MUCK MANAGEMENT PLAN

6.1 INTRODUCTION

A large quantity of muck is expected to be generated as a result of tunneling operations, construction of roads, etc. Muck generated from excavation of any project component is required to be disposed in a planned manner so that it takes a least possible space and is not hazardous to the environment. The muck disposal sites cause increased sedimentation in the fivers (though insignificant compared to natural sedimentation) and totally spoils the visual aesthetics of the area. It is of prime importance that these sites will have to be rehabilitated as soon as the disposal sites are full.

6.2 MUCK GENERATION

Based on the geological nature of the rocks and engineering properties of the soil, a part of the muck generated can be used as construction material. The balance needs to be suitably disposed. Normally, muck is disposed in low-lying areas or depressions. Trees, if any, are cut before muck disposal, however, shrubs, grass or other types of undergrowth in the muck disposal at sites perish. The muck disposal sites will be suitably stabilized on completion of the muck disposal.

- Muck disposal can lead to impacts on various aspects of environment. Normally, the
 land is cleared before muck disposal. During clearing operation trees are cut, but
 undergrowth perishes as a result of muck disposal.
- In many of the sites, muck is stacked without adequate stabilization measures. In such a scenario, the muck moves along with runoff and creates landslide like situations. Many a times, boulders/large stone pieces enter the river/water body, affecting the benthic fauna, fisheries and other components of aquatic biota.
- The increased vehicular movement near muck disposal sites lead to adverse impacts
 on ambient air quality as well. However, increase in vehicular traffic is not significant
 to cause major impact on ambient air quality.
- Normally muck disposal is done at low lying areas, which gets filled up due to stacking of muck. This can sometimes affect the natural drainage pattern of the area leading to accumulation of water or partial flooding of some area which can provide ideal breeding habitat for mosquitoes.

Thus, it is necessary to develop a proper muck disposal plan for amelioration of above referred impacts.

6.3 MUCK DISPOSAL SITES:-

The total excavation quantity likely to be generated at the project will be around 2.56 lakin cum. Approximately 30% of generated mock i.e. 0.77 lakin cum will be used as construction

खप निर्धेशिक Limited गोविन्द वन्य जीव विहार/रा0 पा0 भुरोला, छराराखण्ड

अपर मर्झ प्रबंधक (परि.प्र.) जा.सां.जल विद्युत्न,परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड

Talens and remaining 2.51 arm ourse rouging 40% swelding factor and over break, will be passed off at six much disposal sites. However, the capabity of the six dumpling sites is 16.3 arm ourse the details of which are as under in table.

Table: Muck Generation from Project Components of JSHEP

Table: Muck Generation from Project Components of JSHEP						
S. No.	. roject component	Total Muck				
1	Excavation of Coffer Dam & Pipe alignment	4498				
2	Barrage Excavation	7949				
3	Power intake Excavation	930				
4	Adit-1(to desilting tank) Excavation	3868				
5	Excavation of Desilting Basin (Underground)	26917				
6	Intake Tunnel Excavation	3081				
7	Adit-2 (to Head Race Tunnel) Excavation	6460				
8	Adit-3 (to Head Race Tunnel) Excavation	5970				
9	Adit-4 (to Head Race Tunnel & surge shaft) Excavation	3525				
10	Face-1 (from Desilting Side) Excavation	7670				
11	Face-2 (Construction Adit-2 Upstream) Excavation	7670				
12	Face-3 (Construction Adit-2 Downstream) Excavation	16725				
13	Face-4 (Construction Adit-3 Upstream) Excavation	16725				
14	Face-5 (Construction Adit-3 Downstream) Excavation	15830				
15	Face-6 (Construction Adit-4 Upstream) Excavation	15830				
16	Face-7 (Construction Adit-4 Downstream) Excavation	817				
.17	Surge Shaft Excavation	2773				
18	Pressure shaft & Penstock Excavation	6344				
19	Valve House Excavation	1000				
20	Power House Cavern Excavation	46009				
21	Main Access Tunnel Excavation	12500				
22	Ventilation Tunnel Excavation	7328				
٨	4					

WAPCOS (1906) गोविन्द बन्य जाव बिहार/रा० पा० पुराला, उत्तराखण्ड

अपर मही प्रबंधक (परि.प्र.) जा.सां.जल विध्रुत परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड

G.S. Pundir Sr. Manager (Geoin

398707 3374 T HSH

Dagle Tunder Excavation	1656
Tal Page Tunnel Excavation	4863
25 Potnead Yard Excavation	29172
otal Muck generation (cum)	256110

			Area (Ha)	Capacity (m³)	Muck to be
	D-1	Near D/s of Barrage Site on the Left Bank of Supin River	0.4182	60095	dumped (m³) 33110
2	D-2	Adjacent to Dhara Village i.e. Near Adit-2	4.772	1162563	50944
3	D-3	Near Adit-3	0.841	59651	21364
		Near Junction of Main Road and Powan Malla Road	1.874	114925	19107
5	D-5	Between Crushing Plant and E & M Workshop	0.746	87000	65500
6	D-6	Near Surge Shaft and Adit-4	0.961	145695	60963

6.4 MANAGEMENT MEASURES

As mentioned earlier, a large quantum of muck is expected to be generated. A part of muck is proposed to be utilized as a construction material for various project appurtenances. The balance is proposed to be disposed at the designated site.

Muck generated from excavation of any project component is required to be disposed in a planned manner so that it takes a least possible space and is not hazardous to the environment. In the hilly area, dumping is done after creating terraces thus usable terraces are developed. The overall idea is to enhance/maintain aesthetic view in the surrounding area of the project in post-construction period and avoid contamination of any land or water resource due to muck disposal.

Suitable retaining walls shall be constructed to develop terraces so as to support the muck on vertical slope and for optimum space utilization. Loose muck would be compacted layer wise. The muck disposal area will be developed in a series of terraces of boulder crate wall

संक्षंभिक्षकेष्ठकाiled गोविन्द बन्य जाव विहार/रा0 पा0 पुराला, उत्तराखण्ड अपर मध्य प्रसंधक (परि.प्र.) जा.सां.जल किञ्जत परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड and masonly walk to process the area/muck floor flood water colling monacions. In-petween ne temages, paton water draw, will be provided

The terraces of the muck disposal area will be ultimately covered with fertile soil and suitable clants will be planted adopting suitable bio-technological measures.

The pasic aim and objectives of the muck management plan are to:

- protect these areas from soil erosion
- develop these areas by afforestation
- develop them into parks, gardens etc
- utilize the maximum quantity of muck for development of infrastructure of project
- develop these areas in harmony with the landscape of the project area.

Various activities proposed as a part of the management plan are given as below:

- Land acquisition for muck dumping sites
- Civil works (construction of retaining walls, boulder crate walls etc.)
- Dumping of muck
- Levelling of the area, terracing and implementation of various engineering control measures e.g., boulder, crate wall, masonry wall, catchwater drain.
- Spreading of soil
- Application of fertilizers to facilitate vegetation growth over disposal sites.

For stabilization of muck dumping areas following measures of engineering and biological measures have been proposed

Engineering Measures

- Wire crate wall
- Boulder crate wall
- R.C.C
- Catch water Drain

Biological Measures

- Plantation of suitable tree species and soil binding species
- Plantation of ornamental plants
- Barbed wire fencing

Muck generally lacks nutrients and therefore, are difficult to re-vegetate. However, if no attempts to vegetate the slopes are made, the muck could slide lower down during rain and may eventually wash off the check dams also. Since, top soils are not available in large quantities in Himalayas, it may not be possible to apply a thin layer of soil over the muck. Bio-fertiliser technique developed by National Environmental Engineering Research Institute (NEERI) can be adopted in the proposed project. NHPC has successfully used this technique in Uri hydroelectric project. Similar approach can be utilized in the proposed project as well. In this process, the unused excavated material is piled and stacked with proper slopes at the designated muck disposal sites. The slopes are broken up by creating

गोविन्द वन्य जीव विहार/रा० पा० पुराला, उत्तराखण्ड

Sअपर महस्यवसक (परि.प्र.) जा.सां.पल किंदी त परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड

article space for planting of trees that would further help in holding and consolidating pictechnological approach. The traditional methods of afforestation of these areas would be supplemented with the use of fungus, ille Vesicular Arbuscular Mycorrizae (VAM) and nitrogen fixing bacteria that form partnership with plant roots. These grow on plant roots and provide water and nutrition especially phosphorus to plants at faster rate. The seeding of plants would be inoculated with VAM and nitrogen fixing bacteria before planting. It has been found that plants inoculated with bio-fertilizers grow at faster rate especially in the medium where the soil/rock is devoid of nutrients.

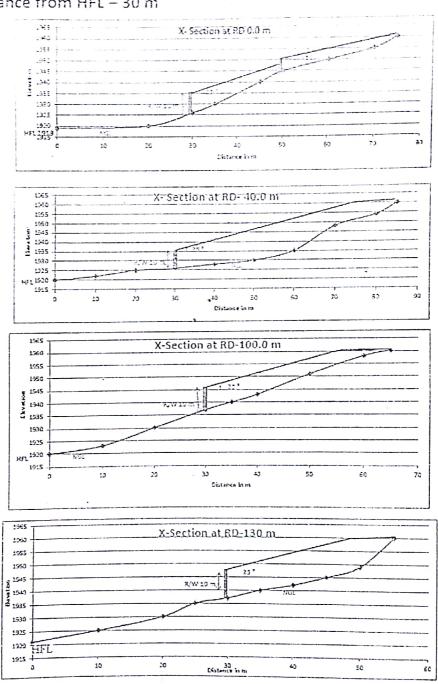
The afforestation with suitable plant species shall be done. About 1000-1200 trees/ha shall be planted.

6.5 BUDGET

A provision of Rs.42.1 million has been earmarked for stabilization and restoration of muck disposal site. The details are given in Table-6.3.

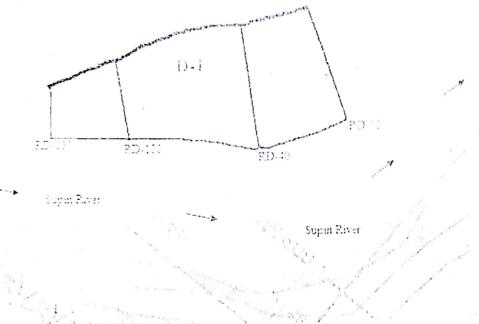
TABLE-6.3
Cost estimate for stabilization of muck disposal sites

Cost estimate for stabilization of muck disposal sites								
S.	Works	Quantity	Unit	Rate (Rs.)	Cost			
No.	8				(Rs.million)			
A. Engineering Measures								
1.	Boulder Crate Wall	8000	m ³	1000	8.0			
2.	Masonry Wall	3000	m ³	4000	12.0			
3.	Catch Water Drain	2000	m ³	4000	8.0			
4.	Levelling including		LS		1.0			
	spreading of soil							
	Sub-Total (A)				29.0			
B. Biological Measures								
1.	Plant sapling			LS	0.1			
	procurement							
2.	Plantation			LS	4.0			
3.	Fencing			LS	4.0			
4.	Biological fertilizer			LS	2.0			
	procurement							
5.	Watch and ward			-	3.0			
	Sub Total (B)				13.1			
	Total (A+B)				42.1			


ज्य निवेशक जोविन्द वन्य जीव विहार/रा0 पा0 पुरोला प्राखण्ड

WAPCOS Limited

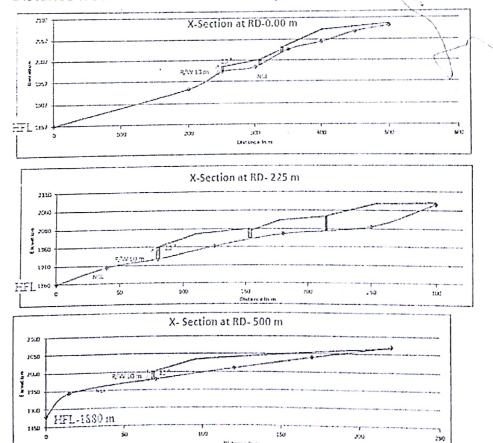
अपर महा प्रबंधक (परि.प्र.) जा.सां.जल विद्ध परियोजना मोरी, उत्तरकारों, उत्तराखण्ड 20 m


MUCK DISPOSAL PLAN

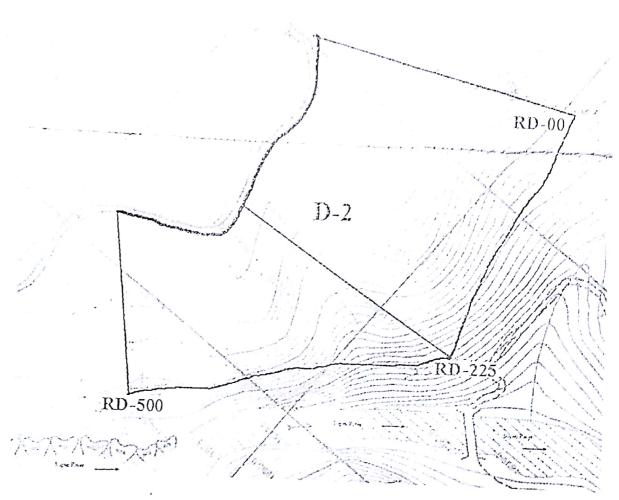
Dumping Sites- D-1Dumping Capacity -60095 cumDistance from HFL – 30 m

जप निदेशक गोकिद वन्य जीव विहार/रा0 पा0 ुपुरासा, उत्तराखण्ड

अपर मुद्रा प्रबंधक (परि.प्र.) जा.सां.जल-विद्युत परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड



Topographical Contour Map of Dumping Site-1 (D-1)


2. Dumping Sites- D-2

Dumping Capacity -11.63 Lakh cum

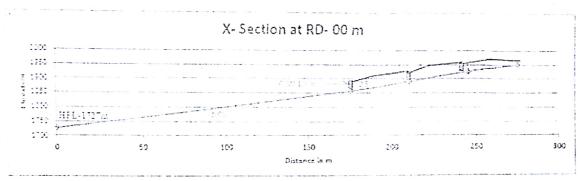
Distance from HFL = RD-0.0 - 250 m, RD-225 - 80 m, RD-500 - 70 m

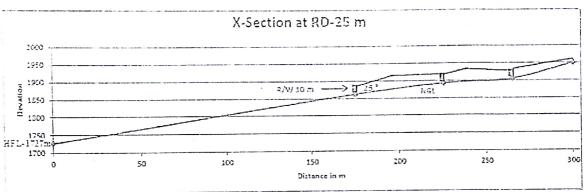
जप निष्ट्रेशक गोविन्त वन्य जीव विहार/रा० पा० पुरोला, उत्तराखण्ड अपर महा अबंधक (परि.प्र.) जा.सां.जल विद्युत परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड

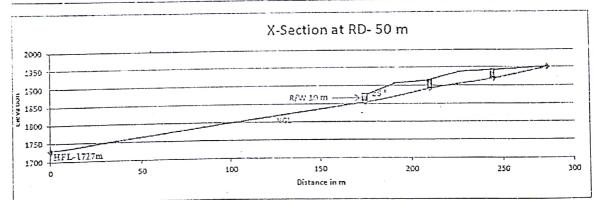
Topographical Contour Map of Dumping Site-2 (D-2)

त्य निक्शक गोविन्द दन्य जीव विहार/रा० पा० पुरोला, उत्तराखण्ड

अपर महा प्रयंधक (परि.प्र.) जा.सां.जल विद्युत परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड

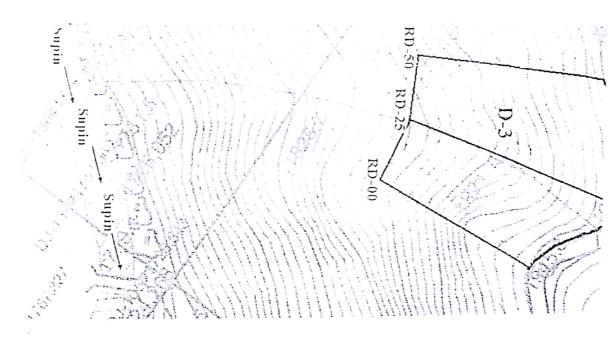

G.S. Pundir Sr. Manager (Geology)


Scanned by CamScanner

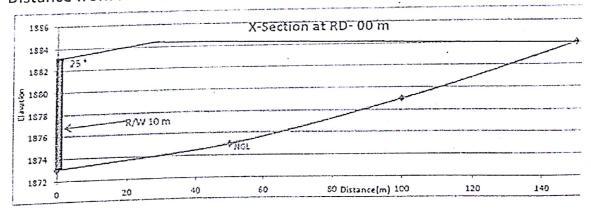

3. Dumping Sites= D-3

Dumping Capacity = 59650 cum

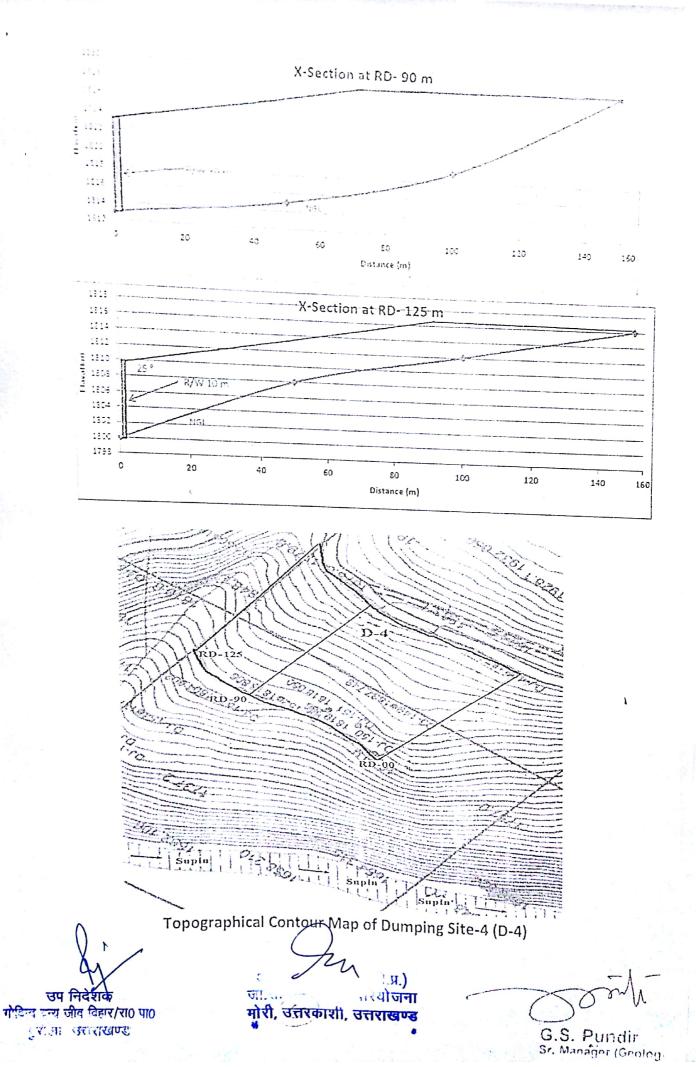
Distance from HFL = 175 m



्र सप निदेशक गोविन्द वन्य जीव विहार/रा० पा० पुराला, उत्तराखण्ड


अपर मही प्रबंधक (परि.प्र.) जा.सां.जल विद्युत परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड C & Smadir

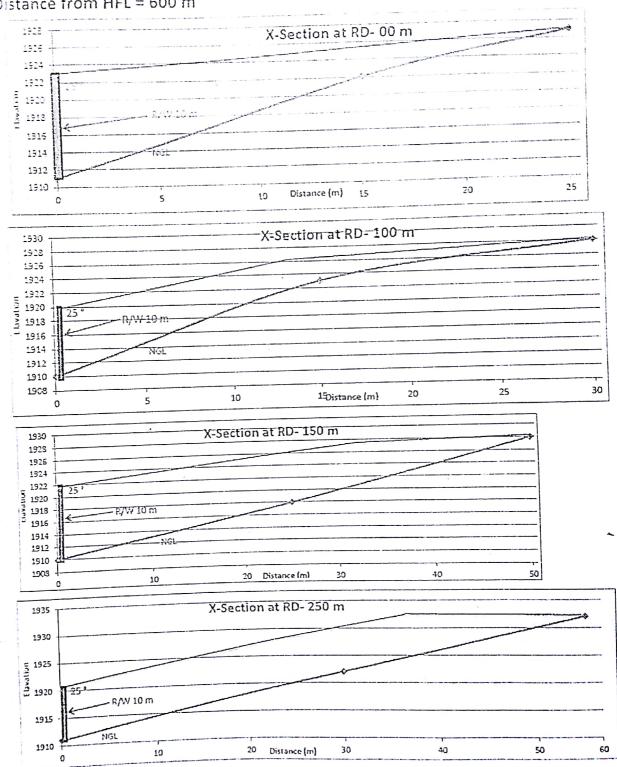
G.S. Pundit Sr. Manager (Geole


Topographical Contour Map of Dumping Site-3 (D-3)

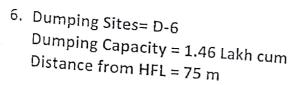
4. Dumping Sites = D-4
Dumping Capacity = 1.15 Lakh cum
High Flood Level=1660 m
Distance from HFL = 180 m

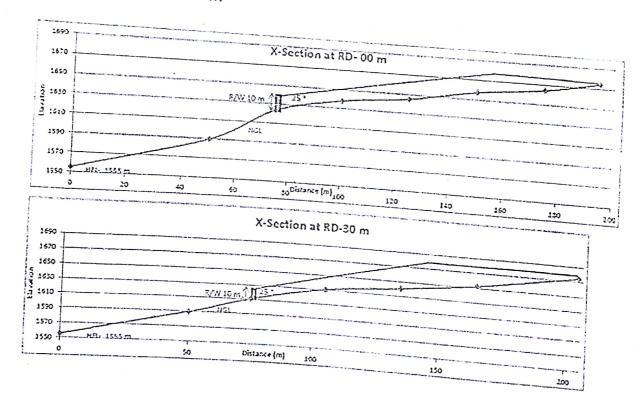
गोकिन्द वन्य जीव विहार/रा0 पा0 पुरोला, उत्तराखण्ड

अपर महार प्रबंधक (परि.प्र.) जा.सां.जल विद्युत परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड

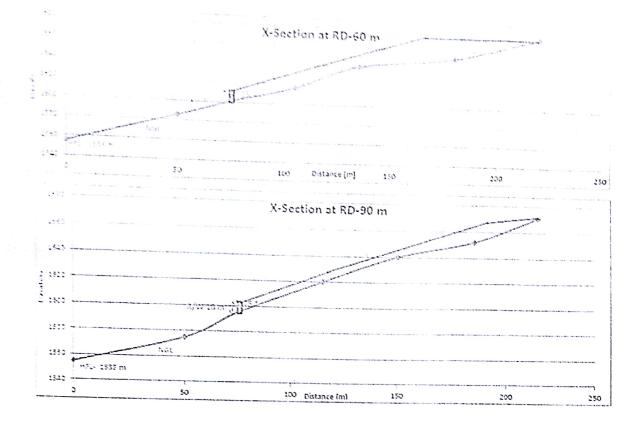

Scanned by CamScanner

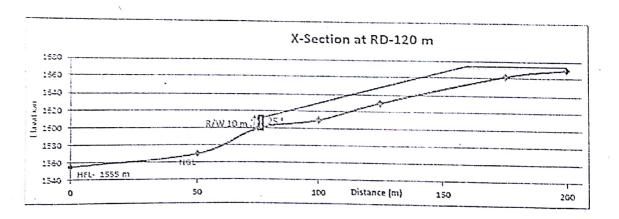
5. Dumping Sites= D-5


Dumping Capacity = 0. 87 Lakh cum

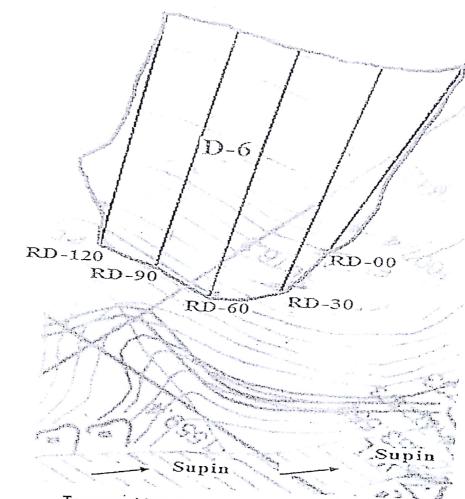

High Flood Level=1660 m

Distance from HFL = 600 m


जप निर्देशक गोविन्द वन्य जीव दिहार/रा० पा० पुरोला, उत्तराखण्ड अपर किन्न (परि.प्र.) जा.सां.जल विद्युत परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड



उप निर्देशक गोविन्द वन्य जीव विहार/रा० पा० पुरोला, उसराखण्ड


अपर मही प्रवंधक (परि.प्र.) जा.सां:जल विधुत परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड

उप निदेशक गोविन्द वन्य जीव विहार/रा० पा० पुरोला, उत्तराखण्ड

अपर मध्ये पर्धियक (परि.प्र.) जा.सां.जल विद्युत परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड

Topographical Contour Map of Dumping Site-6 (D-6)

उप निर्देशक गोविन्द वन्य जीव विहार/रा० पा० पुरोला, उत्तराखण्ड

अपर महा प्रबंधक (परि.प्र.) जा.सां.जल विद्युत परियोजना मोरी, उत्तरकाशी, उत्तराखण्ड