, Cassia auriculata, Calotropis procera, Prosopis juliflora, Acacia leucocephala, Catunaregam

spinosa, Caesalpinia bonducella, Canthium parviflorum, Carissa carandas, Capparis sepiaria, Celastrus paniculata.

Herbs: The most common herbs are Tridax procumbens, Cassia occidentalis, Crotan bonplantianum, Datura metel, Eclipta alba, Boerhavia diffusa, Tephrocia purpuria, Achyranthes aspera, Cassia tora, Abutilon indicum, Ipomoea macrantha.

Climbers: The commonly seen climbers are *Capparis horrida*, *Abrus precatorius*, *Hemidesmus indicus*, *Clitoria ternatea*, *Cuscuta reflexa*, *Desmodium triflorum*, *Pergularia daemia*, *Desrris scandans*, *Hemidesmus indicus*, *Ipomoea pes-caprae*, *Ipomoea nil*, *Ipomoea macrantha*, *Mucuna pruriens*, *Evolvulous alsinoides*, *Gloriosa superba*.

Grasses: The common grass species are Chloris barbata, Cyperus castaneus, and Cynodon dactylon Dactyloctenium aegyptium, Digitaria ciliaris, Eragrostis tenella, Fimbristylis cymosa, Ilaloipsis binata and Imperata cylindrica.

Fig 4.1: Field photos near core and buffer zones of the study area:

Fig 4.2: Habit wise number of flora present in the study area:

Fig 4.3: Zone wise number of flora present in the study area:

Biodiversity	Value	Indication and reason	Relevance to present
indices			mitigation plan

Shannon	3.253	Good diversity (Normal	Contractor shall follow
indices		diversity in ecological	instructions given by forest
		studies is 1.5 to 3.5 range	department during entire
		(Kerkhoff, 2010).	working period.
		Reason: Presence of reserve	
		forests and adjoining to	
		Srisailam Tiger Reserve	
Evenness	0.968	Indicates the species are	All the species present in the
e^H/S	(96.8%)	evenly distributed in core	core zone are also present in
		and buffer zones.	the buffer zone. Hence impact
			on vegetation present near
			core zone shall be
			compensated through
			afforestation activities of the
			similar species in the buffer
			zone as per guidelines taken
			from forest department.

4.3. FAUNA OF THE STUDY AREA

From the secondary data and indirect evidence during the site visit, the predominant species found are Tiger, Panther, Sloth bear, Jungle cat, Bonnet macaque (*Macaca radiate*), Rhesus macaque (*Macaca mulatta*), Wild boar (*Sus scrofa*), Spotted deer (*Axis axis*), Sambar (*Cervus unicolor*), and Nilgai (*Boselaphus tragocamelus*), Five striped palm squirrel (*Petaurista Pennanti*), Indian Giant Squirrel (*Ratufa indica*), Four-horned antelope (*Tetracerus quadricornis*), Indian hare (*Lepus nigricollis*), Grey House shrew (*Suncus murinus*) and Indian Tree shrew (*Anatha eliioti*). Birds are very common near the aquatic habitats and terrestrial habitats. Peafowls are found near the ponds. Among the reptiles, Skinks, Geckos, lizards are commonly sighted. Snakes such as Krait, Common Tree Snake, Saw scaled wiper, Russell's earth boa, Johns earth boa, Common wolf snake, Indian Cobra, Common Rat snake and Green pit viper are present.

Fig: 4.4 Graph showing Important Value Index of dominant tree species within study area

Distribution pattern (A/F ratio): The ratio between abundance and frequency was used to interpret the distribution pattern of species (Whitford, 1949). The distribution

pattern of species in the study area is identified as random distribution as the value of A/F ratio is **0.043.** This random distribution of species is mainly due to various ecosystems present in the buffer zone. The Shannon indices value of the study area is 3.253 indicates Good diversity (Normal diversity in ecological studies is 1.5 to 3.5 range (Kerkhoff, 2010). Population size and Dominance of the species is 3% and Evenness is around 97% (Indicates the species are evenly distributed in core and buffer zones). This might be due to contiguous patches of Chloroxylon swietenia species and natural species such Azadirachta indica, Phoenix, Prosopis juliflora (near the villages), Peltophorum pterocarpum and Delonix regia (near roadside). The present study indicates A<B<C>D>E in frequency classification and as per the Raunkiaer's law of frequency classification indicates that species diversity is distributed maximum for 40 to 60%. This result indicates that most of the species frequency is more or less equal due to some of the plant species such as Xylia xylocarpa, Syzygium cumini, Phoenix sylvestris, Dalbergia sissoo, Prosopis juliflora, Tectona grandis, Mangifera indica, Terminalia alata and Lantana camara are frequently found floral species throughout the region.

5. IMPACTS OF PROJECT ACTIVITIES AND MITIGATION PLAN

Chapter 5

5.1. JUSTIFICATION OF THE PROJECT:

The proposed road doubling line has been aligned along the existing road line within the available road land boundaries as far as possible to minimise the forest land diversion/ acquisition. There is no alternative route to this alignment hence doubling line is proposed along the existing line in the forest corridor with limited vegetation removal.

5.2. SPECIES-SPECIFIC IMPACTS:

Impact of few animals found in this region:

Mouse Deer: Mouse-deer (tragulids) in general occupy a range of habitats from evergreen forests to plantations. They are an ancient group of frugivorous ungulates, small-bodied and active both day and night. They are often found in evergreen, semi-evergreen and deciduous forests, as well as in grassland and commercial plantations. The mouse deer is a solitary animal except during mating season and hence the communication is likely to be limited to males and females during mating periods. Their territories are relatively small reaching from 13 to 24 hectares but neighbours generally ignore each other rather than competing aggressively. They have a lifespan of 8-12 years in the wild. It is a rare species to spot in the wild since it is very shy and of cryptic nature. The conservation status of Indian mouse deer, according to IUCN (International Union for Conservation of Nature and Natural Resources), is Least Concern.

Impact: Very few populations are present near the study area. The loss of habitat due to the proposed project is limited due to the presence of underpasses as a part of mitigative measures. Collision risk is evaluated as moderate.

Palm Civet: The Asian palm civet (*Paradoxurus hermaphroditus*), also called common palm civet, toddy cat and musang, is a viverrid native to South and Southeast Asia. Since 2008, it is IUCN Red Listed as Least Concern as it accommodates to a broad range of habitats.

Impact: This is commonly present near the study area. The loss of habitat due to the proposed project is very limited due to the presence of underpasses as a part of mitigative measures. Collision risk is evaluated as moderate.

Wild Cats: Wildcat species are largely nocturnal and solitary, except during the breeding period and when females have young. The size of home ranges of females and males varies according to terrain, the availability of food, habitat quality and the age structure of the population. Male and female home ranges overlap, though core areas within territories are avoided by other cats. Females tend to be more sedentary than males, as they require an exclusive hunting area when raising kittens. Wildcats usually spend the day in a hollow tree, a rock crevice or in dense thickets. It is also reported to shelter in abandoned burrows of other species such as red fox (*Vulpes vulpes*).

Impact: This is commonly present near the study area. The loss of habitat due to the proposed project is very limited due to the presence of underpasses as a part of mitigative measures. Collision risk is evaluated as moderate.

Spectacled Cobra: The Indian cobra inhabits a wide range of habitats throughout its geographical range. It can be found in dense or open forests, plains, agricultural lands (rice paddy fields, wheat crops), rocky terrain, wetlands, and it can even be found in heavily populated urban areas, such as villages and city outskirts. Preferred hiding locations are holes in embankments, tree hollows, termite mounds, rock piles and small mammal dens.

Impact: This is commonly present near the study area. The loss of habitat due to the proposed project is very limited due to the presence of underpasses as a part of mitigative measures. Collision risk is evaluated as moderate.

Geochelone elegans is a terrestrial species and inhabits scrub forests, grasslands, and some coastal scrublands of arid and semi-arid regions, but also commonly inhabits human-dominated landscapes including fields, hedgerows, and plantations.

Impact: This is rarely seen near the study area. The loss of habitat due to the proposed project is very limited due to the presence of underpasses as a part of mitigative measures. Collision risk is evaluated as moderate.

5.3. WILDLIFE RELATED ISSUES:

The construction of proposed road can have a substantial impact on the degradation and loss of vegetation, natural ecosystems and habitats, fragmentation of habitats. Pollution and dust accumulation on vegetation, noise and vibration impact on wild animals are during operation state. The other major impacts are given in the table.

Fig 5.1 Schematic view of environmental effects of a linear transport infrastructure

The building of the LTI and the traffic induced a set of direct and indirect impacts on the biodiversity, in the effect zone of the LTI. (A) Direct mortality via collision with vehicles;

(B) attraction (e.g. scavengers for crushed fauna); (C) potential mortality of attracted animals; (D) direct mortality of crossing individuals; (E) successful crossing; (F) avoidance of the LTI; (G) avoidance of the LTI allowance degraded habitat; (H) avoidance of the LTI allowance; (I) corridor effect.

5.3.1. IMPACT STUDY FOR DIRECT HABITAT LOSS:

Due to the proposed project the major trees that are going to be removed are *Chloroxylon swietenia*, *Cleistanthus collinus*, *Cochlospermum religiosum*, *Dalbergia lanceolaria*, *Tectona grandis*, *Diospyros melanoxylon*, *Gardenia turgida*, *Ehretia Leavis*, *Givotia moluccana*, *Haldinia cordifolia*, *Lagerstroemia parviflora*, *Prosophis juliflora* etc. There are no Rare and endangered floral species that are going to remove from the activity area. Moreover, all the species present in the expansion area and predominantly available throughout the buffer region.

The loss of other shrubs, herbs, climbers and grass species will also play a major role iin habitat loss for small vertebrates and invertebrates on a large scale. Apart from the direct removal of vegetation, long- term impacts due to traffic on surrounding flora also need to be considered. The dust and vehicular emissions also impact microfauna of the region. The effect on flowering will also impact on butterflies species habitat.

5.3.2. IMPACT ON BARRIER EFFECT:

The proposed road expansion project would create more barrier effects on both nocturnal and diurnal animals. Diurnal animals are active during the daytime, with a period of sleeping or inactivity at night. The timing of activity by an animal depends on a variety of environmental factors such as the temperature, the ability to gather food by sight, the risk of predation, and the time of year. Commonly classified diurnal animals include mammals, birds, and reptiles. Most of the primates are diurnal. In this region, the diurnal wild animals are Langurs, Sloth bears, Varanus, Squirrels, Butterflies etc. The barrier effect on these animals is limited due to daylight and other ecological parameters. Nocturnal animals are active at night. They often have special adaptions for nocturnal living, including large eyes for low-light vision, and heightened senses of hearing and smell. Examples of nocturnal animals include Tigers, Panthers, Civets, bats, moths, owls, and wolves. The barrier effect is high in these animals and proper mitigation measures must be taken. Crepuscular animals are active at dawn and dusk. Especially deers, foxes, wolves, hats etc. The barrier impact on these animals is moderate and proper mitigation steps are to be taken while expansion work is undertaken.

Restriction on movement of animals due to movement of vehicles 24x7:

The vehicle movement in the reserve forest is throughout the day (24X7). Hence animals of both diurnal and nocturnal animals cannot cross the road all the time. Hence certain mitigation steps need to be taken in this regard. These steps are discussed in detail in next chapters.

Sound & light pollution due to vehicles and its impact on animal behaviour:

The noise and vibrations are also major causes of disturbances to natural wildlife and sensitive species such as Reptiles and birds. Short-term exposure of noise levels can affect the behaviour and physiology of birds, the reproductive system as birds avoid reproduction in noisy places. Animals also suffer human-like disabilities like hearing loss, loss of responsiveness, dizziness and disturbance. Traffic noise reduced foraging efficiency in most bats. Monkeys also live in noise-free areas as exhibited by a study in which continuous noise was supplied in the habitat of the monkeys. The common effects on animals are hearing loss, increased heart rate, increased risk of death, habitat loss, trouble in finding prey, trouble in finding mates as in frogs etc. (Source: Vehicular Noise Pollution: Its Environmental Implications and Strategic Control | Intech Open). Artificial light has several general effects on wildlife: Attracts some organisms (moths, frogs), resulting in them not being where they should be, concentrating them as a food source to be preyed upon, or just resulting in a trap that exhausts and kills them. Studies show that light pollution is also impacting animal behaviours, such as migration patterns, wake-sleep habits, and habitat formation. Bright lighting also affects the feeding patterns of some bat species and makes them more vulnerable to predators or likely to crash into buildings.

Impact on the movement of reptiles and amphibians:

Roads are one of the most widespread human-caused habitat modifications that can increase wildlife mortality rates and alter behaviour. Roads can act as barriers with variable permeability to movement and can increase the distances wildlife travel to access habitats. The home range sizes of herpetofauna vary considerably in size. Some species may travel hundreds of feet and up to several miles in one day. Individuals may travel large distances to access habitat used for breeding, feeding or sheltering. These areas can become bisected by roads. Animals may avoid roads causing a barrier effect or not avoid roads resulting in reduced survivorship from road mortality. When roads act as barriers, this results in habitat fragmentation effects.

A study to evaluate road avoidance behaviour of reptiles at large spatial scales and the first to estimate energetic consequences of road avoidance in reptiles' results suggest that turtles avoid crossing roads, but do not avoid habitats adjacent to roads. Turtles expend more energy on movement in home ranges containing more roads, but the increased energetic expenditure is small compared with energetic investment in reproduction. Overall, our results suggest that reptiles avoid road crossings. However, the additional energy expenditure of reptiles interacting with roads is unlikely to negatively affect fitness through reduced reproductive output, and road crossing avoidance may have positive effects by reducing mortality risk. Mitigation of road impacts on reptile populations should continue to focus on reducing mortality from vehicle strikes.

(Source: https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.5515)

Fig 5.2 Schematic representation of influences within the Road Effect Zone (REZ).

Attraction to roadside habitat, and implications for amphibians and reptiles:

Roads and roadside habitats often attract amphibians and reptiles, to their detriment. Snakes and toads can be attracted to paved roads for thermoregulation (basking) and will linger on the warm surfaces to raise their body temperature, which increases the time they are at risk of being run over. Large snakes may be attracted to paved road surfaces for thermoregulation but also have wide home ranges or move long distances between winter hibernacula and summer feeding grounds. Long foraging movements within aquatic habitats also contributed to the snakes falling within the highest road risk categories.

Frogs become sexually mature around four years of age. They emerge from hibernation from February to March to seek out breeding grounds. Females lay their eggs in shallow water. Road mortality of amphibians is much higher during the breeding season as individuals migrate to breeding ponds (Beebee, 2012).

Fahrig and Rytwinski (2009) identified four situations in which roads create negative impacts on organisms:

- (1) species are attracted to roads but are unable to avoid individual cars,
- (2) species have high levels of movement, low reproductive rates, and low densities regardless of their reaction to roads,
- (3) small animals avoid roadside habitat, and
- (4) small animals not impacted by road-affected predators, who have no road/traffic avoidance, are unable to avoid oncoming traffic.

Habitat fragmentation impacts faunal breeding and reproductive complications:

Fragmentation means a splitting of contiguous areas into smaller and increasingly dispersed fragments. With an increasing degree of fragmentation, the individual fragments may become too small and too isolated from each other to support the species that depend on the fragmented habitat. Fragmentation reduces the amount of habitat available to

wildlife in the landscape and thereby diminishes population sizes and the number of species that can live in the landscape. In situations where roads cannot be removed or closed, or where traffic cannot be reduced, technical measures such as fauna passages and Eco ducts may be necessary to mitigate fragmentation and reconnect wildlife habitats.

Impact due to loss of termite mounds:

Recent work has shown that termite mound abundance and distribution both in space and time may be modulated by variation in abiotic and biotic resources. Termite mound communities can vary with changes in soil type, rainfall, ecosystem productivity, and herbivore presence, and termite mounds appear to increase in density with availability of dietary resources such as tree density, and decrease with intensive human land use. Some evidence also suggests that termite diets may shift in response to changing availability of plant resources. Due to present project proposal, in the core project area few termites mount is present near the road side. Due to removal of these termites' mounts, impact on both biotic and abiotic features of the area. Certain mitigation measures proposed in the next chapter for the removal of termite mounts in the unavoidable conditions.

Mitigation measures for reducing barrier effect to wild animals:

- The breeding sites of animals/amphibians, nesting sites of birds, thermoregulation surface sites of snakes will be avoided for any type of construction.
- Construction/modification of ponds will be done to provide breeding sites to amphibians.
- The construction of strips of surfaces (next to the road where high mortality of snakes are reported) that may attract snakes for the thermoregulation will be done.

Fig 5.3 Contructing stip of surface for thermoregulations for sankes.

- ◆ Construct more number of underpasses where animal crossings are more.
- Creation or improvement of water bodies will be done so that the animals have access to water.
- Plantation along the water body will be done to attract the animals towards it.
- The saltlicks areas will be protected from the reach of human beings. Limit the construction activity within the designated areas.
- Check the site for turtles trapped in, or in danger from civil works and use a qualified person to relocate the animal.
- Animal underpasses are proposed to be constructed for animals to cross the road. Different types of underpasses such as Box culverts, pipe culverts, and culverts with furniture will be constructed for passage of herpeto-fauna, amphibians etc.
- Fences shall be provided in combination with underpasses to direct animals away from the road.
- Vegetation or other habitat features (rocks, fallen timber) will be placed, planted or allowed to regrow so that animals are directed to preferred crossing locations.
- The plantation and lighting systems along the road should be made less attractive to birds to avoid collision of birds with vehicles.

5.3.3. IMPACT ON DISTURBANCE LEADING TO DISPLACEMENT OF ANIMAL GROUPS:

The major disturbance will be during road construction period. Certain standard guidelines are prepared for issuing to the contractor and full powers to forest authorities to take any action and modifications during construction phases with respect to wildlife protection and conservation.

Disturbances during post construction work or during traffic conditions:

The main disturbances are effect of animals on their feeding, breeding and behavioural aspects due to light, noise, vibrations, loss of vegetations, habitat, pollution etc. The native faunal species which are residents of the core project zone will get disturbed due to the above facts and displacement will occur in this region. They cannot adjust to the new habitat conditions as well as inter species competition for food and other functional aspects will occur.

5.3.4. IMPACT ON COLLISION RISK:

Collision risk study has been conducted by direct and indirect methods. Certain areas sensitive to wildlife crossings were observed during the study and suggest mitigation measures to overcome this problem. Many aspects are considered in this regard like slope, curvature, speed of the vehicles, animal escaping routes near the tracks, water bodies, underpasses, ramps etc. Langurs (Bonnet macaque (*Macaca radiate*), Rhesus macaque (*Macaca mulatta*) are very common throughout the region. They used to stay adjoining to the roads and sometimes causes problems to the vehicles. The passengers used to give some food, fruits etc which is also leading to accidents.

Collision impact on reptiles especially snakes, monitor lizards, civets, and other wild cats:

In the study area there are 17 species of reptiles found in this region. Certain nocturnal animals under Mammals are also observed during night time. The chances of road kills are more for civets and other wild cats along with amphibians and reptiles. During monsoon season, amphibians come out from hibernation for breeding. Collision risk is more for Amphibians than reptiles. During our research in this region during 2005, Prionailurus rubiginosus Rusty spotted Cat which is Near Threatened category from IUCN found near Dornal region on road kill. Usually, killings of only large mammals are reported while the smaller wildlife goes unnoticed. In the last few years, leopard, Sloth bears, Porcupine, langurs, sambar, chital, civet cats, etc have died on national highways. Road kills of King
cobra, monitor lizard, common krait, sand boa and frogs have been sighted on highways near forested habitats.

Factors that influence the occurrence of wildlife-traffic collisions

There are various factors that determine the risk of animal-vehicle collisions. The numbers of collisions generally increase with traffic intensity and animal activity and density. Temporal variations in traffic kills can be linked to biological factors which determine the species' activity e.g. the daily rhythm of foraging and resting, seasons for mating and breeding, dispersal of young, or seasonal migration between winter and summer habitats

Fig 5.4 Factors influencing the number of wildlife traffic accidents.

Mitigation measures for avoiding collision risk to wild animals:

- Speed limitations on roads can also offer a simple tool to change traffic flows in the road network and reduce disturbance and mortality in wildlife areas.
- Safety barriers/delineators hard shoulders on main roads
- ✤ Traffic signs and pavement markings.
- ✤ Underpasses and other grade separators at congested junctions
- Removal of junctions and direct access points on main roads.

- Improved median openings with stacking lanes.
- ✤ Separate provisions and direct access point.
- Service roads in towns and villages for segregating local and through traffic.

Fig. 5.5 Model speed breakers to be made during laying the road.

Road Signs (Danger boards/ Wildlife awareness boards/ Speed limits/ other hazardous indicators)

Awareness on wildlife crossings, information to vehicle drivers during particularly nighttime precautionary measures shall be kept near both the sides of the road and forest check posts. The user agency shall take guidelines from the forest department while placing the boards and signs. All signs shall be placed on the left-hand side of the road. Where extra emphasis is warranted, they may be duplicated on the right-hand side as well. On nonkerbed, the extreme edge of the sign shall be 1.5m-2.0m from the edge of the carriageway. On kerbed portion, it shall not be less than 60cm from the edge of the kerb. Arrangement for proper surveillance by NHAI authority personnel after the expiry of the maintenance period by the construction agency.

Fig: 5.6 Basic exclusion fencing (side view) used to prevent animals from traversing road surfaces. An overhang is used to prevent animals from climbing or jumping over the top of the fence.

Invariably the user agency is the responsible party to regulate the various activities and man-power relating to the highway widening project.

Considering the importance of the Tiger Reserve, all the Trees to be felled due to road widening shall be transplanted in the nearest possible and viable forest area for the betterment of the habitat.

 Table 5.1: Impacts Vs Mitigation measures and responsible authority to monitor the activities.

Phase/ Aspect		Impacts	Mitigation measures		Responsible	
		identified		suggested	authority	
Construction	✓	Loss of native	*	✤ Vegetation removed from		Agency
phase :		species.		the construction zone	and	NHAI
Removal of	✓	Loss of		before commencement of	work	
vegetation near		habitat for		construction. All works	contra	ctor
the project core		wild animals.		carried out such that the		
area	✓	Habitat		damage or disruption to		
		fragmentation		flora other that those		
	✓	Loss of food		identified for cutting is		
		source for		minimum.		
		invertebrates.	*	Only ground cover/shrubs		
	✓	Loss of hiding		that impinge directly on		
		place for		the permanent works or		
		faunal species		necessary temporary		
		from		works are removed with		
	predators. prior approval from the					
	✓	Loss of bird		Environmental Expert.		
		nesting and		The Developer, under any		
		breeding sites.		circumstances not cut or		

				damage trees. Trees		
				identified under the		
				project and cut only after		
				receiving permission from		
				the Forest Department of		
				Andhra Pradesh.		
			*	Tree transplantation shall		
				be taken up to the nearby		
				forest area or along the		
				proposed highway.		
			*	Compensatory		
				afforestation at 1:3 shall		
				be planted for trees which		
				need to fell.		
			*	For tree felling,		
				permission shall be taken		
				from concern authorities		
				of Andhra Pradesh Forest		
				Department		
Dust Pollution	✓	Accumulation	*	• The Developer take	User	Agency
		of dust on		precautions viz. water	and	NHAI
		plant leaves.		sprinkling etc. to reduce the	work	
	✓	Reduction of		level of dust generated	contra	ctor
		photosynthetic		from the construction site.		
		rate.		All the plants sited at least		
	✓	Stunted		1 km in the downwind		
		growth and		direction from the nearest		
		reduction of		human settlement.		
		yield.	*	• The Developer will		
	✓	Respiratory		provide necessary		
		disorders to		certificates to confirm that		
		fauna and		all crushers used in		

	human	construction conform to	
	habitations.	relevant dust emission	
		control legislation.	
Noise and	Noise induced	 Dense vegetation 	User Agency
vibration	psychological	along the road may be	and NHAI
generated by	and behavioural	provided for attenuation of	work
heavy machinery.	changes occur to	noise.	contractor
	wild animals.	✤ Acoustic enclosure should	
	Distrubance	be placed to cover the	
	caused to human	hammer and the exposed	
	habitations.	pile to reduce the air noise.	
		The air noise levels can be	
		reduced to about 60 dB	
		with these measures	
		✤ Silence zone will be	
		marked and provided with	
		sign boards to alert drivers	
		✤ Noise buffers using	
		diversity of tree species,	
		with a range of foliage	
		shapes and sizes,	
		combination of shrubs and	
		trees and evergreen species	
		will be provided.	
		✤ Servicing of all	
		construction vehicles and	
		machinery done for exhaust	
		silencers and will be	
		checked and if found	
		defective will be replaced.	
		$\clubsuit \qquad \text{All the construction}$	
		sites within 150m of the	

			nearest habitation, noisy		
		construction work such as			
			crushing; concrete mixing		
			works to be done from 6.00		
			AM to 6.00 PM.		
		*	No noisy construction		
			activities will be permitted		
			around educational		
			institutions / health centers		
			(silence zones) up to a		
			distance of 100 m from the		
			sensitive receptors.		
		*	Monitoring shall be		
			carried out at the		
			construction sites as per the		
			monitoring schedule and		
			results will be submitted to		
			IC.		
Loss of top soil.	Loss of	*	Topsoil on stripping shall	User	Agency
	hibernating		be removed and stockpiled	and	NHAI
	fauna.		on sides to be used on the	work	
			side slopes, for top cover	contra	ctor
		of borrow areas and for			
			plantation in pits		
		*	Soil compaction for		
			embankment work should		
			be done immediately to		
			avoid erosion.		
Solid waste	Death to faunal	*	The Environmental Expert	User	Agency
generation	species.		approved these disposal	and	NHAI
	Animal injuries.		sites after conducting a	work	
			joint inspection on the site	contra	ctor

			with the Developer.	
		*	Non- bituminous wastes	
			dumped in borrow pits	
			(preferably located in	
			barren lands) covered with	
			a layer of the soil. No new	
			disposal site created as	
			part of the project, except	
			with prior approval of the	
			Environment Expert. All	
			waste materials	
			completely disposed of	
			and the site fully cleaned	
			and certified by	
			Environmental Expert	
			before handing over.	
Construction	Degradation of	*	Precautions will be taken	User Agency
activity	Habitat Quality		to avoid leakage of	and NHAI
			chemicals, any hazardous	work
			materials due to	contractor
			construction activities.	
		*	Labour camps will be	
			located far from habitat of	
			any fauna	
		*	Invasive alien species will	
			be removed from time to	
			time	
Operation phase :	Injury and	*	With the proposed	User Agency
Direct Collision	mortality due to		mitigative measures such	and NHAI
	-		as construction of oulward	····
	direct collision.		as construction of curvers,	WOLK
	direct collision. There is a		road alignment, speed	contractor

	of direct animal	*	Injured animals shall be	
	hitting during		immediately taken to	
	animal crossing		forest department or	
	the roads.		veterinary hospitals	
Impact of	Restricts animal	*	Hedges along both sides of	User Agency
headlight glare	movement nearer		road will be provided to	and NHAI
on wild animals.	to road		lower the intensity of	work
			lights	contractor
Degradation of	Water, air, soil	*	Habitat improvement	Forest
habitat quality.	and biodiversity		programmes shall be taken	department
	of the region will		up on either side of the	with the funds
	get deteriorated		forest areas of the present	deposited by
	in long term.		road.	NHAI
				authorities as a
		*	Ecological monitoring by	part of WL
			expert scientist must be	report.
			done once in every 4 years	
			to know the animal	
			behaviour and migration	
			status.	
Langurs (Bonnet	Langurs are	La	angurs must be rehabilitated	Forest
macaque	hundred in	fre	om the existing range.	department
(Macaca radiate),	number and get	Sı	apply of sufficient food and	with the funds
Rhesus macaque	killed during	w	ater in forest premises shall	deposited by
(Macaca	direct collisions.	be	e taken care.	NHAI
<i>mulatta</i>)) create				authorities as a
problems to				part of WL
Vihicles.				report.
Impact on turtle	Indian Star	*	Limit the construction	
	Toritoise		activity within the	
	movement will		designated areas.	

	be restricted.	*	Check the site for turtle	
			trapped in, or in danger	
			from civil works and use a	
			qualified person to	
			relocate the animal.	
Avoidance of	To avoid Injury	*	Animal underpasses are	User Agency
Road by Animals	and Mortality of		proposed to be constructed	and NHAI
	animals		for animals to cross the	work
			road.	contractor
		*	Different types of	
			underpasses like Box	
			culverts, pipe culverts, and	
			culverts with furniture will	
			be constructed for passage	
			of herpeto-fauna,	
			amphibians etc.	
		*	Fences will be provided in	
			combination with	
			underpasses to direct	
			animals away from the	
			road.	
		**	Vegetation or other habitat	
			features (rocks, fallen	
			timber) will be placed,	
			planted or allowed to	
			regrow so that animals are	
			directed to preferred	
			crossing locations.	
		**	The plantation and lighting	
			systems along the road	
			should be made less	
			attractive to birds to avoid	

				collision of birds with		
				vehicles.		
Reduce	*	Wild animals	*	Construct more number of	User	Agency
access		frequently		under passess where	and	NHAI
		move for food,		animal crossings are more.	work	
		water and	*	Creation or improvement	contra	ctor
		mating. Access		of water bodies will be		
		to other side of		done so that the animals		
		the road reduce		have access to water.		
		where	*	Plantation along the water		
		underpasses		body will be done to		
		are not present.		attract the animals towards		
				it.		
			*	The saltlicks areas will be		
				protected from reach of		
				human beings.		
Increased	*	Impact on	*	Caution signs will be	User	Agency
Human Pressure		wildlife with		provided to alert drivers	and	NHAI
and Human-		human		about wildlife	work	
Wildlife Conflict		activities.	*	Speed limit will be	contra	ctor
				restricted in and around		
				dense habitation area to		
				avoid any collision of		
				animal.		
			*	Parking shall be restricted		
				to avoid any encounter of		
				humans with animals.		
			*	Temporary warning signs		
				may be provided to warn		
				drivers during specific		
				time like breeding periods		
				of animals or animal		

		movement.	
•	※	Animal Detection Systems	
		may be provided for	
		detection of any animal	
		near road.	
•	*	Poachers will be warned	
		through sign boards	

5.5. PROJECT CONTRACTORS CONDITIONS DURING CONSTRUCTION PHASE:

- Maintaining records on Awareness programmes, Animal sightings, Deaths, accidents etc and shall inform to forest department for further action.
- Necessary guidelines shall be taken from forest authorities throughout the construction phase.
- The contractors to establish environmental units and implement public awareness programs during construction regarding the impacts caused by the construction activity.
- All building material for workers should be brought carried from outside the project area.
- ♦ Workers should be supplied all food material cooked near Y.Palem region.
- ◆ Project staff and workers should not be allowed to have fire-arms and animal traps etc.
- ✤ Forest fires must be avoided by the worker activities.
- Employment agreements should specify heavy penalties for illegal hunting, trapping and wildlife trading – all other ancillary works should also agree not to participate in such activities;
- If any of the hunting activity is observed then the worker will be removed from the employment with immediate effect and legal action will be taken by forest department.
- There should be speed limit for the material carrying trucks/dumpers while traversing through the forest areas if at all. It is always better not to travel in the forest areas that would disturb the animal behaviour.
- Honking should be strictly prohibited in the forest area by the trucks and dumper used for the construction activity.
- ✤ No disposal of construction waste in the forest premises
- No earthen material or water from the springs present in the forest area will be used for the construction activity.
- Comply with environmental standards and strictly control workers to behave responsibly with respect to environmental issues;
- Site-specific waste collection and disposal management plan should be in place to, include good site practices such as: Providing the appropriate spill kits (e.g., containing

absorbent cloths and disposal containers) on-site during construction; Prohibition of dumping or burying wastes within Project site; Implementation of an on-going waste management program consisting of reduction, reuse, and recycling of materials.

Work should be under ISO14001 accreditation for environmental management which also be imposed on all the subcontractors; and cover each spot where excavated material is stored when climate conditions require to effect dust control by usage of dust suppression substances.

5.6. UNDERPASSES FOR WILDLIFE MOVEMENT

Open- and closed-top tunnels have been used by snakes. Some snake species may have greater crossing success through open-top tunnels, while others may access road surfaces through the open top of the tunnel. Depending on the tunnel material and shape, lizards may be able to access the road surface through open-top tunnels.

There are 22 existing culverts in total with 17 pipe and 5 slab /arch culverts along the project stretch. The width of the existing culverts ranges from 7.4m to maximum of 12.5m. The height of the slab type existing culverts are 1.5 m. Now 12 additional box type culverts are recommended unded this proposal for movement of mammals, reptiles and amphibians. All the existing culverts which are in fair condition are proposed for widening without opening in the median portion. In general widening is proposed to match with the cross section of approach at the culvertlocation. The entire Slab culverts are proposed for widening as they are hydraulically adequateand structurally fair in condition in with course rubble masonry substructure and foundation isproposed for reconstruction with box culvert of equivalent or higher ventarea. New culverts with Boxtype, both with and without cushionare proposed depending upon the location, size, and finished road level (FRL) and invert level.

For wildlife movement, all pipe type are now reconstructed as Box model type. Out of which, for the movement of wild fauna such as Tigers, Leopards, Slothbears, Deers etc the height of the box types are ranges from 3m to 5 m and and width of the box type model

culvert ranges from 5m to 6m. Improvement Proposals of Culverts are given under annexure 8.1.

Fig: 5.7 A model tunnel for snakes, lizards and amphibian movement near highway.

6.PROJECT SPECIFIC MITIGATION PLAN WITH FINANCIAL OUTLAY

Chapter 6

6.1. MITIGATION MEASURES

Mitigation measures for the proposed road network evolved through a multi-step simultaneous process. We first evaluated the existing and proposed drainage and crossing structures on field, assessed the possibility of making the structures more suitable for wildlife movement and finally overlapped potential multi-taxa crossing zones to finalise the location and dimensions of the crossing structures.

The principal mitigation measure in the construction phase is strict application of standard specifications for erosion and sediment control, including routine inspections. The trees were cut are keeping at the minimum level by modifying alignments, eccentric and concentric widening. No construction vehicles are allowed to enter into the dense vegetation area. As per the study objectives, we studied impacts of the proposed project on direct habitat loss, barrier effect, disturbance leading to displacement of animal groups, collision risk in the study area by using appropriate standard methods.

The competent authority has the discretion to modify, add and delete any mitigation measure and financial plan during the time of issue of demand notice.

The details of the proposed mitigation measures are given below are for existing and proposed road network.

6.1.1. PLANTATION AND OTHER HABITAT IMPROVEMENT ACTIVITIES WITHIN THE FOREST AREAS.

a. Compensatory afforestation under supervisor of Forest department.

b. Maintenance of forest roads for monitoring and protection of wildlife and habitat.

6.1.2. DEVELOPMENT OF INFRASTRUCTURE

- a. Underpasses shall be constructed at selected locations. The existing under passes must be maintained by NHAI contractor as per forest department suggestions.
- b. Ramps / sloped pathway from rail level to natural forest in cutting portions suitably. As the work of Ramps and underpass bridges involves safety criteria due to running traffic, the construction of bridges to be done by NHAI under WL Mitigation plan duly showing the cost of such structures in Mitigation plan.

6.1.3. HABITAT ENRICHMENT WORKS

- a. Water storage and retention structures and saucer pits shall be constructed to retain the rain water for summer season.
- b. Automatic Solar water motors with borewell and storage pits
- c. Tractors and tankers shall be purchased for filling water in saucer pits
- d. Percolation tanks are to be developed Markapur division.
- e. Solar based automatic water filling system will be placed for drinking purpose of wildlife.

6.1.4. WILDLIFE RESEARCH AND MONITORING WORKS

- a. A wildlife monitoring station shall be established for further study on biodiversity of the region at Y.Palem.
- b. Equipment for wildlife monitoring and research must be purchased for longterm monitoring aspects.
- c. Ecological monitoring at a gap of every 4 to 5 years to understand the wildlife population and effectiveness of mitigation.

d. Experts on ecological aspects shall be appointed for studying the detailed mitigation plan. This work can be given to any reputed and experienced National, Regional level NGOs and Government organisations.

6.1.5. ROTECTION OF WILDLIFE

- a) Mobile team for forest and wildlife protection during and after the project construction phase
- b) Watch towers shall be constructed for wildlife monitoring with in the study area.
- c) Fencing on the either side of the road shall be developed during construction phase.
- d) Fire lines shall be created with 3M width within the reserve forest areas for 10 km length.

6.1.6. PUBLICITY AND AWARENESS

- a. Publicity and awareness camps shall be conducted at local level.
- b. Awareness among all the workers and contractors during project phase regularly.
- c. 10 nos of Signage and boards to be placed at frequent intervals.

6.1.7. SPECIES SPECIFIC GENERAL MITIGATION MEASURES

- a) Artificial saltlicks shall be arranged within the forest areas.
- b) Wildlife alerting Alarm / sound systems near tunnels, cuttings, turnings etc.
- c) Vehicle speed to be maintained and minimised as per norms.
- d) Approach roads shall be constructed only near the project area.
- e) For any work related for project, existing roads only to be utilised
- f) Eco-friendly engineering practices shall be employed.
- g) As and when required forest officials can conduct meetings with NHAI officials, contractors, workers, etc., and can inspect any project site, machinery, premises, etc.,
- h) No waste of any kind / debris to be dumped in reserve forest area.

 From time to time any conditions stipulated by forest officials for interest of wild life to be incorporated by contractors / user agency during construction phase.

6.2. FINANCIAL PLAN

m 11 (4	D1 1 1					
Table: 6.1	Physical an	d Financial	nlan for t	the nron	osed projec	t (Rs in Lakhs)
1 abic: 0.1	i nysicai an	u i manciai	plan for	ine prop	oscu projec	t (Its III Lakits)

S.No	Particulars	Nos	Unit cost	Total
				(Rs in
				Lakhs)
1	Construction of Underpasses	6	25.00	150.00
2	Maintanance of Underpasses	6	LS	20.00
3	Conservation and Management of Langurs	LS	LS	10.00
4	Habitat improvement works in thre forest areas	LS	LS	20.00
5	Solar based automatic water filling system with borewell and storage pit	2	5.00	10,00
6	Establishing Salt licks	LS	4	4.00
7	Ramps / sloped pathway from road level to natural forest in cutting portions suitably	LS	LS	100.00
8	Detailed study to understand the long-term impact on wildlife due to expansion project	1 No	LS	25.00
9	Ecological monitoring at a gap of every 4 to 5 years to understand the wildlife population and effectiveness of mitigation.	3 times	2.00	6.00
10	Equipment for wildlife monitoring and research	LS	LS	10.00
11	Wildlife monitoring and interpretation centres at Y.PALEM	LS	LS	20.00
12	Fencing at selected locations	2 km	5.00	10.00
13	Percolation tanks	10 No	0.50	5.00
14	Water storage and retention structure / Saucer pits	10	LS	10.00

15	Automatic Solar water motors with borewell and storage pits	4	10.00	40.00
16	Tractor, tanker for filling water in saucer pits	3	12.00	36.00
17	Signage and boards	10	0.50	5.00
19	Publicity and Awareness camps	10	1.00	10.00
20	Fire lines creation	10 km	LS	5.00
21	Watch tower for wildlife monitoring	2 no	12.00	24.00
22	Maintenance of forest roads for monitoring and protection of wildlife and habitat	LS	LS	20.00
23	Mobile team for forest and wildlife protection during and after the project construction phase. The Mobile team should have minimum 10 protection watchers and monitoring needs to be done at least 15 years.	10 No	15 years@ 3 lakhs each	450.00
24	Overhead charges	LS	LS	10.00
	Grand total excluding the works to be executed by NHAI			1000.00

Chum G CR istant Executive Engineer (R&B) N.H. Section : Narasaraopel ... Deputy Executive Engineer (RAB) N.H. Sub-Division, Guntur

Divisional Forest Office (Wild Life) MARKAPUP

COUNTER SIGNED

Chief Conservator of Forests & Field Director Project Tiger Circle, Srisailam

Pri. Chief Consecutor of Forests (WL) & Chief Wildlife Warden, A.P.

56

Year	1	2	3	4	5	6	7	8	9	10	Total
	2022- 2023	2023- 2024	2024- 2025	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030	2030- 2031	2031- 2032	(Rs in Lakhs)
Construction of Underpass*	100	50	0	0	0	0	0	0	0	0	150.00
Maintanance of Underpasses*	2	2	2	2	2	2	2	2	2	2	20.00
Conservation and Management of Langurs	2	0	2	0	2	0	2	0	2	0	10.00
Habitat improvement works in thre forest areas	4	0	4	0	4	0	4	0	4	0	20.00
Solarbasedautomaticwaterfilling system withborewellandstorage pit	0	5	0	5	0	0	0	0	0	0	10,00
Establishing Salt licks	1	0	1	0	1	0	1	0	0	0	4.00
Ramps / Sloped pathways	25	25	25	25	0	0	0	0	0	0	100.00
Detailed study to understand the long-term impact on wildlife due to expansion project	5	0	5	0	5	0	5	0	5	0	25.00
Ecological monitoring at a gap of every 4 to 5 years to understand the wildlife population and effectiveness of mitigation.	0	0	2	0	0	0	2	0	0	2	6.00
Equipment for wildlife monitoring and research	5	5	0	0	0	0	0	0	0	0	10.00
Wildlife monitoring and interpretation centre at Y.PALEM	20	0	0	0	0	0	0	0	0	0	20.00

Table: 6.2 YEAR WISE FINANCIAL PLAN* (Rs. In Lakhs)

Fencing at selected locations.	5	5	0	0	0	0	Ø	0	Ő	0	10.00
Percolation tanks	2	2	1	0	0	. 0	0	0	0	Ø	5.00
Water storage and retention structure / Saucer pits	0	Ō	0	4	3	3	0	0	0	0	10.00
Automatic Solar water motors with borewell and storage pits	10	Ō	10	0	10	0	10	0	0	0	40.00
Tractor, tanker for filling water in saucer pits	12	0	0	12	0	0	12	0	0	0	36.00
Signage and boards	1	1	1	1	1	0	0	0	0	0	5.00
Publicity and Awareness camps	1	1.	1	t	1			1		1	10.00
Fire lines creation	1	1. 1.	1		1	0	0	0	0	0	5.00
Watch tower for wildlife monitoring	12	12	0	0	0	0	0	0	0	0	24.00
Maintenance of forest roads for monitoring and protection of wildlife and habitat	5	5	5	5	0	0	0	0	0	0	20.00
Mobile team for forest and wildlife protection during and after the project construction phase	45	45	45	45	45	45	45	45	45	45	450.00
Overhead charges	1	l	1	1	1	1	Ĩ	1	1	- ¹ 1	10.00
i walesta mar	259	160	106	102	76	52	85	49	60	51	1000.00

(Note: 1 & 2 User agency will execute the works with allocated funds)

CL Deputy Executive Engineer (R&B) Assistant Executive Engineer (R&B) M.H. Sub-Division, Guntur N.H. Section : Narasaraged

ngineer (R&B) (Wild Life) N

Divisional Forest Office (Wild Life) MARK58 UP

Prl. Chief Conservator of Forests (WL) & Chief-Wildlife Warden, A.P.

Chief Conservator of Eureste & Field Director Project Liger Circle, Srisailam

Scanned with CamScanner

7.REFERENCES

 WII (2016). Eco-friendly measures to mitigate Impacts of Linear Infrastructure on Wildlife. Wildlife Institute of India

Chapter 7

- Green infrastructure design for transport projects a road map to protecting by asia's wildlife biodiversity,2019 Asian Development Bank
- Champion, H.G. and S.K. Seth, 1968. A Revised Survey of the Forest Types of India. 1st Edn., Govt. of India Press, Nueva Delhi, India, Pages: 404
- Ellis, J.L., 1987. Flora of Nallamalais. Vol. 1-2, Botanical Survey of India, Calcutta
- Reddy, C.S., M.S.R. Murthy and C.B.S. Dutt, 2002. Vegetation diversity and endemism in Eastern Ghats, India. Proceedings of the National Seminar on Conservation of Eastern Ghats, March 24-26, 2002, EPTRI., Hyderabad, pp: 109-134
- Reddy, K.N., C.S. Reddy and S.N. Jadhav, 2005. Ethnobotany of certain orchids of Eastern Ghats of Andhra Pradesh. Indian For., 135: 90-96.
- Reddy, C.S., M. Brahmam and V.S. Raju, 2006. Conservation prioritization of endemic plants of Eastern Ghats, India. J. Econ. Taxon. Bot., 30: 755-772.
- forestsclearance.nic.in Biodiversity impact assessment report framework and structure
- VTI rapport 530A,2006. Habitat fragmentation due to transportation infrastructure, 164 pp.
- Guidelines for Amphibian and Reptile Conservation During Road Building and Management Activities in British Columbia
- Measures to Reduce Road Impacts on Amphibians and Reptiles in California: Best Management Practices and Technical Guidance

8.ANNEXURES

Chapter 8

8.1. ANNEXURE 1

	GPS Reading			Ige	Improv	ement P	ropos	als			
S No	Latitude	Longitude	Existing Chain (Km)	Design Chaina (Km)	Improvement Proposals	Type	No. of Vents	Clear span (m)	Clear Height (m)	TCS	Proposed Width (m)
1	16 ⁰ 15' 32.735"	73 ⁰ 18'20.097"	-	136+319	New Construction	Box	1	5.0	3.0	TCS - 6&6A	13.3
2	16 ⁰ 13' 38.008"	73 ⁰ 17' 56.757"	-	140+700	New Construction	Box	1	6.0	3.0	TCS - 6&6A	13.3
3	16 ⁰ 12' 43.624"	73 ⁰ 17' 38.384"	143/148	142+518	Reconstruction	Box	1	5.0	6.0	TCS - 6&6A	13.3
4	16 ⁰ 11' 36.576"	73 ⁰ 17' 18.587"	-	144+750	New Construction	Box	1	5.0	3.0	TCS - 6&6A	13.3
5	16 ⁰ 10' 35.597"	73 ⁰ 17' 33.146"	-	146+781	New Construction	Box	1	5.0	3.0	TCS - 2	15
6	16° 8' 36.101"	73° 19' 53.843"	-	153+285	New Construction	Box	1	5.0	3.0	TCS - 5&5A	13.25

Table 8.1 a. List of proposed underpasses with location details. (GPS readings)

	age	a	Existing Structure Details Improvement Proposals					als						
S No	Existing Chaina (Km)	Design Chaina (Km)	Type	No of cells	Dia/span	width of structure	Improvement Proposals	Type	No. of Vents	Clear span (m)	Clear Height (m)	TCS	Proposed Width (m)	Remarks
1	136/092	135+991	Pipe	1	0.7	7.6	Reconstruction	Box	1	1.5	1.5	TCS - 1	15	-
2	-	137+100	-	-	-	-	New Construction	Box	1	1.5	1.5	TCS - 1	15	-
3	140/130	139+954	Pipe	1	0.7	7.6	Reconstruction	Box	1	1.5	1.5	TCS - 4	13.25	-
4	141/477	140+917	Pipe	1	0.7	7.6	reconstruction	Box	1	1.5	1.5	TCS - 6&6A	13.3	-
5	142/137	141+574	Pipe	1	0.8	9	reconstruction	Box	1	1.5	1.5	TCS - 6&6A	13.3	-
6	-	142+035	-	-	-	-	New Construction	Box	1	1.5	1.5	TCS - 6&6A	13.3	-
7	-	142+234	-	-	-	-	New Construction	Box	1	1.5	1.5	TCS - 6&6A	13.3	-
8	143/364	142+730	Pipe	1	0.6	7.6	reconstruction	Box	1	1.5	1.5	TCS - 6&6A	13.3	-
9	143/814	143+181	Pipe	1	0.7	7.8	reconstruction	Box	1	1.5	1.5	TCS - 6&6A	13.3	-

Table 8.1 bList of improvement of exiting underpasses

61

	age	a	Existing Structure Details Improvement Proposals											
S No	Existing Chaina (Km)	Design Chaina (Km)	Type	No of cells	Dia/span	width of structure	Improvement Proposals	Type	No. of Vents	Clear span (m)	Clear Height (m)	TCS	Proposed Width (m)	Remarks
10	144/312	143+607	Pipe	1	0.9	7.6	reconstruction	Box	1	1.5	1.5	TCS - 6&6A	13.3	-
11	-	143+782	-	-	-	-	New Construction	Box	1	1.5	1.5	TCS - 6&6A	13.3	-
12	-	144+583	-	-	-	-	New Construction	Box	1	1.5	1.5	TCS - 6&6A	13.3	-
13	145/804	144+921	Pipe	1	0.7	7.6	reconstruction	Box	1	1.5	1.5	TCS - 3	14	-
14	146/225	145+382	Pipe	1	0.8	7.4	reconstruction	Box	1	1.5	1.5	TCS - 1	15	-
15	146/604	145+732	Pipe	1	0.9	7.4	reconstruction	Box	1	1.5	1.5	TCS - 1	15	-
16	-	146+343	-	-	-	-	New Construction	Box	1	2	1.5	TCS - 2	15	-
17	-	146+526	-	-	-	-	New Construction	Box	1	4	1.5	TCS - 2	15	-
18	149/405	148+442	Pipe	1	0.8	10	Reconstruction	Box	1	1.5	1.5	TCS - 5&5A	13.25	-
19	149/566	148+603	Pipe	1	0.7	7.9	reconstruction	Box	1	1.5	1.5	TCS - 5&5A	13.25	-

	age	ae	Existing Structure Details				Impro	ovement	t Propos	als				
S No	Existing Chain: (Km)	Design Chaina (Km)	Type	No of cells	Dia/span	width of structure	Improvement Proposals	Type	No. of Vents	Clear span (m)	Clear Height (m)	TCS	Proposed Width (m)	Remarks
20	149/752	148+792	Slab	1	1	7.9	Reconstruction	Box	1	1.5	1.5	TCS - 5&5A	13.25	-
21	150/408	149+429	Pipe	1	0.8	17.4	reconstruction	Box	1	1.5	1.5	TCS - 1	15	-
22	151/056	150+073	Slab	1	1	12	reconstruction	Box	1	1.5	1.5	TCS - 1	15	-
23	151/346	150+365	Pipe	NV	-	7.6	reconstruction	Box	1	1.5	1.5	TCS - 3	14	-
24	151/605	150+623	Slab	1	1	12.1	reconstruction	Box	1	1.5	1.5	TCS - 1	15	-
25	152/577	151+595	Slab	1	4	7.9	reconstruction	Box	1	4	1.5	TCS - 1	15	-
26	153/709	152+717	Pipe	1	0.7	7.6	reconstruction	Box	1	1.5	1.5	TCS - 5&5A	13.25	-
27	153/789	152+797	Pipe	1	0.7	7.25	reconstruction	Box	1	1.5	1.5	TCS - 5	13.25	-
28	153/931	152+939	Pipe	2	1	7.6	reconstruction	Box	1	1.5	1.5	TCS - 5&5A	13.25	-

8.2. ANNUXURE -2 (LIST OF FLORA)

S.No.	Botanical Name	Common name	Family	Habit
1	Acacia auriculiformis Benth.	Australia thumma	Leguminosae	Tree
2	Acacia chundra (Rottler)Willd.	Sandra tree	Mimosaceae	Tree
3	Acacia leucophloea (Roxb.)	Tella thumma	Leguminosae	Tree
4	Acacia nilotica (L.) Delile	Nalla thumma	Leguminosae	Tree
5	Acrocarpus fraxinifolius	Galivana chettu	Fabaceae	Tree
6	Adina cordifilia	Bandaru	Rubiaceae	Tree
7	Aegle marmelos (L.) Corrêa	Velaga	Rutaceae	Tree
8	Ailanthus excelsa Roxb.	Pedda manu	Simaroubaceae	Tree
9	Alangium salviifolium (L.f.) Wangerin	Vuduga chettu	Cornaceae	Tree
10	Albizia amara (Roxb.) B.Boivin	Konda sigara	Leguminosae	Tree
11	Albizia odoratissima	Ganara	Mimosaceae	Tree
12	Albizia lebbeck (L.) Benth.	Dirisanam	Leguminosae	Tree
13	Alstonia scholaris R.BR.	Edakula pala	Apocynaceae	Tree
14	Angeissus latifolia	Vellama	Combretaceae	Tree
15	Annona reticulata	Ramaphalam	Annonaceae	Tree
16	Annona squamosa	Seethaphalam	Annonaceae	Tree
17	Atalantia monophylla	Karunimma	Rutaceae	Tree
18	Azadirachta indica A.Juss.	Vepa	Meliaceae	Tree
19	Balanites aegyptiaca Delile.	Gara	Zygophyllaceae	Tree
20	Bauhinia purpurea L.	Bodhanta	Leguminosae	Tree
21	Bauhinia racemosa	Are	fabaceae	Tree
22	Borassus flabellifer L.	Thadi chettu	Arecaceae	Tree
23	Bridelia monoica	Tella balli	Euphorbiaceae	Tree
24	Bridelia retusa	Anem	Euphorbiaceae	Tree
25	Buchanania lanzan	Jarumamidi	Anacardiaceae	Tree
26	Butea monosperma (Lam.) Taub.	Modhuga	Leguminosae	Tree
27	Calophyllum inophyllum	Pagada	Calophyllaceae	Tree
28	Canthium dicoccum	Noorillu	Rubiaceae	Tree
29	Careya arborea	Kumbi	Lecethydaceae	Tree
30	Cassia fistula L.	Rela	Leguminosae	Tree
31	Cassia montana	Konda tangedu	Caesalpinaceae	Tree
32	Cassia siamea Lam.	Seema thangedu	Leguminosae	Tree
33	Cassine glauca (Rottb.) Kuntze	Nirija	Celastraceae	Tree
34	Casuarina equisetifolia	Sarugudu	Casurinaceae	Tree
35	Ceiba pentandra (L.) Gaertn	Tella buruga	Malvaceae	Tree
36	Chloroxylon swietenia	Billudu	Meliaceae	Tree
37	Chukrasia tabularis A.Juss.	Konda vepa	Meliaceae	Tree
38	Cinchona orixense	Potaka	Rubiaceae	Tree
39	Citrus limon (L.) Burm. f.	Nimma	Rutaceae	Tree
40	<i>Cleistanthus collinus</i> (Roxb.) Benth. ex	Madia las	Everbach'	т.
40		v adisaku	Eupnorbiaceae	T
41	Cocniospermum religiosum (L.) Alston	Kondagogu	ыхасеае	T
42	Cocos nucifera L.	Kobbari	Arecaceae	Tree
43	Daibergia ianceolaria L.I.	y errapatsaru	Leguminosae	Iree

44	Dalbergia latifolia Roxb.	Jiteegi	Leguminosae	Tree
45	Dalbergia paniculata L.f.	Pachari	Leguminosae	Tree
46	Dalbergia sissoo DC.	Sisu	Leguminosae	Tree
47	Delonix regia (Hook.) Raf.	Chittikesaram	Leguminosae	Tree
48	Dendrocalamus strictus(Roxb.) Nees	Sanna vedru	Graminae	Tree
49	Dichrostachys cinerea	Velthuru	Mimosaceae	Tree
50	Diospyros ferrea	Pisineka	Ebenaceae	Tree
51	Diospyros sylvatica	Gatha	Ebenaceae	Tree
52	Diospyros melanoxylon Roxb	Tunki	Ebenaceae	Tree
53	Ehretia Leavis	Gidugu	Boraginaceae	Tree
54	Eucalyptus citriodora Hook.	Lemon scented gum	Myrtaceae	Tree
55	Eucalyptus tereticornis	Nelagiri	Myrtaceae	Tree
56	Ficus benghalensis L.	Marri	Moraceae	Tree
57	Ficus hispida L.f.	Medipandu,Bemmedu akulu	Moraceae	Tree
58	Ficus mollis	Juvvi	Moraceae	Tree
59	Ficus racemosa	Medi	Moraceae	Tree
60	Ficus religiosa L.	Ravi	Moraceae	Tree
61	Gardenia turgida	Peddabikki	Rubiaceae	Tree
62	Garuga pinnata	Garuga	Burseraceae	Tree
63	Givotia moluccana	tella poliki	Euphorbiaceae	Tree
64	Gmelina arborea	Konda gummidi	Verbenaceae	Tree
65	Grevia tilifolia	Tada	Tiliaceae	Tree
66	Grevillea robusta	Silver oak	Protiaceae	Tree
67	Haldinia cordifolia	Pasupu-kadamba	Rubiaceae	Tree
68	Hardwickia binata	Yepi, Narayepi	Leguminosae	Tree
69	Holarrhena pubescens	Tedlapala	Apocynaceae	Tree
70	Holoptelea integrifolia Roxb.	Nemalinara	Ulmaceae	Tree
71	Hymenodictyon orixense	Bandaaru-chettu	Rubiaceae	Tree
72	Ixora arborea	Koravi	Rubiaceae	Tree
73	Ixora parviflora	Puttapala	Rubiaceae	Tree
74	Kydia calycina	Konda patti	Malvaceae	Tree
75	Lagerstroemia parviflora	Chennagi	Lythraceae	Tree
76	Lannea coromandelica (Houtt.) Merr.	Gumpena	Anacardiaceae	Tree
77	Leucaena leucocephala (Lam.) de Wit	Jabarichettu	Leguminosae	Tree
78	Litsea glutinosa	Naramamidi	Annonaceae	Tree
79	Madhuca longifolia	Ірра	Sapotaceae	Tree
80	Mallotus philippensis	Kunkuma	Euphorbiaceae	Tree
81	Mangifera indica L.	Mamidi	Anacardiaceae	Tree
82	Manilkara hexandra	Pala	Sapotaceae	Tree
83	Melia azedarach	Turka Vepa	Meliaceae	Tree
84	Melia dubia	Munnatikaaraka	Meliaceae	Tree
85	Millettia pinnata (L.) Panigrahi	Adivi ganuga	Leguminosae	Tree
86	Mitragyna parvifolia (Roxb.) Korth.	Nerkadamba	Rubiaceae	Tree
87	Morinda pubescens	Togaramogali	Moraceae	Tree
88	Morinda tinctoria Roxb.	Maddichettu	Rubiaceae	Tree
89	Mundulea sericea	Tella bitlu	fabaceae	Tree
90	Murraya paniculata	Gulimi	Rutaceae	Tree
91	Naringi crenulata	Korivelaga	Rutaceae	Tree

92	Nyctanthes arbor-tristis L.	Parijatham	Oleaceae	Tree
93	Ochna obtusa	Tammi	Ochnaceae	Tree
94	Pavetta indica L.	Lakkapapidi	Rubiaceae	Tree
95	Peltophorum pterocarpum (DC.) K.Heyne	Kondachintha	Leguminosae	Tree
96	Phoenix sylvestris (L.) Roxb.	Eethachettu	Arecaceae	Tree
97	Phyllanthus acidus	Racha usiri	Phyllanthaceae	Tree
98	Phyllanthus emblica L.	Usiri	Phyllanthaceae	Tree
99	Pithecellobium dulce (Roxb.) Benth.	Sima chinta	Leguminosae	Tree
100	Prosopis chilensis (Molina) Stuntz.	Mulla thumma	Leguminosae	Tree
101	Prosopis juliflora(Sw.) DC.	English tumma	Mimosaceae	Tree
102	Protium serratum	Unduruka	Burseraceae	Tree
103	Pterocarpus marsupium	Yegisa	fabaceae	Tree
104	Pterospermum xylocarpum	Loluga	Malvaceae	Tree
105	Samanea saman (Jacq.) Merr.	Nidraganeeru	Sapindaceae	Tree
106	Sapindus emarginata	Kunkudu	Sapindaceae	Tree
107	Schrebera swietenioides	Esuka rasi	Oleaceae	Tree
108	Sclechera oleosa	Busi	Annonaceae	Tree
109	Semecarpus anacardium	Nalla jeedi	Anacardiaceae	Tree
110	Sterculia urens	Thapsi	Sterculiaceae	Tree
111	Stereospermum personatum(Hassk.)	Ambuvasini	Bignoniaceae	Tree
112	Streblus asper	Barrenka	Moraceae	Tree
113	Strychnos nux-vomica	Mushini	Loganiaceae	Tree
114	Strychnos potatorum	Induga	Loganiaceae	Tree
115	Syzygium cumini (L.) Skeels	Neredu	Myrtaceae	Tree
116	Tamarindus indica L.	Chintha	Leguminosae	Tree
117	Tectona grandis L.f.	Teak	Lamiaceae	Tree
118	Terminalia alata	Nallamaddi	Combretaceae	Tree
119	Terminalia bellirica	Thani	Combretaceae	Tree
120	Terminalia catappa L.	Badham	Combretaceae	Tree
121	Terminalia chebula	Karaka	Combretaceae	Tree
122	Thespecia populnea	Ganga Raavi	Malvaceae	Tree
123	Thevetia neriifolia	Pacha ganneru	Apocynaceae	Tree
124	Vitex negundo L.	Vavili	Lamiaceae	Tree
125	Wrightia arborea	Adaviankudu	Apocynaceae	Tree
126	Wrightia tinctoria (Roxb.) R.Br.,	Palakodisa	Apocynaceae	Tree
127	Xylia xylocarpa Roxb	Konda thangedu	Leguminosae	Tree
128	Ziziphus mauritiana Lam.	Reni	Rhamnaceae	Tree
129	Ziziphus xylopyrus	Gotti	Rhamnaceae	Tree
130	Desmodium pulchellum	Kuradia gachha	Fabaceae	Shurb
131	Desmodium velutinum	Gitanaramu	Fabaceae	Shurb
132	Grewia rothii	Miri Chara	Malvaceae	Shurb
133	Grewia hirsuta	Chimachipuru	Tiliaceae	Shurb
134	Helicteres isora	Guvardara	Sterculiaceae	Shurb
135	Leea asiatica	Amkador	Vitaceae	Shurb
136	Woodfordia fruticosa	Jargi	Lythraceae	Shurb
137	Abutilon indicum (L.) Sweet	Thutturubenda	Malvaceae	Shrub
138	Agave americana L.	Gitta nara	Asparagaceae	Shrub
139	Caesalpinia bonduc (L.) Roxb.	Gacha podha	Leguminosae	Shrub
140	Caesalpinia pulcherrima (L.) Sw.	Rathna gandhi	Leguminosae	Shrub

141	Calotropis gigantea (L.) Dryand.	Tella jilledu	Apocynaceae	Shrub
142	Calotropis procera (Aiton) Dryand.	Erra jilledu	Apocynaceae	Shrub
143	Capparis zeylanica L.	Aru donda	Capparaceae	Shrub
144	Caralluma umbellata Roxb.	Kundeti kommulu	Apocynaceae	Shrub
145	Carissa carandas L.	Kalvi	Apocynaceae	Shrub
146	Catunaregam spinosa (Thunb.) Tirveng.	Manga	Rubiaceae	Shrub
147	Clerodendrum phlomidis L.f.	Kond-takal	Lamiaceae	Shrub
148	Datura stramonium L.	Ummetha	Solanaceae	Shrub
149	Erythroxylum monogynum Roxb.	Dedaraaku	Erythroxylaceae	Shrub
150	Euphorbia cactus	Jemudu	Euphorbiaceae	Shrub
151	Euphorbia tirucalli L.	Tirukalli	Euphorbiaceae	Shrub
152	Grewia hirsuta Vahl.	Jaani Chettu	Tiliaceae	Shrub
153	Grewia flavescens Juss.	Jana	Malvaceae	Shrub
154	Hyptis suaveolens (L.) Poit.	Danthitulasi	Lamiaceae	Shrub
155	Ipomoea carnea Jacq.	Rubber mokka	Convolvulaceae	Shrub
156	Jasminum angustifolium Vahl.	Adavi malli	Oleaceae	Shrub
	Jasminum roxburghianum Wall. ex			
157	C.B.Clarke	Garuda malli	Oleaceae	Shrub
158	Lantana camara L.	Pulikampa	Verbenaceae	Shrub
159	Leonotis nepetifolia (L.) R.Br.	Rana bheri	Lamiaceae	Shrub
160	Opuntia dillenii (Ker Gawl.) Haw.	Naga jamudu	Cactaceae	Shrub
161	Phoenix acaulis Roxb.	Chitteetha	Palmae	Shrub
162	Senna auriculata (L.) Roxb.	Tangedu	Leguminosae	Shrub
163	Senna occidentalis (L.) Link	Kasintha	Leguminosae	Shrub
164	Solanum pubescens.Willd.	Uchintha	Solanaceae	Shrub
165	Solanum surattense Burm. f.	Nela vakudu	Solanaceae	Shrub
166	Xanthium strumariumL.	Marula-Mathangi	Asteraceae	Shrub
167	Ziziphus oenopolia (L.) Mill.	Pariki	Rhamnaceae	Shrub
168	Azolla pinnata subsp. africana (Desv.)	Mosquito fern	Salviniaceae	Hydrophyte
169	Eichornia crassipes Solms.	Gurrapu dekka	Pontederiaceae	Hydrophyte
170	Ipomoea aquatica Forssk.	Thooti Koora	Convolvulaceae	Hydrophyte
171	Lemna minor Hegelm.	Duck Weed	Araceae	Hydrophyte
172	Marsilea quadrifolia L.	Araa koora	Marsileaceae	Hydrophyte
173	Nelumbo nucifera Gaertn.	Indian Lotus	Nelumbonaceae	Hydrophyte
174	Typha angustata L.	Jammu	Typhaceae	Hydrophyte
175	Vallisneria spiralis L.	Punatsu	Hydrocharitaceae	Hydrophyte
176	Acalypha indica L.	Muripindi	Euphorbiaceae	Herb
177	Achyranthes aspera L.	Uttareni	Amaranthaceae	Herb
178	Aerva lanata (L.) Juss	Thelaga pindi	Amaranthaceae	Herb
179	Aeschynomene aspera L	Neeti jeeluga	Leguminosae	Herb
180	Ageratum conyzoides (L.) L.	Vasavi	Asteraceae	Herb
181	Aloe vera (L.) Burm.f.	Kithanara	Tiliaceae	Herb
182	Alternanthera sessilis (L.) R.Br. ex DC.	Ponagantiaku	Amaranthaceae	Herb
183	Amaranthus spinosus L.	Mulla thotakoora	Amaranthaceae	Herb
184	Amaranthus viridis L.	Chilakathotakoora	Amaranthaceae	Herb
185	Argemone mexicana L.	Brahmadandi	Papaveraceae	Herb
186	Barleria prionitis L.	Pachagorinta	Acanthaceae	Herb
187	Blumea mollis (D. Don) Merr.	Kukkapogaku	Asteraceae	Herb
188	Boerhavia diffusa L.	Atikimamidi	Nyctaginaceae	Herb

189	Borreria hispida Spruce ex K.Schum.	Madana	Rubiaceae	Herb
190	Catharanthus roseus (L.) G.Don	Billaganneru	Apocynaceae	Herb
191	Celosia virgata Jacq.	Guruga	Amaranthaceae	Herb
192	Cleome viscosa L.	Kukka vomintha	Cleomaceae	Herb
193	Crotalaria juncea L.	Janumu	Leguminosae	Herb
194	Croton bonplandianus Baill.	Vana mokka	Euphorbiaceae	Herb
195	Eclipta alba (L.) Hassk.	Guntagalagara	Asteraceae	Herb
196	Euphorbia hirta L.	Nanubalu	Euphorbiaceae	Herb
197	Evolvulus alsinoides (L.) L	Vishnukrantha	Convolvulaceae	Herb
198	Fimbristylis cymosa R.Br.	Pulupu gaddi	Cyperaceae	Herb
199	Gomphrena serrata L.	Tella bendumalli	Amaranthaceae	Herb
200	Hygrophila auriculata (Schumach.) Heine	Mundla gobbi	Acanthaceae	Herb
201	Indigofera hirsuta L.	Kolapattitulu	Leguminosae	Herb
202	Indigofera linnaei Ali	Chalapachi	Leguminosae	Herb
203	Justicia procumbens L	Water Willow	Acanthaceae	Herb
203	Leucas aspera (Willd.) Link	Tummi	Lamiaceae	Herb
205	Ludwieja perennis L	Lavangakaya mokka	Onagraceae	Herb
205	Mimosa pudica L	Atthi nathi	Leguminosae	Herb
200		Threadstem	Legunnosae	Tiero
207	Mollugo cerviana (L.) Ser.	carpetweed	Molluginaceae	Herb
208	Ocimum canum Sims.	Kukka Tulasi	Lamiaceae	Herb
209	Oldenlandia umbellata L.	Chiru veru	Rubiaceae	Herb
210	Oxalis corniculata L.	Indian Sorrel	Oxalidaceae	Herb
211	Parthenium hysterophorus L.	Vayyaribhama	Asteraceae	Herb
212	Pavonia zeylanica Cav.	Karubenda	Malvaceae	Herb
213	Phyllanthus amanus	Nela Usiri	Euphorbiaceae	Herb
214	Phyllanthus maderaspatensis L.	Nalla Usirika	Phyllanthaceae	Herb
215	Plumbago zeylanica L.	Agnimaata	Plumbaginaceae	Herb
216	Portulaca oleracea L.	Pappu Kura	Portulacaceae	Herb
217	Ruellia tuberosa L.	Jurbula gadda	Acanthaceae	Herb
218	Scoparia dulcis L.	Potti boli	Plantaginaceae	Herb
219	Sesuvium portulacastrum (L.) L.	Thikka Kura	Aizoaceae	Herb
220	Sida acuta Burm.f.	Medabirusaku	Malvaceae	Herb
221	Sida cordifolia L.	Chiru Benda	Malvaceae	Herb
222	Sida spinosa L.	Naga bala	Malvaceae	Herb
223	Sonchus oleraceus (L.) L.	Ratrinta	Compositae	Herb
224	Sphaeranthus indicus L.	Bodasaramu	Asteraceae	Herb
225	Tephrosia purpurea (L.) Pers.	Vempali	Leguminosae	Herb
226	Trianthema portulacastrum L.	kadaraku	Aizoaceae	Herb
227	Tribulus terrestris L.	Cinnpalleru	Zygophyllaceae	Herb
228	Tridax procumbens (L.) L.	Gaddichamanthi	Asteraceae	Herb
229	Triumfetta pentandra A.Rich.	Chirusitrika	Malvaceae	Herb
230	Urena lobata L.	Pedda benda	Malvaceae	Herb
231	Vanda tessellata	Kodikalla chettu	Orchidaceae	Herb
232	Vernonia cinerea (L.) Less.	Sahadevi	Compositae	Herb
233	Waltheria indica L.	Nalla Benda	Malvaceae	Herb
	Ziziphus nummularia (Burm.f.) Wight &			
234	Arn.	Nela regu	Rhamnaceae	Herb
235	Apluda mutica L.f.	Mauritian grass	Poaceae	Grass
236	Aristida hystrix L.f.	Threeawn Grass	Poaceae	Grass

237	Brachiaria eruciformis	Mauritius signal grass	Poaceae	Grass
238	Chloris barbata	Uppu Gaddi	Poaceae	Grass
239	Chloris virgata Sw.	feather fingergrass	Poaceae	Grass
240	Cymbopogon citratus	Lemon grass	Poaceae	Grass
241	Cynodon dactylon (L.) Pers.	Bermuda grass	Poaceae	Grass
242	Cyperus castaneus	Black flatsedge	Poaceae	Grass
243	Cyperus flavidus	Rice flat sedge	Cyperaceae	Grass
244	Cyperus rotundus L.	coco-grass	Cyperaceae	Grass
245	Digitaria ciliaris	Southern crabgrass	Poaceae	Grass
246	<i>Eragrostis tenella</i> (L.) P.Beauv.ex Roem.& Schult.	Love grass	Poaceae	Grass
247	Heteropogon contortus (L.)	Black speargrass	Poaceae	Grass
248	Abrus precatorius L.	Gurivinda	Leguminosae	Climber
249	Ampelocissus latifolia	Adavi Draksha	Vitaceae	Climber
250	Ampelocissus tomentosa	Adavi Draksha	Vitaceae	Climber
251	Asparagus racemosus Willd.	Pilli Gaddalu	Asparagaceae	Climber
252	Cayratia pedata	Gummadi teega	Vitaceae	Climber
253	Cissus quadrangularis L.	Nalleru	Vitaceae	Climber
254	Clitoria ternatea L.	Sanku-Pushpamu	Leguminosae	Climber
255	Cocculus hirsutus	Cheepuru theega	Menispermaceae	Climber
256	Combretum albidum	Bandi kattu teega	Combretaceae	Climber
257	Cryptolepis buchananii	Adavipala teega	Apocynaceae	Climber
258	Cuscuta reflexa Roxb.	Sitamma pogunalu	Convolvulaceae	Climber
259	Derris scandens	Nalla Teega	Fabaceae	Climber
260	Dioscorea pentaphylla L.	Adavi gunusuthega	Dioscoreaceae	Climber
261	Gymnema sylvestre	Podapatri	Asclepiadaceae	Climber
262	Ipomoea macrantha Roem. & Schult.	Fence Morning glory	Convolvulaceae	Climber
263	Ipomoea nil (L.) Roth.	Kolli Vittulu	Convolvulaceae	Climber
264	Ipomoea obscura (L.) Ker Gawl.	Golla jiddu aku	Convolvulaceae	Climber
265	Jasminum auriculatum	Banamallika	Oleaceae	Climber
266	Merremia tridentata (L.) Hallier f.	Seethamma jada	Convolvulaceae	Climber
267	Mucuna pruriens (L.) DC.	Dulagondi	Leguminosae	Climber
268	Olax scandens	Turakavepa	Olacaceae	Climber
269	Passiflora edulis Sims.	Fashion fruit	Passifloraceae	Climber
270	Pergularia daemia (Forssk.) Chiov.	Dustapu-Teega	Apocynaceae	Climber
271	Rivea hypocrateriformis Choisy.	Bodditeega	Convolvulaceae	Climber
272	Tinospora cordifolia (Willd.) Miers.	Tippa teega	Menispermaceae	Climber
273	Ventilago maderaspatana	Surugudu	Rhamnaceae	Climber
274	Wattakaka volubilis	Dudipalatiga	Asclepiadaceae	Climber

8.3. ANNUXURE -3 (LIST OF FAUNA)

8.3.1. MAMMALS

S.No.	Scientific Name	Common Name	WPA Status	IUCN
1	Panthera tigris	Tiger	Part I of Schedule I	EN
2	Panthera pardus	Leopard	Part I of Schedule I	EN
3	Melursus ursinus	Sloth bear	Part I of Schedule I	VU
4	Hyaena hyaena	Hyena	Schedule III	NT
5	Hystrix indica	Porcupine	Schedule IV	LC
6	Sus scrofa	Wild pig	Schedule III	LC
7	Felis chaus	Jungle cat	Schedule II	LC
8	Viverricula indica	Civet Cat	Schedule II	LC
9	Cuon alpinus	Wild Dog	Schedule II	EN
10	Paradoxurus hermaphroditus	Palm Civet	Schedule II	LC
11	Semnopithecus entellus	Deccan Hanuman Langur	Part-II of Sch-II	LC
12	Macaca mulatta	Macaque Rhesus	Part-I of Sch-II	LC
13	Herpestes edwardsii	Indian grey Mongoose	Part II of Schedule II	LC
14	Axis axis	Spotted Deer	Schedule III	LC
15	Cervus unicolor	Sambar	Schedule III	VU
16	Boselaphus tragocamelus	Nilgai	Schedule III	LC
17	Bendicota bengalensis	Indian mole rat	Schedule V	LC
18	Mus musculus	House Mouse	Schedule V	LC
19	Ananthana ellioti	Tree shrew	Schedule V	LC
20	Rattus rattus	House rat	Schedule V	LC
21	Bendicota indica	Bandicoot rat	Schedule V	LC
22	Mus booduga	Little Indian Field mouse	Schedule V	LC
23	Cynopterus sphinx	Short-Nosed Fruit Bat	Schedule V	LC
24	Rousettus leschenaulti	Fruit bat	Schedule V	NT
25	Pipistrellus coromandra	Indian Pipistrelle	Schedule V	LC
26	Rhinopoma hardwickii	Lesser Mouse-Tailed Bat	Schedule V	LC
27	Lepus nigricollis	Black-naped Hare	Schedule IV	LC
28	Funambulus palmarum	Three striped palm squirrel	Schedule IV	LC

8.3.2. AVES

Scientific Name	Common Name	IUCN Status	IWPA (1972) Status
Phalacrocorax niger	Little cormorant	LC	Sch-IV
Ardea cinerea	Grey heron	LC	Sch-IV
Ardeola grayii	Pond heron	LC	Sch-IV

Scientific Name	Common Name	IUCN Status	IWPA (1972) Status
Bubulcus ibis	Cattle egret	LC	Sch-IV
Egretta garzetta	Little egret	LC	Sch-IV
Ixobrychus cinnamomeus	Chestnut bittern	LC	Sch-IV
Pseudibis papillosa	Black ibis	LC	Sch-IV
Porphyrio porphyrio	Purple moorhen	LC	Sch-IV
Pavo cristatus	Indian Peafowl	LC	Sch-I
Fulica atra	Coot	LC	Sch-IV
Vanellus indicus	Red wattled lapwing	LC	Sch-IV
Strptopelia chinensis	Spotted dove	LC	Sch-IV
Psittacula cyanocepahala	Blossomheaded parakeet	LC	Sch-IV
Eudynamis scolopacea	Koel	LC	Sch-IV
Athene brama	Spotted owlet	LC	Sch-IV
Apus affinis	House swift	LC	Sch-IV
Cypsiurus parvus	Palm swift	LC	Sch-IV
Ceryle rudis	Lesser Pied kingfisher	LC	Sch-IV
Merops leschenaultii	Chestnutheaded bee-eater	LC	Sch-IV
Merops philippinus	Blue tailed bee-eater	LC	Sch-IV
Merops orientalis	Small green bee-eater	LC	Sch-IV
Coracias benghalensis	Indian roller	LC	Sch-IV
Megalaima viridis	Small green barbet	LC	Sch-IV
Megalaima haemacephala	Crimson breasted barbet	LC	Sch-IV
Pitta brachyura	Indian pitta	LC	Sch-IV
Ermeopterix grisea	Ashycrowned finch-lark	LC	Sch-IV
Hirundo concolor	Dusky crag martin	LC	Sch-IV
Hirundo rustica	Eastern swallow	LC	Sch-IV
Dicrurus adsimilis	Black drongo	LC	Sch-IV
Dicrurus caerulescens	Whitebellied drongo	LC	Sch-IV
Dicrurus paradiseus	Greater racket-tailed drongo	LC	Sch-IV
Artamus fuscus	Ashy swallow-shrike	LC	Sch-IV
Sturnus malabaricus	Greyheaded myna	LC	Sch-IV
Sturnus pagodarum	Brahminy myna	LC	Sch-IV
Acridotheres tristis	Common myna	LC	Sch-IV
Corvus splendens	House crow	LC	Sch-IV
Corvus macrorhynchos	Jungle crow	LC	Sch-IV
Pericrocotus cinnamomeus	Small minivet	LC	Sch-IV
Pycnonotus cafer	Redvented bulbul	LC	Sch-IV
Turdoides affinis	Whiteheaded babbler	LC	Sch-IV
Copsychus saularis	Magpie-Robin	LC	Sch-IV
Saxicoloides fulicata	Indian robin	LC	Sch-IV

Scientific Name	Common Name	IUCN Status	IWPA (1972) Status
Monticola solitarius	Blue rock thrush	LC	Sch-IV
Zoothera citrina	White-throated ground thrush	LC	Sch-IV
Turdus merula	Blackbird	LC	Sch-IV
Parus major	Grey tit	LC	Sch-IV
Parus xanthogenys	Yellowcheeked tit	LC	Sch-IV
Anthus hodgsoni	Indian tree pipit	LC	Sch-IV
Anthus trivialis	Tree pipit	LC	Sch-IV
Motacilla flava	Yellow wagtail	LC	Sch-IV
Dicaeum agile	Thickbilled flowerpecker	LC	Sch-IV
Dicaeum erythrorhynchos	Tickell's flowerpecker	LC	Sch-IV
Nectarinia zeylonica	Purplerumped sunbird	LC	Sch-IV
Nectarinia asiatica	Purple sunbird	LC	Sch-IV
Zosterops palpebrosa	White-eye	LC	Sch-IV
Passer domesticus	House sparrow	LC	Sch-IV
Ploceus philippinus	Baya	LC	Sch-IV
Ploceus manyar	Streaked weaver bird	LC	Sch-IV
Lonchura punctulata	Spotted munia	LC	Sch-IV
Lonchura malacca	Blackheaded munia	LC	Sch-IV
Anas poecilorhyncha	Spot-billed Duck	LC	Sch-IV

*Status assigned by the IUCN, where -CR - Critically Endangered; EN - Endangered; LC - Least Concern; NT - Near Threatened; VU - Vulnerable, DA - Data Deficient, NE - Not Evaluated, R : Resident; RM : Resident Migratory; M: Migratory. All the birds observed from the study area.

Scientific Name	Common Name	IUCN	IWPA
Bungarus caeruleus	Common Krait		Not listed
Dendrelaphis tristis	Common Tree Snake	LC	
Echis carinatus	Saw scaled wiper		
Eryx conicus	Russells earth boa		
Eryx johii	Johns earth boa		
Lycodon aulicus	Common wolf snake		
Naja naja	Indian Cobra	LC	Sch- II
Ptyas mucosus	Common Rat snake	LC	Sch- II
Trimeresurus gramineus	Green pit viper	LC	Sch- IV

8.3.3. REPTILES
Hemidactylus flaviviridis	North house gecko		
Cyrtodactylus kacchensis	Black rock gecko		
Hemimidactylus brooki	House gecko	LC	
Vipera russelli	Russel's Viper	LR	Sch- II
Calotes rouxi	Forest Calottes	LC	
Calotes versicolor	Common garden lizard	LC	
Mabuya carinata	Common Skink	LC	
Chamaeleon zelanicus	Chameleon	VU	Sch- II

8.3.4. AMPHIBIANS

			IWPA
		IUCN	(1972)
Species	Common name	status	Status
Duttaphrynus stomaticus Lüken	Marbled toad	LC	Schedule IV
Duttaphrynus melanostictus Schneider	Common Indian toad	LC	Schedule IV
	Ornate narrow		
Microhyla ornata (Dumeril & Bibron)	mouthed Frog	LC	Schedule IV
Uperodon globulosus (Günther)	Indian balloon frog	LC	Schedule IV
Uperodon systoma Schneider	Marbled balloon frog	LC	Schedule IV
Hoplobatrachus crassus (Jerdon)	Jerdon's bull frog	LC	Schedule IV
Hoplobatrachus tigerinus (Daudin)	Indian bull frog	LC	Schedule IV
Euphlyctis hexadactylus (Lesson)	Indian pond frog	LC	Schedule IV
Sphaerotheca breviceps (Schneider)	Indian burrowing frog	LC	Schedule IV
Euphlyctis cyanophlyctis (Schneider)	Skittering frog	LC	Schedule IV

8.3.5. BUTTERFLIES

S. No.	Scientific Name	Common Name	Status
	Family – Nymphalidae		
1	Acraea violae	Tawny Coster	С
2	Danaus chrysippus chrysippus	Plain Tiger	VC
3	Danaus genutia genutia	Striped Tiger	С
4	Precis almana almana	Peacock Pansy	С
5	Precis hierta hierta	Yellow Pansy	VC
	Family -Lycaenidae		
6	Castalius rosimon rosimon	Common Pierrot	Schedule I of Part IV
7	Chilades laius	Lime Blue	VC
8	Freyeria trochylus	Grass Jewel	VC
9	Tarucus nara	Rounded Pierrot	VC
	Family -Pieridae		
10	Colotis eucharis eucharis	Plain Orange Tip	C

11	Ixias pyrene sesia	Yellow Orange Tip	VC
12	Catopsilia pomona	Common Emigrant	VC
13	Eurema hecabe simulata	Common Grass Yellow	VC
	Family -Hesperiidae		
14	Borbo bevani	Bevan's Swift	R
	Family -Papilionidae		
15	Papilio demoleus	Lime Butterfly	UC