M/S MAHARASHTRA STATE POWER **GENERATION COMPANY LIMITED** "Prakashqad" Plot No. G-9, Anant Kanekar Marg, Bandra (East): Mumbai, Maharashtra-400051 Ph: 022 - 26476231; 022-26474211; E-mail: md@mahagenco.in ### MINING PLAN AND MINE CLOSURE PLAN #### GARE PALMA SECTOR-II COAL MINE (MAND RAIGARH COALFIELD) VILLAGES: TIHLI RAMPUR, KUNJEMURA, GARE, SARAITOLA, MUROGAON, RADOPALI, PATA, CHITWAHI, DHOLNARA, JHINKA BAHAL, DOLESARA, BHALUMURA, SARASMAL AND LIBRA DISTRICT: RAIGARH, CHHATTISGARH (Under Rule 22 (4) of Mineral Concessions (Amendment) Rules, 1994 BLOCK AREA/ PROJECT AREA/APPLIED ML AREA: 2583.486 HA. {TOTAL CAPACITY = 23.6 MTPA (22.0 MTPA OC + 1.6 MTPA UG)} [Re-submitted after Incorporation of Clarifications to Observations of Technical Members of the Standing Committee Constituted under MMDR Act, 1957 vide MOC Letter no. 34011/16/2016-CPAM dt. 03-05-20161 (VOLUME I: TEXT & ANNEXURES) **JUNE 2016** Prepared by: चाई०पी० नानपात II.P. NAGPAL को प्रसार / Ministry of Coal शास्त्री गढ़न / Shastri Bhawan नई विल्ली / New Delhi #### **B.D.SHARMA** (Recognised Qualified Person) (No. 34012/03/2014-CPAM Dt 29th May 2015, valid upto May 2025) #### MIN MEC CONSULTANCY PVT. A-121, Paryavaran Complex, IGNOU Road, New Delhi - 110 030 Ph : 29534777, 29532236, 29535891 ; Fax: +91-11-29532568 An ISO 9001:2008 Email:min_mec@vsnl.com; Web site: http://www.minmec.co.in approved company B.D. SHARMA RQP NO. 34012/03/2014-CPAM 9 16 #### No.34011/16/2016-CPAM Government of India Ministry of Coal Shastri Bhawan, New Delhi the 12 August, 2016 To, M/s Maharashtra State Power Generation Co. Ltd, Prakashgad, Plot No. G-9, Prof. A.K. Marg, Bandra(E), Mumbai-400051 Email:md@mahagenco.in/mdmspgcl@gmail.com Subject: Mine Plan And Mine Closure Plan of Gare Palma Sector-II Coal Mine, Distt Raigarh, Chhattisgarh State of M/s Maharashtra State Power Generation Company Limited. Sir, I am directed to refer to your letter No. Mahagenco/ED (Fuel/Coal) dated 26-02-2016 for approval of Mine Plan And Mine Closure Plan of Gare Palma Sector-II Coal Mine for approval of the Central Government and to state that the Mining Plan & Mine Closure Plan of Gare Palama Sector II Coal Mine (June 2016) of Mand-Raigarh Coalfield, Distt Raigarh, State- Chattisgarh of M/s. Maharastra State Power Generation Company Limited to be read alongwith company's letter No. Mahagenco/ED (Fuel/Coal)/34C/196 dated 07-07-2016 incorporating clarifications dated 07.07.2016 has been considered and the approval of the Central Government thereon is hereby conveyed under Section 5(2)(b) of the Mines & Minerals (Development & Regulation) Act, 1957 subject to the following conditions: - The Mining company shall take all necessary precautions regarding safety of mine workings and persons deployed therein; - Mining lease of this block shall not encroach into any other adjacent block; - III. The cost of abandonment for carrying out the closure activities envisaged in the Mine closure plan is indicative; the actual cost for carrying out the activities at the time of final closure may be higher. The actual cost of abandonment will have to be borne by the project proponent for carrying out the closure activities; - IV. The approval of the mine plan and mine closure plan is without prejudice to the requirement of approvals from competent /prescribed authority under the relevant rules/ regulations etc; Two copies of the approved mining plan duly signed by the competent authority are returned herewith with the request that a copy of the approved mining plan may be submitted to the concerned State Government for necessary action and also a photocopy of the approved mining plan may be sent to the Coal Controller for monitoring the block. Yours Faithfully (I P Nagpal) Under Secretary to the Govt. of India. Encl: As Above #### Vikas Jaideo Executive Director (Coal/Fuel) Ref. No: Mahagenco/ED(Fuel/Coal)/ 34C/ 196 Date: 07.07.2016 To, Under Secretary, Ministry of coal, Shastri Bhawan, New Delhi-110 001 Sub:- Mining Plan and Mine Closure Plan of Gare Palma Sect- II Coal Mine, Distt Raigarh, Chhattisgarh State – Compliance to the observations of MOC. Ref: 1) Mahagenco letter no. Mahagenco/ED(Fuel/Coal), Dtd. 26/29.02.2016. 2) MoC letter no. 34011/16/2016-CPAM, Dtd. 3/05/2016. Dear Sir, Gare Palma Sect- II Coal Mine has been allotted to Maharashtra State Power Generation Co. Ltd. vide allotment order no. 103/30/2015/NA, Dtd. 31.08.2015. Vide letter under ref. (1) above, Mahagenco has submitted the Mining Plan and Mine Closure Plan of Gare Palma Sect- II Coal Mine and thereafter Mahagenco official along with Recognised Qualified Person (RQP) has delivered the Presentation on Mining Plan to MoC on date 29.04.2016. MoC vide letter under ref.(2), conveyed the observations of Technical Members of the committee on Mining Plan and Mine Closure Plan of Gare Palma Sector II coal mine. Accordingly the point wise compliance in the tabular form (with proper reference) prepared by Mr B. D. Sharma (RQP No. 34012(03)/2014-CAPM Dt. 29.05.2015). Mahagenco submitting four copies of Text and Plates (Hard and soft format) duly stamped and signed by the RQP. The point wise compliance in the tabular form (with proper reference) are also enclosed for your kind approval. Thanking you. Yours faithfully, V.M. Jaideo Executive Director (Fuel/Coal) SECTOR II COAL MINE (FEBRUARY 2016) OF MAND-RAIGARH COALFIELD, DISTT RAIGARH, STATE- CHATTISGARH OF M/S. MAHARASTRA STATE POWER GENERATION COMPANY LIMITED COMPLIANCE TO OBSERVATIONS ON MINING PLAN & MINE CLOSURE PLAN OF GARE PALAMA VIDE MOC LETTER NO. 34011/16/2016-CPAM DT 03-05-2016 | SI.
No. | l. Refer
o. Para | Observations | 0 | Compliance | | | | |-------------|---------------------|--|--|--|---------------------------------|-----------------------|--| | | . Cover
Page | Project area and Block area should be indicated. | Project area/ Block area/ Applied ML area are the same (2583.486 Ha) which have been incorporated on cover page. | ed ML area are the on cover page. | same (2583. | 486 Ha) | | | | | | Both OC and UG operations are envisaged. Though OC mine coverers the entire block area of 2583.486 Ha., a part of the area on western side | re envisaged. Thou
36 Ha, a part of the | ugh OC mine a area on west | coverers
tern side | | | | | | Is not workable by UG and the same has not been considerd for UG mining and the UG project area is only 2208.18 Ha. (Ref. para 3.2 and also Fig. 3.1 of Chapter 3) | e same nas not be
a is only 2208.18 H | een considerd
Ha. (Ref. para | 3.2 and | | | 14 | 2 Para 1.9 | The allotment order for the block indicates | The coal requirement of End Use Plants of MSPGCL vis-à-vis coal | Use Plants of MS | SPGCL vis-à | -vis coal | | | | | a coal requirement of 12.76 Mt/annum for | production from Gare Sector-II mine is given below (refer Table 1.3 of | I mine is given belo | low (refer Tab | le 1.3 of | | | | | the specified end-use plants. The Mining Plan proposes to mine at a capacity of 23.6 | MP). | | | | | | | | Mt/annum, utilize the coal from seams with | COAL REQUIREMENT OF EUPS AS PER VESTING ORDER | F EUPs AS PER VI | ESTING ORD | ER | | | | | without washing and is silent about the | Particulars | Power Plant | Reject based | Blast | | | 1 | | balance coal. | Coal availability from this project "MTPA" | 23.6 | | 0 | | | | | This aspect may kindly be addressed in | Washed coal availability "MTPA" | NA | 0 | 0 | | | | | detail, | Rejects "MTPA" | NA | 0 | 0 | | | | |) नागमः
सर्वातः
भवन् ।
भवन् ।
दिस्ती | Thermal Power Plant "KW"/
Sponge Iron "MTPA" | 3230X1000 KW | ۸N | A N | | | 1 | 000 | K 44. | | | | | | Ξ B.D. SHARMA RQP NO. 34012/03/2014-CPAM | SI.
No. | Refer
Para | Observations | | Compliance | - | | |------------|---------------
--|--|---|-------------------------------|------------| | | | Details have to be presented for the full production capacity. | Station Heat Rate
"K Cal/KWhr | 2308 (Av) | Ó | 0 | | | | Reject based | Avg. Calorific Value of Coal
"Kcal/Kg" | 4350 (AV) | 0 | 0 | | | | | Specific consumption
"Kg/ Kwhr" | 0.5306 (Av) | 0 | 0 | | | | Coal availability from this project *MFPA" | Plant Load Factor/ Capacity
Utilisation | 85% | 0 | 0 | | | | Modele Coal availability MitPA | Coal Requirement "MTPA" | 12,761 | 0 | 0 | | <u> </u> | | Thermal Power Plant / Sportg from | Coal Availability from this project "MTPA" | 23.6 | 0 | 0 | | | ·
 | Are Colonillo Value of Cola "Kralfog" Specific consumtion "Ing Kralfog" for an and Consuming the Consumer of Con | Linkages/ E-auction from CIL
"MTPA" (for these specified
EUPs) | III. | . 0 | 0 | | | | Coal Requirement "MRRA" | Other block of the Company "MTPA" | Mahajanwari UG coal block recently allotted to | 0 | 0 | | | | | | MAHAGENCO for | | | | | • | | | power plants other than in the VO. Production | | | | | | : | | be less than 2MTPA | | | | | | The guantum of CIL likely to be surrendered needs to be envisaged. Further possibility of providing washing | Percentage of end use requirement to be met from this mine | 100% | | | | | | arrangement should also be looked into. | | | | | | | | Munistr
nastri
New | As may be seen from the above table, out of the 23.60 MTPA coal | above table, out of the | the 23.60 N | MTPA coal | | | | A GPA | proposed to be produced from this mine, 12.751 MTPA will be used in the 3 nos of TPPs specified in the Vesting Order. However, now it has been | n this mine, 12.751 MH
ne Vesting Order. How | r FA WIII be i
ever, now i | t has been | | | | | decided that coal will be supplied after washing (to comply with MOEF | oplied after washing (t | to comply v | vith MOEF | Sal [2] | SI.
No. | Refer
Para | Observations | | 0 | Compliance | 90 | | | |---------------|--|---|--|---|--|---|------------------------------|---------------------------------| | | | | notification of <34% Ash) made within the ML area. existing and proposed the Tables 1.4 and 1.5 of MP. | notification of <34% Ash) and provision for space for washery has been made within the ML area. The balance 10.839 MTPA will be used in other existing and proposed thermal power stations of Mahagenco as given in Tables 1.4 and 1.5 of MP. | provision 1
palance 10
power sta | for space for 3.839 MTPA vations of Mah | washery h | as been
in other
given in | | | | | The total req | The total requirement of the company is summarised in Table 1.6 of the MP as reproduced below: | ompany is | summarised | in Table 1 | .6 of the | | | | | SUMMARY | SUMMARY OF OVERALL COAL REQUIREMENT FOR MAHAGENCO | AL REQU | JIREMENT F | OR MAHA | GENCO | | | | | SI. No. | Type of TPP of
Mahagenco | Total
Capacity.
MW | Coal
Requirement,
MTPA | Existing
Linkage,
MTPA | Source
of
linkage | | . | | | 1
(ref. Table 1.3) | End use Plants
(existing) linked to
Gare Sector-II | 3230 | 12.761 | 0 | Gare
Sector-II | | | | | 2
(ref. Table 1.4) | Other existing TPPs | 7560 | 42.41 | 46.328 | CIL | | | | | 3 (ref. Table 1.5) | Proposed TPPs | . 1980 | 7.626 | 0 | Mahajan
wadi | | | | | | Total | 12770 | 62.797 | 46.328 | | | | | दाहुं ०पी० ना
अवर सिंह
भारत राहः
गोयता प्रभा
राह्यो भूव-
नहं दिर | A perusal of a company is 6 46.328 MTPA. | A perusal of above Table shows that the total requirement of coal of the company is 62.797 MTPA, out of which existing linkage from CIL is 46.328 MTPA. | ws that the
out of whi | e total require
ch existing I | ement of co
inkage fro | oal of the
m CIL is | | RQP NO | B.D. SHARIMA
RQP NO. 34012/03/2014-CPAM | PARTIE | [2] | | | | | | HARMA 2/03/201 | SI. | Refer
Para | Observations | Compliance | |-----|---------------|---|---| | | | | The existing linkages to the extent of any surplus (above the requirement of EUPs as per VO) coal will be surrendered when such surpluses are generated. | | | | | Taking the above into consideration, the Mining Plan has been prepared for the full capacity of the mine, i.e. 23.6 Mtpa as given in Chapter 5. (The above matter has been incorporated under para 1.8.2 of Chapter 1) | | м | | Details of HEMM needs to be reconciled. | HEMM have been reconciled. Front End Loaders which are to be used in combination with dumpers for coal cut by Surface Miners have now been listed under "Coal Equipment" instead of under "Auxiliary Equipment" listed earlier. The size of Front end loaders has been increased to 10-16 cum and 6-8 cum, as against 8 cum and 5cum respectively proposed earlier for ease of loading into 150 T/100T dumpers. | | | | | Number of RBH drlls for OB has been increased to 31 to match with the number of shovels. | | | | | (The above matter has been incorporated in Table 5.11 under para 5.3.11.2 of Chapter 5 of MP) | | 4 | Para 5.3.7 | Jjustification for flaving a production rate of 23.6 Mty (22 Mty OC, 1.6 Mty – UG) may be brought out. Further, the reason for tapering the OC production, when the contribution from UG operations start, may also be justified. | Justification of rated production has been covered in Para 5.1 of Chapter 5 under the Heading "OPTIMISATION OF TARGETED CAPACITY". Considering the multiple seam working, high initial depth and other geo-mining parameters, the mine has been planned for maximum sustainable production, i.e. 22 Mtpa from opencast plus 1.6 Mtpa from UG. Thus the total targeted capacity becomes 23.6 Mtpa. Though both | | SI.
No. | Refer
Para | Observations | Compliance | |------------|--
--|---| | | | | OC and UG would be in production simultaneously from 12th year onwards, for safety reason, the sequence of development in UG would have a lag wrt OC operations. As the gestation period in UG is long and UG operation will reach its peak production level only in 15 th year, it has | | | | | been proposed to reach the total targeted production level of the mine earlier by OC only, i.e. from 7 th year, which is feasible due to lower depth and stripping ratio in early years of OC operation. Thus only from 7 th year to 14 th year, OC operation would make up for UG production for achieving the overall mine target of 23.6 Mtpa. As UG operation builds up to the targeted level of 1.6 Mtpa, the OC production is brought down to its sustainable level, i.e. 22 MTPA. | | | | | The OC mine can technically produce at a rated capacity of 20 to 25 MTPA but considering that the opencastable reserves are only 553.177 MT, the OC mine has been planned at 22 MTPA (as explained above) to give the project a nominal life of about 28 years including build up period. | | | | | Target of 1.6 Mtpa for UG operation has been decided considering that a lag is to be maintained taking into account the advancement of operation in overlying seams through opencast. The 1.6 MTPA target for an UG mine is considered fairly high under Indian conditions. | | | | | -(The above matter has been incorporated under para 5.1 of Chapter 5 of MP). | | 15 P | | Min | There are 18 nos. of coal seams (including splits) occurring below seam VI (proposed quarry floor). Excepting seam-I Combined, all other seams | | NO. 3 | B.D. SHARINA
RQP NO. 34012/03/2014-CPAN | Transition of India o | | | Compliance | have more than 1 m thickness in localized area only. Even Seam-I Combined has split in major part. The total depth of quarry upto seam-I floor, if considered by opencast, will be more than 450m against the presently proposed depth of upto 190m (Seam VI floor). The incremental stripping ratio for the lower seams considering the batters will be around 20 -25 cum per tonne of coal. | Further in case of Gare Sector-II, additional space is not available for OB disposal as the OB generated upto Seam VI has been adjusted within the ML area with great difficulty and meticulous planning of rehandling schedule. Considering the available area with constraints of dumping space, opencastability is ruled out for lower seams. | (The above matter has been incorporated under para 5.1 of Chapter 5 of MP) | The quantity for years 16-29 have been filled as shown in the following table | MCUM Including ratio rehandaling Ground (MT) Rehandling Cum/t CUM/T MCUM | 0.250 5.000 5.000 20.00 20.00 0 0.25 | 1.550 14.100 14.100 9.10 9.10 0 1.55 | 3.000 30.000 30.000 10.00 10.00 0 3.00 | 6.000 45.000 45.000 7.50 7.50 0 6.00 | | |--------------|---|--|--|---|--|--------------------------------------|--------------------------------------|--|--------------------------------------|---| | | | Further in cas disposal as the ML area with schedule. Co space, openc | (The above π
MP) | | Year Opencast (MT) | - | 2 | e
e | 4 | | | Observations | method in two quarries separated by the Kelo river. Assessment may kindly be presented to show at what stripping ratios the incremental coal can be made available from the lower seam(s), if proposed to be worked by opencast method. | | | antities for the Years 16-
shown in the Table show
Calendar Program on Pa | ES-12. The same may please be incorporated. | III She | ew | N Bih | AG | P | | Refer | Para
5.1.2 | | | Sum
E (d) | | | | | | | | S. S. | | | | 9 | | | | | | | [9] Refer Si. | | 21.3 | 23.6 | 23.597 | 23.600 | 18.780 | 1.6 | 1.6 | 72.375 | 655.152 | | | | | | |---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|---------|---------|---------|--------|--------|--------|--------|--|-------|--|---|--|--------------------------| | | 0 | 0 | 10 | 0 | 0 | 0 | 0.40 | 0.80 | 1.20 | 1.60 | 1.6 | 1.6 | 1.6 | 1.6 |
1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 72.375 | 1 | J | | | | | | | 6.34 | 6.64 | 6.64 | 6.64 | 6.63 | 5.94 | 5.83 | 5.93 | 6.04 | 4.72 | 5.49 | 5.49 | 5.49 | 5.49 | 5.39 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 7.43 | 7.43 | 7.86 | 4.82 | | | | 6.14 |] | | | | | |)ce | 6.34 | 5.72 | 5.72 | 5.72 | 5.72 | 5.72 | 5.60 | 5.70 | 5.80 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 4.32 | 0.29 | | | | 4.99 |] | | | | | | Compliance | 135.000 | 156.740 | 156.740 | 156.740 | 156.520 | 140.220 | 135.220 | 135.220 | 135.220 | 103.750 | 120.740 | 120.740 | 120.740 | 120.740 | 118.500 | 99.000 | 99.000 | 99.000 | 99.000 | 99.000 | 163.350 | 163.350 | 172.850 | 82.770 | 44.183 | 44.183 | 44.183 | 3396.800 | | | | | | | | 135.000 | 135.000 | 135.000 | 135.000 | 135.000 | 135.000 | 130.000 | 130.000 | 130.000 | 99.000 | 99.000 | 99.000 | 99.000 | 000.66 | 99.000 | 99.000 | 99.000 | 99.000 | 99.000 | 99.000 | 99.000 | 99.000 | 95.020 | 5.000 | | | | 2761.120 | | | | • | | | | 21.300 | 23.600 | 23.600 | 23.600 | 23.600 | 23.600 | 23.200 | 22.800 | 22.400 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 21.997 | 22.000 | 17.180 | | | | 553.177 2 | | | | | | | | 9 | _ | 8 | o | 2 | = | 12 | 13 | 4. | 15 | 16 | 2 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 56 | 27 | 28 | 5 5 | 30 | 33 | 32-77 | Total | | [2] | • | • | | | | • | | | | | | | | | | | | | tions | 1,000 | | V | e- | | | Observations | , | | | | | į. | | ई०प्
अवर
भारत
यता
सन्ध्री
नड् | 相打 | 同内は
同人
日本人
日本人
日本人
日本人
日本人
日本人
日本人
日本人
日本人
日本 | I / L.P. Idel S | NA
ecrei
of Ind
Y of i
lhaw
Whi | GF
lary
dia
Coz | | | | | | | | | | | | | | _ | Refer
Para | B.D. SHARMA | RQP NO. 34012/03/2014-CPAM | | | | No. | B | QP NO. 3 | | | ARMA 03/2014 | | d can | 5 has | | | | Large
of this | auling
main
rough | dump
num 4
(while | viding
to the | | |---------------|--|---|-------------------------------------|---|---|---|---|---|--|---------------------------| | | ES-13 and | Chapter | 4.99 | 5.39 | 6.14 | 1 for the | ig, and his
inimum 4
impers the | ernal OB
with minin
distance | thus pro
be issued | | | | le ES-12, I | a 5.3.12 of | Cum/t | Cum/ t | Cum/t | e Adoptec
ınder para | ion, loadin
places, m
rely for du | dumpers via mainimum of the minimum | than 30m
ctions will l | € . | | Compliance | The above values have been incorporated in Page ES-12, ES-13 and can also be seen in Table 5.7 at Page 5-21 of MP. | The stripping ratio figure in Table 5.12 under para 5.3.12 of Chapter 5 has been reconciled as given below. | Stripping Ratio without re-handling | Stripping Katio with re-handling of surface dumps | Stripping Ratio with re-handling of surface dumps and crown dump | Safety issues and safety Measures to be Adopted for the Large
Fleet of Dumpers have been furnished under para 12.2.6 of this
Mining Plan and Mine Closure Plan. | 2. With multi seam operation, the excavation, loading, and hauling operation will be carried out at different places, minimum 4 main hauling routes will be available exclusively for dumpers through | CHP and stockyard and OB to internal and external OB dump sites. The average distance between two dumpers with minimum 4 routes comes to about 120 m and a minimum distance (while | hauling) would not be permitted less than 30m thus providing adequate safety for which relevant instructions will be issued to the dumper operators. | [8] | | Observations | | The MP proposes to extract 553.177 Mt of coal and remove about 2761 Mcum of Overburden at a stripping ratio of 4.99 | 636 Mcum of OB (218.83 Mcum for | sunace dump rehandling and 417 Mcum of crown dump rehandling), increasing the | effective strip ratio to 6.14 cum/t from 4.99 cum/t, whereas, Table 5.12 shows the Stripping ratio as 5.75 cum/t. | The MP proposes to handle about 135 Mcum of solid OB per year during steady state operations excluding the quantity for rehandling of surface dumps. It also | proposes to deploy 348 dumpers within the project in addition to the contractors trucks deployed for contractual rehandling. Safety success related to a huge fleet of | dunces may kindly be addressed. Resibility of providing conveying arrangement through belt should be | looked into- | TAL | | Refer
Para | | Para
5.3.12 | | | | Para
5.3.11.2 | | | _ | | | SI.
No. | | 7 | | _ | | 8 | | | | | | | | | | | | | | | RQP N | B.D. SHAI
10. 34012/03 | | SI.
No. | Refer
Para | Observations | Compliance | |------------|---|--|--| | | | | 3. Because of production contribution from 12 no. of seams at different horizons, dumper transport would be ideally suited. Further, due to dumping constraints, virtually no space will be available at quarry floor. The working faces will be moving fast at 200-300 m per year and it will be difficult to maintain multiple loading points and undertake frequent shifting of loading points in case the conveyor arrangement is to be considered instead of presently proposed dumper system. | | | | | (The above matter (2 and 3) has also been covered under Para 5.3.11.2 of Chapter 5 at Page 5-33 of MP.) | | o | Chapter 5 | The embankment against the Kelo river should be designed keeping in view the HFL levels and other protective measures against flooding may be addressed. | The matter of embankment against the Kelo river has been covered under para 12.2.1 of Chapter 12 of MP as given under. The mine working will be protected from the river inundation by providing embankments on either side of the Kelo river. The embankments will be designed with 3m height above HFL and 10m width. The slope of the sides will be 1 in 3 on river side and 1 in 2 on quarry side. Core of the | | | | आई०पी० न
अवर ला
भारत हा
कारणा मेश
शास्त्री भार
गई
वि | embankment will be constructed from impervious clay. Both sides of embankment will be clad/ paved with stones. Adequate measures to protect the mine workings from surface water flow during the rains will be taken by way of providing garland drains around the mine excavations and also by providing suitable drainage gradients for mine benches. Sumps of adequate capacity will be provided on the quarry floor. The coal excavation and transport machinery are organised to be sited over the coal bench top during rainy season and will not be affected by water | | NO. | B.D. SHARMA
RQP NO. 34012/03/2014-CPAM | TACKAM TO COVE, of India TO Shastri Bhawan To New Delhi To New Delhi To Shastri Bhawan | [6] | | S | Refer
Para | Observations | Compliance | |----|---------------|--|--| | | | | accumulation from rains or strata seepage on the quarry floor. No water accumulation in OC mine workings will be permitted to remain when the UG mining operations are in progress. | | 10 | Para 5.3.10.1 | RQP may reconfirm the dump space availability for internal and external dumps to meet the desired coal production as proposed in the Calendar Plan. Further optimization is desired in mine planning to improve the viability of the project. | As the surrounding area of the mine is coal bearing and belonging to other coal blocks, availability of external dumping space other than within the block is not foreseen. The entire block area is coal bearing and dump locations, schedule for dumping and rehandling have been envisaged accordingly, which will cater to the dump space requirement for the project. | | | | | The proposed design layout has been arrived after also considering the simultaneous operation of OC and UG. | | | | | (The above has been incorporated under para 9.3.i at page 9-2 of Chapter 9) | | - | Chapter 5 | The CHP design parameters are not in conformity with large capacity mines. The coal flow diagram is too sketchy. The coal flow diagram shows the coal to be truck loaded for sending it to the railway siding, which may not be the desired option from environmental point of view. | The CHP design parameters have been relooked and modified. The CHP has been elaborated in Plate XLI showing its plan view, elevation view and coal flow. As coal is to be produced through Surface Miners, additional crushing of coal in the CHP is not required. The alignment of railway corridor passing through the coalfield has yet to be frozen after addressing concerns of different stake holders by the Govt. The loading system will be decided in totality, once the parameters like alignment of the siding and its distance and its corridor from the mine etc. are available. | [10] | S.
No. | Refer
Para | Observations | Compliance | |-------------|---|--|--| | | | | The truck transport system is proposed as an option till the alternative system takes a shape. | | | | | The dispatch from the off take point is now modified in the CHP layout which will enable to evacuate coal by three means. | | | | | i. Coal could be sent to washery from transfer points. Washed coal is brought back to transfer points for despatch through railways or trucks, | | | | | ii. Coal could be directly sent to silos for railway despatch, bypassing the washery circuits, so that the despatch is not affected in case of any problem in washery. | | | | | iii. Coal being loaded into trucks in case of need and also till the period of CHP and washery construction. | | · · · · · · | | | (The above has been incorporated under para 10.1 at page 10-1 of Chapter 10) | | 75 | Chapter 5 | It has been proposed to extract coal seams by deployment of Continuous Miners having minimum cutting height of 1.8m. However, in the projection plans the minimum extraction height has been shown as 1.5 feet | The compatibility of the CM has been relooked into w.r.t. the seam thickness and the specifications of the proposed CM have been modified. The equipment to be selected would have the specification to cover a seam height range in single lift varying from 1.50m to 3.5m (Continuous Miner model CAT: CM 340 (Mining Range 1.37 m to 4.00m, 70 tonnes, 697 KW or other similar CM.) | | RQP NO. | B.D. SHARMA
RQP NO. 34012/03/2014-CPAM | VI.P. NAGPAL
der Secretary
Sovt. of India
Binistry of Coal
Jastri Bhawan
New Delhi | [11] | | | L | | | |-------|-----------------|---|--| | S. S. | . Refer
Para | Observations | Compliance | | | | | (The above has been incorporated under para 5.4.6.1.a) at page 5-46 of Chapter 5 of MP) | | 5 | Chapter 5 | Transport system in underground for coal and material may be given | Transport system in underground for coal and material has been incorporated under para 5.4.6.II (j) and (k) respectively of Chapter 5 and explained below: | | | | | i) Conveyor | | ·
 | | | A 1200mm "fire resistant" conveyor at around 3m/s with a duty equivalent to average 500T per hour (TPH) would be installed in the centre roadway (as shown in all stage plans) to ensure equal distances and cable lengths on each side of the loading point. The system will absorb the peaks of 750 TPH. | | | | | The conveyor will be equipped with a loop take-up of sufficient capacity to hold belt stretch for one week and preferably to hold one roll (usually 300m) of conveyor belting for extension and retreat of the conveyor. At the in-bye end of the conveyor, a sledge mounted and guarded return pulley frame, graduated loading section (at least 3m in length) equipped | | | | ्रिक्ष न
इंदर शी
भारत ग
चारती
गई | with Impact rollers, and anchor chains will be provided. | | | | Time MAG
Time of In-
Time of In-
Time (Shastri Bha
1971 / Shastri Bha
1971 / Shastri Bha
1971 / Shastri Bha
1971 / Shastri Bha | The "head" end of the conveyor will be equipped with a suitable loading section on to the trunk conveyor, dust suppression equipment, belt alignment, belt slack and belt slip detectors. The "gate" belt should be electrically interlocked with the "trunk" conveyor to automatically stop the gate belt. | [12] | - | | | |---
--|--| | SI. Refer
No. Para | Observations | Compliance | | | | Communication and continuous signaling and "stop pulls" will be provided along the length of the conveyor. The conveyor will also be provided with an effective bottom belt scrapper. | | | | One side of the conveyor will be designated as the "man walkway" into the district. To prevent "Tripping and Falling" accidents, this walkway will be kept clear of any supplies, materials, be clean, level and well illuminated. | | · · · · · · · · · · · · · · · · · · · | | District materials will not, as far as possible, be transported along the conveyor belt route. | | | | The transport system within a Continuous Miner Panel has been shown vide fig. No.5.7 in Chapter 5 | | | | ii) Material Transport | | | आई०।
अव
मार
को यह
शार | Materials such as timber, roof bolts, grouts/resins, spare parts, cables, lubricants, ventilation stopping materials etc. are to be transported by mine tubs to within one split of the gate belt "tail end". | | | गैo नागपाल /I.
र सचिव /Under
त सरकार /Gov
ग मंत्रालक / Mini
जी गुपन / Shast
गई दिल्ली / Nev | Familiar method such as an endless rope haulage system using 15 kg track with a 0.6m gauge may be used. The track and return wheel should lag no more than 2 pillars behind the conveyor tail end. The rail track will | | B.D. SHARMA
RQP NO. 34012/03/2014-CPAM | | [13] | | S. | Refer | Observations | Compliance | |-----|----------------------------------|--|--| | NO. | Para | | be laid in the incline (other than the conveyor incline) extending to all the UG workings. | | 4 | Para D
(s) &
Para
5.1.1 | Seam-wise geological and corresponding extractable reserve should be indicated in the following table followi | Seam- wise geological and corresponding extractable reserve, as per the specified formats has now been Furnished as Table 5.1A (for Opencast), 5.1B (for underground) and 5.1C (OC + UG combined Summary) under para 5.1.1 of Chapter 5. As these tables are large (wide), they could not be accommodated here. | | 15 | Para 5.1.2 | It appears that about 10 Mt of coal is getting blocked under Kelo river, is there any plan to divert Kelo river, if so then the action plan for the same should be envisaged. | Due to the prevailing topography, shape of the block and presence of other coal blocks all around, Kelo river cannot be diverted. In future if the possibility of diversion of the river is worked out, a revised mining plan will be submitted to MOC. (The above has been incorporated under para 5.1.2 in Chapter 5) | | 16 | Para 5.1.2 | Some reserve is likely to be locked below infrastructure and batter, is there any action plan to liquidate the same? | The reserves blocked under facilities viz. incline, CHP, office, Shaft Pillar etc. in northern corner of west part of block will be 21.301 Mt. | [14] | No. | Refer
Para | Observations | Compliance | |---------|---|---|---| | | | | These facilities will be required for supporting the OC operations as well as UG operations. Though the OC operations will exhaust by the end of 29 th year, the UG operations have long life and will continue till 77 th year. The issue, whether some locked coal under the facilities could be mined, will be examined at the fag end of UG operation under prevailing conditions at that time. | | | | | As far as the reserves under the batter are concerned, the matter has been studied in detail as follows. | | | | अवर सबिग
भारत सरका
क्वीयली भवन
शहरी भवन | The fast advance of mining operations followed closely by the backfilling operations, especially due to dearth of space for disposal of OB on the surface, application of High Wall mining during the operating life of OC mine has been ruled out. It is only at the end of the OC mining operations that the HW mining can be considered. Then also, there will be restriction of application due to practicality of deployment of the equipment as it must operate from the same level as of the bench to be mined by HW mining. After exhausting the mine by the end of 29 th year, it will be technically possible to deploy the system at the bottom of the quarry i.e. at the floor of Seam VI and VII combined. The upper seams mining by HW will not be possible because of non-availability of space adequate to install and operate this system. Thickness of seam VI is between 0.5m and 0.75m in the reference region. It will not be feasible to deploy the HW system. However, seam –VII combined has a thickness of around 5m in the reference region, application of HW mining could be feasible. | | RQP NO. | B.D. SHARMA
RQP NO. 34012/03/2014-CPAM | Under Secreta
/ Govt. of Ind
/ Ministry of C
/ Shastry Bhaw
I / New Delhi | [15] | I.P. NAGPAL der Secretary ovt. of India limistry of Coal asin Bhawen law Delhi | I I I I I I I I I I I I I I I I I I I | No. Para | Observations Observations Internations Observations | Compliance In this regard, it is important to note that HW mining has been operational in only two mines in India as follows: 1. Sharda Coal OC Mine, SECL, M.P.: Cuprum Bagrodia Ltd, Kolkata has been operating coal extracting machine for High Wall Mining in this mine. The Seam thickness is 1.2-1.5 m and the production is 0.5 MTPA. The drivages are of 2.9m width with 1.2m ribs; and after every 8-10 cuts/drivages, a rib pillar of about 3m is left. The length of each hole (penetration) is 250m. 2. Medpalli OC Coal mine of SCCL, Telangana: W//s Advanced Mining Technology Pvt Ltd., Hydrerabad is operating HW system in this mine which has exhausted its reserves after operating normal mine of 4MTPA production. Now coal is being extracted by HW mining. The operation has been on for last 3-4 years (since 2011-12). The thickness of seam is 5.5 m. The HW system which was operational, took one lift of 2.4m thickness while the rest thickness of seam was left unmined. The overall extraction was recorded at about 20% of the whole seam. However, the operating company has developed expertise over time and now it has brought a new machine which can take 2 lifts, each |
---------------------------------------|----------|--|--| | Internal Andrew Desire | | | or z.4m thickness. This operation is expected to start from August 2016. It is anticipated that the extraction percentage with respect to total seam thickness will be about 35%. | | | S 10 | nish nosi | [16] | | S.
O. | Refer
Para | Observations | Compliance | |----------|---------------------------------------|--|---| | | · | | Accordingly, the calculations have been made for coal which can be extracted from Seam-VII combined assuming 2 lift operation giving 35% extraction. The coal reserves extractable by HW system come to 1.52 MT. Assuming a production rate of about 0.5 MTPA, the said reserves can be mined in 3 years. | | | · . | | However, this HW proposal may not be feasible at that stage because the HW drivages will get filled up with water (as the specific location is towards dip side) and the underground operations of lower seams as proposed in the mining Plan will be endangered. It may be noted that it will not be possible to physically inspect the HW drivages for the presence of water irrespective of pumping provision. | | | · | | Eventually, the HW could be carried out only after the exhaustion of UG reserves (after 77 th year). The decision regarding mining the coal locked in batter of OC mine may be taken at the end of the UG operations considering the technologies (High wall or otherwise) available at that time and if the application of Highwall mining at that time is found to be feasible, a revised mining plan will be submitted. | | 17 | Sum Para
E | Distance of end use power plant to be envisaged required in line with the guidelines for formulation of mining plan at summary para "End use of Coal/ Lignite" | (The above matter has been covered under para 5.1.3 of Chapter 5.) Distance of end use power plant was already mentioned in 2 nd column of the table under the heading EUP/ Location/ Address. Now it is being shown under a separate column | | RQP NO. | B.D. SHARMA
RQP NO. 34012/03/2014- | D.7 I.P. NAGPAL
Secretory
et. et. of india
M. Jimstry of Coef
Shastri Bhawan
M. New Delhi | [17] | | No. | Refer
Para | Observations | | Compliance | | | | |-------------|---------------|--|--------------|--|------------------------------|---------------------------------|----------| | | - | | | EUPs as per Allotment Order dt. 31-08-2015 | 31-08-2015 | | | | | | | SI. No. | EUP/ Location/ Address | Configuratio
n | Distance of
EUP KM | • | | | | | - | Chandrapur Thermal Power Station Unit 8 & Unit 9
Nirman Bhavan, Urja Nagar, Chandrapur- 442404. | 2x500 MW | 800 | | | | | | 2, | Koradi Thermal Power Station Unit 8, Unit 9 and Unit 10 | 3x660 MW | 595 | | | | | | | Chindwara Road, Koradi-441111, Distt. Nagpur,
Maharashtra. | | | | | | | | ઌ૽ | Parli Thermal Power Station Unit 8 Vaijnath, Dist.
Beed- 431520, Maharashtra | 250 MW | 1147 | | | | | | | Total | 3230 MW | | | | | Sum Para | What will be the ash % of the ROM Coal? | - | The average ash content of total contents and a | | | Τ, | | | F (d) | Whether washery is being provisioned to | | between 37 and 38% based on insitu parameters. However, the | olable Teserv
parameters. | However, the | | | | | comply with the MoEF restriction on | < · | Ash % of ROM coal will fluctuate from year to year (34.05 % to | year to year | r (34.05 % to | 0 | | | | transportation of coal with more than 34% ash for power stations located at 500 km | 4 | 41.42%) as is evident from Table 5.9. | | | | | | | and away from the nitheads from line | | ; | | | | | | | 2016? | <u> </u> | In the Mining Plan, provision for space for a washery has been | for a washe | ery has beer | | | | | | | made. The decision regarding capacity and layout of washery will be reached after thorough investigation MCDCCL has approached | and layout o | f washery wi | = ~ | | | | शाह्य सं
व
व | | CMPDIL (Copy enclosed as Annexure 1-3) for generation of data | (-3) for gene | s applicating
ration of data | | | | | प्रीक
तह र
प्रका
प्रका
राज्यी
राज्यी | | (washability tests, cleaning possibilities | lities etc) | and report | せ | | _ | _ | and the same of th | Ω. | preparation. | | | | | | | el 2 % | (The ah | ove matter has mond been covered under | 0.00 | 7 | | | | | column (column) | 7 - 1 - 2 | (The above infatie) has now been covered under para 10.2 of Chapter 10.) | para 10.2 0 | Chapter 10. | <u>.</u> | | | | | | | | | | | Table 15.10 & 15.11 needs to be The tables have been reconciled. 15.32 reconciled and Post closure land management needs to be elaborated and application of the closure Land Management has now been covered until 15.10 as given below. After the closure of mine, the reclaimed leasehold area and any thereon, which is not to be utilized by the mine owner, surrendered to the State Goxt, concerned following a laid down as in vogue at that point of time. Chart should be provided. Water Balance Chart has already been given in table 1 reproduced below. I. Potable water Colony (for 50% employees)= 3400/2=1700*4 For peripheral villages Total of (i) Total of (i) Total of (i) | SI. | Refer
Para | Observations | Compliance | |---|-----|----------------
--|--| | Water Hydro-geological Study & Water Balance Chart should be provided. | 9 | Para
15.3.2 | 10 & 15.11 needs to
and Post closure la | The tables have been reconciled. | | Water Hydro-geological Study & Water Balance Chart should be provided. | | | ent needs to be elaborated | Post Closure Land Management has now been covered under Para
15.10 as given below. | | Water Hydro-geological Study & Water Balance Chart should be provided. | | | | After the closure of mine, the reclaimed leasehold area and any structure thereon, which is not to be utilized by the mine owner, shall be surrendered to the State Govt. concerned following a laid down procedure as in vogue at that point of time. | | आई ं गी० ग्राम | 20 | Water | Hydro-geological Study & Water Balance
Chart should be provided. | Hydro-geological Study has not yet been done. It will be commissioned shortly and the study submitted to MOC. | | i. Potable water Drinking at working place @ 45 lpd/head for 3400 workers etc. (Total 3400) *Colony (for 50% employees)= 3400/2=1700*4 members in family @ 135 lpd For peripheral villages Total of (i) | | | | Water Balance Chart has already been given in table 15.13 and reproduced below. | | Drinking at working place @ 45 lpd/head for 3400 workers etc. (Total 3400) *Colony (for 50% employees)= 3400/2=1700*4 members in family @ 135 lpd For peripheral villages Total of (i) | | | | i. Potable water cum | | *Colony (for 50% employees)= 3400/2=1700*4 members in family @ 135 lpd For peripheral villages Total of (i) | | | | Drinking at working place @ 45 lpd/head for 153.00 3400 workers etc. (Total 3400) | | For peripheral villages Total of (i) | | | THE STATE OF S | (for 50% employees)=
in family @ 135 lpd | | Total of (i) | | | िवसी०
भारत स्थापना स्थापन स्थापना स्यापना स्थापन स्थापन स्थापन स्थापना स्थापना स्थापना स्थापना स्थापन | For peripheral villages | | | | i | नामा
विकास
विकास
विकास
विकास | Total of (i) 1239 | Int / I.P. NAGPAL B.D. SHARMA RQP NO. 34012/03/2014-CPAM _ | S.
No. | Refer
Para | Observations | | Compliance | | | |-----------|---------------|--|--|---|----------------------|---------------| | | | | ii. Industrial water | | | | | | | | Sprinkling @ 30 m ³ /km of road length (10km) | l length (10km) | 3 | 300.00 | | | | | Plantation @ 20 cum/ ha {1509.12 ha/ 22.5 years 9.18 ha (say 60 ha) | .09.12 ha/ 22.5 years | = 5 | 1200.00 | | | | | Vehicles washing @ 2.0 m³/ vehicle/ day {washable vehicles about (400X2 times a weak)/ 7 days = 115 veh/day (Water required 115x2-80%*230 re-circulation=46) | / vehicle/ day {washaweak}/ 7 days = 115 %*230 re-circulation=4 | | 46.0 | | | | | Total (ii) | | | 1546 | | | | | Grand total (i + ii) | | | 2785 | | _ | | | Reclaimed water from STP of colony (80% of 986 cum) which can be used in watering the plantation | f colony (80% of 986 c
the plantation | (mn: | 790 | | | | | Net water requirement | | | 1995 | | | | | (The above matter has now been covered under para 15.4.1 of Chapter 15.) | been covered under | r para 15.4. | .1 of Chapte | | 21 | Top soil | | Year/stage wise top-soil generation, utilization and balance to be stacked is given in the following table. | eration, utilization ar | nd balance 1 | to be stacked | | | | ् माराण
साटि
ग्राह्म
ग्राह्म
भूग | YEAR WISE TOP-SOIL GENERATION AND UTILISATION (MCUM) | ENERATION AND L | JTILISATIO | N (MCUM) | | | | ent de | Year Top soil Genration | | Top soil Utilisation | Balance Stack | | | | in I | Progressive | Cumulative Progressive | Cumulative | Cumulative | | | | MAG
iii | const. (0) 0.00 | 0.00 00.00 | 0.00 | 0.00 | | | | EPAL | 1st year 0.16 | 0.16 0.00 | 0.00 | 0.16 | | | | | | | | | B.D. SHARMA RQP NO. 34012/03/2014-074 | 7 | 2.6 | | | | | | | | | |-----|----------|--|--|-----------------------------------|--------------------------|---------------------------|-----------------------------|---|--| | No. | Para | Observations | | | Compliance | ance | | | | | | | | 2nd to 3rd year | 0.62 | 0.78 | . 00:00 | 00:0 | 0.78 | | | | | | 4th to 5th year | 1.50 | 2.28 | 0.00 | 0.00 | 2.28 | | | | | | 6th to 10th year | 4.31 | 6.60 | 2.05 | 2.05 | 4.54 | | | | | | 11th to 15th year | 3.89 | 10.48 | 2.41 | 4.46 | 6.02 | | | | | | 16th to 20th year | 1.22 | 11.70 | 2.25 | 6.72 | 4.98 | | | | | | 21st to 25th year | 1.94 | 13.63 | 2.19 | 8.90 | 4.73 | | | | | | 26th year to of OC
mine/ 29th year | 1.01 | 14.64 | 3.83 | 12.74 | 1.91 | | | | | | closure plan 32th | 0.00 | 14.64 | 1.90 | 14.64 | 00:00 | | | | | | Total | 14.64 | | 14.64 | | | | | | | | (The above matter has 15.4.4.iii of Chapter 15.) | er has nov
ter 15.) | v been co | vered in | Table 15.17 | above matter has now been covered in Table 15.17 under para 4.iii of Chapter 15.) | | | 22 | Disposal | Disposal of Mining machineries should be provided as per Mine Closure Plan Guidelines issued by MOC, New Delhi | Disposal of Mining machineries will be done as follows: Some machinery having remaining life will be utilised in the other coal | g machiner having rel | ies will be | done as f | ollows: | - rotto | | | | | dated 07.01.2013 | mines of the company if operative at that time. The other machineries will be e-auctioned after decommissioning (ref para 15.6.i). | pany if oper
fer decomn | ative at th | at time. The (ref para | ne other ma
15.6.i). | chineries will | | | | | आई०पी० नार
अपर राधिक
भारत सरेको
कोयाना गडार
सामग्री भारत
गढ दिल | The tentative cost of dismantling has been given in table 15.21 under para 15.7 in Chapter 15 and also in Annexure 15-3. The relevant portion is reproduced below. | t of dismant
15 and also
v. | ling has be
o in Anne | een given l
xure 15-3. | in table 15.2
The releva | 1 under para
int portion is | | THE ILO NAGPAL ILINIA Secretary IX /Govl, of India II / Ministry of Coat (Shastri Bhawan II / New Delhi B.D. SHARMA RQP NO. 34012/03/2014-CPAM [21] | 7 | (| | | | |----------|-------|--|--|--| | No. | Refer | Observations | Compliance | | | | | | Activities Total Rs. L | Total amt.,
Rs. Lakh | | | | | 01. Dismantling of Infrastructure, disposal/ rehabilitation mining machinery | ation of | | | | | a) Dismantling of workshop | 300.00 | | | | | b) Dismantling of CHP | 500.00 | | · | | | c) Dismantling of facilities 10 | 1000.00 | | <u>-</u> | - | | d) Dismantling of pumps and pipes | 45.00 | | | _ | | e) Dismantling of UG facilities including main fan | 100.00 | | | | | f) Dismantling of UG Conveyors | 300.00 | | | | | g) Dismantling of UG Rail tracks | 150.00 | | | | | h) Dismantling of UG equipment | 200.00 | | | | | i) Re-arranging of water pipelines to dump top, park | 15.00 | | | | 311 | j) Dismantling of power line | 30.00 | | | 1 |
इंजपी
अवस्
भारत
मेंग्रजी
शास्त्र | k) Rehabilitation over area of dismantled facilities 2 | 203.76 | | 23 | | Manpower requirement for carrying out mine closure activities should be furnished in the para for Time scheduling for abandonment with bar chart & manpower requirement for implementation | on furnish
3 (Chapte
9 require
9s have | shed in the
oter 15) for
rement for
also been | | C2 | | PAL
dia
Coal
van | | | | 7 | L | | | | | | |-----|---------------|--|--------------------------------------|---|-------------------------------|------------------------------------| | ž Š | Keter
Para | Observations | | Compliance | ec. | | | 54 | | Infrastructure to be retained and to be demolished to be provided in a tabular form. | Infrastruc
dismantle
15.6 of C | Infrastructure to be retained and to be demolished to be demolished/dismantled has been given in a tabular form as Table 15.20 under para 15.6 of Chapter 15 and is reproduced below. | demolished to corm as Table ' | be demolished/
15.20 under para | | | | | | FACILITIES/ INFRASTRUCTURE TO BE RETAINED
AND DISMANTLED | RE TO BE REI
TLED | AINED | | | | | S | Particulars | To be | To be | | | | | OZ | | Retained
(Area in Ha) | Dismantled
(Area in Ha) | | , | | | _ | Facilities to be retained | | | | | | | | Office, VT Center, Canteen, dispensary, Parking, Essential quarters near the shaft and | 5.00 | | | | | | | Inclines | | | | | | | = | Diverted Road | 30.30 | | | | | | - | Total-I (To be Retained) | 35.30 | | | | | | = | Facilities to be Dismantled | | | | | | | Ξ | C.H.P | | 5.00 | | | | ाडिमपी०
ज्याद स
भारत स
प्रोधान में
शास्त्री स
महं | <u> </u> | Facilities including inclines, shaft, Store, Security post, weigh bridge | | 1.50 | | | | र्थात्रः ।
स्पत्तरः ।
सन्दर्भः | > | Settling pond | | 5.0 | [23] | SI. | Refer
Para | Observations | Compliance | | |-----|---------------|--|---|--| | | | | VI Coal stack yard | 4.00 | | | | | VII Road | 0.14 | | | | | Total-II | 15.64 | | | | | (To Be Dismantalled) | - | | | | , | Total-I and II | 35,30 15.64 | | | | | Grand Total | 50.94 | | 25 | 15.7 | The Mine closure activities required to be taken should be in coherence with the guidelines of the Mine Closure plan. | The Mine closure activities have now been listed as per the specified format as given in Table No. 15.21 and also in Annexure 15-3. | en listed as per the specifie in Annexure 15-3. | | | | The basis of assessment of indicative cost should be envisaged. | Indicative costs for Mine closure activities are based upon data collected from various sources including discussion with actual mine operators, internet, quotations from vendors. | are based upon data collecte
r with actual mine operators | | | | The state of s | (The above matter has been covered under para 15.7 in Chapter 15) | r para 15.7 in Chapter 15) | | 26 | 75.
0. | Bar chart for the activities to the taken up for the period life of the mine plus 3 year should be provided indicating activity-wise breakup of the abandon ment cost. | Bar chart for the activities has been pralongwith the abandonment cost. | been provided vide Annexure 15-3 | | 27 | 15.7 | i. WPI as on the base date should be considered for assessment of amount to be deposited in escrow account as a | Base date of the WPI has been considered as January 2016 for
calculation of Escrow Amount as mentioned in para 15.7b of Chapter
15. | nsidered as January 2016 filioned in para 15.7b of Chapti | | , | | Gil | | | | 5 | Refer | Ohsenzations | Seasilano O | | |-----|-------|---|---|--------| | No. | Para | | COLIDIALICE | | | | | security against the mine activities to be carried out for the closure of the mine. | | | | | | | | | | | | ii. From the plan it is not clear to what extent there is the superimposition of OC and UG. | ii. The superimposition of OC and UG has now been shown vide Fig. No. 3.1, as also explained in Para 15.7 b. A part of the area on western side is not workable by UG and the | e Fig. | | | | | | | | | | iii Since the total project area of 2583.48 Ha has been taken into consideration | iii. The cost calculation for Escrow fund for UG i.e. for 2208.18 Ha has
been now done from 30th year i.e. after closure of the OC mine. The | la has | | | | for mine closure cost calculation of OC, the cost calculation for Escrow fund for | Table No. 15.23 showing Amount to be deposited into Escrow Account Annually has been accordingly modified | scrow | | | | UG i.e for 2208.18 Ha should be done | | | | | | from 30th year i.e after closure of the OC mine. Rs. 43.81 lakhs in Table | For derivation of escrow amount the suggested format has been adopted | lopted | | | | 15.21 for the UG mine should be | מום פועסים בין מסופי וסיבר. יווס סמווס וסיבר סיבר סיבר סיבר סיבר מים | | | | | escalated to the value in the 30" year | Monthly Wholesale Price Index "Aug. 2009" 129.600 | 009 | | | | mine). For UG, fund depositing should | WPI as on base date "January 2016" | .400 | | | | start from the 30th year. | Escalation rate of Closure cost 1.3534 | 1534 | | | | ि इति ।
इति ।
इति ।
इति ।
इति । | Rate of compounding of Annual Closure Cost 5.00% | %00 | | | | 部門中國 / UN 4 / SI SI / UN 4 / SI / SI / UN 4 / SI / SI / UN 4 / SI | Amount to be deposited into Escrow Account after compounding @ of 932.7141 5% "Rs in Crs" | 7141 | | | | i i | | | I/I.P. NAGPAL rder Secretary ovt. of India sinistry of Coar esti Shawan ew Delhi > B.D. SHARMA RQP NO. 34012/03/2014-CPAM [25] | \ / | | |--|-----| | A TOTAL STATES | 1 | | प्राचेववीय स्थापार
संबंद साहित्र १६ | 3 7 | | माना नाम
माना नाम | | | 11. | | | SI. | Refer | Observations | Compliance | | | |-----|-----------|------------------------------------|--|-----------|------------| | No. | Para | | - | | | | | | GP | | | | | | | AL | | ၁၀ | ne | | | | | Base Rate of Closure Cost "Rs. Crs./Ha" | 0.0600 | 0.0100 | | | | | Closure Cost "Rs. Crs/Ha" on Base dt. | 0.08120 | 0.01353 | | - | | | Lease Area Ha. | 2583.48 | 2208.18 | | | | | Amount to be deposited into Escrow Account "Rs. in Crs" | 209.788 | 29.89 | | | | | Amount already deposited into Escrow Account "Rs. in Crs" | 0.00 | 00.00 | | | | | Net Amount to be deposited into Escrow Account "Rs. in Crs" | 209.79 | 29.89 | | | | | Starting Year | _ | 30 | | | | | End Year | 29 | 77 | | | | | Balance Life of the project For Escro Account "in Yrs" | 29 | 48 | | | | | Annual Closure Cost on Base Date,
Rs. Cr. | 7.2341 | 0.6226 | | | | | Annual Closure Cost escalated @ 5% as on first year of deposit, Rs. Cr | 7.2341 | 2.5628 | | | | | (Above Matter has been covered under Chapter 15) |
| | | 28 | Para 15.8 | Financial Assurance para should be | Financial Assurance Para has now been described as suggested under | as sugge | sted unde | | | | _ 0 | |)
 | | | | | dated 07.01.2013 | FINANCIAL ASSURANCE | | | | | | | i) For financial Assurance the mining company shall open an Escrow | iall open | an Escro | | | | | Organisation (on behalf of the Central Govt.) as | ovt.) as | exclusive | | | | | beneficiary. The mining company shall cause payments to | e payme | ents to be | [26] | | No. | Refer
Para | Observations | Compliance | |-----|-----------|---|---|--| | | | | | deposited in such Escrow account at the rate computed as indicated in table given above. The owner of the company may select the Scheduled Bank where the Escrow account is to be opened and inform the same to Coal Controller, Kolkata. The Escrow amount has to be opened as per the Guidelines of the Mine Closure Plan. The amount being deposited will be reviewed with such periodicity as deemed fit by Coal Controller. | | | | | | ii) Up to 80% of the total deposited amount including interest accrued in the Escrow Account may be released after every 5 years in line with the periodic examination of the Closure Plan. Amount released shall be equal to the expenditure incurred on the progressive mine closure in the past 5 years or 80% which ever is less. The balance amount at the end of final mine closure shall be released to mine owner on compliance of all statutory Rules, Regulations, Orders made by Central or State Govt., Statutory Organisations, Courts, etc. and duly certified by the Coal controller. | | | | | | iii. An agreement, outlining the detailed terms and conditions of operating the Escrow account, shall be executed between the Mining company, Coal Controller and the concerned bank in order to give effect to this. The agreement will be executed before the grant of the permission by the Coal Controller to open the mine. | | | 29 | | Para 15.9 and 15.10 should be as per Mine Closure Plan Guidelines issued by MOC, New Delhi dated 07.01.2013 | Para 15.9 of MCP regarding Responsibility of the Mine Owner has been further elaborated by including text from Para 9 of the Guidelines as given below: | | RQF | B.D. 340. | B.D. SHARMA
RQF NO. 34012/03/2014-CPAM | Id /1.P. NAGP
Under Secretary
/Govt. of India
/Ministry of Cov
Mastri Bhawan
/ New Delhi | [27] | | | | Charles and the second | | |-----|---------------|---|--| | S S | Refer
Para | Observations | Compliance | | | | COAL COAL COAL COAL COAL COAL COAL COAL | RESPONSIBILITY OF THE MINE OWNER | | | | | It is the responsibility of the mine owner to ensure that the protective measures contained in the Mine Closure Plan including reclamation and rehabilitation works have been carried out in accordance with the approved mine Closure Plan and Final Mine Closure Plan. | | | | | The owner shall submit yearly report to the Coal Controller before 1st July of every year setting forth the extent of protective and rehabilitative works carried out as envisaged in the approved Mine Closure Plan (Progressive and Post mine Closure Plan). | | | | | The prime responsibility of mine closure shall always lie with the mine owner, and incase the funds deposited are found to be insufficient to cover the cost of final mine closure, the mine owner undertakes to provide additional fund equivalent to gap in funding before five years of mine closure. | | | | | The para 15.10 regarding Provision for Mine Closure has been further elaborated to include Text from Para 8.2 and 8.3 of the Guidelines as given below: | | | | | PROVISION FOR MINE CLOSURE | | | | | The mine owner will be required to obtain a mine closure certificate from Coal Controller to the effect that the protective, reclamation and | | SI.
No. | Refer
Para | Observations | Compliance | |------------|---------------|---|--| | | | | rehabilitation works in accordance with the approved mine closure plan/
Final mine Closure Plan have been carried out by the mine owner for
surrendering the reclaimed land. | | | | | After the closure of mine, the reclaimed leasehold area and any structure thereon, which is not to be utilized by the mine owner, shall be surrendered to the State Govt. concerned following a laid down procedure as in vogue at that point of time. | | | Annexure | Annexure (to be attached) | Annexures have been attached as follows | | 30 | | Certificate of acceptance of the RQP to formulate the mining plan on behalf of the project proponent. | The certification was covered in the Certificate attached on page No. C-5. | | 25 | | A certificate by the ROP that he has been duly authorized by the mining company to prepare Mining plan on their behalf and that he has a valid recognition from MOC under MCR, 1960 to prepare the Mining plan and that provisions of all relevant rules and regulations made there under have been observed in the preparation of mining plan. | The certificate has been modified as specified and attached on page No. C-5. | | | | The Mining plan has been prepared considering the guidelines pertaining to mining plan issued by MoC, GOI & wherever specific permission will be | | B.D. SHARMA RQP NO. 34012/03/2014-CPAM [29] | S | Refer | Observations | Compliance | |----|-------|---|---| | Š. | Para | | | | | | required the applicant will approach the concerned authorities | | | 32 | | Certificate from empowered representative of / or Block allottee / applicant that the mine will be developed as per the approval of the mining plan from Ministry of coal and all other approvals, as required will be obtained from relevant authorities | Certification was already given vide Annexure 15-2 with extracts from Board Resolution (Para 1) certified by Company Secretary as reproduced below: That the Gare Palma Sector-II Coal Mine will be developed as per the approval of the mining plan from Ministry of coal and all other approvals, as required will be obtained from relevant authorities' | | 33 | | Certificate from empowered representative of / or Block allottee / applicant that the reclamation & rehabilitation work shall be carried out in accordance with the approved mine closure plan and any modification /amendments which may be made in the mine Closure Plan by Ministry of Coal, from time to time | Certification was already given vide Annexure 15-2 with extracts from Board Resolution (Para 2) certified by Company Secretary as reproduced below: That the Protective Measures and Mine Closure activities including reclamation & rehabilitation work shall be carried out in accordance with the approved Mining Plan and Mine Closure plan and any modification /amendments which may be made in the mine Closure Plan by Ministry of Coal, from time to time.' | | 34 | | Copy of the document to establish that the geological report has been duly purchased from CMPDI, GSI/ MECL as the case may be | GR was made available as part of the Auction Process., An amount of Rs. 43,48,16,953.00 was paid to MoC vide our letter dt 13.7.2015 inclusive of cost of GR (copy of fund transaction enclosed as Annexure 4-1) and thereafter original copy of GR was received from prior allottee i.e. M/s. Mahatamil on 24.11.2015. | | | , | Plates (to be attached) | | | 35 | | Progressive mine closure plan/ stage plan indicating stages at 1 st ,3 rd , 5 th , 10 th , and 20 th interval (showing area, volume, dump | Stage plans indicating stages at 1 st , 3rd, 5 th , 10 th , 20 th etc intervals showing all the required details are given vide Plate No. XIV to Platte No XXI. | | SI.
No. | Refer
Para |
Observations | Compliance | |------------|---------------|--|---| | | | height etc for OC and seam-wise layout projects and ventilation system in UG) | Underground ventilation can be seen in Plate XIX and XXIV. | | 36 | | Post mining land use & Reclamation plan | Post mining land use & Reclamation plan is given at the end of 32nd year for OC and 80th Year for UG vide Plate No, XXXVI | | 37 | | The plan indicating the lease boundary and block boundary & Mine boundary superimposed over it in distinct colour. | Project boundary, Block boundary and ML boundary are the same (2583.486Ha), which are shown in all the plates. It may be noted that the boundaries are coinciding with each other and cannot be shown in different colours in a plan. | | | | | (This matter has been covered under para 3.2 in Chapter 3 of MP) | | 38 | | Ventilation system may be provided in the seam-wise projection plans | The ventilation system is shown in Plate XIX and XXIV. | | 39 | | Support system & Transport system layout plan should be provided. | Support System for Junction and galleries has been shown in Figure no 5.6. The relevant write-up is given under para 5.4.6.1. (b) and (c), and 5.4.6.1. (f) and (h) | | | | मार्थक प्रमुख
जार
जार
जार | Transport system has been incorporated under para 5.4.6.II (j) and (k) respectively of Chapter 5 and has been shown in all stage plans and also in Fig 5.7. | ि नागपाल, /I.P. NAGPAL । स्थित / Under Secretary आ संस्थार / Govt. of India वर्ष मुकाम / Ministry of Coal की मतन / Shastri Bhawan वर्ष विस्ती / New Delhi > B.D. SHARMA RQP NO. 34012/03/2014-CPAM # M/S MAHARASHTRA STATE POWER GENERATION COMPANY LIMITED "Prakashgad" Plot No. G-9, Anant Kanekar Marg, Bandra (East); Mumbai, Maharashtra-400051 Ph: 022 – 26476231; 022-26474211; E-mail: md@mahagenco.in ### MINING PLAN AND MINE CLOSURE PLAN ## GARE PALMA SECTOR-II COAL MINE (MAND RAIGARH COALFIELD) AT VILLAGES: TIHLI RAMPUR, KUNJEMURA, GARE, SARAITOLA, MUROGAON, RADOPALI, PATA, CHITWAHI, DHOLNARA, JHINKA BAHAL, DOLESARA, BHALUMURA, SARASMAL AND LIBRA DISTRICT: RAIGARH, CHHATTISGARH (Under Rule 22 (4) of Mineral Concessions (Amendment) Rules, 1994 BLOCK AREA/ PROJECT AREA/APPLIED ML AREA: 2583.486 HA {TOTAL CAPACITY = 23.6 MTPA (22.0 MTPA OC + 1.6 MTPA UG)} [Re-submitted after Incorporation of Clarifications to Observations of Technical Members of the Standing Committee Constituted under MMDR Act, 1957 vide MOC Letter no. 34011/16/2016-CPAM dt. 03-05-2016] (VOLUME I: TEXT & ANNEXURES) ISSUE 1 REV. 0 FEBRUARY, 2016 of the state o असर सम्बद्ध / Under Secretary भारत इरुकार / Govt. of India कोपणा मन्तात्व / Ministry of Coal सारकी महात्व / Shastri Bhawan मह सिरली / New Delhi Prepared by: #### **B.D.SHARMA** (Recognised Qualified Person) (No. 34012/03/2014-CPAM Dt 29th May 2015, valid upto May 2025) #### MIN MEC CONSULTANCY PVT. LTD. A-121, Paryavaran Complex, IGNOU Road, New Delhi - 110 030 Ph: 29534777, 29532236, 29535891; Fax: +91-11-29532568 Email:min_mec@vsnl.com; Web site: http://www.minmec.co.in approved company ROP NO STORY · ^DAM B.D. SHARMA RQP NO. 34012/03/2014-CPAM JS N ## CONTENTS | SI. No. | Description | Page No | |---------|---|---------| | | CERTIFICATES AND CONSENT LETTERS | | | 1 | Certificate of RQP from Ministry of Coal | C-1 | | П | Letter of authorisation to RQP from the allottee to prepare Mining Plan and Mine Closure Plan | C-2 | | Ш | Certificate from the allottee that the mine will be developed as per
Approved Mining Plan and Mine Closure Plan | C-3 | | IV | Certificate from RQP stating that the applied mine area lies within
the boundary of allotted coal block and that the applied area does
not encroach into area of other blocks | C-4 | | V | Certificate from the RQP that he has been duly authorized by the mining company to prepare the mining plan and mine closure plan | C-5 | | VI | Undertaking to the effect that no legal case is pending in respect of Gare Palma Sector-II after allotment | C-6 | | | ha | | | | EXECUTIVE SUMMARY CHAPTER 1: INTRODUCTION CHAPTER 1: INTRODUCTION CHAPTER 1: INTRODUCTION | ES-1 | | | CHAPTER 1: INTRODUCTION | | | 1.1 | Background of the block | 1-1 | | 1.2 | Name of applicant with complete address | 1-1 | | 1.3 | Status of the applicant | 1-2 | | 1.4 | Background of the company | 1-2 | | 1.5 | Minerals which are occurring in the area and which the applicant intends to mine | 1-2 | | 1.6 | Period for which mining lease is required | 1-2 | | 1.7 | Reference no. and date of letter from the ministry of coal | 1-2 | | 1.8 | Location of end use plants (existing and/or proposed), their requirement and source to fill the gaps | 1-3 | | 1.9 | Coal requirement calculation with norms used for computing consumption | 1-7 | | 1.10 | Coal beneficiation | 1-8 | | 1.11 | Name of RQP preparing mining plan | 1-9 | | 1.12 | Status of the project | 1-9 | | SI. No. | Description | Page No. | |---------|--|--| | | CHAPTER 2 : DETAILS OF EARLIER A | PPROVED MINING PLAN | | 2.1 | Approval letter/ reference of MOC | 2-1 | | | CHAPTER 3: LOCATION, TOPOGRAP | HY & COMMUNICATION | | 3.1 | Location | 3-1 | | 3.2 | Mining lease boundary | 3-1 | | 3.3 | Communication | 3-3 | | 3.4 | Physiography and drainage | 3-4 | | 3.5 | Climate & rainfall | 3-4 | | 3.6 | Land use and ownership / occupancy | 3-5 | | 3.7 | Important surface features | 3-6 | | | CHAPTER 4: EXPLORATION, GEOLG
COAL QUALITY AND RESERVES | OGY, SEAM SEQUENCE, | | 4.1 | Regional geology | 4-1 | | 4.2 | Geology of Gare-Palma Sector- II block | 4-4 | | 4.3 | Status of exploration | 4-6 | | 4.4 | Geological sections | 4-11 | | 4.5 | Future programme of exploration | 4-12 | | 4.6 | Pattern of faulting | 4-12 | | 4.7 | Coal seams | 4-13 | | 4.8 | Coal reserves & overburden | 4-17 | | | CHAPTER 5 : MINING | आर्थ स्वी
भारत स्वी
कोशस्त्र
शास्त्री पुजना अMaw Dollar | | 5.1 | Optimisation of targeted capacity | 5-1 | | 5.2 | Choice of method of mining | 5-11 | | 5.3 | Opencast method | 5-11 | | 5.4 | Underground mining | 5-36 | | SI. No. | Description | Page No. | |----------|---|----------| | . | | | | 5.5 | Precautions for simultaneous operation by OC as well as UG method within the block | 5 5-57 | | 5.6 | Proposal for working underground mine after completion of operations of opencast mine | f 5-57 | | | CHAPTER 6 : DRILLING AND BLASTING | | | 6.1 | Introduction | 6-1 | | 6.2 | Opencast mining | 6-1 | | 6.3 | Underground mining | 6-2 | | | CHAPTER 7: DRAINAGE, PUMPING, POWER SUPPLY & ILLUMINATION | : | | 7.1 | Drainage & pumping | 7-1 | | 7.2 | Requirement of water for service buildings & dust suppression | 7-7 | | 7.3 | Power supply & illumination | 7-8 | | | CHAPTER 8 : VENTILATION | | | 8.1 | Ventilation inclines and shafts details | 8-1 | | 8.2 | Requirement of quantity of air | 8-1 | | 8.3 | Size and capacity of main fan | 8-4 | | 8.4 | Description of ventilation route | 8-5 | | | CHAPTER 9 : STACKING OF MINERAL REJECTS AND DISPOSAL OF WASTE | | | 9.0 | Waste generated during opencast and underground mining | 9-1 | | 9.1 | Nature of top soil and overburden/waste | 9-1 | | 9.2 | Year/stage wise waste generation | 9-1 | | 9.3 | Waste disposal sites | 9-2 | | 9.4 | The void | 9-3 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPAM iii | SI. No. | Description | Page No | |---------|--|---------| | | CHAPTER 10 : COAL HANDLING, WASHING & MODE OF DISPATCH | | | 10.1 | Coal handling plant | 10-1 | | 10.2 | Coal washery | 10-2 | | | CHAPTER 11 : MINE INFRASTRUCTURE | | | 11.1 | General | 11-1 | | 11.2 | Mine site infrastructure | 11-1 | | 11.3 | Residential colony | 11-3 | | 11.4 | Water supply | 11-4 | | | CHAPTER 12: MANPOWER, SAFETY AND SUPERVISION | | | 12.1 | Manpower and supervision requirement | 12-1 | | 12.2 | Safety aspects and disaster management | 12-3 | | | CHAPTER 13: LAND REQUIREMENT | | | 13.1 | Land requirement & leasehold area break-up | 13-1 | | 13.2 | Proposed 'during- mining' land use in ha | 13-2 | | 13.3 | Forest land | 13-3 | | 13.4 | Rehabilitation policy | 13-3 | | | CHAPTER 14: ENVIRONMENTAL MANAGEMENT PLAN | | | 14.1 | Introduction | 14-1 | | 14.2 | Baseline status of environment | 14-2 | | 14.3 | Environmental impact assessment | 14-11 | | 14.4 | Environmental management plan | 14-16 | | 14.5 | Monitoring schedule of EMP | 14-27 | | | | | | SI. No. | Description | Page No. | |---------|---|----------| | | CHAPTER 15 : MINE CLOSURE PLAN | | | 15.1 | Introduction | 15-1 | | 15.2 | Mine description | 15-10 | | 15.3 | Mine closure plan | 15-10 | | 15.4 | Afforestation | 15-18 | | 15.5 | Economic repercussions of closure of mine and manpower retrenchment | 15-34 | | 15.6 | Time scheduling for abandonment | 15-40 | | 15.7 | Abandonment cost | 15-42 | | 15.8 | Financial assurance | 15-49 | | 15.9 | Responsibility of the mine owner | 15-49 | | 15.10 | Provision for mine closure | 15-50 | | 15.11 | Implementation protocol | 15-50 | | 15.12 | CSR activities | 15-51 | ## LIST OF TABLES | Table No. | Description | Page No. | |-----------
--|----------| | | | | | 1.1 | Name and address of the company | 1-1 | | 1.2 | Name with location and requirement of coal as per allotment order dt 31-08-2015 | 1-3 | | 1.3 | Coal requirement of EUPS of Mahagenco vis-à-vis coal production from Gare Sector-II mine | 1-4 | | 1.4 | Existing thermal power plants of Mahagenco | 1-5 | | 1.5 | Proposed thermal power plants | 1-7 | | 1.6 | Summary of coal requirement for Mahagenco | 1-7 | | 1.7 | Norms used for computing consumption | 1-8 | | 3.1A | Geographical co-ordinates of boundary points of Gare Palma
Sector-II coal block based on modified Everest Datum | 3-2 | | 31B | Geographical co-ordinates of boundary points of Gare Palma
Sector-II Coal block based on WGS 84 system | 3-3 | | 3.2 | Present (pre-mining) land use of the ML area Gare Palma Sector-II (ha.) | 3-5 | | 3.3 | Habitation of following villages is lying within the block | 3-6 | | 4.1 | Generalised stratigraphic succession | 4-1 | | 4.2 | Geological succession in Gare Palma Sector-II coal block | 4-5 | | 4.3 | Quantum of work done by MECL in Gare Palma Sector-II coal block | 4-8 | | 4.4 | Geological cross-section wise numbers of the bore holes in Gare-Palma Sector-II block | 4-11 | | 4.5 | Description of faults interpreted in Gare Palma Sector-II coal block | 4-12 | | 4.6 | Sequence of coal seams and partings in Gare Palma Sector-II coal block | 4-13 | | 4.7 | Sequence of workable coal seams of Gare-Palma Sector-II as per GR block | 4-16 | | 4.8 | Grade-wise average specific gravity of coal seams | 4-20 | | | Grades of non-coking coal based on UHV (GOI notification no. 28012/80/CA dated 13.02.1981) | 4-20 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL | Table No. | Description | Page No. | |-----------|---|----------| | 4.9A | Grades of non-coking coal based on GCV in India (gazette notification no.22021/1/2008-CRC-II,dt.30.12.2011) | 4-21 | | 4.10 | Seamwise grades and GCV range in Gare Sector-II | 4-21 | | 4.11 | Seam-wise and barrier-wise reserves (thickness>0.90 m) opencast (reserves in '000 tonnes) | 4-24 | | 4.12 | Seam-wise and ratio-wise reserves (thickness>0.90 m) opencast (reserves in '000 tonnes) | 4-24 | | 4.13 | Seam-wise and depth-wise reserves (thickness>0.90m) opencast (reserves in '000 tonnes) | 4-25 | | 4.14 | Seam-wise and thickness-wise reserves (thickness>0.90m) opencast (reserves in '000 tonnes) | 4-25 | | 4.15 | Seam-wise and grade-wise reserves (thickness>0.90m) opencast (reserves in '000 tonnes) | 4-25 | | 4.16 | Seam-wise and barrier- (thickness > 0. 90 m) underground (reserves in '000 tonnes) | 4-26 | | 4.17 | Seam-wise and depth-wise reserves (thickness>0.90 m) underground (reserves in '000 tonnes) | 4-26 | | 4.18 | Seam-wise and thickness-wise reserves (thickness>0.90m) underground (reserves in '000 tonnes) | 4-27 | | 4.19 | Seam-wise and grade-wise reserves (thickness>0.90 m) underground (reserves in '000 tonnes) | 4-27 | | 4.20 | Seam-wise and barrier-wise reserves (0.50 m to 0.90 m) opencast (reserves in '000 tonnes) | 4-28 | | 1.21 | Seam-wise and ratio reserves (0.50 m to 0.90 m) opencast (reserves in '000 tonnes) | 4-28 | | 1.22 | Seam-wise and depth-wise reserves (0.50 m to 0.90 m) opencast (reserves in '000 tonnes) | 4-29 | | 1.23 | Seam-wise and thickness-wise reserves (0.50 m to 0.90 m) opencast (reserves in '000 tonnes) | 4-29 | | 1.24 | Seam-wise and grade-wise reserves (0.50 m to 0.90 m) opencast (reserves in '000 tonnes) | 4-29 | | 1.25 | Seam-wise and barrier-wise reserves (0.50 m to 0.90 m) underground (reserves in '000 tonnes) | 4-30 | | .26 | Seam-wise and depth-wise reserves (0.50 m to 0.90 m) underground (reserves in '000 tonnes) | 4-30 | | 1 | Seam-wise and thickness-wise reserves (0.50 m to 0.90 m) underground (reserves in '000 tonnes) | 4-31 | Mining Plan & Mine Crosure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSRGCL) B.D. SH ROP NO. 34012/ | | | Page No | |---------------|--|---------| | 4.28 | Seam-wise and grade-wise reserves (0.50 m to 0.90 m) underground (reserves in '000 tonnes) | 4-3 | | 5.1A | Derivation of extractable reserves by OC from net geological reserves (mt) | 5-3 | | 5.1B | Derivation of extractable reserves by UG from net geological reserves (mt) | 5-4 | | 5.1C | Summary of derivation of total extractable reserves (OC+UG) from net geological reserves figures in million tonnes | 5-5 | | 5.2 | Derivation of extractable opencast reserves (pit wise) from net geological reserves (mt) up to seam VI as quarry bottom of coal thickness > 0.5m | 5-7 | | 5.3 | Derivation of extractable underground reserves (mt) (on either side of Kelo river) from net geological reserves below seam VI of coal thickness > 0.9m | 5-8 | | 5.4 | Typical parameters of some surface miners | 5-13 | | 5.5 | Seam wise coal, percentage contribution by seams in reserves | 5-15 | | 5.6 | Tentative location of deployment of larger and smaller size surface miners and their contribution to the annual production | 5-16 | | 5.7 | COMBINED (OC and UG) calendar programme with OBR from opencast including rehandling | 5-21 | | 5.7A . | Pit/ quarry wise calendar programme of OC coal mining and OB removal excluding rehandling (coal in mt, OB in mbcum) | 5-22 | | 5.7B | Calendar programme of OC coal mining with details of OB removal including rehandling (coal mt, OB in mcum) | 5-24 | | 5.8A | Year/ stage wise progressive GCV of coal seams | 5-26 | | 5.8B | Year/stage wise progressive minable coal production Gare Palma Sector-II | 5-27 | | 5.9 | Year/stage wise progressive ash % of seams | 5-28 | | 5.10 | Annual productivity of various shovel/ dumper combinations and their population | 5-31 | | 5.11 | List of production and auxiliary equipment | 5-32 | | 5.12 | Geo-mining characteristics of OC mining | 5-34 | | 5.13 | Economically extractable reserve by underground (mt) | 5-36 | | 5.14 | Underground west side net and extractable coal (mt) | 5-37 | | 5.15 | Underground east side net and extractable coal (mt) | 5-37 | | -0 | Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL | . viii | | Hor Secretary | | | | Mining Plan & | and | 21 | | Table No. | Description | Page No | |--------------------|---|---------| | | | | | 5.16 | Underground east side seam wise blocked coal reserves of >0.5m thickness (mt) | 5-38 | | 5.17 | Underground west side seam wise blocked coal reserves of >0.5m thickness (mt) | 5-39 | | 5.18 | Intersections of shafts and inclines with different seams | 5-41 | | 5.19 | Assessment of time schedule for sinking of shafts and inclines and coal production | 5-42 | | 5.20 | Capacity calculation of continuous miners used in different thickness ranges of coal seams | 5-47 | | 5.21 | Equipment configuration for fully mechanised panels | 5-56 | | 6.1 | Requirement of explosives | 6-2 | | 7.1 | Meteorological data of Raigarh (1996-2005) | 7-2 | | 7.2 | Calculation of pumping requirement in normal circumstances | 7-3 | | 7.3 | Rainwater accumulation | 7-3 | | 7.4 | Tentative power requirement | 7-8 | | 8.1 | Requirement of air for ventilation of mine and faces and compliance with speed limits (Gare sector-II) | 8-2 | | 8.2 | Calculations for cross checking the speed in shafts and inclines for ascertaining the adequacy of air (being supplied or exhausted) | 8-3 | | 8.3 | Specifications of main ventilator | 8-4 | | 8.4 | Velocity of air current required at various places in UG mine workings | 8-5 | | 9.1 | Waste generation (topsoil & overburden) in m.cum (bank) progressive | 9-1 | | 9.2 | Waste disposal (top soil & OB) in mcum (bank) | 9-4 | | 9.3 | Programme of excavated and backfilled area, cumulative (ha) | 9-6 | | 9.4 | Year / stage wise dumped cumulative area and height | 9-6 | | 9.5 | Waste generated from shaft sinking and drivage of inclines | 9-7 | | 11.1 | Water requirement | 11-4 | | Tinha Dian e | Mine Clasure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSBGG | L ix | | Ten of the Control | B.D. SH | IARMA | | Table No. | Description | Page No | |------------|--|---------| | | | | | 12.1 | Total tentative employment potential | 12- | | 13.1 | Present/pre-mining land use of the ML area Gare Palma Sector-II (ha.) | 13-1 | | 13.2 | During mining land use (ha) within ML area | 13-2 | | 14.1 | Monitoring schedule and parameters | 14-2 | | 14.2 | Existing land use details of total and applied mining lease area (ha) | 14-3 | | 14.3 | Land use pattern of buffer zone (as per Census 2011) | 14-3 | | 14.4 | Soil test results | 14-4 | | 14.5 | Air quality of the study area | 14-6 | | 14.6 | Ambient air quality standards | 14-7 | | 14.7 | Ambient noise levels in the study area, Leq dB(A) | 14-7 | | 14.8 | Water quality test results | 14-8 | | 14.9 | Meteorological data of Raigarh (1999-2008) | 14-9 | | 14.10 | District and block wise population in the study area | 14-9 | | 14.11 | Employment pattern in study area | 14-10 | | 14.12 | Proposed land use at the end of fifth year & end of mine life | 14-11 | | 14.13 | Programme of excavated and backfilled area, cumulative (ha) | 14-17 | | 14.14 | Waste disposal (top soil & OB) in mcum (bank) progressive | 14-18 | | 14.15 | Mine closure land use (OC and UG) in ha (end of 80 th year) | 14-19 | | 14.16 | Year/stage wise and location wise requirement of plants along with bifurcation into forest and agriculture landuse | 14-21 | | 15.1
| Name and address of the company | 15-1 | | 15.2 | Name with location and requirement of coal as per allotment order dt 31-08-2015 | 15-2 | | 15.3 | Norms used for computing consumption | 15-3 | | 15.4 | Particulars of RQP | 15-4 | | 15.5 | Present land use of the area required for the project | 15-6 | | 15.6 | Year wise position of mining area | 15-10 | | 15.7 | Programme of excavated and backfilled area, cumulative (ha) | 15-13 | | 15.8 MAGPI | Year / stage wise dumped and reclaimed area (ha) | 15-13 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL | Table No. | Description | Page No. | |-----------|--|----------| | | | | | 15.9 | Post opencast mining (30 th year to 32 nd year) land use with environment management | 15-14 | | 15.10 | Total (OC+UG) mine closure land use (ha) (end of 80 th year) | 15-15 | | 15.11 | Year/stage wise and location wise reclamation, proposed agriculture and forest after post mine closure stage | 15-18 | | 15.12 | Water quality test results | 15-20 | | 15.13 | Water requirement | 15-21 | | 15.14 | Air quality of the study area | 15-26 | | 15.15 | Ambient air quality standards | 15-26 | | 15.16 | Ambient noise levels in the study area, Leq dB(A) | 15-27 | | 15.17 | Year wise top-soil generation and utilisation | 15-31 | | 15.18 | Habitation of villages lying within the block | 15-32 | | 15.19 | Areas which could be used for agriculture, forest and other uses in post mine closure stage | 15-40 | | 15.20 | Facilities/ infrastructure to be retained and dismantled | 15-41 | | 15.21 | Tentative abandonment cost | 15-42 | | 15.22 | Derivation of escrow amount related to OC & UG mining | 15-46 | | 15.23 | Amount to be deposited in escrow account annually | 15-46 | ## LIST OF FIGURES | Fig. No. | Title | Page No. | |----------|---|----------| | 3.1 | Areas applicable for OC & UG escrow calculation | 3-8 | | 4.1 | Floor & Folio plan of Seam-X Bot. | 4-32 | | 4.2 | Floor & Folio plan of Seam-IX | 4-33 | | 4.3 | Floor & Folio plan of Seam- VIII | 4-34 | | 4.4 | Floor & Folio plan of Seam-VIII L | 4-35 | | 4.5 | Floor & Folio plan of Seam- VII Top | 4-36 | | 4.6 | Floor & Folio plan of Seam- VII Bot. & Comb. | 4-37 | | 4.7 | Floor & Folio plan of Seam- VI | 4-38 | | 4.8 | Floor & Folio plan of Seam-V B1 | 4-39 | | 4.9 | Floor & Folio plan of Seam-V C1 | 4-40 | | 4.10 | Floor & Folio plan of Seam-V D1 | 4-41 | | 4.11 | Floor & Folio plan of Seam-IV | 4-42 | | 4.12 | Floor & Folio plan of Seam-III | 4-43 | | 4.13 | Floor & Folio plan of Seam-II | 4-44 | | 4.14 | Floor & Folio plan of Seam-IL1 | 4-45 | | 4.15 | Floor & Folio plan of Seam-I Top | 4-46 | | 4.16 | Floor & Folio plan of Seam-I Bot. & Comb. | 4-47 | | 5.1 | Reserve not economically not viable Seam-V C1 | 5-59 | | 5.2 | Reserve not economically not viable Seam-II | 5-60 | | 5.3 | Reserve not economically not viable Seam-IL1 | 5-61 | | 5.4 | Reserve not economically not viable Seam-I Top | 5-62 | | 5.5 | Reserve not economically not viable Seam-I Bot. & Comb. | 5-63 | | 5.6 | Design for resin bolt system for junction and gallery support | 5-64 | | 5.7 | 5 heading development by continuous miner showing bord & pillar layout with transport | 5-65 | | 15.1 | Section showing various stages of reclamation | 15-12 | | 15.2 | Organisation for post mine closure activities | 15-50 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL ## LIST OF ANNEXURES | Annex. No. | Description | |-------------------------|--| | 1-1 | Allatment order no. 102/20/2015/NA dated 21.09.2015 | | | Allotment order no. 103/30/2015/NA, dated 31-08-2015 | | 1-2 | Request to NA for production at full capacity vide letter No. CMD/Mahagenco/ED(Coal/Fuel)/34c dt. 17.2.2016 | | 1-3 | Order CMPDI for Washability study dt. 25-01-2016 | | 1-4 | MOC letter no. 103/32015/ NA dt. 19-02-2016 for full capacity of the mine | | 1-5 | Observations issued vide MOC letter no. 34011/16/2016-CPAM dt. 03-05-2016 | | 2-1 | MOC letter no. 103/30/2015-NA dt. 11.1.2016 for fresh submission of Mining Plan and Mine Closure Plan | | 3-1 | Khasra wise land use of core zone | | 3-2 | CMPDI letter letter no. CMPDI/BD/C(886)/118 dt 26-02-2016 for block boundary | | 3-3 | Nominated Authority letter for block boundary F.No.104/28/2015/NA dt. 13-10-2015 | | 3-4 | Proposal for re-routing the railway alignment along periphery out side the block boundary dt. 28-1-2016 and 01-02-2016 | | 1-1 | Our letter dt.13.7.2015 related to fund transaction of Rs 43.48 Cr to MOC includes the cost of GR. | |) -1 | Waste generated from drivage of drifts in rock during UG mining | | 5-1 | Agreement signed with the Nominated Authority on 30 th March 2015 | | 5-2 | Approval of Board of Directors of the Company | | 5-3 | Details of expenditure on Progressive and Post Mine Closure activities and bar chart | | 5-4 | Corporate Social Responsibility (CSR) Policy of the company | | 5-5 NAGPAL
Secretary | Amendment to allotment agreement dt. 31-08-2015 | # **VOLUME - II** ## LIST OF PLATES | Plate No. | Title | Scale | |-----------|--|------------| | | | 4 . 50 000 | | | Location plan | 1:50,000 | | 11 | Key map | 1:50,000 | | Ш | Revenue plan showing identified ML area | 1:10,000 | | IV | Master surface plan | 1:10,000 | | V | Geological plan | 1:10,000 | | VI | Geological cross sections | 1:5,000 | | VII A | Representative graphic litholog | 1 : 1,000 | | VII B | Representative graphic litholog | 1:1,000 | | VIII | UG Working plan of Seam-IV | 1:10,000 | | IX | UG Working plan of Seam-III | 1:10,000 | | X | UG Working plan of Seam-II | 1:10,000 | | ΧI | UG Working plan of Seam-IL 1 | 1:10,000 | | 1IX | UG Working plan of Seam-I (Top) | 1:10,000 | | XIII | UG Working plan of Seam-I (Bot.) & (Comb.) | 1:10,000 | | XIV | Stage plan at the end of 1 st year | 1:10,000 | | XV | Stage plan at the end of 3 rd year | 1:10,000 | | XVI | Stage plan at the end of 5 th year | 1:10,000 | | XVII | Stage plan at the end of 10 th year | 1:10,000 | | IIIVX | Stage plan at the end of 15 th year | 1:10,000 | | XIX | UG Stage plan at the end of 15 th year (Seam-IV) | 1:10,000 | | XX | Stage plan at the end of 20 th year | 1:10,000 | | XXI | UG Stage plan at the end of 20 th year (Seam-IV) | 1:10,000 | | XXII | Stage plan at the end of 25 th year | 1:10,000 | | XXIII | UG Stage plan at the end of 25 th year (Seam-IV) | 1:10,000 | | XXIV | UG Stage plan at the end of 25 th year (Seam-III) | 1:10,000 | | XXV | Final pit floor plan | 1:10,000 | | XXVI | Stage plan at the end 29 th year | 1:10,000 | | | G Stage plan at the end of 30 th year (Seam-IV) | 1:10,000 | Mining Plam's Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 52 NO | Plate No. | Title | Scale | |-----------|--|----------| | XXVIII | UG Stage plan at the end of 30 th year (Seam-III) | 1:10,000 | | XXIX | UG Stage plan at the end of Seam-IV (40 th year) | 1:10,000 | | XXX | UG Stage plan at the end of Seam-III (47 th year) | 1:10,000 | | XXXI | UG Stage plan at the end of Seam-II (56 th year) | 1:10,000 | | XXXII | UG Stage plan at the end of Seam-IL1 (64 th year) | 1:10,000 | | XXXIII | UG Stage plan at the end of Seam-I Top (66 th year) | 1:10,000 | | XXXIV | UG Stage plan at the end mine 77 th year (Seam-I Bot. & Comb.) | 1:10,000 | | XXXV | Mine cross sections | 1:5,000 | | XXXVI | Post mine closure plan (at the end of 32 nd year for OC and 80 th Year for UG) | 1:10,000 | | XXXVII | Incline section | 1:5,000 | | XXXVIII | Continuous mine panel development, depillaring, ventilation & transport | NTS | | XXXIX | Bar chart showing Development and Production | NTS | | XL | Organisational chart | NTS | | XLI | Line diagram of CHP | NTS | | XLII | Mining System Section | 1:2,000 | #### **ABBREVIATIONS** AMSL - Above Mean Sea Level bgl - Below ground level CV - Calorific Value CSM - Continuous Surface Miner CMPDIL - Central Mine Planning and Design Institute Ltd. cum - Cubic metre DGMS - Directorate General of Mine Safety DGM - Directorate of Geology and Mining EIA - Environmental Impact Assessment EMP - Environmental Management Plan E&M - Electrical and Mechanical FE Loader - Front End Loader FC - Fixed Carbon GT - Grand Trunk GR - Geological Report GSI - Geological Survey of India HFL - High Flood Level HEMM - Heavy Earth Moving Machinery Ha - Hectare IB - Interburden IMD - India Meteorological Department K.Cal/kg - Kilo Calorie per Kilogram Ltd. - Limited LTPA - Lakh Tonne Per Annum LHD - Load Haul Dump MTPA - Million Tonne Per Annum MCPA - Million Cubic Metre Per Annum M cum - Million cubic metre MBCM - Million Bank Cubic Metre m - Metre Mt - Million tonne ML - Mining Lease Mty - Million tonne per year MOC - Ministry of Coal Mil. cum. - Million cubic metre Mil. Te. - Million Tonne MoEF&CC - Ministry of Environment, Forest and Climate Change NTU - Units of measurement NH - National Highway OC - Opencast OB - Overburden PA - Per Annum R&R - Rehabilitation & Resettlement Plan RQP - Recognised Qualified Person ROM - Run of Mine RH - Relative Humidity RPM - Respirable Particulate Matter SDL - Side Discharge Loader SPM - Suspended Particulate Matter SC - Scheduled Cast SH - State Highway ST - Scheduled Tribe TPD - Tonne Per Day TS - Topsoil UG - Under Ground UHV - Useful Heat Value VM - Volatile Matter आईवर्षित नामपान ग.P. NAGPAL अदर मतिया / Under Secretary अदर प्रकार / Govi. of India अदर प्रकार / Hinistry of Coal प्राप्त भवारमा / Ministry of Coal प्राप्त भवारमा / Shasts Bhawan गई हिल्ली / New Delhi #
CERTIFICATES AND CONSENT LETTERS B.D. SHARMA RQP NO. 34012/03/2014-CPA11 आईंगीर नागात । P NAGPAL अवंश क्षित / Under Secretary अवंश क्षित / Under Secretary भारत क्षेत्रात (Gov), of India भारत क्षेत्रात (Ministry of Coal क्षेत्रका भेतावव / Ministry of Bhawan क्षात्रका अवंश / Stiastin Bhawan क्षात्रका अवंश / Stiastin Bhawan क्षात्रका अवंश / Shastin Dahi #### BY SPEED POST ## No. 34012/03)/2014-CPAM Government of India Ministry of Coal New Delhi, the 29 May, 2015 To **Shri B. D. Sharma** (Renewal) A-121, Paryavaran Complex, IGNOU Road, New Delhi-110030 (FAX: 29532568 (Ph.011-29532236 /Mob:981103088) [E-mail:min_mec@vsnl.com, minmec@bol.net.in] Subject Grant of recognition as competent person to prepare Mining Plan for Coal/Lignite block. Sir. I am directed to refer to your letter No. MM/BD/RQP/21534 dated 29.11.2013 on the above cited subject and to convey approval of the Central Government to the grant of recognition under Rule 22 (c) of Mineral Concession Rule, 1960 in your favour as competent person to prepare Mining Plan/Mine closure Plan for Coal/Lignite block(s) up to 10 years from the date of issue of this letter. 2. RQP is required to comply with the provisions of all the concerned statutes and guidelines / circulars of the Govt. issued from time to time in regard to preparation of Mining Plans. Yours faithfully 100 Under Secretary to the Govt. of India Copy to: TD, NIC; Ministry of Coal for including in the list of RQP in Ministry of Coal's Web Site. A STATE IN P. NAGPAL STATE OF THE T ### Vikas Jaideo Executive Director (Coal / Fuel) Mahagenco/ED(Fuel/Coal)/ 46 Date 17-2-16 To. Shri. B.D.Sharma, A-121, Paryavaran Complex, IGNOU Road, New Delhi-110030 Sub:- Authorisation as Recognized Qualified Person for the Preparation of Mining Plan and Mine Closure Plan for Gare Palma Sector-II Coal Mine in District Raigarh of Chhattisgarh State-Reg. Dear Sir, We hereby authorize you as "Recognized Qualified Person" for the Preparation of Mining Plan and Mine Closure Plan w.r.t. Gare Palma Sector-II Coal Mine. You may participate in the discussion with the Ministry of Coal if any, required for the purpose of approval of Mining Plan and Mine Closure Plan for the above coal mine. Place:-Mumbai. Date: 16/02/16 Executive Director (Fuel/Coal) Mahagenco 3rd Floor, 'Prakashgad', Plot No. G-9, Prof. A. K. Marg, Bandra (E), Mumbai - 400 051. Tel.(P): 2647-4758, (O): 2647-4211 Ext.: 2215, Fax: 2658-1466, E-mail: edfuel@mahagenco.in. Website: www.mahagenco.in CERTIFICATE: III Vikas Jaideo Executive Director (Coal / Fuel) #### **CERTIFICATE** It is certified that, while preparing the Mining Plan and Mine Closure Plan of Gare Palma Sector- II Coal Mine, in District Raigarh of Chhattisgarh State, all the statutory provisions including Regulations, Rules and Orders passed by the Central and State Governments, Statutory Organisations, Courts etc. have been taken into considerations. An undertaking is also given herewith that all measures proposed in the Mining Plan and Mine Closure Plan will be implemented in a time bound manner as proposed. Place:-Mumbai. Date: 16/02/16 Executive Director (Fuel/Coal) Mahagenco 3rd Floor, 'Prakashgad', Plot No. G-9, Prof. A. K. Marg, Bandra (E), Mumbai - 400 051. Tel.(P): 2647 4758, (O): 2647 4211 Ext.: 2215, Fax: 2658 1466, E-mail: edfuel@mahagenco.in, Website: www.mahagenco.in ## CERTIFICATE FROM RQP STATING THAT THE APPLIED MINE AREA LIES WITHIN THE BOUNDARY OF ALLOTTED COAL BLOCK AND THAT THE APPLIED AREA DOES NOT ENCROACH INTO AREA OF OTHER BLOCKS This is to certify that I have verified the area of "Gare Pelma Sector-II Coal Mine" allotted to M/s Maharashtra State Power Generation Co Ltd. located in district Raigarh of Chhattisgarh state with the certified plan supplied by CMPDIL alongwith letter no. CMPDIL/B.D./C(886)/118 dt 26-02-2016 enclosed as Annexure 3-2 in Mining Plan) and the area covered by the Mining Plan (within applied ML) does not encroach on any other coal block and the area applied for Mining Lease is 2583.486 ha. SB. D B.D. SHARMA RECOGNISED QUALIFIED PERSON RQP no. 34012/03/2014-CPAM dt 29-05-2015 THE TRANSPORT IS NOT THE TRANSPORT IN THE TRANSPORT IS NOT **CERTIFICATE: IV** ## CERTIFICATE FROM RQP STATING THAT THE APPLIED MINE AREA LIES WITHIN THE BOUNDARY OF ALLOTTED COAL BLOCK AND THAT THE APPLIED AREA DOES NOT ENCROACH INTO AREA OF OTHER BLOCKS This is to certify that I have verified the area of "Gare Pelma Sector-II Coal Mine" allotted to M/s Maharashtra State Power Generation Co Ltd. located in district Raigarh of Chhattisgarh state with the certified plan supplied by CMPDIL alongwith letter no. CMPDIL/B.D./C(886)/118 dt 26-02-2016 enclosed as Annexure 3-2 in Mining Plan) and the area covered by the Mining Plan (within applied ML) does not encroach on any other coal block and the area applied for Mining Lease is 2583.486 ha. B.D. SHARMA RECOGNISED QUALIFIED PERSON RQP no. 34012/03/2014-CPAM dt 29-05-2015 हार्यक्षीत ज्ञानपाल II.P. NAGPAL हार्यक्षीत ज्ञानपाल IV.P. NAGPAL हार्यक्षीत IV. Nagera हार्यक्षीत IV. कर्षा (100 क्षा) हार्यक्षीत हार्यक्षीत IV. हार्यक्षीत हैं। हार्यक्षीत हार्यक्षीत IV. हार्यक्षीत हैं। **CERTIFICATE: VI** Vikas Jaideo Executive Director (Coal/Fuel) #### UNDERTAKING I Vikas Jaideo S/o Madhukar Jaideo, aged about 58 years R/o Bldg. No. 19 Flat No 34 MSEB Officers Quarters, K.C.Marg Bandra Reclamation, Bandra (West) -400 050 and Power of Attorney holder/ Authorized Signatory of M/s Maharashtra State Power Generation Company Limited (Mahagenco) having its registered office at Prakashgad, 2nd Floor, Plot No. G9, Prof. Anant Kanekar Marg Bandra (East) Mumbai- 400 051do solemnly affirm and state as that there is no any court case pending or any legal dispute against Gare Palma Sector- II Coal Mine after allocation to Mahagenco. Authorized Signatory Place: Mumbai Date: 16/02/16 # EXECUTIVE SUMMARY OF MINING PLAN AND MINE CLOSURE PLAN #### A. SUMMARISED DATA | 1. | GENERAL | | | | | | |----|--|---|--|--|--|--| | a) | Name and address of the Applicant Company | M/s Maharashtra State Power Generation Company Limited (MSPGCL, also known as Mahagenco) | | | | | | | | "Prakashgad" | | | | | | | | Plot No. G-9, Anant Kanekar Marg, Bandra (East), Mumbai, Maharashtra- 400051 | | | | | | | | Phone: 022 – 26476231; 022-26474211 | | | | | | | | Fax: 022 – 26581400 | | | | | | | | E-mail: md@mahagenco.in | | | | | | b) | Name and address of the Block
Allottee | MSPGCL (Same as 1(a)) | | | | | | c) | Relationship between the applicant and allottee company | The block was allotted to the Applicant | | | | | | d) | Status of the Applicant Company: Central /Public Sector Undertaking/State Government Undertaking/JV Company/ Pvt. Company/Public Co/Others (Specify) | of Maharashtra engaged in power generation with total Installed capacity of 12077 MW as on | | | | | | e) | , | "Gare Palma Sector – II Coal Mine (Block) in Mand
Raigarh Coalfield of Raigarh district in Chhattisgarh
State. | | | | | | f) | Date of allotment | Allotment Order by MOC no.103/30/2015/NA, dated 31-082015 | | | | | | g) | End Use of Coal/Lignite as per | EUPs as per Allotment Order dt. 31-08-2015 | | | | | | | approval by the Competent
Authority | SI. EUP/ Location/ Address Configu-
No. Configu-
ration EUP KM | | | | | | | | 1. Chandrapur Thermal Power 2x500 800 Station Unit 8 & Unit 9 MW Nirman Bhavan, Urja Nagar, Chandrapur- 442404. | | | | | | | Sing sing 11.2 MAGPAL Soretary Med straig 11. of orlocal shared val 1 Shash Enswan and val 1 Shash Enswan and figet / New Dolla | 2. Koradi Thermal Power 3x660 595 Station Unit 8, Unit 9 and MW Unit 10 Chindwara Road, Koradi- 441111, Distt. Nagpur, Maharashtra. | | | | | | | Parli Thermal Power Station
Unit 8 Vaijnath, Dist. Beed-
431520, Maharashtra | 250 MW | 1147 | |--|--|------------|------| | | Total | 3230
MW | | Subsequently, MSPGCL requested MOC/NA vide letter No. CMD/Mahagenco/ ED(Coal/Fuel)/34c dt. 17.2.2016 (Annexure 1-2) proposing to extract coal from Gare Palma Coal Mine up to its full capacity, i.e. 23.6 Mty, and utilise extra coal for other thermal plants of Mahagenco and surrender an equal amount of linkage coal from CIL to the extent the demand for other EUPs will be met from the coal mine. MOC/NA vide letter no.103/32015/ NA dt. 19.02.2016 communicated that the issue of diversion arises after the commencement of production and that Mahagenco may submit the Mining Plan to Ministry of Coal for approval and tender intimation towards proposed diversion as per clause 8.4 of Allotment Agreement as and when required. The total requirement of coal of the company is 62.797 MTPA, out of which existing linkage from CIL is 46.328 MTPA as mentioned below. | SI.
No. | Type of TPP of
Mahagenco | Total
Capacity,
MW | Coal
Requirement,
MTPA | Existing
Linkage,
MTPA | Source
of
linkage | |------------|--|--------------------------|------------------------------|------------------------------|-------------------------| | 1 | End use Plants
(existing) linked
to Gare Sector-
II
(ref. Table 1.7) | 3230 | 12.761 | 0 | Gare
Sector-
II | | 2 | Other existing TPPs | 7560 | 42.41 | 46.328 | CIL | | 3 | Proposed TPPs | 1980 | 7.626 | 0 | Mahjan
wadi | | | Total | 12770 | 62.797 | 46.328 | | The existing linkages to the extent of any surplus (above the requirement of EUPs as per VO) coal will be surrendered when such surpluses are generated. Mining Plan & Mine Glosure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 73 V | | | F | Plan | ng the
above
has been pre
e, i.e. 23.6 Mtp | epared | for the f | ull capa | city of the | |----|---|----------|-------------------|---|--------------------------------|---------------------|--------------------|-----------------------| | h) | ROM Quantity proposed to be produced as per Mining Plan | 2 | 3.6 | Mtpa | | | | | | i) | Norms adopted for calculating ROM quantity requirement in case in differs from the quantity indicated in the Allotment Order. | t a | lloti
eer | ment order, ho | owever | , the follo | owing no | | | | | | i)
iii)
iv) | GCV of Coal
P.L.F of Plan
For Station h-
benchmarks
auction has b | t : 85%
eat rate
uploade | e on the led on MS | basis of | • , | | | | | SI.
No. | | Na
Chandr | me of powe | r plant
Parti | Total | | | | | 1. | Capacity, MW | apur
2x500 | 3x660 | 1x250 | 3230 | | | | | 2. | Station Heat Rate | =1000
2375 | =1980
2250 | 2375 | 2308 | | | | | 3. | "KCal/KWhr" Avg Calorific value "KCal/kg)"* | 4350 | 4350 | 4350 | 4350 | | | | | 4. | Specific
consumption
"Kg/kWhr" | 0.5460 | 0.5172 | 0.5747 | 0.5306 | | | | | 5. | Plant Load Factor | 85% | 85% | 85% | 85% | | | | | 6. | Total Coal
Requirement
"MTPA" | 2x2.032
7
= 4.065 | 3x2.5419
= 7.626 | 1X1.12
= 1.070 | 12.761 | | | | | 7. | Coal availability from this project "MTPA" | 4.061 | 7.626 | 1.070 | 12.761 | | | | | 8. | Linkage/e-Auction from CIL"MTPA" | Nil | Nii | Nil | Nil | | | | | 9. | Other blocks of
the company
"MTPA" | Nil | Nil | Nil | Nil | | | | | 10. | Percentage of end
use requirement
to be met from
this mine | 100% | 100% | 100% | 100% | | j) | Beneficiation required – Yes/No | Υe | s | | | | | | | k) | Requirement of Beneficiated Coal & expected availability thereof. | of
ar | da
nd | GCL has approte ta (washability report proficiated Coal | r tests,
eparati | cleaning
on. R | possibi
equirem | lities etc)
ent of | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCLT A MSPGCLT A Coal MSPGCLT A Coal MSPGCLT A Coal MSPGCLT A Coal MSPGCLT A | | | estimated after receipt of the report. | |----|--|--| | | | Requirement in this Mining Plan has been assessed based on ROM coal. | | 1) | Period for which Mining Lease has been granted/is to be renewed/ is to be applied for. | 30 years after the date of executing the Mining Lease | | m) | Date of Expiry of earlier Mining
Lease, if any | Not applicable | | n) | RQP who has prepared the Mining Plan | | | | Name | Mr. B. D. Sharma | | | Address | A-121, Paryavaran Complex, | | | Phone No. | IGNOU Road, New Delhi – 110030 | | ĺĺ | Fax | 29534777, 29532236, 29535891 | | | Email ID | 091-011-29532568 | | | Web site | min_mec@vsnl.com; minmec@bol.net.in; | | | | minmec@gmail.com | | | | http://www.minmec.co.in | | | Registration No & date till valid | 13016/18/2004-CA | | | Date of grant/Renewal of RQP Status
Validity | 10 years from last recognition dated 29.05.2015 | | 2) | SUBMISSION) | Not applicable | e as no earlier mining plan has | |----|--|----------------|----------------------------------| | a) | Approval Letter no. and Date | | d by MOC for this mine/ block | | b) | Lease Area | been approve | a by MOC for this filling, block | | c) | Date of grant of Lease | | | | d) | Date of Expiry of Lease | | | | e) | Targeted Production | Old Plan | New Plan | | f) | Proposed date of start of Production | | | | g) | Proposed date of achieving the targeted production level | | | | h) | Envisaged life of the mine (in years) | | | | i) | Date of actual commencement of Mining
Operations, if operations already started | | | | j) | Likely date of Mining Operations, if operations not yet started & reasons for non-commencement of operations | | | | <) | Planned production and actual levels achieved in last 3 years | | | | 1) | Coal :- U/G
O/Cast | | | | | OB | | | | m) | Reasons for difference between the planned and actual production levels | | | | , | ' | | | | 0) | | s of changes in the new mining plan ared to earlier approval | | | |----|-------|--|--|--| | | (i) , | Lease Area | | | | | (ii) | Block Boundary | | | | | (iii) | Production level | | | | ĺ | (iv) | Reserves | | | | | (v) | Mining Technology(Additional sheets to be used, if required) | | | | C. | LOCATION | | |-------|--|--| | a) | Location of the Block Taluka/ Village/ Khasra/ Plot / Block Range / etc. District / State | The block is located in villages Tihli Rampur, Kunjemura Gare, Saraitola, Murogaon, Radopali, Pata, Chitwahi Dholnara, Jhinka Bahal, Dolesara, Bhalumura, Sarasma and Libra in Raigarh district of Chhattisgarh state. | | b) | Name of the Coalfield/ Coal belt | Mand Raigarh Coalfield | | c) | Particulars of adjacent
blocks: North, South, East,
West | North - Bhalumura Coal Block of NTPC South - Gare Palma-I of GSECL East - Gare Palma-III of CMDC; Gare IV/7 of MIEL; Gare IV/6 of JSPL; IV/2&3, IV/1 of SCCL; West - Bhalumura Coal Block of NTPC | | d) | Area of the Allotted Block
(hectares)
i Geological block area
ii Mining Block Area | i. 25.83 Sqkm
ii. 2583.486 ha | | e) | • | The block boundary issued by CMPDI vide letter no. CMPDI/BD/C(886)/118 dt 26-02-2016. (Refer Annexure 3-2 of Mining Plan) | | f) | Whether the lease boundary/ required boundary is same as demarcated by CMPDI/SCCL/ NLC for delineating block/sub-block | Yes | | g) | Existing mining Lease Area in case of existing mines, (hectares) | N/A | | , | Applied/ required Lease Area as per the Mining Plan under consideration (hectares) | 2583.486 Ha | | ONT S | Mining Plan & Mine Closure Plan for Good American Ministry of Coal Ministry of Coal Ministry of Bhawan | Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPAM | | :\ | Whather the applied lease | | | | Yes | | - | |----|---|------|------------|--------------------|-----------------|---------------|---| | 1) | Whether the applied lease area falls within the allotted block | | | | res | | | | j) | Area (hectares) of lease which falls outside the block/sub-block delineated by CMPDI/SCCL/NLC. | Nil | | | | | | | k) | Details of outside area: - Whether forms part of any other coal block - Whether it contains any coal/lignite reserves - Purpose for which it is required, e.g. roads/ OB dumps/ service buildings/ colony/ safety zone/ others (specify) | | | | lot applica | ble | | | 1) | Whether some part(s) of the allotted block has not been applied for mining lease. Total area in Ha. of such part(s). Total reserves in such part(s). Brief reasoning for leaving such part(s), | leas | | ole allotted block | area nas | been a | ppilea for mining | | m) | Type of Land involved in Hectares | | SI.
No. | Village | Private
Land | Govt.
Land | Total Area
(Private + Govt.
Land) | | | | | A. As | per Revenue Depar | tments Reco | rds | | | | | | :17. | Tìhli Rampur | 160.587 | 67.149 | 227.736 | | | | | 2. | Dholnara | 59,640 | 13.314 | 72.954 | | | | | 3. | Murogaon | 302.393 | 37.353 | 339.746 | | | | | 4. | Libra | 129.037 | 23.973 | 153.010 | | | | | 5. | Kunjemura | 199.715 | 66.295 | 266.010 | | | | | 6. | Jhinkabahal | 3.844 | 0.000 | 3.844 | | | | | 7. | Radopali | 351.676 | 34.311 | 385.987 | | | | | 8. | Dolesara | 20.748 | 1.242 | 21.990 | | | | | 9. | Bhalumura | 16.297 | 1.326 | 17.623 | | | | | 10. | Sarasmal | 66.027 | 20.131 | 86.158 | | | | | 11. | Pata | 329.230 | 48.639 | 377.869 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 524 | | | 1 | 40 | Obitb | | | 140.40 | 4 | 0.070 | 1 | 151 | 700 | | |------
--|------|--|---|--|---|--|---|---|------------------------------------|-------------------------------------|---------------------|--| | | | | | Chitwah | <u> </u> | | 142.46 | | 9.272 | _ | 151. | | | | | | | | Gare | | | 157.22 | _ | 28.276 | 1 | 185. | | | | | | | | Saraitola | <u> </u> | | 169.95 | _ | 47.431 | | 217. | | | | | | | Total of | | _ | | 2108.82 | | 98.712 | | 2507. | 541 | | | | | | | er Fore | | | ts Reco | rd | | | | | | | | | | Govern | ment Fo | rest L | and | | | | | 75. | 945 | | | | | | Total A | +B | | _ | | | | | 2583. | 486 | | | n) | | | PRESENT (PRE-MINING) LAND USE OF THE ML AREA
GARE PALMA SECTOR-II (HA.) | | | | | | | 4 | | | | | | (Forest, Township, | \$1. | Village | F | rivate La | nd | | | Govt. La | nd | | Total | | | | Industrial, Agricultural, | No. | | | | | _ | ı | ſ | ſ | | Area
(Private + | | | | Grazing, Barren etc.) | | | Agricul-
ture | Non
Agricul-
ture | Total Area | Populated | Water
body | Other | CBJ** | Total Area | Govt.
Land) | | | | | 1 | Tihlirampur | 97.902 | 62.685 | 160.587 | 6.83 | 21.225 | 39.094 | 0 | 67.149 | 227.736 | | | - | | 2 | Dholnara | 59.64 | | 59.64 | 6.833 | 0.376 | 3.317 | 2.788 | 13.314 | 72.954 | | | | | 3 | Murogaon | 302.393 | | 302.393 | 8.256 | 1.303 | 4.29 | 23.504 | 37.353 | 339.746 | | | | | 4 | Libra | 121.416 | 7.621 | 129.037 | 2.897 | 0.439 | 4.694 | 15.943 | 23.973 | 153.01 | | | | | 5 | Kunjemura | 199.715 | | 199.715 | 14.221 | 13.596 | 8.308 | 30.17 | 66.295 | 266.01 | | | | | 6 | Jhinkabahai | 3.844 | | 3.844 | 0 | 0 | 0 | 0 | 0 | 3.844 | | | | | 7 | Radopali | 351.676 | | 351.676 | 8.336 | 5.895 | 19.955 | 0.125 | 34.311 | 385.987 | | | | | 8 | Dolesara | 20.748 | | 20.748 | 0 | 0 | 1.242 | 0 | 1.242 | 21.99 | | | | | 9 | Bhalumura | 16.297 | | 16.297 | 0 | 0 | 0.704 | 0.622 | 1.326 | 17.623 | | | | | 10 | Sarasmal | 56.869 | 9.158 | 66.027 | 0 | 1.332 | 3.563 | 15.236 | 20.131 | 86.158 | | | | | 11 | Pata | 316.064 | 13.166 | 329.23 | 13.314 | 5,529 | 14.47 | 15.326 | 48.639 | 377.869 | | | | | 12 | Chitwahi | 142.461 | | 142.461 | 0.252 | 0.867 | 8.153 | 0 | 9.272 | 151.733 | | | | | 13 | Gare | 157.224 | 10 700 | 157.224 | 10.482 | 4 241 | 11.596 | 1.957 | 28.276 | 185.5 | | | | • | l — | Saraitola
otal of A | 156.228
2002.477 | 13.722 | 169.95
2108.829 | 8.395
79.816 | 1.364 | 7.969 | 29.703
135.374 | 47.431
398.712 * | 217.381
2507.541 | | | 1 | | | per Forest | | | | 79.010 | 30.107 | 121.333 | 133.374 | 350.712 | 2307.341 | | | | | ! | ernment For | <u> </u> | is Necotu | | | _ | | | | *75.945 | | | | | | d Total | est Land | | | | | | | i | 2583.486 | | | | | | ** | present wi
purpose a
and Fores
Chhote Ba | thin the
fter obta
t, Govt. o
de Jhar | mine leas
ining fore
of India u
/ Jungle (| estry clear
nder the F
'Small/ big | hich ne
ance fr
orest (i
trees i | eds to I
rom the
Conserv
forest) | oe divert
Ministry
ration) A | ed for mir
of Enviro
ct 1980. | ning
nment | | | 0) | | | olic Ro | | | | | | | | | | | | | railway line/major water | (ap | prox 1 | 1.6 KI | Vis) a | and M | 1ilupar | a to | Tar | nnar | (appr | ох 3 | | | | body if any and approximate distance | Km | s) is pa | essing | throu | gh the | e block | | | | | | | | | | MAI | ter bod | v: Kal | Div | or ic fl | owina | aero | oc th | 0 001 | al bloc | L | | | | | l | | - | | | _ | | | | | | | | i | | 1 | way: T | | | | | | | | | | | | | | ı | y from | _ | | | | | | | | | | | | | l | vay st | ation | on I | Mumb | ai-Hov | vrah | ma | in lir | ne of | SE | | | | | Rail | way. | | | | | | | | | | | | p) | Toposheet No. with latitude | | area i | | | | | | | | | No. | | | | 2 | | V/8 & 1 | ∠ (K.F | | | | | | - | | | | | | | | tude | : | | | 24.21 | | | | | | | | 31 | | Long | gitude | : | 83 | 3° 26' | 15.433 | 3" to | 83° | 31' 1: | 2.632" | Ε | | | 1 | P MAGPAL | *W0 | SS 84 \$ | Systen | ו | | | | | | | | | | - ti | The state of s | | | - | | | _ | | | | | | | | D. | GEOLOGY AND EXPLORATION | | _ | | | | | | |-------------|---|---|--|--|---|--|--|--| | a) | Name of the Geological Block and area in hectares | i. Name of Block: Gare Palma Sector-II Coal
Block.Area as per GR = 25.83 Sqkm | | | | | | | | b) | Name of the Geological Report (GR) with year of preparation | Geological report on detailed exploration for co
Gare Palma Sector-II coal block
Mand Raigarh Coalfield, District: Raigar
Chhattisgarh; 2012 | | | | | | | | c) | Name of the agency which conducted exploration and prepared GR | Mineral Exploration Corporation | | | | | | | | d) | Period of conducting exploration | | 27.04. | 2011 to 26.2. | 2012 | | | | | e) | Details of drilling (by all agencies) | | | | | | | | | | | | Name of
Agency | No. of boreholes | Meterage
Drilled | | | | | | | | MECL | 188 | 73,997.80m | | | | | f) | No. of boreholes drilled within the block | | | 188 | | - | | | | g) | Overall borehole density within the block (no./ sq. km) Area covered by 'detailed' |
ME coa pre with corr district pre necessary. How required Son ME | wever, during uired, "fill-in" bo me of the area CL could not supied by JSPL | the exploration of the exploration which ECL was congy of the are relatively with ECL was satisfies and conal boreholes ove reason leted the GR. actual minimum min | y GSI. on work for G G.R. has be explosed being unifor how level disfied with did not feel s. is, MECL ig operations be undertake 60 acres, wh | P-II
een
fied
orm,
of
the
the
has | | | | n) | exploration within the block (hectares) | | | , | | | | | | i) | Area covered by 'detailed' exploration outside the block | | | NIL | | | | | | N. | lining Plan & Mine Closure Plan for Gare Palma | Secto | or-II Coal Mine 23.6 | MTPA of MSPGC | L ES-8 | | | | | कीता
जात | The sail was | | | | J > V) | | | | | ` | | | | | B.D. SHA | RMA | | | | _ | | _ | | | | | | | |--------------|---|---------|--------------|----------------------------|------------------------------------|---|--------------------------------|--| | -
-
j) | (hectares) No. of boreholes drilled outside the block Bore hole density for outside area (no./sq. km) Whether entire lease area has been | | | Yes | 6 | | | | | | covered by 'detailed' exploration. | | | | | | | | | k) | Whether any further exploration is required or suggested and timeframe in which it is to be completed | No | | | | | | | | 1) | Number of coal/lignite seams/horizons | 0, 1 | 0 | 0. 171 | | | | | | | Thickness range of coal seams Mean Thickness of total coal horizon | SI. No. | Coal
Seam | Coal Thickness
range, m | Av.
Thickne
ss of
coal, m | St.
Deviation
of
thickness,
m | Depth
from
Surface,
m | | | | - Standard Deviation of thickness | 1 | X-BOT | 0.68-6.26 | 2 | 0.81 | 6.67 to
93.70 | | | | Minimum & maximum depth of coal seams | 2 | IX | 2.66-7.34 | 4 | 0.56 | 28.10 to
141.93 | | | | | 3 | VIII | 0.31-6.50 | 2 | 1.58 | 45.05 to
153.50 | | | | | 4 | VIII-L | 0.10-2.25 | 1 | 0.64 | 59.10 to
165.40 | | | | | 5 | VII-TOP | 1.50-6.15 | | 0.90 | 65.90 to
186.07 | | | | | 6 | VII-BOT | 0.16-3.84 | 4 . | 0.46 | 70.90 to | | | | | 7 | VII-COMB | 2.06-8.39 | | 1.12 | 67.15 to
174.10 | | | | | 8 | VI | 0.25-7.74 | 4 | 1.87 | 76.80 to
198.83 | | | | | 9 | VB-1 | 0.10-1.47 | 1 | 0.26 | 105.82 to
235.50 | | | | | 10 | VC-1 | 0.12-2.40 | 1 | 0.31 | 115.30 to
241.50 | | | | | 11 | VD-1 | 0.05-1.40 | 1 | 0.24 | 119.13 to
247.10 | | | | | 12 | IV | 0.10-3.70 | 2 | 0.82 | 161.15 to
281.05 | | | | | 13 | Ш | 0.10-3.50 | 2 | 0.65 | 234.80 to
348.35 | | | | | 14 | II | 0.05-7.05 | 3.5 | 2.45 | 288.40 to
451.90 | | | | | 15 | J-L1 | 0.10-2.89 | 1.8 | 0.68 | 371.10 to
440.75 | | | | | 16 | I-TOP | 0.11-3.80 | 1.8 | 0.78 | 335.65 to
466.80 | | | | 27/ | 17 | I-BOT | 0.19-4.49 | 2 | 0.90 | 346.50 to
463.52 | | | 1 | Trodie Harder Secretary | 18 | I-COMB | 2.15-7.87 | 2 | 1.64 | 361.66 to
449.13 | | m) Gross Calorific Value (GCV in K Cal/kg) and Useful Heat Value (UHV in K.Cal / Kg), of coal as per GR: Range Mean | Seam | UHV (I | k.Cal/Kg | GCV (k.0 | Cal/Kg | |------------|--------|----------|----------|--------| | | Min | Max | Min | Max | | X-LA/un | 1434 | 3877 | 3440 | 4690 | | X-TOP/un | 1518 | 3229 | 3100 | 4600 | | X- BOT | 1794 | 4222 | 2550 | 4970 | | IX-L2/un | 1365 | 4829 | 4280 | 5050 | | IX-L1 | 2235 | 3891 | 3650 | 5240 | | IX | 3063 | 4871 | 4280 | 5320 | | VIII | 1366 | 2953 | 2990 | 4300 | | VIII-L | 1614 | 4291 | 3180 | 4730 | | Vil-Top | 1407 | 3628 | 3100 | 4650 | | VII-Bot | 1656 | 4071 | 2960 | 4980 | | VII-Com | 1834 | 3587 | 3170 | 4670 | | VI | 1407 | 4111 | 3100 | 5160 | | VI-L/un | 1352 | 2097 | 3500 | 4410 | | VA-1 | 1380 | 4236 | 3170 | 5210 | | VA-2/un | 1545 | 3201 | 4240 | 4980 | | VB-1 | 1545 | 5229 | 3990 | 5100 | | VB-2/un | 2566 | 5947 | 4100 | 5490 | | VC-1 | 1752 | 4677 | 3400 | 5380 | | VC-2 | 2497 | 4788 | 3690 | 6620 | | VD-1/un | 3256 | 3463 | 3950 | 4840 | | VD-2 | 1338 | 2539 | 3040 | 4760 | | IV | 1710 | 5243 | 3550 | 5980 | | III-L2 | 1959 | 3753 | 3690 | 5320 | | III | 2147 | 5326 | 3270 | 7000 | | II-L/un | 2470 | 3284 | 4220 | 5370 | | { I | 2318 | 7217 | 5514 | 6820 | | I-L1 | 4719 | 7341 | 5560 | 7250 | | I-L/un | 3352 | 7492 | 4610 | 4610 | | І-Тор | 2461 | 6872 | 4010 | 6940 | | I-Bot | 1685 | 7452 | 3880 | 7070 | | I-Com | 3532 | 6168 | 4580 | 6270 | The values in above table are in line with Chapter VI "Quality Parameters" of GR. Also refer Table 4.10 of MP&MCP. n) Quality (Grade) of coal as per GR: Range Mean | Seam | UHV Grade | GCV Grade | | | |----------|-----------|-----------|--|--| | X-LA/un | G to E | G13- G9 | | | | X-TOP/un | G to F | G14- G10 | | | | X- BOT | G to D | G17 - G8 | | | | IX-L2/un | G to D | G11- G8 | | | | IX-L1 | G to E | G13-G7 | | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL | | | IX | F to D | G11-G7 | |----|--|------------------------|-----------------|-------------| | 1 | | IIIV | G to F | G15-G10 | | | | ViII-L | G to D | G14-G9 | | | | VII-Top | G to E | G14-G9 | | | | VII-Bot | G to E | G15-G8 | | | | VII-Com | G to E | G14-G9 | | | | VI | G to E | G14-G8 | | 1 | | VI-L/un | G | G13-G10 | | | | VA-1 | G to D | G14-G7 | | | | VA-2/un | G to F | G11-G8 | | | | VB-1 | G to C | G12-G8 | | | | VB-2/un | F to B | G11-G7 | | | | VC-1 | . G to D | G13- G7 | | | | VC-2 | F to D | G13-G2 | | | | VD-1/un | F to E | G12- G9 | | | | VD-2 | G to F | G15-G9 | | | | IV | G-C | G13-G5 | | | | III-L2 | G to E | G13-G7 | | | | 111 | G to C | G14-G1 | | | | II-L/un | F | G11-G7 | | | | II | G-A | G17-G2 | | ĺ | | I-L1 | D to A | G6-G1 | | | | I-L/un | F to A | G9 | | | | I-Top | F to A | G11-G2 | | | | I-Bot | G to A | G12-G1 | | | | I-Com | E to B | G10-G4 | | | | | | | | 0) | Total geological reserves in the block | Geological res | serves: 1059.29 | 98 MT | | p) | Depletion of reserves (in case of running mine) | | N/A | | | q) | Additional reserves established (if any for running mine) | | N/A | | | r) | Geological reserves considered for | | | | | | mining: | Opencast | | Reserve, MT | | | by opencast | >0.9m thickn | ess | 682.569 | | | ц | <0.9m thickn thickness | ess but >0.5m | 53.536 | | | hu lindaugus und | Sub-Total O | С | 736.105 | | | by Underground | Undergroun | d | Reserve, MT | | | | >1.5m thickne | ess | 235.954 | | | | <1.5m but >0 | .9m thickness | 87.239 | | 1 | NAGPAL | Sub-Total U | G | 323.193 | | 1) | IN P. MAGPAL IN P. MAGPAL In The Secretary | Total | | 1059.298 | | | Cov. Cov. | | | | Mining Plan & Mine Clasure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL TILES-11 | s) | Corresponding reserves: | Extractable | | |----|--|-------------|--------------------------| | | by opencast
by Undergroun | d | 553.177 MT
101.975 MT | | t) | Percentage of recover geological reserves: | very w.r.t. | | | | by opencast | | 75.15% | | | by Undergroun | d | 31.55 % | | E. | MINING | | |----|---|--| | a) | Existing and proposed method of mining (Opencast for OB & coal separately with dragline/ shovel/ surface miners/ manual/ etc.) (underground by longwall/ bord & pillar/ continuous miners/LHD/ SDL/ manual/ etc.) | In OC method drill machines, loaders, shovels and dumpers will be used for OB | | b) | Targeted capacity in MTPA when the mine is fully developed and the year
in which proposed to be achieved | Target capacity of block to be achieved as 23.6 MT in 7 th year as follows: | | | By Underground : By opencast : Total : | OC = 22.00 MT
UG = 1.60 MT
Total = 23.60 MT | | c) | Life of the mine Underground workings: Opencast workings: Overall:: | 69 years including 3 years of development 29 Years 77 Years | | d) | Indicate quantum of production and e | | # COMBINED CALENDAR PROGRAMME OF COAL MINING AND OBR FROM OPENCAST AND UNDERGROUND | Year | Opencast | OBR | OBR | Stripping | SR incl. | Under | Total | |------|----------|--------|------------|-----------|-----------------|--------|-------| | | (MT) | MCUM | Including | Ratio | Rehandling of | Ground | (MT) | | | | .+1.2 | Rehandling | CUM/T | Surface dump | (MT) | | | | | | | | and crown dump. | | | | | | | | | Cum/ t | | | | 0 | 0.00 | 0.00 | 0.00 | - | - | 0.00 | 0.00 | | 1 | 0.250 | 5.000 | 5.000 | 20.00 | 20.00 | 0 | 0.25 | | 2 | 1.550 | 14.100 | 14.100 | 9.10 | 9.10 | 0 | 1,55 | | 3 | 3,000 | 30.000 | 30.000 | 10.00 | 10.00 | 0 | 3.00 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL ES-12 JE 17 | Year | Opencast
(MT) | OBR
MCUM | OBR
Including | Stripping
Ratio | SR incl.
Rehandling of | Under
Ground | Total
(MT) | |-------|------------------|-------------|------------------|--------------------|---------------------------|-----------------|---------------| | | (1011) | INCOM | Rehandling | CUM/T | Surface dump | (MT) | (1911) | | | | | Renanding | 001111 | and crown dump. | (1417) | | | | | | | 1 | Cum/ t | | | | 4 . | 6.000 | 45.000 | 45.000 | 7.50 | 7.50 | 0 | 6.00 | | 5 | 9.500 | 80.000 | 80.000 | 8.42 | 8.42 | 0 | 9.50 | | 6 | 21.300 | 135.000 | 135.000 | 6.34 | 6.34 | 0 | 21.3 | | 7 | 23.600 | 135.000 | 156.740 | 5.72 | 6.64 | 0 | 23.6 | | 8 | 23.600 | 135.000 | 156.740 | 5.72 | 6.64 | 0 | 23.6 | | 9 | 23.600 | 135.000 | 156.740 | 5.72 | 6.64 | 0 | 23.6 | | 10 | 23.600 | 135.000 | 156.520 | 5.72 | 6.63 | 0 | 23.6 | | 11 | 23.600 | 135.000 | 140.220 | 5.72 | 5.94 | 0 | 23.6 | | 12 | 23.200 | 130.000 | 135.220 | 5.60 | 5.83 | 0.40 | 23.6 | | 13 | 22.800 | 130.000 | 135.220 | 5.70 | 5.93 | 0.80 | 23.6 | | 14 | 22.400 | 130.000 | 135.220 | 5.80 | -6.04 | 1.20 | 23.6 | | 15 | 22.000 | 99.000 | 103.750 | 4.50 | 4.72 | 1.60 | 23.6 | | 16 | 22.000 | 99.000 | 120.740 | 4.50 | 5.49 | 1.6 | 23.6 | | 17 | 22.000 | 99.000 | 120.740 | 4.50 | 5.49 | 1.6 | 23.6 | | 18 | 22.000 | 99.000 | 120.740 | 4.50 | 5.49 | 1.6 | 23.6 | | 19 | 22.000 | 99.000 | 120.740 | 4.50 | 5.49 | 1.6 | 23.6 | | 20 | 22.000 | 99.000 | 118.500 | 4.50 | 5.39 | 1.6 | 23.6 | | 21 | 22.000 | 99.000 | 99.000 | 4.50 | 4.50 | 1.6 | 23.6 | | 22 | 22.000 | 99.000 | 99.000 | 4.50 | 4.50 | 1.6 | 23.6 | | 23 | 22.000 | 99.000 | 99.000 | 4.50 | 4.50 | 1.6 | 23.6 | | 24 | 22.000 | 99.000 | 99.000 | 4.50 | 4.50 | 1.6 | 23.6 | | 25 | 22.000 | 99.000 | 99.000 | 4.50 | 4.50 | 1.6 | 23.6 | | 26 | 22.000 | 99.000 | 163.350 | 4.50 | 7.43 | 1.6 | 23.6 | | 27 | 21.997 | 99.000 | 163.350 | 4.50 | 7.43 | 1.6 | 23,597 | | 28 | 22.000 | 95.020 | 172.850 | 4.32 | 7.86 | 1.6 | 23.600 | | 29 | 17.180 | 5.000 | 82.770 | 0.29 | 4.82 | 1.6 | 18.780 | | 30 | | | 44.183 | | | 1.6 | 1.6 | | 31 | | | 44.183 | | | 1.6 | 1.6 | | 32-77 | | | 44.183 | | | 72.375 | 72.375 | | Total | 553.177 | 2761.120 | 3396.800 | 4.99 | 6.14 | 101.975 | 655.152 | Seam wise and year/stage wise Grade (in GCV) has been provided in Table 5.8A; Seam wise and year/stage wise coal produced is given under Table 5.8B and Seam wise and year/stage wise ash %ge is given under Table 5.9 of Chapter 5. | Furnish the detailed calend programme of coal production ye wise and seam wise along with C removal in the relevant chapter | | |---|--| | | al Yes, the OB during the initial years will be dumped over the coal bearing area within ML but will be rehandled, backfilled and the entire coal will be extracted from underneath. | | Mining Rian & Mine Closure Plan for Gare Pa | Ima Sector-II Coal Mine 23.6 MTPA of MSPECT ES-13 B.D. SHARMA RQP NO. 34012/03/2014-CPAM | been done. Whether negative proving for Negative proving under surface dump is not coal / lignite in the proposed site required as the area has been proven as coal for OB dump/ infrastructure has bearing. However, entire OB dump placed out side the quarry has been proposed to be rehandled and backfilled. Proposed configuration of i. g) HEMM for OC (Coal & OB) and Major Equipment for UG (Coal) Production UG 1.6 MTPA + OC 22.0 MTPA) Proposed configuration of MEMM for OC (Coal & OB) | | Joal & OB) | A | |-------------|--|----------| | SI.
No. | Particulars | Quantity | | I. | Heavy Earth Moving Machinery | _ | | Α. | Coal (22 Mtpa) | | | a) | 100 T.R.D.(CB) dumpers for | 5 | | | 3800SM(W) CSM | | | b) | 150 T.R.D.(CB) Dumpers for | 20 | | | 4200SM(W) CSM | | | c) | 0.9 m ³ hydraulic backhoe | 2 | | d) | Dozer 275-320 HP | 4 | | e) | Dozer 410 HP with ripper | 2 | | f) | Surface miner 3800 SM (W) | 1 _ | | g) | Surface miner 4200SM (W) | 2 | | h) | 10-16 m ³ Front End Loader (Coal) | 5 | | <u>(i)</u> | 6-8 m ³ Front End Loader (Coal) | 4 | | | Sub-Total for Coal | 45 | | В. | Overburden | | | a) | Hydraulic shovel 5/5.5cum | 4 | | b) | Hydraulic Shovel 12 m³ | 7 | | c) | Hydraulic Shovel 20 m ³ | 20 | | d) | 50 Tonne Dump Truck for 5/5.5 m ³ shovels | 20 | | e) | 150 Tonne Dump Truck for 12 m ³ | 63 | | -, | shovels | | | f) | 150 Tonne Dump Truck for 20 m ³ | 240 | | , | shovels | | | g) | R.B.H drills 200/250 mm | 31 | | h) | Dozer 410 HP | 30 | | i) | Dozer 275-320 HP | 10 | | | Sub-Total for OB | 425 | | l. | Common, Auxiliary & Service Equi | pment | | a) | Graders 230 HP | 4 | | b) | Diesel Bouser | 6 | | c) | Construction backhoe -0.9 CUM | 2 | | d) | Water sprinkler (26 KL) | 12 | | e) | Tow truck on 50T truck chassis | 2 | | f) | 100 T tractors (Diesel Operated) | 2 | | g) | Rough Terrain Crane - 40T | 4 | | h) | Rough Terrain crane 70 T | 2 | | - <u>i)</u> | Service trucks: | | | , | - Fuel trucks | 6 | | Ì | - Wash trucks | 6 | | | - Mobile maintenance trucks | 6 | | ļ | - Lube trucks | 6 | | ŀ | - Fire trucks | 2 | | - 1 | - 1116 (140/03 | - | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL ES-14 | | | | | j) Portable air com | presso | <u> </u> | 4 | |--------|---|----------------------------------|---|---|--|---|---| | | | | | k) Tyre handler Sub-Total for A | uviliar | v & Service | 72 | | | | ĺ | | Equipment | axillar | y a 00.1100 | '- | | | | | | Reclamation | | | | | | | | | a) 2.5 cum Front Er | nd Loa | der | 4 | | - | | | | b) 10 T Truck | | · | 10 | | | | | | c) 0.9-1.2 cum hydr
Sub-Total for re | | | 18 | | 1 | | | | Total | Ciaiiia | tion | 560 | | | | | | (Coal+OB+Aux+ | Recla | mation) | | | | | ii. | Ma | ijor Equipment for U | G (Coa | al Production | UG | | | | 1 1 | SI.
No. | Name of equipment | No. | Broad Spe | ecification | | | | - | | | 4 | Damata | | | | | | 1. | Continuous Miner | 4 | CAT: CM 3 | controlled
similar to
40 (Mining
37 m to
onnes, 697 | | | | | 2. | Shuttle Cars | 8 | 2.5 cum cap |
pacity | | | | | 3. | Twin Mast Roof
Bolter | 4 | Rotary wet f | lush drilling | | | | | 4. | LHD with Electric cable reel | 4 | 1.2-1.4 cum | | | | | | 5. | Feeder/Breaker | 4 | Crushing co | al | | | | | | Load centre and transformer | 4 | 3.3kV/1130
TX | V 1500kVA | | | | | | | | | | | h) | Mode of entry for underground mines (shaft, incline, adit,): | SI | nafi | ts and Inclines | | _ | | | i) | Operations that are proposed to be outsourced | Al | lop | perations, excludin | g stat | tutory opera | tions | | j) | Proposed coal evacuation facilities Face to Surface Surface to end use plants | to
1)
fro
we
a
wa | imp
gro
Them
ell a
res
ash | ROM coal from Spers/trucks to the cound bunkers (GE ne coal will reach GB. TT-2 will be as to railway siding ult, it will be capaled coal to the reguipping System. Coal of | coal read of the r | eceiving pit, Transfer F) after being nected to v separate co sending R y siding. T with appro | from there Point-1 (TT-g reclaimed washery as inveyors as OM coal or he railway priate Rail | | 610 TE | Ith at of Coal | | | eyor line from TT-2 | | | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL JES-15 in case of need and also till the period of CHP and washery construction (Refer Plate XLI). From O/H bunkers for loading trucks for dispatch to nearest available railway siding for further transport to EUPs. For Underground production, conveyor transport is envisaged for bringing coal to surface. FE loader will be used for loading coal from coal stack. ### F. END USE OF COAL/ LIGNITE - a) Capacity of the approved end use plants - Coal/ lignite requirement b) for end use plant with grade/ quality - age of end C) use requirement to be met from this mine | | Lor 3 as per Anothrent Order dt. or | -00-2010 | |-----|-------------------------------------|----------| | SI. | EUP/ Location/ Address | Configu | | Nο | | ration | | SI.
No. | EUP/ Location/ Address | Configu-
ration | |------------|--|--------------------| | 1. | Chandrapur Thermal Power Station Unit 8 & Unit 9 | 2x500 MW | | | Nirman Bhavan, Urja Nagar, Chandrapur-
442404. | | | | Distance from mine 800 km | | | 2. | Koradi Thermal Power Station Unit 8, Unit 9 and Unit 10 | 3x660 MW | | | Chindwara Road, Koradi-441111, Distt.
Nagpur, Maharashtra.
Distance from mine 595 km | | | 3. | Parli Thermal Power Station Unit 8
Vaijnath, Dist. Beed- 431520,
Maharashtra
Distance from mine 1147 km | 250 MW | | | Tota! | 3230 MW | 100% requirement of above will be met from the mine. Subsequently, MSPGCL requested MOC/NA vide letter No. CMD/Mahagenco/ ED(Coal/Fuel)/34c dt. 17.2.2016 (Annexure 1-2) proposing to extract coal from Gare Palma Coal Mine up to its full capacity, i.e. 23.6 Mty, and utilise extra coal for other thermal plants of Mahagenco and surrender an equal amount of linkage coal from CIL to the extent the demand for other EUPs will be met from the coal mine. MOC/NA vide letter no.103/32015/ NA dt. 19.02.2016 communicated that the issue of diversion arises after the Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL ES-16 | | | commencement of production and that Mahagenco may submit the Mining Plan to Ministry of Coal for approval and tender intimation towards proposed diversion as per clause 8.4 of Allotment Agreement as and when required. Taking the above into consideration, the Mining Plan has been prepared for the full capacity of the mine, i.e. | |-----|---------------------------------------|---| | (d) | of the coal/ lignite is planned to be | 23.6 Mtpa as given in Chapter 5. Washery will be required for which provision of space has been made within ML but the extent of beneficiation will only be decided after CMPDI study on washability is concluded which is still under preparation. | | e) | Proposed Use of Rejects/
Middlings | The washery rejects shall be within the normative limits and will be disposed off strictly as per rules and regulation framed by Ministry of Environment, Forests and Climate Change and change from time to time. | | G. | ENVIRONMENTAL MANA | GEMENT | | | | |-------------------|--|---|---------------------------------------|--|---| | a) | Existing land use pattern | Given in | Table 13. | 1 of Chapter | 13 | | b) | Land area indicating the area likely to be degraded due to mining, dumping, | Landuse | At the end
of 5 TH Year | At the end
of 25 TH Year | At the end of OC mining (29 TH Year) | | | roads, workshop, washery, | Excavation | 380.70 | 2272.42 | 2440.55 | | | | Backfill | 0.00 | 1535.00 | 2248.77 | | | township etc. | Void | 380.70 | 737.42 | 191.78 | | | | Surface dump# | 380.00 | 0.00 | 0.00 | | | | Bund | 5.20 | 5.20 | 5.20 | |] | | Green Belt | 36.07 | 36.07 | 36.07 | | ļ. | | Top Soil Dump* | 60.00 | 00.00 | 0.00 | | | | Settling Pond## | 10.00 | 5.00 | 5.00 | | | | Road diversion< | 30.30 | 30.30 | 30.30 | | | ILP NAGPAL | Facilities (West Part:
CHP, Inclines, Shaft
Pit, Office, Lamp
room, Attendance
Office, Rest Room,
Parking, First aid
room, Sub Station
etc.)** | 50.94 | 50.94 | 50.94 | | ्रीत हो।
विकास | THE ILP Secretary THE UNITED SECRETARY LET | Facilities (East Part:
Office, Workshop,
magazine, washery | 68.54 | 0.00 | 0.00 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 2 1 ES-17 | | · · · · | etc) | | | | | | | | |----------------|--|---|--|--|---|--|--|--|--| | l | | Under | Kelo river | | 15.42 | 15.42 | 15.42 | | | | | | Dismai | ntling | | 0.00 | 0.00 | 0.00 | | | | | | Distur | bed area | 1 | 017.17 | 2415.35 | 2583.48 | | | | | | Undist | urbed | 1 | 566.31 | 168.13 | 0.00 | | | | | | Total | | 2 | 583.48 | 2583.48 | 2583.48 | | | | | | | | np will be | over the b | ackfilled area | towards the e | | | | c) | Surface features over the block area | ** M # Tr re ## Tr wa af no < Div Fourte below Roads and M through | mine life. lain colony le OB dui handled a le settling later and 5 ter 20 th ye. lerted road en villag in para [from Ba lupara f h the blo | will be lomp lying and backfill ponds in ha for sufar as surfar is for publics are below. A jarmura bock. Kelo | ocated awa
over the colled by 20th
5th year variace dump
offic use.
lying with
a to Ghal
ar (appropries | y from the ML oal bearing a year. vill comprise p but the
late vill be rehand hin the blo rgoda (app rox 3 Kms s flowing ac | area. of 5 ha for miner will not remained and become ock as shown rox 11.6KMs ock as the controls are passing are controls. | | | | | | Revenue Forest land is present within the mine lease | | | | | | | | | d) | No. of villages/Houses to be shifted | SI
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | Villa Libra Bhalum Dholnar Chitwah Dolesar Radopa Kunjem Gare Pata Muroga Saraitol Sarasm Tihli Rai Jhinka E | uda ra ii a li ura on a al mpur | 75
31
40
72
106
68
105
74
118
52
56
50
44 | ulation (%) 57 (7.89) 14 (3.27) 18 (4.25) 17 (7.78) 11 (11.05) 18 (7.17) 19 (10.98) 11 (7.72) 19 (12.39) 10 (5.42) 10 (5.42) 10 (5.88) 10 (5.88) 10 (6.24) 10 (6.24) 10 (6.24) | | | | | e) | Population to be affected by | 9598 | | | | | | | | | -) | Year wise proposal for reclamation of land affected by mining activities, ha | 0
1
3 | o the End
f Year
st year
o year | Area
Mined
26.16
129.97 | Backfille
Area
0.00 | No backfill | ing | | | | | | 5 ¹ | ^h year
J th year | 380.70
1099.37 | 0.00
358.27 | No backfill
Part Direct
part from re | Backfilling and | | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL ES-18 | | | | | | | ···· | |---|--------------------------------------|--|--|---|--|--| | | | | | 1747.06 | 673.05 | Part Direct Backfilling and
part from rehandled
surface Dump | | | | | 20 th year | 1949.85 | 1122.31 | Part Direct Backfilling and
part from rehandled
surface Dump | | | | | 25 th year | 2272.42 | 1536.00 | Part direct backfilling and part from rehandled surface dump | | | | | End of mine
29 th year | 2440.55 | 2109.49 | Part direct backfilling and
part from rehandled crown
dump | | | | | Post mine
closure stage
32 nd year | 2440.55 | 2440.55 | Backfilling from rehandled
crown dump* | | | | | dump will be fully i
surface level) while | rehandaled a
part of the | nd backfilled
crown dump | l into the residual void (below
(with an extent of 138 ha) will | | , | after
ent of mi | ntal s
the
ning | | • | , | | | | different
components
commencem | different environme
components after
commencement of min | Monitoring schedules for Adifferent environmental scomponents after the commencement of mining | End of mine 29 th year Post mine closure stage 32 nd year * During the post min dump will be fully is surface level) while be reduced in heig Monitoring schedules for different environmental components after the commencement of mining | 20 th year 1949.85 25 th year 2272.42 End of mine 2440.55 29 th year Post mine closure stage 32 nd year * During the post mine closure p dump will be fully rehandaled a surface level) while part of the be reduced in height from 100n Monitoring schedules for different environmental components after the commencement of mining | 20th year 1949.85 1122.31 25th year 2272.42 1536.00 End of mine 2440.55 2109.49 Post mine closure stage 32nd year * During the post mine closure period (30th to dump will be fully rehandaled and backfilled surface level) while part of the crown dump be reduced in height from 100m to 80m and described and backfilled surface level) while part of the crown dump be reduced in height from 100m to 80m and described and backfilled surface level) while part of the crown dump be reduced in height from 100m to 80m and described and backfilled surface level) while part of the crown dump be reduced in height from 100m to 80m and described and backfilled surface level) while part of the crown dump be reduced in height from 100m to 80m and described and backfilled surface level) while part of the crown dump be reduced in height from 100m to 80m and described and backfilled surface level) while part of the crown dump be reduced in height from 100m to 80m and described and backfilled surface level) while part of the crown dump be reduced in height from 100m to 80m and described and backfilled surface level) while part of the crown dump be reduced in height from 100m to 80m and described and backfilled surface level) while part of the crown dump be reduced in height from 100m to 80m and described and backfilled surface level) while part of the crown dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height from 100m to 80m and dump be reduced in height fro | | Η, | PROGRESSIVE AND FINAL I given | MINE CLOSURE PLAN: Separate Chapter no. 15 | |----|---|--| | a) | Estimated total capital expenditure for mine closure activities | Rs 1484.5376 Crore | | b) | Major closure activities with proposed capital expenditure | | Major closure activities with proposed capital expenditure are given below: | | Heads | | Activities | Unit | Vol. of
work | Rate,
Rs./Unit | Total amt.,
Rs. Lakh | |---|------------------------|------|--
---|-----------------|-------------------|--| | PR | OGRESSIVE CL | OSUF | RE | | | | | | 02. | Safety and | a) | Barbed wire fencing | М | 39668 | 212 | 84.10 | | | Security | f) | Toe wall around the dump | m | 9010 | 1000 | Unit Rs. Lakh 212 84.10 1000 90.10 500 45.14 5000 300.50 00000 80.00 00000 20.00 00000 10.00 70000 1328.60 00000 5628.00 | | | | g) | Garland drain around the dump | m | 9028 | 500 | | | | | h) | Drainage channel from main OB dump and main sump to nala | m | 6010 | 5000 | | | dump and main sump to nala i) Settling pond Lakh Cum 4 2000000 | 80.00 | | | | | | | | | | j) | Securing Air Shaft and installation of bore well pump | he dump m 9028 500 45.14 main OB onala m 6010 5000 300.50 be a considered by a constant of the | | | | | | | k) | Securing of Incline 1 &2 | | 2 | 500000 | 10.00 | | | | 1) | Fire stoppings | Lakh Cum | 1898 | 70000 | 1328.60 | | 04. | Top soil
management | | | Lakh Cum | 112.56 | 5000000 | 5628.00 | | 05. | Technical and | a1) | Reclamation | На. | 2221 | 400000 | 8884.00 | W 23.6 MTPA of MSPGCL ES-19 B.D. SHARMA RQP NO. 34012/03/2014-CPAM | 06. | and OB dump Plantation over virgin area including Green Belt | a) | West pit Plantation/ Green Belt over Virgin Area | На. | 35.86 | 400000 | 143. | |-------|--|--------|--|---------------|-----------|---------|--------| | 09. | Water quality management | | | LS | 0 | | 340. | | 10. | Air quality
management | | | LS | 0 | | 340. | | 11. | Subsidence
monitoring for | | | LS | | | 19. | | 12. | Manpower cost and supervision | | | LS | 0 | -3 | 163. | | FIN | AL CLOSURE | | | =- | | | | | 01. | Dismantling of | a) | Dismantling of workshop | LS | 0 | | 300 | | | Infrastructure, | b) | Dismantling of CHP | LS | 0 | | 500. | | | disposal/
rehabilitation of | c) | Dismantling of facilities | LS | 0 | | 1000. | | | mining | d) | Dismantling of pumps and pipes | LS | 0 | | 45. | | | machinery | f) | Dismantling of UG facilities including main fan | | 0 | | 100. | | l | | g) | Dismantling of UG Conveyors | | 0 | | 300. | | | | h) | Dismantling of UG Rail tracks | | 0 | | 150. | | | | i) | Dismantling of UG equipment | | 0 | | 200. | | | | j)
 | Re-arranging of water pipelines to dump top, park | LS | 0 | | 15. | | | | k) | Dismantling of power line | LS | 0 | | 30. | | | | 1) | Rehabilitation over area of dismentaled facilities | Ha. | 50.94 | 400000 | 203. | | | Top soil
management | 4 | | Lakh Cum | 19.10 | 5000000 | 955. | | ſ | Technical and biological | a1) | Reclamation | На. | 414.78 | 400000 | 1659. | | | reclamation of mined out land | a2) | Rehandling of crown dump to
East Pit | Lakh Cum | 1027.40 | 3000000 | 30822. | | | and OB dump | b2) | Rehandling of crown dump to West pit | Lakh Cum | 298.10 | 3000000 | 8943. | | | Landscaping and plantation | a) | Peripheral road, gates, view point, cemented steps on bank | | 0 | | 40. | | | | b) | Beautification and landscaping over dump | LS | 0 | | 20. | | | | c) | Plantation | | | 1 | 35.0 | | 08. | Power cost | | | LS | 0 | | 40.0 | | | Water quality management | | | LS | 0 | | 12.0 | | | Air quality
management | | | LS | 0 | | 12.0 | | | Subsidence monitoring for | | | LS | 0 | | 0.9 | | 12. I | Manpower cost and supervision | | | LS | 0 | | 4.5 | | | | ŕ | Entrepreneurship development (vocational skill development, training for sustainable income of affected people | LS | 0 | | 100.6 | | ning | Plan & Mine Clo | sure | Plan for Gare Palma Sector-II C | coal Mine 23. | 6 MTPA of | MSPGCL | ES-20 | | | 1, | | | | | | | | d) One time financial grant to society/ institution/ organisation which is dependent upon the project | LS | 0 | 50.00 | |---|----|---|-----------| | f) Continuation of other services like running of schools etc | LS | 0 | 150.00 | | Grand Total | | _ | 148453.76 | All persons are proposed to be absorbed in other units of the company, hence no provision for Golden handshake has been make. | c. Escrow amount calculation | Escrow amount for OC operations has been calculated from 1st year to 29th year (last year of | |------------------------------|--| | i. Concept of calculation | OC mine life). Though the UG mining operations start from 9th year and last upto 77th year including the initial 3 construction years but the calculation of Escrow amount has been done from 30th year (i.e. after the end of OC mine life) upto 77th year for a span of 77-29=48 years. | | ii. Basis of calculation | A security money will be yearly deposited in Escrow Account. The amount in the 1 st year at WPI of January 2016 (base date) will be Rs. 7.2341 Crore updated for OC and Rs. 2.5628 Crore for UG payable during the 30 th year as per calendar. In the every subsequent year, the amount will be deposited after escalation of 5% over the previous year. Total amount to be submitted in ESCROW account will be Rs 932.7123 Crores (450.8471 Crores for OC and Rs 481.8652 Crores. For UG mining). Details are given in Table 15.23 in Chapter 15. | | iii. Annual Escrow deposit | As shown in following table | ### AMOUNT TO BE DEPOSITED IN ESCROW ACCOUNT ANNUALLY | Year | Α | mount, Rs. Cro | re | |----------------|---------|----------------|---------| | | OC | UG | Total | | 1 | 7.2341 | - | 7.2341 | | 2 | 7.5958 | _ | 7.5958 | | 3 | 7.9756 | - | 7.9756 | | 4 | 8.3743 | - | 8.3743 | | 5 | 8.7931 | - | 8.7931 | | 6 | 9.2327 | - | 9.2327 | | 7 | 9.6944 | | 9.6944 | | 8 /// | 10.1791 | _ | 10.1791 | | NAGPY 9 | 10.6880 | - | 10.6880 | | of Indianal 10 | 11.2224 | _ | 11.2224 | | n Bhawaii 11 | 11.7835 | _ | 11.7835 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPAM ES-27 | | 12 | 12.3727 | | 12.3727 |
--|------|---------|--------|---------| | | 13 | 12.9914 | - | 12.9914 | | | 14 | 13.6409 | - | 13.6409 | | | 15 | 14.3230 | - | 14.3230 | | | 16 | 15.0391 | - | 15.0391 | | | 17 | 15.7911 | _ | 15.7911 | | | 18 | 16.5806 | - | 16.5806 | | | 19 | 17.4097 | - | 17.4097 | | | 20 | 18.2801 | V= | 18.2801 | | | 21 | 19.1942 | - | 19.1942 | | | 22 | 20.1539 | - | 20.1539 | | | 23 | 21.1616 | - | 21.1616 | | | 24 | 22.2196 | - | 22.2196 | | | 25 | 23.3306 | - | 23.3306 | | | 26 | 24.4971 | | 24.4971 | | | 27 | 25.7220 | - | 25.7220 | | | 28 . | 27.0081 | - | 27.0081 | | | 29 | 28.3585 | - | 28.3585 | | | 30 | - | 2.5628 | 2.5628 | | | 31 | - | 2.6909 | 2.6909 | | | 32 | - | 2.8255 | 2.8255 | | | 33 | - | 2.9667 | 2.9667 | | | 34 | - | 3.1151 | 3.1151 | | | 35 | - | 3.2708 | 3.2708 | | | 36 | • | 3.4344 | 3.4344 | | | 37 | | 3.6061 | 3.6061 | | | 38 | - | 3.7864 | 3.7864 | | | 39 | - | 3.9757 | 3.9757 | | | 40 | - | 4.1745 | 4.1745 | | | 41 | ~ | 4.3832 | 4.3832 | | | 42 | - | 4.6024 | 4.6024 | | | 43 | - | 4.8325 | 4.8325 | | | 44 | _ | 5.0741 | 5.0741 | | | 45 | - | 5.3278 | 5.3278 | | | 46 | - | 5.5942 | 5.5942 | | | 47 | | 5.8739 | 5.8739 | | | 48 | _ | 6.1676 | 6.1676 | | | 49 | - | 6.4760 | 6.4760 | | | 50 | - | 6.7998 | 6.7998 | | | 51 | _ | 7.1398 | 7.1398 | | | 52 | _ | 7.4968 | 7.4968 | | , AGPA | 53 | _ | 7.8716 | 7.8716 | | The state of s | | | 7.0.10 | | | 54 | | 8.2652 | 8.2652 | |--------|----------|----------|----------| | 55 | - | 8.6784 | 8.6784 | | 56 | <u> </u> | 9.1124 | 9.1124 | | 57 | | 9.5680 | 9.5680 | | 58 | - | 10.0464 | 10.0464 | | 59 | | 10.5487 | 10.5487 | | 60 | | 11.0761 | 11.0761 | | 61 | | 11.6299 | 11.6299 | | 62 | - | 12.2114 | 12.2114 | | 63 | - | 12.8220 | 12.8220 | | 64 | - | 13.4631 | 13.4631 | | 65 | - | 14.1363 | 14.1363 | | 66 | - | 14.8431 | 14.8431 | | 67 | - | 15.5852 | 15.5852 | | 68 | - | 16.3645 | 16.3645 | | 69 | - | 17.1827 | 17.1827 | | 70 | _ | 18.0418 | 18.0418 | | 71 | - | 18.9439 | 18.9439 | | 72 | - | 19.8911 | 19.8911 | | 73 | - | 20.8857 | 20.8857 | | 74 | - | 21.9300 | 21.9300 | | 75 | - | 23.0265 | 23.0265 | | 76 | _ | 24.1778 | 24.1778 | | 77 | - | 25.3867 | 25.3867 | | Total* | 450.8471 | 481.8652 | 932.7123 | | I. | Others | | |----|---|--| | a) | Base date of Mining Plan | April 2016 for reserve estimation and balance life | | | | January 2016 for WPI. | | b) | Calendar year from which the production will start | 2018-19 | | c) | Results of any investigation carried out for scientific mining, conservation of minerals and protection of environment; future proposals. | No | | d) | Signature of RQP Place | 05/07/2016
N. Dellu. | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA ROP NO. 34012/03/2014-CPAM ES-23 ### **CHAPTER 1** ### INTRODUCTION ### 1.1 BACKGROUND OF THE BLOCK Gare Palma Sector- II (also Known as Gare Pelma Sector- II) Coal Block, located in Mand Raigarh Coalfield, Chhattisagarh was earlier allotted to M/s MAHATAMIL in 2006. Later, this allotment of the block was cancelled by Honourable Supreme Court along with other blocks in September 2014. Subsequently, M/s Maharashtra State Power Generation Company Limited (MSPGCL, also known as Mahagenco) has been allotted Gare Palma Sector-II Coal Mine (GP-II Coal Mine) vide Ministry of Coal (MOC) Allotment order no.103/30/2015/NA, dated 31-08-2015 under clause (c) of sub-rule (2) of Rule 13 (Copy enclosed as **Annexure 1-1**). MSPGCL will develop the GP-II Coal mine and supply the coal to their thermal power plants. ### 1.2 NAME OF APPLICANT WITH COMPLETE ADDRESS The name and address of the Company (the applicant seeking Mining Plan Approval) is given in Table 1.1 below: TABLE 1.1 NAME AND ADDRESS OF THE COMPANY | Particulars | Information | |---------------------|---| | Name of the Company | Maharashtra State Power Generation Company Limited | | Address | "Prakashgad" Plot No. G-9, Anant Kanekar Marg, Bandra (East), Mumbai, Maharashtra-400051. | | Phone | 022 – 26476231; 022-26474211 | | Fax | 022 – 26581400 | | E- mail | md@mahagenco.in | | Official Website | http://www.mahagenco.in | Mining Plan & Mine Glosure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL ### 1.3 STATUS OF THE APPLICANT Maharashtra State Power Generation Company Limited (MSPGCL) is a State owned PSU of Govt. of Maharashtra, incorporated under Company's Act 1956 with Corporate Identity no. U400100MH2005SGC153648. ### 1.4 BACKGROUND OF THE COMPANY Maharashtra State Power Generation Company Limited (MSPGCL) is engaged in power generation with total Installed capacity of 12077 MW as on 31.01.2016, as below: Thermal: 8640 MW Gas Turbine : 672 MW Hydro : 2585 MW Solar : 180 MW Total : 12077 MW The company has 2570 MW of ongoing projects and 7870 MW in planning stage, and is also planning to install 2500 MW of solar power projects in 5 years. Ministry of Coal vide, letter no. 13016/ 26/2004-CA-I/CA-III(Pt.)(Vol.II) Dt. 24.02.2016 also allotted Mahajanwadi Coal Block to Mahagenco for captive use only under Rule 4 of the Auction by Competitive Bidding. # 1.5 MINERALS WHICH ARE OCCURING IN THE AREA AND WHICH THE APPLICANT INTENDS TO MINE Coal ### 1.6 PERIOD FOR WHICH MINING LEASE IS REQUIRED 30 years. # 1.7 REFERENCE NO. AND DATE OF LETTER FROM THE MINISTRY OF COAL Gare Palma Sector-II mine has been allotted by MOC vide Allotment order no.103/30/2015/NA, dated 31-08-2015 under clause (c) of sub-rule (2) of rule 13. (Copy enclosed as **Annexure 1-1**). # 1.8 LOCATION OF END USE PLANTS (EXISTING AND/OR PROPOSED), THEIR REQUIREMENT AND SOURCE TO FILL THE GAPS ### 1.8.1 Existing end use plants As per the allotment letter, coal produced from this coal block shall be utilised in the power plants existing at three locations in Maharashtra with details given in Table 1.2 below. TABLE 1.2 NAME WITH LOCATION AND REQUIREMENT OF COAL AS PER ALLOTMENT ORDER DT 31-08-2015 | SI.
No. | | Location/ Address | Configuration | Capacity | |------------|---------------|---|---------------|----------| | 1. | Thermal Power | Chandrapur Thermal Power Station Unit 8 & 9 (2x500 MW), Expansion Project, Nirman Bhavan, Urja Nagar, Chandrapur-442404. Distance from mine 800 km | | 1000 MW | | 2. | Power Station | Koradi Complex, Chindwara
Road, Koradi-441111, Distt.
Nagpur, Maharashtra.
Distance from mine 595 km | 3x660 MW | 1980 MW | | 3. | | Taluka parli Vaijnath, Dist.
Beed-431520, Maharashtra
Distance from mine 1147
km | 250 MW | 250 MW | | | Total | | | 3230 MW | ### 1.8.2 Proposed end use plants Subsequently, MSPGCL requested MOC/NA vide letter No. CMD/Mahagenco/ED(Coal/Fuel)/34c dt. 17.2.2016 (Annexure 1-2) proposing to extract coal from Gare Palma Coal Mine up to its full capacity, i.e. 23.6 Mty, and utilise extra coal for other thermal plants of Mahagenco and surrender an equal amount of linkage coal from CIL to the extent the demand for other EUPs will be met from the coal mine. MOC/NA vide letter no.103/32015/ NA dt. 19.02.2016 (Annexure 1-4) companicated that the issue of diversion arises after the commencement of production and that Mahagenco may submit the Mining Plan to Ministry of Coal for approval and tender intimation towards proposed diversion as per Clause 8.4 of Allotment Agreement as and when required. The coal requirement of End Use Plants of MSPGCL vis-à-vis coal production from Gare Sector-II mine is given in Table 1.3 below: TABLE 1.3 COAL REQUIREMENT OF EUPS OF MAHAGENCO VIS-À-VIS COAL PRODUCTION FROM GARE SECTOR-II MINE (DETAILED TPP-WISE
COAL REQUIREMENT CALCULATION BASED ON NORMS CAN BE SEEN IN TABLE 1.7) | Particulars | Power Plants | Reject based | Blast | |---|---|--------------|---------| | | | Power plant | Furnace | | Coal availability from this project "MTPA" | 23.6 | 0 | 0 | | Washed coal availability "MTPA" | NA | 0 | 0 | | Reject "MTPA" | NA | 0 | 0 | | Thermal Power Plants "KW" Sponge Iron Plant "MTPA" Blast Furnace "MTPA" | | NA | NA | | Station Heat Rate "K Cal/Kwhr | 2308 (Av) | 0 | 0 | | Avg Calorific Value of Coal
"Kcal/Kg" | 4350 (Av) | 0 | 0 | | Specific consumption "Kg/Kwhr" | 0.5306 (Av) | 0 | 0 | | Plant Load Factor/ Capacity Utilisation | 85% | 0 | 0 | | Coal Requirement "MTPA" | 12.761 | 0 | 0 | | Coal Availability from this project
"MTPA" | 23.6 | 0 | 0 | | Linkages/ E-auction from CIL "MTPA" (for these specified EUPs) | Nil | 0 | 0 | | | Mahajanwari UG coal block recently allotted to MAHAGENCO for power plants other than in the VO. Production not yet decided but will be less than 2 MTPA | 0 . | 0 | | Percentage of end use requirement to be met from this mine | 100% | | | As may be seen from the above table, out of the 23.6 MTPA coal proposed to be produced from this mine, 12.761 MTPA will be used in the 3 nos of TPPs specified in the Vesting Order. Coal will be supplied after washing (to comply with MOEF notification of <34% Ash) and provision for space for a washery has been made within the ML area. The balance 10.839 MTPA will be used in other existing and proposed thermal power stations of Managenco as given in following Table 1.4 and 1.5. | | OF MAHAGEN | |-----------|--| | TABLE 1.4 | EXISTING THERMAL POWER PLANTS OF MAHAGEN | | | THERMAL | | | EXISTING | | | (4) | | | EXISTING TH | 3 THER | ERMAL POWER PLANTS OF MAHAGENCO | VTS OF M. | AHAGENCC | ~ | | | |-------------|-----|-----------------|------------------------------------|-------------------------------|----------------|---------------------------------|-----------------|-----------------|-------------------|---------|-----------------------------| | TPS | No | MW. | MW Target
Generation
In MU's | MERC
Approved
Heat Rate | Coal
factor | Coal requirement in Mt/ ann. | Coal
Sources | Coal
Linkage | Distan
From co | in kms. | Distance from
Gare Palma | | | | 9/4/9/2
CO3/ | AL. | | | 4100 Kcal/KG) | | | Max. | Min. | Sect. II (Km) | | Nashik | 3 | 210 | 1839.6 | 2764 | 0.67 | 1.24 | MCL | 3.689 | 783 | 858 | 1240 | | | 4 | 210 | 1839.6 | 2764 | 0.67 | 1.24 | SECL | 1.011 | 1223 | 1053 | | | | 5 | 210 | 1839.6 | 2764 | 0.67 | 1.24 | | | | | | | Total | | 630 | 5518.8 | | | 3.72 | | 4.700 | | | | | Chandrapur | 3 | 210 | 1839.6 | 2688 | 0.66 | 1.21 | WCL | 10.365 | 288 | 7 | 800 | | | 4 | 210 | 1839.6 | 2688 | 99.0 | 1.21 | MCL | 1.525 | 750 | 744 |) | | | 2 | 200 | 4380.0 | 2688 | 99.0 | 2.87 | SECL | 0.910 | 999 | 654 | | | | ဖ | 200 | 4380.0 | 2688 | 0.66 | 2.87 | | | | } | | | | 7 | 200 | 4380.0 | 2688 | 99.0 | 2.87 | | | | | | | Total | | 1920 | 16819.2 | | | 11.03 | | 12.800 | | | | | Khaparkheda | | 210 | 1839.6 | 2606 | 0.64 | 1.17 | MCL | 0.932 | 50 | 24 | 610 | | | 2 | 210 | 1839.6 | 2606 | 0.64 | 1.17 | MCL | 3.067 | 620 | 613 |) | | | က | 210 | 1839.6 | 2606 | 0.64 | 1.17 | SECL | 1.001 | 538 | 513 | | | | 4 | 210 | 1839.6 | 2606 | 0.64 | 1.17 | | | | | | | (| Ŋ | 200 | 4380.0 | 2375 | 0.58 | 2.54 | MCL | 0.812 | | | | | | | | | | | | MCL | 0.500 | | | | | | | | | | | | SECL | 1.000 | | | | | Total | | 1340 | 11738.4 | | | 7.22 | | 7.312 | | | | | Parli | m | 210 | 1839.6 | 2859 | 0.70 | 1.28 | MCL | 2.500 | 1093 | 420 | 1147 | | | 4 | 210 | 1839.6 | 2859 | 0.70 | 1.28 | SCCL | 2.260 | 688 | 574 | | | | Ŋ | 210 | 1839.6 | 2859 | 0.70 | 1.28 | | | | | | | | | | | | | | | | | | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 340 2014-CPAM # Min Mec Consultancy Pvt. Ltd. | Distance from | Gare Palma
Coal Mine | Sect. II (Km) | | | | 985 | | 1 | | | 865 | | | | 595 | | | | | |------------------|-------------------------------|----------------|--------|--------|--------|----------|--------|--------|--------|---------|-------|--------|--------|--------|--------|--------|--------|--------|-------------| | in kms. | siding to | Min. | | | | 407 | | | 742 | | 288 | 883 | | | 37 | 592 | 510 | | | | Distance in kms. | From coal siding to
TPS | Мах. | | | | 531 | | | 977 | | 322 | 890 | | | 244 | 619 | 725 | | | | Coal | Linkage
(MT) | | | 1.028 | 5.788 | 2.800 | | 2.312 | 2.312 | 7.424 | 1.800 | | 1.204 | 3.004 | 0.615 | 1.580 | 3.105 | 5.300 | 46.328 | | Coal | Sources | | | WCL | | WCL | | MCL | SECL | | MCL | MCL | MCL | | WCL | MCL | SECL | | | | Coal requirement | in Mt/ ann.
(as Per CEA at | 4100 Kcal/KG) | 1.31 | 1.31 | 6.46 | 1.24 | 1.24 | 2.54 | 2.54 | 7.56 | | 1.31 | 1.31 | 2.62 | 1.22 | 1.29 | 1.29 | 3.80 | 42.41 | | Coal | factor | | 09.0 | 09.0 | | 79.0 | 0.67 | 0.58 | 0.58 | | | 09.0 | 09.0 | | 0.70 | 0.70 | 0.70 | | | | MERC | te id | (Kcal/
KWh) | 2450 | 2450 | | 2761 | 2761 | 2375 | 2375 | | | 2450 | 2450 | | 2864 | 2864 | 2864 | | | | Target | Generation
in MU's | | 2190.0 | 2190.0 | 9898.8 | 1839.6 | 1839.6 | 4380.0 | 4380.0 | 12439.2 | | 2190.0 | 2190.0 | 4380.0 | 1752.0 | 1839.6 | 1839.6 | 5431.2 | 66225.6 | | MΜ | | | 250 | 250 | 1130 | 210 | 210 | 200 | 200 | 1420 | | 250 | 250 | 200 | 200 | 210 | 210 | 620 | 7560.0 | | Unit | No. | lon | 9 | 7 | | 2 | က | 4 | 5 | | | က | 4 | | 5 | 9 | ~ | | <u></u> | | Tes | 11 P M | | 31 | | Total | Bhusawal | | | | Total | Paras | | | Total | Koradi | | | Total | Grand total | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL TABLE 1.5 PROPOSED THERMAL POWER PLANTS | TPS | Unit
No. | IMVV | Total
capacity,
MW | Coal
requirement
@85% PLF,
MTPA | Coal Sources | | |----------|-------------|------------|--------------------------|--|----------------------|--| | Nashik | 6 | 1 X 660 MW | 660 | 2.542 | Mahajanwadi | | | Bhusawal | 6 | 1 X 660 MW | 660 | 2.542 | Coal Block
Nagpur | | | Uran | | 1 X 660 MW | 660 | 2.542 | | | | Total | | | 1980 | 7.626 | | | The total requirement of the company is as summarised in Table 1.6 below: TABLE 1.6 SUMMARY OF COAL REQUIREMENT FOR MAHAGENCO | SI.
No. | Type of TPP of
Mahagenco | Total
Capacity,
MW | Coal
Requirement,
MTPA | Existing
Linkage,
MTPA | Source of linkage | |------------|---|--------------------------|------------------------------|------------------------------|-------------------| | 1 | End use Plants (existing) linked to Gare Sector-II (ref. Table 1.7) | 3230 | 12.761 | 0 | Gare
Sector-II | | 2 | Other existing TPPs | 7560 | 42.41 | 46.328 | CIL | | 3 | Proposed TPPs | 1980 | 7.626 | 0 | Mahjanwadi | | | Total | 12770 | 62.797 | 46.328 | | A perusal of above Tables shows that the total requirement of coal of the company is 62.797 MTPA, out of which existing linkage from CIL is 46.328 MTPA. The existing linkages to the extent of any surplus (above the requirement of EUPs as per VO) coal will be surrendered when such surpluses are generated. Taking the above into consideration, the Mining Plan has been prepared for the full capacity of the mine, i.e. 23.6 Mtpa as given in Chapter 5. # COAL REQUIREMENT CALCULATION WITH NORMS USED FOR COMPUTING CONSUMPTION Therforms of calculation are given in Table 1.7. | TABLE 1.7 | |--------------------------------------| | NORMS USED FOR COMPUTING CONSUMPTION | | SI. | Particulars | Name | of power pl | ant | Total | | |-----|--|---------------------|---------------------|-------------------|--------|--| | No. | | Chandrapur | Koradi | Parli | | | | 1. | Capacity, MW | 2x500 =1000 | 3x660
=1980 | 1x250 | 3230 | | | 2. | Station Heat Rate
"KCal/KWhr" | 2375 | 2250 | 2375 | 2308 | | | 3. | Avg Calorific value "KCal/kg)"* | 4350 | 4350 | 4350 | 4350 | | | 4. | Specific consumption
"Kg/kWhr" | 0.5460 | 0.5172 | 0.5747 | 0.5306 | | | 5. | Plant Load Factor | 85% | 85% | 85% | 85% | | | 6. | Total Coal
Requirement "MTPA" | 2x2.0327
= 4.065 | 3x2.5419
= 7.626 | 1X1.12
= 1.070 | 12.761 | | | 7. | Coal availability from this project "MTPA" | 4.061 | 7.626 | 1.070 | 12.761 | | | 8. | Linkage/e-Auction from CIL"MTPA" | Nil | Nil | Nil | Nil | | | 9. | Other blocks of the company "MTPA" | Nil | Nil | Nil | Nil | | | 10. | Percentage of end use requirement to be met from this mine | 100% | 100% | 100% | 100% | | ^{*} Refer Chapter 5 for average GCV. The total coal requirement for already linked power plants as per allotment order and as per specific heat consumption norms comes to 12.761 MTPA. The balance coal out of the total production of 23.6 MTPA will be used for other thermal plants of MSPGCL / MAHAGENCO as explained in the paragraph 1.8.2. ### 1.10 COAL BENEFICIATION A perusal of para 5.3.7 and Table 5.9 shows that the average ash content of total extractable reserves works out to 37 to 38 %. However, the Ash % of ROM coal will fluctuate from year to year (34.05% to 41.42%). In the Mining Plan, the provision of space for locating a washery has been made. The decision regarding capacity and layout of washery will be reached after thorough investigation. MSPGCL has approached CMPDIL Copy enclosed as **Annexure 1-3**) for generation of data (washability tests, cleaning possibilities etc) and report preparation. ### 1.11 NAME OF RQP PREPARING MINING PLAN Name : Mr. B. D. Sharma Address (i) Office : A-121, Paryavaran Complex, IGNOU Road, New Delhi - 110030 Phone : 29534777, 29532236, 29535891
Fax : +91-11-29532568 E-mail : min_mec@vsnl.com; minmec@bol.net.in Web site : http://www.minmec.co.in Registration Number : 13016/18/2004-CA Date of grant / renewal : 01.06.2004 (ii) Residence : A-121, Paryavaran Complex, IGNOU Road, New Delhi - 110030 Phone : +91-11-29534777, 29535891 (Photo copy of certificate is attached as Certificate I) ### 1.12 STATUS OF THE PROJECT The status of the project/ mine is as follows: - i. The coal block is virgin - ii. Allotment Order for the mine has been issued to MSPGCL - iii. Mining Lease application submitted on 09-12-2015 - iv. Mining Plan and Mine Closure Plan has been prepared and submitted to MOC. The Mining Plan and Mine Closure Plan (Version February 2016) was presented to the Technical Committee constituted under MMDR Act, 1957 on 29-04-2016, the observations issued vide MOC letter no. 34011/16/2016-CPAM dt 03-05-2016 are attached as **Annexure 1-5**. All observations of the letter have been duly addressed and incorporated in this Mining Plan and Mine Closure Plan (June 2016 version). ### **CHAPTER 2** ### DETAILS OF EARLIER APPROVED MINING PLAN ### 2.1 APPROVAL LETTER/ REFERENCE OF MOC No Mining Plan for this coal mine/ block has been approved in the past by MOC. The Mining Plan in respect of Gare Palma Sector- II Coal Mine submitted by the prior allottee, did not receive the approval of Ministry of Coal. In view of this, MSPGCL needs to apply afresh as per the Guidelines laid for seeking approval of the Mining Plan. (Refer MOC letter no. 103/30/2015-NA dt. 11.1.2016 at Annexure 2-1). ### **CHAPTER 3** ### LOCATION, TOPOGRAPHY & COMMUNICATION ### 3.1 LOCATION The "Gare Palma Sector – II Coal Block area lies in Mand Raigarh Coalfield in Raigarh district of Chhattisgarh state. The mine site is located in Tihli Rampur, Kunjemura, Gare, Saraitola, Murogaon, Radopali, Pata, Chitwahi, Dholnara, Jhinka Bahal, Dolesara, Bhalumura, Sarasmal and Libra villages. The area is covered in the Survey of India Toposheet No. 64 N/8 & 12 (R.F. 1:50,000) and is bounded by: As per Allotment Order no. 103/30/2015/NA dt. 31.08.2015: Latitude 22° 06' 23.55" N to 22° 10' 37.04" N Longitude 83° 26' 22.18" E to 83° 31' 19" E As per CMPDI data vide letter no. CMPDI/BD/C(810)/307 dt 04-06-2012 based on modified Everest datum (Copy at Annexure 3-2): Latitude 22° 06' 22.33" to 22° 10' 48" N Longitude 83° 26' 21.85" to 83° 31' 19.1" E As per Nominated Authority letter F.No.104/28/2015/NA dt 13-10-2015 (Copy at Annexure 3-2A), the coordinates in WGS 84 system are given below. As mentioned in the letter, the earlier coordinates were using reference system based on modified Everest datum but presently CMPDI is following WGS 84 System which is the standard reference system followed globally. It is to be noted that the respective position of any point does not change physically on the ground. Latitude 22° 06' 24.215" to 22° 30' 49.891" N Longitude : 83° 26' 15.433" to 83° 31' 12.632" E (Refer Location plan and Key plan - Plate I & II) ### 3.2 MINING LEASE BOUNDARY Project boundary, Block boundary and ML boundary are the same (2583,486Ha), The block boundary of Gare Sector-II area forms a zigzag line especially its southern limit, hence the geographical co-ordinates of different corners of the Gare Palma Sector-II coal block as per CMPDI letter no CMPDI/BD/C(810)/307 dt 04-06-2012 (Annexure 3-2) are given in Table 3.1A. TABLE 3.1A GEOGRAPHICAL CO-ORDINATES OF BOUNDARY POINTS OF GARE PALMA SECTOR-II COAL BLOCK BASED ON MODIFIED EVEREST DATUM | SI. | Co-ordinates | in Coal Grid | | Geographical Coordinates | | | | | | | |-----|--------------|--------------|----|--------------------------|----------|----|--------|---------|--|--| | No. | X-Easting | Y-Northing | Lo | ngitud | de – (E) | La | atitud | e – (N) | | | | | | | D | M | S | D | M | S | | | | 1. | 2944260.496 | 908797.963 | 83 | 27 | 33.06 | 22 | 10 | 48 | | | | 2. | 2944881.753 | 908010.918 | 83 | 27 | 54.86 | 22 | 10 | 22.48 | | | | 3. | 2946862.355 | 905714.486 | 83 | 29 | 4.32 | 22 | 9 | 8 | | | | 4. | 2946924.235 | 905611.798 | 83 | 29 | 6.49 | 22 | 9 | 4.67 | | | | 5. | 2946955.205 | 905560.391 | 83 | 29 | 7.57 | 22 | 9 | 3.00 | | | | 6. | 2947341.925 | 904918.329 | 83 | 29 | 21.16 | 22 | 8 | 42.16 | | | | 7. | 2948148.176 | 903579.825 | 83 | 29 | 49.47 | 22 | 7 | 58.71 | | | | 8. | 2948244.924 | 903639.409 | 83 | 29 | 52.84 | 22 | 8 | 0.65 | | | | 9. | 2948327.432 | 903676.878 | 83 | 29 | 55.72 | 22 | 8 | 1.89 | | | | 10. | 2949586.636 | 901875.524 | 83 | 30 | 39.90 | 22 | 7 | 3.43 | | | | 11. | 2950175.489 | 901391.242 | 83 | 31 | 0.52 | 22 | 6 | 47.74 | | | | 12. | 2950705.132 | 900608.351 | 83 | 31 | 19.1 | 22 | 6 | 22.33 | | | | 13. | 2950049,435 | 900913.669 | 83 | 30 | 56.17 | 22 | 6 | 32.19 | | | | 14. | 2949509.904 | 901062.823 | 83 | 30 | 37.31 | 22 | 6 | 36.98 | | | | 15. | 2949109.860 | 901220.191 | 83 | 30 | 23.33 | 22 | 6 | 42.06 | | | | 16. | 2947308.154 | 902275.283 | 83 | 29 | 20.30 | 22 | 7 | 16.18 | | | | 17. | 2947326.949 | 901851.692 | 83 | 29 | 21.01 | 22 | 7 | 2.40 | | | | 18. | 2947347.00 | 901414.186 | 83 | 29 | 21.76 | 22 | 6 | 48.17 | | | | 19. | 2946682.952 | 901799.851 | 83 | 28 | 58.53 | 22 | 7 | 0.64 | | | | 20. | 2942212.288 | 905166.093 | 83 | 26 | 22.00 | 22 | 8 | 49.61 | | | | 21. | 2942216.766 | 907431.158 | 83 | 26 | 21.85 | 22 | 10 | 3.29 | | | | 22. | 2944260.496 | 908797.963 | 83 | 27 | 33.06 | 22 | 10 | 48 | | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 3-2 The WGS 84 coordinates vide letter of NA dt 13-10-2015 are attached as **Annexure 3-3** and are reproduced below in Table 3.1B. TABLE 3.1B GEOGRAPHICAL CO-ORDINATES OF BOUNDARY POINTS OF GARE PALMA SECTOR-II COAL BLOCK BASED ON WGS 84 SYSTEM | Cardinal points | Latitude, N | Longitude, E | |-----------------|------------------|------------------| | Α | 22°08′51.495″ | 83 ° 26' 15.480" | | В | 22° 30' 05.178" | 83 ° 26' 15.433" | | A | 22° 10' 49.891" | 83 ° 27' 26.624" | | D | 22 ° 09' 09.892" | 83 ° 28' 57.871" | | E | 22 ° 08' 03.774" | 83 ° 29' 49.271" | | F | 22 ° 06' 24.215" | 83 ° 31' 12.632" | | G | 22°07′18.066″ | 83 ° 29' 13.857" | | Н | 22°06′50.059" | 83°29′15.318″ | The approved southern boundary of Gare Palma Sector-II depicts zigzag nature formed by Barren Measure / Barakar contact and also due to earlier interpreted fault lines protruding like cones. The limits of the block i.e. the extreme rectangle coordinates are as given under para 3.1 above. Both OC and UG operations are envisaged. Though OC mine covers the entire block area of 2583.486 Ha., a part of the area on western side is not workable by UG and the same has not been considerd for UG mining and the UG project area is only 2208.18 Ha. (Refer Fig 3.1 at the end of this Chapter). ### 3.3 COMMUNICATION The Gare Palma area is situated around 35 km towards north from Raigarh Township, which is also the nearest railway station on Mumbai-Howrah main line of SE Railway. The block is connected by road from Raigarh via Punjipathara by State Highway. Punjipathara village is situated on Raigarh-Ghargoda main road. The distance from Raigarh to Ghargoda is around 40 km. The road distance between Raigarh to Punjipathara is about 20 km and Punjipathara to Ghargoda is 20 km towards north. From Punjipathara the road leads to the Gare Palma area via Tamnar TPP area situated at a distance of 10 km on Punjipathara-Milupara road which passes through the block. Tamnar is situated in the south-western part of the Gare Palma Sector-I area in the sub block 'F'. A network of roads is present within the block. ### 3.4 PHYSIOGRAPHY AND DRAINAGE The coalfield is characterised by undulating and rolling topography, consisting of hills interspersed with broad valleys. The general elevation in the block area ranges from 242 m to 303 m above MSL and the surrounding area (upto10 km) varies from 240 m to 640 m above MSL. The slope is towards south. The hills are relict type and rise about 450m above MSL. The southerly flowing perennial Mand River with its tributaries constitute the main drainage of the area. The Kelo River, a tributary of Mahanadi, drains the eastern part of the coalfield. The topography of Gare-Palma Area is mostly covered by softer horizon and in general represents an undulating terrain, more resistant sedimentary rocks stand out as ridges, rising as high as 580m above MSL (Silot Pahar) in the north west and 600m above MSL (Morga Pahar) in the north east. The block exhibits undulating topography. Kelo Nadi flows from north to south through the south eastern part of the block. A few ponds are present within the block. ### 3.5 CLIMATE & RAINFALL The climate of the study area is of subtropical type, and is characterised by an oppressive hot summer, a mild winter and well distributed rainfall during the south western monsoon season. The year may be divided into four seasons. The summer season lasts from March to the middle of June, and the period from June to September is the south west monsoon season. October and November constitute the post monsoon season and the cold season is from December to February. The nearest meteorological station of IMD is at Raigarh. ### Temperature As per the monthly average of daily maximum and minimum temperatures for the period 1996 to 2005, collected from IMD Station, Raigarh, the monthly mean of minimum temperatures ranges from 12.04°C in January to 27.57°C in May. The monthly mean of maximum temperature ranges from 27.56°C in January to 42.08°C in May. ### Rainfall The rainfall does not show any cyclic occurrences and shows wide and erratic variations, ranging from as low as 144.9 mm in 2004 to 1852.4 mm in 2003. The average annual rainfall for the period 1996 to 2005 was 1216.4 mm. The monsoon season is spread over the months from June to September. ### Wind speed and wind direction The wind speed and direction for long term period from 1976-1991 have been studied through the Windrose diagrams supplied by
IMD, Raigarh, for 8.30 hrs and 17.30 hrs respectively. An observation of the morning Windrose shows that the predominant wind direction is from NE during winter season (October to March) and SW during summer and monsoon seasons. As per the evening Windrose, the predominant wind direction is from NE between October and January, NW between February and May and SW between June and September. The general wind speed ranges form 1 to 5 km/hr throughout the year. However winds in the speed ranging from 6-11 kmph and 12-19 kmph also occur. ### Relative humidity The relative humidity varies from 27% in (May) to 82% (August) during evening and 42% (May) to 86 % (August) during morning. ### 3.6 LAND USE AND OWNERSHIP / OCCUPANCY The present land use of the area required for the project is given below in Table 3.2 (Refer Revenue Plan Plate III) and details is given in **Annexure 3-1**. TABLE 3.2 PRESENT (PRE-MINING) LAND USE OF THE ML AREA GARE PALMA SECTOR-II (HA.) | SI.
No. | Village | Private Land | | | | | Total Area
(Private + | | | | |------------|----------------|--------------|--------------------|---------------|-----------|---------------|--------------------------|--------|---------------|----------------| | | | Agriculture | Non
Agriculture | Total
Area | Populated | Water
body | Other | CBJ** | Total
Area | Govt.
Land) | | 1 | Tihlirampur | 97.902 | 62.685 | 160.587 | 6.83 | 21.225 | 39.094 | 0 | 67.149 | 227.736 | | 2 | Dholnara | 59.64 | | 59.64 | 6.833 | 0.376 | 3.317 | 2.788 | 13.314 | 72.954 | | 3 | Murogaon | 302.393 | | 302.393 | 8.256 | 1.303 | 4.29 | 23.504 | 37.353 | 339.746 | | 4 | Libra | 121.416 | 7.621 | 129.037 | 2.897 | 0.439 | 4.694 | 15.943 | 23.973 | 153.01 | | 5 | Kunjemura | 199.715 | | 199.715 | 14.221 | 13.596 | 8.308 | 30.17 | 66.295 | 266.01 | | 6 | Jhinkabahal | 3.844 | | 3.844 | 0 | 0 | 0 | 0 | 0 | 3.844 | | 7 | Radopali | 351.676 | | 351.676 | 8.336 | 5.895 | 19.955 | 0.125 | 34.311 | 385.987 | | 8 | Dolesara | 20.748 | | 20.748 | 0 | 0 | 1.242 | 0 | 1.242 | 21.99 | | 9 | Bhalumura | 16.297 | | 16.297 | 0 | 0 | 0.704 | 0.622 | 1.326 | 17.623 | | 10 | Sarasmal | 56.869 | 9.158 | 66.027 | 0 | 1.332 | 3.563 | 15.236 | 20.131 | 86.158 | | 11 | Pata y of Coal | 316.064 | 13.166 | 329.23 | 13.314 | 5.529 | 14.47 | 15.326 | 48.639 | 377.869 | B | SI.
No. | Village | Р | rivate Land | | | Total Area
(Private + | | | | | |------------------------|---------------|--------------|--------------------|---------------|-----------|--------------------------|---------|---------|---------------|----------------| | | | Agriculture | Non
Agriculture | Total
Area | Populated | Water
body | Other | CBJ** | Total
Area | Govt.
Land) | | 12 | Chitwahi | 142.461 | | 142.461 | 0.252 | 0.867 | 8.153 | 0 | 9.272 | 151.733 | | 13 | Gare | 157.224 | | 157.224 | 10.482 | 4.241 | 11.596 | 1.957 | 28.276 | 185.5 | | 14 | Saraitola | 156.228 | 13.722 | 169.95 | 8.395 | 1.364 | 7.969 | 29.703 | 47.431 | 217.381 | | | Total of A | 2002.477 | 106.352 | 2108.829 | 79.816 | 56.167 | 127.355 | 135.374 | 398.712
* | 2507.541 | | B. As | per Forest De | partments Re | cord | | | | | | | | | Government Forest Land | | | | | | | | | | *75.945 | | Grand Total | | | | | | | | | 2583.486 | | Note: * 75.945 Ha of Protected Forest land and 135.374 Ha of Revenue Forest land is present within the mine lease area, which needs to be diverted for mining purpose after obtaining forestry clearance from the Ministry of Environment and Forest, Govt. of India under the Forest (Conservation) Act 1980. ### 3.7 IMPORTANT SURFACE FEATURES ### 3.7.1 Important surface features (Refer Plate-I and IV) Habitation of following villages is lying within the block (refer Table 3.3. TABLE 3.3 HABITATION OF FOLLOWING VILLAGES IS LYING WITHIN THE BLOCK | Villages | Population | | | | | |--------------|---------------|--|--|--|--| | Libra | 757 (7.89%) | | | | | | Bhalumuda | 314 (3.27%) | | | | | | Dholnara | 408 (4.25%) | | | | | | Chitwahi | 747 (7.78%) | | | | | | Dolesara | 1061 (11.05%) | | | | | | Radopali | 688 (7.17%) | | | | | | Kunjemura | 1054 (10.98%) | | | | | | Gare | 741 (7.72%) | | | | | | Pata | 1189 (12.39%) | | | | | | Murogaon | 520 (5.42%) | | | | | | Saraitola | 564 (5.88%) | | | | | | Sarasmal | 508 (5.29%) | | | | | | Tihli Rampur | 448 (4.67%) | | | | | | Jhinku Bahal | 599 (6.24%) | | | | | | Total | 9598 (100%) | | | | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL ^{**} Chhote Bade Jhar / Jungle (Small/ big trees forest) A perusal of Plate IV shows the location of all the above village habitations within the block. ### ii. The following road network is lying within the block: Roads from Bajarmura to Ghargoda (approx 11.6 Km) and Milupara to Tamnar (approx 3 Km) is passing through the block. iii. The following network of drainage and canals is lying within the block: Kelo River is flowing across the coal block. ### iv. Forest within Block: 75.945 Ha of Protected Forest land and 135.374 Ha of Revenue Forest land is present within the mine lease area. ### 3.7.2 Surface reorganization required (Refer Plate IV) - a. Roads from Bajarmura to Ghargoda (approx 11.6 KMs) and Milupara to Tamnar (approx 3 Kms) will be diverted. Diverted alignment is proposed along the northern periphery of the block and along the embankment of the river Kelo passing through the block. A safety barrier of 45m has been kept for the diverted road as per statutory norms. - b. Kelo River, flowing south, is passing through the eastern part of the block- Diversion is not proposed, will be protected by leaving statutory barriers. - c. 75.945 Ha of Protected Forest land and 135.374 Ha of Revenue Forest land is present within the mine lease area, which needs to be diverted for mining purpose after obtaining forestry clearance from the Ministry of Environment and Forest, Govt. of India under the Forest (Conservation) Act 1980. - d. Project affected families will be 1679 of fourteen villages which need rehabilitation. The relevant R&R study is being conducted separately. - e. Proposed Railway Line: A prosed alignment of railway line is passing though the block. The length of railway line passing through the block is 4.7 km. The width of the corridor for proposed railway line is 90 m (45 m on either side of tracks). During Public hearing held on 29:01.2016, MSPGCL has given the proposal for re-routing the alignment along periphery out side the block boundary citing the reason of blocking of 30 Mt of coal reserves. (Refer Annexure 3-4) ### **CHAPTER 4** ## EXPLORATION, GEOLOGY, SEAM SEQUENCE, COAL QUALITY AND RESERVES ### 4.1 REGIONAL GEOLOGY ### 4.1.1 General Mand-Raigarh coalfield forms the southern part of Mahanadi valley and it is situated mostly in Raigarh district and a smaller part lying in Korba district of Chattisgarh state. Exploration in this vast coalfield is continuing since long and may continue in future also mainly by MECL, G.S.I. and C.M.P.D.I.L. ### 4.1.2 Geology of Mand-Raigarh Coalfield The extensive occurrences of Barakar and Supra-Barakar rocks amidst isolated Talchir outcrops spanned between latitudes N 21°45' to 22°42' and longitudes E 83°01' to 83°44', constitutes Mand-Raigarh Coalfield. It is situated between Ib-River Coalfield in the southeast and Korba Coalfield in the west with more or less similar stratigraphic and tectonic setting. The coal measures in the Mand-Raigarh basin are exposed in three well defined patches due to erosion of the overlying Kamthi rocks along the drainage of the prominent rivers. The Geological plan is given in Plate V. The generalised stratigraphy of Mand-Raigarh Coalfield is enumerated below in Table 4.1. TABLE 4.1 GENERALISED STRATIGRAPHIC SUCCESSION | Age | Formation | Thickness
(m) | Lithology | |---|-----------------|------------------|--| | Recent | Soil Alluvium | 3 m | Alluvial soil pebbly to bouldery bed with silty clay band, laterite etc. | | Cretaceous to Eocene | Deccan
Traps | - | Basalt flows & dolerite dykes. | | Lower to Middle Triassic I P NAGPAL I Sacretary I of India | Kamthi | 2851 | Poorly sorted, frequently ferruginous, coarse to very coarse grained, locally graded to pebbly, mega cross bedded sandstone containing, brownish grey to buff coloured clay clasts. A fossiliferous red claystone to | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 4-1 | Age | Formation | Thickness
(m) | Lithology | |---|-------------------|------------------|--| | | | | siltstone bed occurs at the base. | | Upper
Permian to
Lower
Permian | Raniganj | 180 | Mostly fine to medium grained, grayish white, micaceous sandstone and siltstone with claystone, shale, minor coarse grained sandstone and two coal seams of inferior grade. | | | Barren
Measure | 300 | Dominantly grey claystone/grey shale with siltstone and iron stone bands; interbanded sequence of fine to medium grained sandstone and shale. | | | Barakar | 425 - 800 | Medium to coarse and very coarse grained even gritty, sandstone at the lower part followed upward by fine to medium grained assemblage with grey claystone/shale which become predominant towards the upper part, number of coal seams and carbonaceous shale. | | | Karharbari
(?) | 23 | Mottled at places carbonaceous sandstone, frequently associated with pebbles of quartzite granite etc. of
various shapes and sizes. | | Upper
Carboniferous
to Lower
Permian | Talchir | 150+ | Very fine to fine grained sandstone with siltstone and shale, occasionally greenish in nature, at places with matrix based variegated polymictic conglomerate. | | Precambrian | | | Granitic gneisses, mica-schists quartzites, intruded by pegmatites and quartz veins. | The geological formations of Mand-Raigarh Coalfield are briefly described below: (Bull. GSI, Ser-A, No.45, Vol.-III, 1983). **Precambrian:** The Precambrian rocks comprising Granite Gneiss, mica schist, Phyllites and Quartzites along with Quartz veins & Pegmatites occur along the northern, northeastern periphery. The strike of the foliation varies from E-W to N70°W – S70°E with 50° to 70° dip towards west. Talchir formation: The Talchir sequence begins with tillite at the base and overlies the basement unconformably. It occurs as a continuous strip along the northern periphery of the basin. Along the southern boundary, Talchirs or over as narrow, elongated discontinuous strips disrupted by faults. The Mand-Raigarh basin shows widespread development of basal tillite pointing to advancement of ice from the surrounding Precambrian uplands. Karharbari Formation: Karharbari formation is developed in a limited area. It consists of mottled, at places carbonaceous sandstone, frequently associated with pebbles of quartzite, granite etc. of various shapes and sizes. Barakar Formation: The Barakar formation conformably overlies the Talchir sediments over the major part of coalfield and covers a large tract within the coalfield. It is represented predominantly by multistoried cross-bedded feldspathic sandstones which are highly kaolinised and friable with subordinate shales, carbonaceous shales and coal seams. The sandstones are mostly medium to very coarse grained and milky white to greyish white in colour. The sandstones are arkosic in nature and often shows pronounced kaolinisation. Exposures of fine-grained sandstone and grey to greyish black shale are very limited. Barren Measure Formation: Barren Measure formation overlies conformably over Barakar formation. Barren Measure formation can be traced in the south eastern part between Gharghoda and Gare, besides sporadic occurrence in vicinity of Chhal and Kuremkela. This formation comprises of predominantly grey claystone/grey shale with siltstone and iron stone bands and interbanded occurrence of fine to medium grained sandstone & shale. Raniganj Formation: Raniganj formation has been demarcated in southeastern and south-western part, besides patchy occurrence in northwestern part. It is represented by mostly fine to medium grained sandstone, siltstone with clay stone, shale, fine to coarse grained sandstone and coal seams / bands of inferior grade. Kamthi Formation: The rocks of Kamthi formation are well exposed at higher contours of the flat topped hills. They not only occur in the intervening area between Mand Valley and Hasdo-Arand on the one side and the Raigarh Coalfield on the other, but also occur as irregular patches along the axial region of the Mand Valley. It is represented dominantly by coarse, friable, porous, brownish to red cross bedded sandstone and argillaceous beds. The nature of the contact between Kamthis & Barakars is variable and is somewhat discordant and at places the Kamthi strata overlap the older units. d de la companya l Intrusives / Deccan Trap: A number of basic dykes, sills and flows have been observed in the Uprora-Porea area in the northern part of the coalfield. The basic rock comprises fine-grained Basalts to coarse-grained Gabbroid type. The flows at places have been altered to laterite. A dyke exposed north of Amaldih has been traced over a distance of 26.5 Km. in an east- ROP NO. 34012/03/2014-CPAM west direction and another dyke exposed 0.8 Km. south of Porea is over 6 km length. ### 4.1.3 Coal seams The regional exploration so far conducted & continuing till date in Mand-Raigarh Coalfield especially in the western part along the eastern bank of Mand river and northern part of Dharamjaygarh-Khargaon, Ongana - Potia as well as Chhal area, has revealed the presence of a number of coal seams. Exploration in the north-western and western part of the coalfield reveals number of coal seams and these have been numbered as I to XXII and so on in ascending order. Coal of this coalfield is generally banded in nature and it is not devolatilised. In general coal is low in rank, high in volatile matter and non-coking type. ### 4.1.4 Regional structure The Mand-Raigarh Coalfield is an asymmetrical basin with an approximately NW-SE axis. It is a part of Ib-Mand-Korba master basin lying within the Mahanadi Graben. It displays a typical half-graben configuration, with the southern boundary marked by a major NW-SE zone of faulting coinciding with the trend of the Mahanadi Graben and the northern boundary not faulted over the major part. In the Mand Valley proper, the coal measures lying between Kharsia & Dharamjaygarh display a broad synclinal structure with its axis running just south of Sithra. The northern limb of the Mand river basin is exposed to the north of the Sithra-Dharamjaygarh area where the Barakar beds are found to strike broadly in NW-SE direction. The beds dip at low angle of 5° to 7° towards south-west. In the southern limb, the strike is approximately NW-SE with minor variations and the beds dip towards north-east. The other structural element in this basin belt comprises normal Gravity faults. The available surface and sub-surface data indicate that the area lying on both sides of Mand river is traversed by number of sub-parallel faults of considerable linear extent, though the surface expressions of faults are very limited or entirely lacking. Two sets of faults trending WNW-ESE to NW-SE and N-S occur. The former generally has down throws against the dip i.e. towards north while the latter has easterly throw. The amount of throw varies from 10m to 150m. ### 4.2 GEOLOGY OF GARE-PALMA SECTOR- II BLOCK Gare Palma Sector- II Coal Block is located in the south-eastern part of Mand-Raigarh Coalfield. The Geology of the block is in conformity with the regional set up. Major part of Gare Palma Sector-II Coal Block is covered by Barakar Formation. ### 4.2.1 Geological succession in Gare Palma Sector-II coal block The geological succession evolved on the basis of exploration data generated in the block is given in the Table 4.2 below. While calculating the thickness of different stratigraphic formations, all the data generated by the boreholes in the block are considered. TABLE 4.2 GEOLOGICAL SUCCESSION IN GARE PALMA SECTOR-II COAL BLOCK | Age | Formation | Thickness
(m) | Lithology | |--------------------------------|------------------|---------------------|--| | Recent | Recent | 0.50 to
15.00 | Soil, alluvium | | Lower
Permian | Barakar | 203.00 to
477.20 | Fine, medium and coarse grained felspathic, grey sandstone, micaceous and laminated at places. Grey shale, fire clay, intercalation of shale and sandstone and carbonaceous shales with Coal Seams | | Upper carboniferous to Permian | Talchir | 0.30 to
45.90 | Boulder bed, rhythmite, fine grained greenish sandstone, greenish to purple shales, Khaker coloured siltstones | | Unconformity | | | | | Archaeans | Pre-
cambrian | 0.10 to
12.50 | Mica-schists, gneisses and quartzite. | Note: Thickness as intersected in boreholes. **Soil & Alluvium:** A major part of the block is covered by a thin layer of soil and alluvium horizon. The weathering has affected all the strata below soil to a varying extent. The thickness of soil ranges from 0.50m (MMT-20) to 15.00 m (MMT-166). The depth of weathered zone varies from 0.50 m (MMT-124 & MMT-176) to 30.32 m (MMT-33). **Intrusive:** The block is free from any intrusive. ### 4.2.2 Structure of the block 1. The structural interpretation is mainly based on the sub-surface data obtained during the course of exploratory drilling. The general strike of coal horizons is NW-SE in the major part of the block with minor swings. The dip of beds varies from 2° to 4° towards south-west. The block does not show major tectonic disturbances. Mine 23.6 MTPA of MSPGCL 4-5 B.D. SHARMA RQP NO. 34012/03/2014-CPAM ### 4.3 STATUS OF EXPLORATION In the South-eastern part of Mand-Raigarh coalfield lies Gare Palma Sector-II Coal Block in which GSI had drilled very wide spaced 8 regional boreholes, during the field seasons 1984-85 to 1987-88 involving 3378m drilling in an area of 25.83 sq. km and assessed 789.17 million tonnes of coal reserves of indicated to inferred category upto a depth range of 400m. The coal grade in general varies from 'D' to 'F'. ### 4.3.1 Previous work W.T. Blanford examined a part of Mand-Raigarh coalfield in 1870. Shortly afterwards V. Ball (1882) surveyed the coalfield in some detail. This was followed by exploratory drilling carried out under the supervision of W. King assisted by Lala Hiralal (1886) and the result was unattractive for furtrher investigation. Later C.S. Fox (1934) worked out the limits of the coalfield. S.M. Mathur (1949), A.B. Dutt (1953), M.S. Venkatraman, J. Narayana Moorthy and B.N. Sinha (1959) examined part of the coalfield. The Mand Valley area of this belt was geologically mapped on 1:63,360 scale maps between 1961 and 1966 by V.D. Puri, G.P. Deshmukh, A. K. Dev etc. who located the various coal outcrops and worked out the structural frame work of the basin. A concise account of work carried out by different workers in this coalfield was presented by Raja Rao (1983) in his Bullitins. Systematic geological mapping with special attention on coal resources in parts of North Raigarh coalfield, specially around Gare Palma area, was carried by Bandyopadhyay
(1984 & 85). In the area adjoining Gare Palma area, regional exploration for coal was carried out in Kurumkela (Ray, 1988), Chimtapani (Ray and Roy, 1991), Gare (Ray & Roy - 1992) and Palma (Ray et. al. 1994) areas during the field seasons 1981-82 to 1989-90. In the field season 1984-85 to 1987-88, 37 boreholes (8 bh falling in GP-II Block) were drilled by GSI in Gare Area involving meterage of 12,488.50m and the report on the regional exploration for coal was submitted in 1992. Subsequently, MECL carried out regional exploration in this coalfield in the Trans-Mand Sector located to the west of Mand river from December 1997 to May 2000, over an area of about 435 sq. km. Extending from Syang in the north to Batati-Kolga in the south. The geological report of Syang-Boro block was submitted in June 2000, Chirra-Jabga block in November 2000 covering about 120 sq. km. area. In south-eastern part of Mand-Raigarh Coalfield, MECL has also carried out / is carrying out priority regional exploration in Banai, Bhalumuda, Dolesara and Karichhapar. MECL has submitted Geological report of Tilaipali Coal Block for NTPC and that of Gare-Palma Sector-I for CMDCL. CMPDIL has submitted a number of Goological reports and exploration is still in progress in different Coal Blocks. ### 4.3.2 Recent Exploration Ministry of Coal (MOC) had earlier allocated Gare-Palma Sector-II Coal Block to Mahatamil Collieries Ltd. (A joint venture between Tamil Nadu Electricity Board & Maharashtra State Mining Corporation Ltd.). The area required detailed exploration prior to any exploitation activities. M/s MTCL engaged MECL to carry out detailed exploration in the block by drilling boreholes at 400m x 400m grid interval, involving around 70000m, so as to convert the indicated / inferred category of coal reserves assessed in this sector to Proved category. MECL commenced the task of detailed exploration for coal in Gare-Palma Sector- II Coal block on behalf of MTCL, on 27.04.2011 and the drilling operation was completed on 26.2.2012. Besides the 8 boreholes drilled earlier by GSI involving 3378 m of drilling, a total of 73,997.80m of drilling was done in 188 boreholes by MECL. The scope of the recent exploration by MECL was to estimate the opencast and underground reserves from the regionally persistent and workable coal seams occurring in Gare Palma Sector-II Coal block. The opencast reserves have been estimated on I-100 thickness and quality while the underground reserves are assessed based on I-30 thickness and quality. The data processing, statistical analyses and graphics plotting have been carried out by using MINEXP software developed by MECL. The structural interpretation like drawing of floor contour plan and its interpretation, folio plans, reserve estimation etc. have been carried out by sophisticated MINEX Software Programme at MECL, I.T. Centre. The drawing is based on 3 dimensional software packages, which is very accurate. The 2 dimensional manual divisions between 2 borehole points may not be exactly similar. ### i. General Mineral Exploration Corporation Ltd. has carried out detailed exploration in Gare Palma Sector-II Coal Block involving various activities like geological mapping, surveying, drilling, lithological logging, coal sampling, geophysical logging, data interpretation, data processing, its presentation, graphics, 3D ore modeling, reserves estimation, documentation of geological report etc. Geological Report has been purchased, the cost of which is included in the amount of Rs 43.4816953 Crore transferred to Nominated Authority, MOC vide our letter dt 13-07-15 (Annexure 4-1) The quantum of work done under different activities by MECL is summarized in Table 4.3. Valoritation of the state th # TABLE 4.3 QUANTUM OF WORK DONE BY MECL IN GARE PALMA SECTOR-II COAL BLOCK | | COAL BLOCK | | | | | | |------------|------------|--|--|--|--|--| | SI.
No. | | Item of work | Work done | | | | | 1. | Area | of the block | 25.83 Sq.km. (Approx) | | | | | 2. | Geol | ogical Mapping | 25.83 Sq.km. (Approx) | | | | | 3. | Surv | eying | | | | | | | (i | Triangulation | 25.83 Sq.km. (Approx) | | | | | | ii) | R.L. of MECL BHs | 188 BHs (MMT series) | | | | | | iii) | Co-ordinates of MECL BHs. | 188 BHs (MMT series) | | | | | 4. | Explo | oratory Drilling (MECL) | 73,997.80m in 188 Bhs (MMT Series) | | | | | 5. | Geol | ogical Core logging | 73,998.20m in 188 Bhs (MMT Series) | | | | | 6. | Geop | physical Logging | 19,971.60m in 51 Bhs (MMT Series) | | | | | 7. | Prepa | aration of Coal Samples | 10,782 Nos. (186 BHs) | | | | | 8. | Hous | e keeping of BH Samples | 10,782 Nos. (186 BHs) | | | | | 9. | Cher | nical Analysis (MECL Lab) | | | | | | | (i | Band by Band | 6505.66m (10,782 Nos.), 186 BHs | | | | | | ii) | Full Proximate analysis Moisture at 60% RH and 40°C | 1792 Nos. (114 BHs) | | | | | | iii) | Gross calorific value | 1792 Nos. (114 BHs) | | | | | | iv) | Total Sulphur | 189 Nos. | | | | | | v) | Ultimate Analysis. | 189 Nos. | | | | | | vi) | HGI | 59 Nos. | | | | | | vii) | Ash Fusion Temp. | 53 Nos. | | | | | | viii) | Ash Analysis | 53 Nos. | | | | | 10. | | Technical Studies (Physico
anical) (Outside lab) : CMFRI
bad | 839.70m, 2 BHS (MMT-85 & 95) | | | | | 11. | Dove | Tailing of Old data, GSI | 3378.00 (8 BHs) | | | | | 12. | | outerisation processing,
zation : IT Centre, MECL,
ur | Plates and complete geological report by using MINEXP and MINEX software | | | | # ii. Geological Mapping The entire area of Gare Palma Sector-II Coal Block is mostly covered with soil and at a few places only, outcrops of sandstone & shale can be seen. The geology of the block is, therefore, interpreted based mainly on the subsurface data obtained from MECL boreholes. The geological information it is strike & dip of the strata and outcrops wherever available in the block have been mapped and a geological plan structural fractures viz. faults etc. and other surface geological features have been prepared. # iii. Surveying - The survey work at Gare Palma Sector-II Coal block has been carried out in the 25.83 sq. km area by closed traverse using "Electronic Total Station". Intermittent closed traverses were run for connecting the boreholes and for contouring by using E.D.M, Theodolite and Electronic Total Station. - The location & coordinate of Survey of India / National Pillar from where the coordinates are carried out are (i) Kusmi Bhana Hills N-919601.36 E-2936373.98 and RL 413.00 m. (ii) Gharghodi Hills N-915293.59, E-2925757.94. - The coordinate & R.L. of national grid pillar near Barodh Colliery, which is about 65 km. SW from the exploration block, from where the R.L. has been carried out is given below: - 1) N 919530.91 E 2932538.33, RL 310.029 m - 2) N 919474.71 E 2932534.17, RL 309.828 m - 3) N 919449.61 E 2932518.33, RL 309.445 m - The baseline has been laid at traverse stations T1 and T2. The distance between T1 and T2 was observed with Total Station and it is 474.2064 m. The bearing from T1 to T2 is 280° 28' 51" - The co-ordinates of T1 is 906440.789 m: Northing (Latitude) and 2943745.0301 m: Easting (Departure). - The co-ordinates and R.Ls of all the boreholes and traverse stations were determined with the above reference points by running the closed traverse method by using the Total Station/E.D.M./Theodolite and Auto Level. - The surface contouring has been done at 1.0 m contour interval over the entire 25.83 sq. Km area and all surface features were picked. - The R.L. of T-1 has been carried with reference to the Survey of India GTS pillar on the top of the Silot Pahar R.L. 580.00 m. and checked with National Grid Pillar near Barodh Colliery. ## iv. Lithological logging The drill cores of both coal and non coal strata obtained from boreholes were systematically logged visually, with detailed description of litho-units like grain size, colour, mineral constituent etc. The structural details such as bedding, slicken sides, fractures, core dip etc. were also recorded wherever possible. Runwise lithologs of all the boreholes drilled by MECL are presented in Annexure-IIA of GR. Graphic logs on R.F 1:500 plotted with the help of computer are presented in Plates IV-A to IV-S of GR. Runwise lithologs of 8 boreholes drilled by GSI are presented in Annexure-IIB. Graphic logs of these boreholes on R.F 1:500 plotted with the help of computer are presented in Plates IV-T of GR. The visual roof and floor depth delineation of coal seams and their thickness suitably were corrected after the study of the coal quality data of band by band analysis in respect of 186 boreholes for which chemical analysis received. ## v. Geophysical logging Out of 188 boreholes drilled by MECL, geophysical logging was carried out in 51 boreholes involving 19971.60 m. geophysical logging using multi parameter probes. The details of Geophysical logging, probes used etc. are given separately in Chapter-VII. # vi. Sampling and analysis - The carbonaceous horizons (coal, shaly coal and carbonaceous shale) of all correlatable coal seams with thickness (>0.50 m) from the boreholes drilled by MECL in this block were sent for band by band analysis to chemical laboratory, MECL, Nagpur. Before sending it to the laboratory, the samples were prepared after crushing at (-) 72 mesh sizes, coning and quartering, packing etc. at project level. - A total of 10782 Nos. of coal samples from 186 boreholes were prepared and sent for band-by-band analysis. The band-by-band analytical results are presented in Annexure-IIIA and that of GSI boreholes are presented in Annexure-IIIB of GR. - After obtaining band-by-band analysis, the seam overall analysis at 60% RH & 40 °C for all correlatable coal seams having thickness >0.50 m. were advised for BCS and I-100/I-30 thicknesses of seams. A few unworkable coal seams / bands were also, subjected
to overall analysis at 60% RH and 40°C. In addition to the seam overall analysis, special tests such as Ultimate analysis, GCV, AFT, Ash analysis, HGI, and Total Sulphur have also been conducted as per the stipulated norms. - The analytical results of band by band analysis are incorporated in Annexure-III & Annexure-IIIB of GR, whereas results of seam overall at 60% RH & 40°C are presented in Annexure-IV. The coal analyses of MECL boreholes for band by band for 186 boreholes and seam overall & G.C.V for 114 boreholes have been carried out. Ultimate analysis, Ash analysis, Ash fusion temperature, Total Sulphur and HGI were analysed as included in Annexures –VIIA, VIIB, VIIC & VII D of GR. ## vii. Exploratory drilling The year wise breakup of meterage drilled by MECL in the Gare-Palma Sector-II Coal Block is as follows. | Period | Drilling meterage | |----------------|---------------------------| | Year 2010 - 11 | 29841.30 | | Year 2011 - 12 | 44156.50 | | Total | 73997.80 in 188 boreholes | - The entire drilling operation was conducted by conventional drilling method aided by wire lines equipments using Drill Max, Vol 300 drill machines. Controlled speed, adequate pressure, circulation of bentonite mud with other chemicals etc. were resorted to maximize the core recovery in both coal & non-coal horizons. The entire drilling has been carried out in NX/NQ Core size except in the top overburden zone where HX/HQ core size has been used. The recovery in the coal seam have been maintained at more than 90% and in the non coal portion at more than 80% except in areas of structurally weak and disturbed zones and weathered/ friable formations. The depth range of the boreholes drilled in this block by MECL varies from 206.00m (MMT-59) to 484.70 m. (MMT-112). - The earlier drilled data of 8 boreholes of GSI involving 3378.00 m are also considered. ### 4.4 GEOLOGICAL SECTIONS For the purpose of geological correlation and assessment of reserves, geological cross sections were prepared with the help of adjoining bore holes from north to south. Different number of boreholes considered for making cross section is given in Table 4.4. The Geological cross section is given in Plate VI. TABLE 4.4 GEOLOGICAL CROSS-SECTION WISE NUMBERS OF THE BORE HOLES IN GARE-PALMA SECTOR-II BLOCK | Sections | Bore Hole Nos. | |------------|--| | Pelli A-A' | MMT-10, 94, 2, 88, 4,11, 6, 39, 66, 90 | | B-B' | Mmt-145,17, 55, 63, 69, 53,177, RGP-9 | | C-C' | MMT-143,108,188 | The lithologs are given in Plate VIIA and VIIB. ## 4.5 FUTURE PROGRAMME OF EXPLORATION The Block has been adequately explored. No more exploration is envisaged. # 4.6 PATTERN OF FAULTING The block does not show major tectonic disturbances. A total 10 numbers of faults have been deciphered. The deciphering of fault is mainly attributed to differences in FRL values in boreholes. The throw of faults varies from 0 – 20 m. All the faults dip towards north-east except fault F6, F9 & F10 which dip towards south-west. The dip of the fault is assumed 70°. Minor slips at places cannot be ruled out as evidenced by variation in gradient which has been reflected in floor contour plans. The faults details are furnished in Table 4.5. TABLE 4.5 DESCRIPTION OF FAULTS INTERPRETED IN GARE PALMA SECTOR-II COAL BLOCK | | COAL BLOCK | | | | | | | | |-------------------------------|--|---------------|---|-------------------|-------------|--------------|---------|--| | Fault | Location | Nature | Strike & | k Dip | Fault Inter | rsection | Throw | Evidences | | No. | | | | | BH. No. | Depth
(m) | (m) | | | F ₁ F ₁ | Located near
north western
boundary of the
block | oblique fault | Trending
SE d
dipping
north-east | lirection
due | | | 0 to 5 | Extends from
Bhalumuda, the
adjacent block | | F ₂ F ₂ | Located in north
western part.
Fault extends for
about 4 k.m. | oblique fault | | dipping
east | | | 0 to 10 | Interpreted based on FRL difference. | | | It extends for about 5 Km., northern-western to southern boundary. | oblique fault | NW-SE
dipping
north-east. | slightly
due | | | 2 to 10 | Interpreted based
on FRL difference | | | Extends for 6 km. from south of borehole MMT-9 to south-eastern boundary | oblique fault | NW-SE
dipping
north-east. | slightly
due | | | | Interpreted based
on FRL difference | | | Located in south-
eastern part of
the block | oblique fault | | slightly
due | | | 0 to 15 | Interpreted based on FRL difference | | S 10 | Located in central to south-eastern part of the block | oblique fault | | dipping
south- | | | | Interpreted based on FRL difference | B.D. SHARMA RQP NO. 34012/03/2014-CPAM JV | Fault | Loca | tion | | Nature | Strike | & Dip | Fault Inte | rsection | Throw | Evidences | |-------------------------------|----------------------------------|------|------------|-------------------------|------------------------------|----------------|-------------------|-----------------|---------|--| | No. | | | | | | | BH. No. | Depth
(m) | (m) | | | F ₇ F ₇ | Located
northern
the block | | in
of c | Strike to oblique fault | W-NW-E-
dipping
north. | -SE
towards | - | | 5 to 15 | Interpreted based on FRL difference | | F ₈ F ₈ | Located
northern
the block | | in
of (| oblique fault | W-NW-E-
dipping
north. | | MMT-119
MMT-16 | 48.50
226.00 | 5 to 20 | i. Seam IX and roof of seam-VIII faulted. ii. Parting reduction both III-L2 & III. | | | Located
northern
the block | | n
of c | oblique fault | W-NW-E-
dipping
south. | SE
towards | MMT-164 | 122.00 | | Seam V B-1, V B-
2 faulted | | | Located
northern
the block | | n
of c | oblique fault | W-NW-E-
dipping
south. | SE
towards | MMT-122 | 97.00 | 15 | Seam VI faulted | # 4.7 COAL SEAMS # (a) Sequence of all coal seams and partings The details of partings and coal seams in descending order are given in Table 4.6. TABLE 4.6 SEQUENCE OF COAL SEAMS AND PARTINGS IN GARE PALMA SECTOR-II COAL BLOCK | Sequence of
Seams/Parting | _ | of Seam
ess (m) | Range o | No. of Full
Intersections | | |------------------------------|-------------------|--------------------|-------------------|------------------------------|-----| | | Minimum | Maximum | Minimum | Maximum |] | | X-LA | 0.10
(MMT-109) | 0.89
(MMT-188) | | | 119 | | Parting | | | 1.60
(MMT-108) | 16.95
(RGP-22 | 111 | | X-TOP | 0.10
(MMT-186) | 2.11
(MMT-57) | | | 128 | | Parting | | 110 | 0.47
(MMT-141) | 10.89
(MMT-14) | 128 | | X-BOT | 0.68
(MMT-77) | 6.26
(MMT-90) | | | 156 | | Parting | | | 9.4
(MMT-163) | 31.45
(MMT-160) | 143 | | IX-L2 | 0.06
(MMT-128) | 0.92
(MMT-59) | | | 158 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL | Sequence of
Seams/Parting | _ | of Seam
less (m) | | Range of Parting
Thickness (m) | | | | |------------------------------|-------------------|---------------------|--------------------|-----------------------------------|-----|--|--| | | Minimum | Maximum | Minimum | Maximum | | | | | Parting | | | 2.50
(MMT-77) | 20.24
(MMT-167) | 149 | | | | IX-L1 | 0.10
(MMT-187) | 1.04
(MMT-160) | | | 177 | | | | Parting | | | 8.00
(MMT-51) | 34.26
(MMT-122) | 177 | | | | IX | 2.66
(MMT-53) | 7.34
(MMT-140) | | | 195 | | | | Parting | | | 3.37
(MMT-140) | 15.63
(MMT-120) | 192 | | | | VIII | 0.31
(MMT-131) | 6.50
(MMT-94) | | | 192 | | | | Parting | | | 1.09
(MMT-162) | 21.90
(MMT-54) | 77 | | | | VIII-L | 0.10
(MMT-107) | 2.25
(MMT-62) | | | 78 | | | | Parting | | | 7.61
(MMT-157) | 23.55
(MMT-86) | 54 | | | | VII-TOP | 1.50
(MMT-108) | 6.15
(MMT-174) | | | 116 | | | | Parting | | | 0.72
(MMT-167) | 4.00
(MMT-105) | 115 | | | | VII-BOT | 0.16
(MMT-125) | 3.84
(MMT-119) | | | 115 | | | | VII-COMB | 2.06
(RGP-9) | 8.39
(MMT-140) | | | 80 | | | | Parting | | | 3.30
(MMT-88) | 24.13
(MMT-154) | 80 | | | | VI | 0.25
(MMT-107) | 7.74
(MMT-182) | | | 194 | | | | Parting | | | 0.80
(MMT-104) | 6.50
(MMT-176) | 156 | | | | VI-L | 0.06
(MMT-42) | 1.70
(MMT-51) | | | 157 | | | | Parting | | , , | 10.90
(MMT-105) | 24.38
(MMT-114) | 154 | | | | VA-1 | 0.10
(MMT-107) | 1.43
(MMT-80) | | | 191 | | | | Parting | | () | 1.12
(MMT-14) | 10.71
(MMT-105) | 118 | | | | VA-2 | 0.08
(MMT-105) | 1.28
(MMT-186) | , , , , , , | , | 119 | | | | Sequence of
Seams/Parting | _ | of Seam
ness (m) | | of Parting
ness (m) | No. of Full Intersections | |------------------------------|-------------------|---|--------------------|------------------------|---------------------------| | | Minimum | Maximum | Minimum | Maximum | | | Parting | | | 0.65
(MMT-98) | 8.15
(MMT-29) | 111 | | VB-1 | 0.10
(MMT-118) | 1.47
(MMT-112) | | | 120 | | Parting | | | 0.98
(MMT-16) | 15.15
(MMT-140) | 118 | | VB-2 | 0.09
(MMT-150) | 1.90
(MMT-162) | | | 191 | | Parting | | | 1.00
(MMT-140) | 7.50
(MMT-179) | 189 | | VC-1 | 0.12
(MMT-179) | 2.40
(MMT-92) | | | 193 | | | | | 0.40
(MMT-166) | 3.45
(MMT-158) | 193 | | VC-2 | 0.09
(MMT-17) | 1.30
(MMT-81) | | | 194 | | | | | 0.93
(MMT-60) | 6.27
(MMT-148) | 171 | | VD-1 | 0.05
(MMT-59) | 1.40
(MMT-12) | | | 172 | | | (mark or) | (************************************** | 0.36
(MMT-3) | 3.05
(MMT-108) | 149 | | VD-2 | 0.06
(MMT-5) | 1.34
(MMT-134) | | | 164 | | | | | 30.82
(MMT-69) | 43.46
(MMT-127) | 161 | | IV | 0.10
(MMT-177) | 3.70
(MMT-12) | | | 191 | | | · | , | 15.01
(MMT-156) |
25.37
(MMT-112) | 107 | | III-L2 | 0.07
(MMT-113) | 1.55
(MMT-83) | | | 107 | | -240- | | | 32.80
(MMT-16) | 60.53
(MMT-14) | 101 | | II.P. NI My | 0.10
(MMT-6) | 3.50
(MMT-102) | | | 171 | | Parting | | | 0.68
(MMT-79) | 62.00
(MMT-73) | 18 | | II-L | 0.08
(MMT-6) | 1.94
(MMT-102) | - | | 20 | | Parting | , | | 0.94
(MMT-171) | 61.37
(MMT-79) | 20 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL | Sequence of
Seams/Parting | Range of Seam
Thickness (m) | | Range o | No. of Full
Intersections | | |------------------------------|--------------------------------|-------------------|--------------------|------------------------------|-----| | | Minimum | Maximum | Minimum | Maximum | | | 11 | 0.05
(MMT-109) | 7.05
(MMT-93) | | | 141 | | Parting | | | 16.67
(MMT-178) | 38.03
(MMT-110) | 112 | | I-L1 | 0.10
(MMT-27) | 2.89
(MMT-119) | | | 123 | | Parting | | | 13.57
(MMT-77) | 28.60
(MMT-41) | 9 | | I-L | 0.07
(MMT-57) | 1.16
(MMT-155) | | | 13 | | Parting | | | 1.43
(MMT-29) | 7.19
(MMT-57) | 8 | | I-TOP | 0.11
(MMT-164) | 3.80
(MMT-43) | | | 98 | | Parting | | | 0.42
(MMT-46) | 17.43
(MMT-179) | 71 | | I-BOT | 0.19
(MMT-162) | 4.49
(MMT-152) | | | 71 | | I-COMB | 2.15
(MMT-63) | 7.87
(MMT-139) | | | 30 | It is mentioned in Final GR that Seam X Bottom, IX, VIII, VIII-L, VII-Top, VII-Bottom, VII Combined and VI together form the opencast proposition while Seam - VI-L, VA-1, VA-2, VB-1, VB-2, VC-1, VC-2, VD-1, VD-2, IV, III-L2, III, II, IL-1, I Top, I Bottom and I combined are proposed to be mined by underground method. # (b) Sequence of workable Coal Seams The sequence of workable coal seams is furnished below in Table 4.7 along with their thickness. TABLE 4.7 SEQUENCE OF WORKABLE COAL SEAMS OF GARE-PALMA SECTOR-II AS PER GR BLOCK | Ш | SI. | Coal Seam | Coal Thickness | • | Workability of | |-----|------|-----------|----------------|------------|----------------| | | No. | | range, m | Surface, m | seam as per GR | | | | | | | | | | . 1. | X-BOT | 0.68-6.26 | 90.185 | Workable | | 1 | 2. | ΙX | 2.66-7.34 | 125.015 | Workable | | 0.0 | 3. | VIII | 0.31-6.50 | 139.275 | Workable | | 18 | 4. | VIII-L | 0.10-2.25 | 152.25 | Workable | | 40 | 5. | VII-TOP | 1.50-6.15 | 165.985 | Workable | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL | SI.
No. | Coal Seam | Coal Thickness range, m | Av. Depth from Surface, m | Workability of
seam as per GR | |------------|-----------|-------------------------|---------------------------|----------------------------------| | | | | | | | 6. | VII-BOT | 0.16-3.84 | 170.5 | Workable | | 7. | VII-COMB | 2.06-8.39 | 160.625 | Workable | | 8. | VI | 0.25-7.74 | 177.815 | Workable | | 9. | VB-1 | 0.10-1.47 | 208.66 | Workable* | | 10. | VC-1 | 0.12-2.40 | 218.4 | Workable | | 11. | VD-1 | 0.05-1.40 | 223.115 | Workable* | | 12. | IV | 0.10-3.70 | 261.1 | Workable | | 13. | 111 | 0.10-3.50 | 331.575 | Workable | | 14. | П | 0.05-7.05 | 410.15 | Workable | | 15. | I-L1 | 0.10-2.89 | 445.925 | Workable | | 16. | I-TOP | 0.11-3.80 | 441.225 | Workable | | 17. | I-BOT | 0.19-4.49 | 445.01 | Workable | | 18. | I-COMB | 2.15-7.87 | 445.395 | Workable | Though, in GR these seams are shown workable, their maximum thickness is less than 1.5 m and mean thickness less than 1m (Seam VB1=0.79m, Seam VD1=0.35 m; Reserves of >0.9m thickness of seam VB1= 3.119 Mt, the seam is converted to carbonaceous shale around borehole RGP-22, 19 & RP-11; Seam VD1=0. 0.236 Mt), hence for mining they have been considered "not workable". # (c) Strike and dip The general strike of coal horizons is NW-SE in the major part of the block which entire block with minor swings. The dip of beds varies from 2 to 4 degrees towards south-west. #### 4.8 COAL RESERVES & OVERBURDEN ## 4.8.1 Reserves The extent of coal bearing area in the block is 2583.486 Ha and the whole block area can be considered as coal bearing area. The procedure adopted for estimation of coal reserves in Gare Palma Sector-II Coal Block is fundamentally based on the specific geological factors which determine the extent to which correlation, interpolation of data can be projected for building up a stratigraphic and structural model of the play and disposition of the coal seams and this concept applied to generate various plans to estimate coal reserves through Minex Software. From the structural 3-D model, various plans viz. vertical cross sections and floor contour plans have been generated. Similarly from the model quality overall data are presented in the individual seam folio plan. La mora The detailed exploration in Gare Palma Sector-II coal block, revealed the existence of 31 correlatable Barakar coal seams. These seam in descending order are XL-A, X Top, X Bottom, IX-L2, IX-L1, IX, VIII, VIII-L, VII Top. VII Bottom, VII Combined, VI, VI L, VA-1, VA-2, VB-1, VB-2, VC-1, VC-2, VD-1, VD-2, IV, III L2, III, II L, II, I-L1, I-L1, I Top, I Bottom & I combined. Out of these 18 seams viz. X Bottom, IX, VIII, VIII L, VII Top, VII Bottom, VII combined, VI, VB-1, VC-1, VD-1, IV, III, II, IL1, I Top, I Bottom and I Combined are workable. Remaining seams are almost unworkable in major part of the block. Seam X Bottom, IX, VIII, VIII-L, VII-Top, VII-Bottom, VII Combined & VI together form the opencast proposition in major part of the block while in a small area located in the south eastern part of the block where seam -VI becomes unworkable, seam VII has been considered base seam for open cast. Seam- VI-L, VA-1, VA-2, VB-1, VB-2, VC-1, VC-2, VD-1, VD-2, IV,III-L2, III, II, IL-1, I Top, I Bottom & I combined can be mined by underground method. The floor and folio plan of all above seams are given in Fig 4.1 to 4.16 respectively at the end of Chapter. The reserves of the coal seams have been estimated sector-wise. For this purpose, the block has been divided into sectors A, B, C, D, E, F, G, H & I based on disposition of faults and Kelo river. # 4.8.2 Basic assumptions and norms followed The following norms have been taken into account for reserves calculation: - The reserves have been estimated for opencast proposition on I-100 thickness for 8 seams i.e. X Bottom, IX, VIII, VIII L, VII Top, VII Bottom, VII Combined & VI in the major part of the block. However, in a small area located in the south-eastern part of the block that of for 7 seams up to VII Bottom/ VII Combined as the seam VI is unworkable in this part and on I-30 thickness for 17 seams viz. seam VI-L, VA-1, VA-2, VB-1, VB-2, VC-1, VC-2, VD-1, VD-2, IV,III-L2, III, II, IL-1, I Top, I Bottom & Loombined. - ii) Isochores, Isograde are drawn for I100 / I-30 thickness of seams for open cast and underground proposition. - iii) The minimum workable thickness considered for the estimation of reserves of the individual seams/sections for OC/ underground proposition is 0.90m. However, reserves for thickness 0.50m to 0.90m have also been estimated and kept under resource. - The isochores have been drawn on the basis of the principle of gradual and uniform change over the area. It is assumed that the variation between any two points of observations is uniform and gradual. - v) The limits of non-development zones of seams have been marked by taking half of the influence of the borehole with positive seam intersection. These limits have also been considered to be the line of zero seam thickness. - vi) The limit of zone of basement high has been drawn half way of distance between two boreholes. - vii) Areas falling within the heave zones of faults have been excluded from the estimation of reserves. - viii) Coal reserves are estimated for superior & inferior grade coal available in the block and as per opencast and underground norms and hence for 0.90 m and above seam thickness & at 0.90-1.2m, 1.20-1.50m, 1.50-3.00m, 3.00-5.00, 5.00-10.00 and >10.00m thickness interval. - ix) The reserves of workable seams have been estimated based on I100/ I-30 thickness & quality and have been estimated seam-wise, sectorwise, coal to overburden ratio-wise, depth-wise (at 50m interval), barrier-wise, forest-wise, thickness-wise & grade-wise. The depth-wise reserves for underground property have also been given for depth <300m & >300m by drawing 300m depth line. - x) 60 m barrier has been drawn both side of metalled road and Kelo river. - xi) A barrier of 45m has been kept for the diverted road as per statutory norms. - xii) Reserves have also been estimated within village, infrastructure and forest. - xiii) Volume of coal is estimated by Minex Software Model and reserves are by empirical formula of Gross Reserves = Area X Thickness X Sp. Gravity of coal (m) (Thousand Tonnes) = (Sq.m) (Grade-wise) xiv) A 10% reduction in Gross Geological Reserves for arriving at Net Geological Reserves has been kept as in the GR and as per the accepted practice. # 4.8.3 Calculation of specific gravity The specific gravity has been calculated seam-wise for each grade by the procedure outlined below: 1) The mean of ash percentage is assessed found for each grade and for each seam. 2) From this mean ash percentage, average specific gravity was calculated by the Formula: Specific Gravity $1.28 + 0.01 \times Ash$ The grade-wise specific gravity considered for all the coal seams are given in Table 4.8 below. TABLE 4.8 GRADE-WISE AVERAGE SPECIFIC GRAVITY OF COAL SEAMS | Grade | Specific Gravity | |-------|------------------| | А | 1.42 | | В | 1.45 | | C . | 1.50 | | D | 1.55 | | E | 1.60 | | F | 1.68 | | G | 1.76 | # 4.8.4 Method of grade estimation The proximate analysis on 60% R.H. & at 40°C of the seams form the basis for grade estimation. Wherever such analyses are not available, the same have been calculated on M-100 basis. The non-coking coals have been classified into seven grades on the basis of the useful heat value (UHV) and seventeen grades on the basis of Gross
Calorific Value. The grades of the coal are as given in Table 4.9 and 4.9A respectively. TABLE 4.9 GRADES OF NON-COKING COAL BASED ON UHV (GOI Notification no. 28012/80/CA dated 13.02.1981) | Grade | Ash% +Moisture %
(on 60% RH & 40°C | Useful heat value (UHV)
(In K.cal/Kg) | |-------|---------------------------------------|--| | A CAL | < 19.6 | > 6200 | | S B | 19.6 - 23.9 | >5600 - 6200 | | S C | 24.0 - 28.6 | >4940 - 5600 | | v v D | 28.7 - 34.0 | >4200 - 4940 | | E | 34.1 - 40.1 | >3360 - 4200 | | F | 40.2 - 47.1 | >2400 - 3360 | | G | 47.2 - 55.0 | >1300 - 2400 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL TABLE 4.9A GRADES OF NON-COKING COAL BASED ON GCV IN INDIA (GAZETTE NOTIFICATION NO.22021/1/2008-CRC-II, DT.30.12.2011) | GCV (| Grade | | |-------|---------|-----| | From | То | | | Abov | ve 7000 | G1 | | 6701 | 7000 | G2 | | 6401 | 6700 | G3 | | 6101 | 6400 | G4 | | 5801 | 6100 | G5 | | 5501 | 5800 | G6 | | 5201 | 5500 | G7 | | 4901 | 5200 | G8 | | 4601 | 4900 | G9 | | 4301 | 4600 | G10 | | 4001 | 4300 | G11 | | 3701 | 4000 | G12 | | 3401 | 3700 | G13 | | 3101 | 3400 | G14 | | 2801 | 3100 | G15 | | 2501 | 2800 | G16 | | 2201 | 2500 | G17 | # 4.8.5 Grades of coal in the Block The grades of coal in the Block are given in Table 4.10. TABLE 4.10 SEAMWISE GRADES AND GCV RANGE IN GARE SECTOR-II | Seam | UHV (k | .Cal/Kg | GCV (k.Cal/Kg) | | New Grade
based on GCV | | |----------|--------|---------|----------------|------|---------------------------|-----| | | Min | Max | Min | Max | Min | Max | | X-LA/un | 1434 | 3877 | 3440 | 4690 | G13 | G9 | | X-TOP/un | 1518 | 3229 | 3100 | 4600 | G14 | G10 | | X-BOT | 1794 | 4222 | 2550 | 4970 | G16 | G8 | | ↑X-L2/un | 1365 | 4829 | 4280 | 5050 | G11 | G8 | | 1X-L1 | 2235 | 3891 | 3650 | 5240 | G13 | G7 | | 1% | 3063 | 4871 | 4280 | 5320 | G11 | G7 | | VIII | 1366 | 2953 | 2990 | 4300 | G15 | G11 | | VIII-Ł | 1614 | 4291 | 3180 | 4730 | G14 | G9 | | VII-Top | 1407 | 3628 | 3100 | 4650 | G14 | G9 | | VII-Bot | 1656 | 4071 | 2960 | 4980 | G15 | G8 | 20.0 11177 A 07 11107 GOE | Seam | eam UHV (k.Cal/Kg GCV (k.Cal/Kg) | | Cal/Kg) | | Grade
on GCV | | |---------|----------------------------------|------|---------|------|-----------------|-----| | | Min | Max | Min | Max | Min | Max | | VII-Com | 1834 | 3587 | 3170 | 4670 | G14 | G9 | | VI | 1407 | 4111 | 3100 | 5160 | G14 | G8 | | VI-L/un | 1352 | 2097 | 3500 | 4410 | G13 | G10 | | VA-1 | 1380 | 4236 | 3170 | 5210 | G14 | G7 | | VA-2/un | 1545 | 3201 | 4240 | 4980 | G11 | G8 | | VB-1 | 1545 | 5229 | 3990 | 5100 | G12 | G8 | | VB-2/un | 2566 | 5947 | 4100 | 5490 | G11 . | G7 | | VC-1 | 1752 | 4677 | 3400 | 5380 | G13 | G7 | | VC-2 | 2497 | 4788 | 3690 | 6620 | G13 | G3 | | VD-1/un | 3256 | 3463 | 3950 | 4840 | G12 | G9 | | VD-2 | 1338 | 2539 | 3040 | 4760 | G15 | G9 | | IV | 1710 | 5243 | 3550 | 5980 | G13 | G5 | | III-L2 | 1959 | 3753 | 3690 | 5320 | G13 | G7 | | []] | 2147 | 5326 | 3270 | 7000 | G14 | G2 | | II-L/un | 2470 | 3284 | 4220 | 5370 | G11 | G7 | | II | 2318 | 7217 | 5514 | 6820 | G6 | G2 | | I-L1 | 4719 | 7341 | 5560 | 7250 | G6 | G1 | | I-L/un | 3352 | 7492 | 4610 | 4610 | G9 | G9 | | І-Тор | 2461 | 6872 | 4010 | 6940 | G11 | G1 | | I-Bot | 1685 | 7452 | 3880 | 7070 | G12 | G1 | | I-Com | 3532 | 6168 | 4580 | 6270 | G10 | G4 | # 4.8.6 Opencast proposition RQP has identified that seam X Bottom, IX, VIII, VIIIL, VII Top, VII Bottom, VII Combined and VI together form the open cast proposition in the major part of the block. However, in a small area located in the south-eastern part of the block, seam VII has been considered base seam for open cast, as the seam VI becomes unworkable in this part. The cumulative thickness of coal packet of above said seams in general varies from 12 m to 22 m. The coal to overburden ratio in general varies from 1:3 to 1:10 in the block. The depth of quarry varies from 80 m to 200 m. ## 4.8.7 Overburden A ... Nature of overburden: Overburden consists predominantly sandstone with minor amount of shale, carbonaceous shale, ungraded coal and thin coal bands (< 1m in thickness). Besides, the overburden also includes soil, weathered rocks, obvious bands of any thickness and dirt bands of >1m thickness. Sector-wise, depth-wise, ratio-wise volume of over burden and stripping ratio. ### 4.8.8 Calculation of overburden To arrive at total volume of overburden upto base of seam VI/VII following procedures has been adopted. The Iso-excavation plan and coal to overburden ratio plan have been prepared by using MINEX Software programme. The volume of overburden has been calculated by applying the formula: $V = A \times Th$, where V = Volume of overburden in cu.m. A = Area in sq. m. Th = Average thickness of iso-pachytes of overburden in m. / isopachytes of parting. # 4.8.9 Stripping Ratio Stripping ratio is obtained after dividing total volume of overburden by tonnage of coal available in the same area. # 4.8.10 Categorisation of reserves Borehole density is 7.3 boreholes/ sq km (excluding 8 bh drilled by GSI)., hence the entire reserves of all the coal seams from seam X-Bot to I Bottom / I Combined are grouped under Proved category which corresponds to digit 1 of geological axis of UNFC. ## 4.8.11 Area considered for reserves estimation - i. For the purpose of reserves calculation for the all seams northern, southern boundary eastern & western boundary of block is considered. - ii. In the block, total of 1006.225 million tonnes have been estimated for 25 workable coal seams in the block of effective thickness 0.90 to 10.00m, out of which 682.569 million tonnes of reserves occur in opencast and 323.656 million tonnes are found in underground area. - A majority of 409.903 million tonnes (40.7% of total reserves) fall in F grade. In underground area 102.193 million tonnes (31.6% of total reserves) occur in superior grade. - iv. 299.419 million tonnes (43.8%) & 293.084 million tonnes (43.0%) of total reserves are estimated in depth range of 100m to 150m and 150m to 200m respectively in opencast area. ## A. For seam thickness more than 0.9m # A.i. For opencast: The details of the opencastable reserves (as per GR) are reproduced below in Table 4.11 to Table 4.15 for coal thickness more than 0.9m: TABLE 4.11 SEAM-WISE AND BARRIER-WISE RESERVES (THICKNESS > 0.90 M) OPENCAST (RESERVES IN '000 TONNES) | Seam | Outside | JSPL Colony* | River | Forest | Village | Road | Total | |----------|---------|--------------|-------|--------|---------|--------|--------| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | | X-TOP | 2077 | 207 | 1 | 0 | 0 | 58 | 2343 | | X-BOT | 64247 | 1523 | 1323 | 2663 | 2977 | 12929 | 85662 | | IX-L2 | 13 | 0 | 0 | 0 | 0 | 0 | 13 | | IX-L1 | 163 | 0 | 0 | 4 | 0 | 43 | 210 | | IX | 115046 | 4498 | 2686 | 5837 | 4572 | 23545 | 156184 | | VIII | 59094 | 1073 | 457 | 5766 | 2686 | 12064 | 81140 | | VIII-L | 8647 | 0 | 281 | 358 | 404 | 2384 | 12074 | | VII-TOP | 61514 | 1292 | 2094 | 3427 | 2649 | 17968 | 88944 | | VII-BOT | 15190 | 430 | 602 | 936 | 858 | 4730 | 22746 | | VII-COMB | 65055 | 4133 | 1035 | 2961 | 1928 | 7193 | 82305 | | VI | 113779 | 139 | 986 | 6625 | 4637 | 24782 | 150948 | | Total | 504825 | 13295 | 9465 | 28577 | 20711 | 105696 | 682569 | ^{*} Existing colony of Jindal Steel and Power Ltd. TABLE 4.12 SEAM-WISE AND RATIO-WISE RESERVES (THICKNESS > 0.90 M) OPENCAST (RESERVES IN '000 TONNES) | Seam | 1:2-1:3 | 1:3-1:4 | 1:4-1:5 | 1:5-1:6 | 1:6-1:7 | 1:7-1:8 | 1:8-1:9 | 1:9-1:10 | >1:10 | Total | |----------|---------|---------|---------|---------|---------|---------|---------|----------|-------|--------| | X-TOP | 1 0 | 0 | 0 | 121 | 419 | 690 | 606 | 314 | 193 | 2343 | | X-BOT | 63 | 6222 | . 8626 | 10343 | 12573 | 17817 | 20831 | 5237 | 3950 | 85662 | | IX-L2 | 0 | 9 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 13 | | IX-L1 | 0 | 29 | 0 | 28 | 0 | 45 | 108 | Ō | 0 | 210 | | IX | 169 | 13121 | 14045 | 16841 | 22203 | 30872 | 37296 | 11318 | 10319 | 156184 | | VIII | 195 | 15866 | 14383 | 11021 | 11449 | 12314 | 10770 | 2877 | 2265 | 81140 | | VIII-L | 0 | 42 | 100 | 0 | 248 | 3059 | 6658 | 1442 | 525 | 12074 | | VII-TOP | 0 | 5587 | 6484 | 6005 | 8203 | 15579 | 30324 | 9636 | 7126 | 88944 | | VII-BOT | 0 | 1911 | 1574 | 1211 | 1546 | 3386 | 8651 | 2695 | 1772 | 22746 | | VII-COMB | 196 | 7598 | 6932 | 11789 | 17033 | 19168 | 12210 | 3084 | 4295 | 82305 | | VI o | 129 | 14242 | 15806 | 17272 | 21273 | 32575 | 39250 | 7814 | 2587 | 150948 | | Total | 752 | 64627 | 67951 | 74634 | 94947 | 135505 | 166704 | 44417 | 33032 | 682569 | | 1. 10.00 | | | | | | | | | | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL TABLE 4.13 SEAM-WISE AND DEPTH-WISE RESERVES (THICKNESS > 0.90M) OPENCAST (RESERVES IN '000 TONNES) | or Entertain (REGERTEE III etc Ferritze) | | | | | | | | | |--|--------|---------|---------|--------|--|--|--|--| | Depth | 50-100 | 100-150 | 150-200 | Total | | | | | | X-TOP | 11 | 633 | 1699 | 2343 | | | | | | X-BOT | 9327 | 39642 | 36693 | 85662 | | | | | | IX-L2 | 10 | 3 | 0 | 13 | | | | | | IX-L1 | 29 | 28 | 153 | 210 | | | | | | IX | 18810 | 71021 | 66353 | 156184 | | | | | | VIII | 20595 | 39968 | 20577 | 81140 | | | | | | VIII-L | 142 | 122 | 11810 | 12074 | | | | | | VII-TOP | 7256 | 35496 | 46192 | 88944 | | | | | | VII-BOT | 2254 | 8478 | 12014 | 22746 | | | | | | VII-COMB | 12316 | 40258 | 29731 | 82305 | | | | | | VI | 19316 | 63770 | 67862 | 150948 | | | | | | Total | 90066 | 299419 | 293084 | 682569 | | | | | TABLE 4.14 SEAM-WISE AND THICKNESS-WISE RESERVES (THICKNESS > 0.90M) OPENCAST (RESERVES IN '000 TONNES) | Thislenges | 0042 | 1.2-1.5 | 1 = 2 0 | 2050 | E 0 40 0 | Total | |------------|---------|---------|---------|---------|----------|--------| | Thickness | 0.9-1.2 | 1.2-1.5 | 1.5-3.0 | 3.0-5.0 | 5.0-10.0 | Total | | X-TOP | 1253 | 352 | 738 | 0 | 0 | 2343 | | X-BOT | 775 | 5454 |
69208 | 9735 | 490 | 85662 | | IX-L2 | 13 | 0 | 0 | 0 | 0 | 13 | | IX-L1 | 210 | 0 | 0 | 0 | 0 | 210 | | IX | 0 | 0 | 62 | 147022 | 9100 | 156184 | | | 6366 | 10426 | 30152 | 19013 | 15183 | 81140 | | VIII-L | 1815 | 3579 | 6680 | 0 | 0 | 12074 | | VII-TOP | 0 | 3 | 4761 | 83711 | 469 | 88944 | | VII-BOT | 9845 | 8234 | 4646 | 21 | 0 | 22746 | | VII-COMB | 0 | 0 | 226 | 32305 | 49774 | 82305 | | VI | 1873 | 1062 | 7215 | 66675 | 74123 | 150948 | | Total | 22150 | 29110 | 123688 | 358482 | 149139 | 682569 | TABLE 4.15 SEAM-WISE AND GRADE-WISE RESERVES (THICKNESS > 0.90M) OPENCAST (RESERVES IN '000 TONNES) | Seam | D | E | F | G | Total | |---------------|-------|--------|--------|--------|--------| | X-TOP | 0 | 32 | 2123 | 188 | 2343 | | X-BOT | 3 | 10269 | 67771 | 7619 | 85662 | | MAGRX-L2 | 0 | 3 | 10 | 0 | 13 | | Coole JX2L1 | 0 | 65 | 76 | 69 | 210 | | IX | 19338 | 135817 | 1029 | 0 | 156184 | | A SAN DE VIII | 0 | 0 | 16647 | 64493 | 81140 | | VIII-L | 52 | 3482 | 6859 | 1681 | 12074 | | VII-TOP | 0 | 2202 | 65753 | 20989 | 88944 | | VII-BOT | 0 | 1216 | 16517 | 5013 | 22746 | | VII-COMB | 0 | 1224 | 67607 | 13474 | 82305 | | VI | 0 | 42521 | 100257 | 8170 | 150948 | | Total | 19393 | 196831 | 344649 | 121696 | 682569 | # A.ii. For Underground: The details of the reserves mineable by underground (as per GR) are given below in Table 4.16 to Table 4.19 for coal thickness more than 0.9m. TABLE 4.16 SEAM-WISE AND BARRIER- (THICKNESS > 0. 90 M) UNDERGROUND (RESERVES IN '000 TONNES) | Seam | Outside | JSPL | River | Forest | Village | Road | Total | |--------|---------|------|-------|--------|---------|-------|--------| | VI-L | 340 | 3 | 0 | 0 | 0 | 154 | 497 | | VA-1 | 2257 | 2 | 0 | 280 | 139 | 441 | 3119 | | VA-2 | 237 | 0 | 0 | 0 | 0 | 17 | 254 | | VB-1 | 7264 | 0 | 0 | 126 | 360 | 1226 | 8976 | | VB-2 | 269 | 0 | 0 | 0 | 0 | 0 | 269 | | VC-1 | 21851 | 307 | 418 | 1407 | 1005 | 4849 | 29837 | | VC-2 | 5588 | 0 | 0 | 1291 | 67 | 1410 | 8356 | | VD-1 | 160 | 0 | 0 | 0 | 2 | 74 | 236 | | VD-2 | 460 | 0 | 0 | 39 | 52 | 16 | 567 | | IV | 46637 | 1472 | 768 | 2670 | 1898 | 8915 | 62360 | | III-L2 | 1146 | 0 | 0 | 11 | 3 | 67 | 1227 | | 111 | 49117 | 2488 | 1318 | 3530 | 2051 | 10788 | 69292 | | | 38909 | 0 | 79 | 3549 | 2426 | 6787 | 51750 | | I-L1 | 18669 | 137 | 302 | 1525 | 633 | 3357 | 24623 | | I-TOP | 16610 | 740 | 323 | 973 | 738 | 3766 | 23150 | | I-BOT | 14247 | 460 | 647 | 1151 | 500 | 2855 | 19860 | | I-COMB | 15777 | 0 | 85 | 0 | 1017 | 2404 | 19283 | | Total | 239538 | 5609 | 3940 | 16552 | 10891 | 47126 | 323656 | TABLE 4.17 SEAM-WISE AND DEPTH-WISE RESERVES (THICKNESS > 0.90 M) UNDERGROUND (RESERVES IN '000 TONNES) | 11110141200 - 0100 | iii, one Entoni | , (<u></u> | *********** | |--------------------|-----------------|-------------|-------------| | Depth | <50 | 50-100 | Total | | VI-L | 497 | 0 | 497 | | VA-1 | 3119 | 0 | 3119 | | VA-2 | 254 | 0 | 254 | | VB-1 | 8976 | 0 | 8976 | | VB-2 | 269 | 0 | 269 | | VC-1 | 29837 | 0 | 29837 | | VC-2 | 8356 | 0 | 8356 | | VD-1 | 236 | 0 | 236 | | VD-2 | 567 | 0 | 567 | | IV. | 62360 | 0 | 62360 | | | | | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL | Depth | <50 | 50-100 | Total | |--------|--------|--------|--------| | III-L2 | 1227 | 0 | 1227 | | 111 | 37814 | 31478 | 69292 | | ll l | 5026 | 46724 | 51750 | | I-L1 | 0 | 24623 | 24623 | | I-TOP | 0 | 23150 | 23150 | | I-BOT | 0 | 19860 | 19860 | | I-COMB | 0 | 19283 | 19283 | | Total | 158538 | 165118 | 323656 | TABLE 4.18 SEAM-WISE AND THICKNESS-WISE RESERVES (THICKNESS > 0.90M) UNDERGROUND (RESERVES IN '000 TONNES) | | 0.00 | (IVEOLIVAE | | (CIVIVEO) | | | |-----------|---------|------------|---------|------------|----------|--------| | Thickness | 0.9-1.2 | 1.2-1.5 | 1.5-3.0 | 3.0-5.0 | 5.0-10.0 | Total | | VI-L | 402 | 90 | 5 | 0 | 0 | 497 | | VA-1 | 3036 | 83 | 0 | 0 | 0 | 3119 | | VA-2 | 234 | 20 | 0 | 0 | 0 | 254 | | VB-1 | 8670 | 306 | 0 | 0 | 0 | 8976 | | VB-2 | 172 | 97 | 0 | 0 | 0 | 269 | | VC-1 | 23769 | 5685 | 383 | 0 | 0 | 29837 | | VC-2 | 8166 | 190 | 0 | 0 | 0 | 8356 | | VD-1 | 233 | 3 | 0 | 0 | 0 | 236 | | VD-2 | 564 | 3 | 0 | 0 | 0 | 567 | | IV | 2997 | 6171 | 47537 | 5655 | 0 | 62360 | | III-L2 | 1101 | 119 | 7 | 0 | 0 | 1227 | | III | 1291 | 2651 | 62473 | 2877 | 0 | 69292 | | II | 1440 | 1762 | 5095 | 11618 | 31835 | 51750 | | I-L1 | 2682 | 3938 | 18003 | 0 | 0 | 24623 | | I-TOP | 2849 | 4075 | 16209 | 17 | 0 | 23150 | | I-BOT | 1510 | 2930 | 13322 | 2098 | 0 | 19860 | | I-COMB | 0 | 0 | 1065 | 9355 | 8863 | 19283 | | Total | 59116 | 28123 | 164099 | 31620 | 40698 | 323656 | TABLE 4.19 SEAM-WISE AND GRADE-WISE RESERVES (THICKNESS > 0.90 M) UNDERGROUND (RESERVES IN '000 TONNES) | Seam | Α | В | С | D | E | F | G | Total | |-------------------|---|---|----|-----|-------|-------|-----|-------| | VI-L | 0 | 0 | 0 | 0 | 57 | 226 | 214 | 497 | | VA-1 | 0 | 0 | 0 | 7 | 1361 | 1593 | 158 | 3119 | | · WAZ | 0 | 0 | 0 | 0 | 12 | 153 | 89 | 254 | | 131 9 B-4 331 | 0 | 0 | 20 | 128 | 6971 | 1748 | 109 | 8976 | | VB ₇ 2 | 0 | 0 | 0 | 80 | 189 | Ō | 0 | 269 | | 5112 NO. 811 | 0 | 0 | 0 | 359 | 10692 | 18146 | 640 | 29837 | | VC-2 | 0 | 0 | 0 | 267 | 5246 | 2843 | 0 | 8356 | | VD-1 | 0 | 0 | 0 | 0 | 162 | 74 | 0 | 236 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPAM | Seam | Α | В | С | D | Е | F | G | Total | |--------|-------|-------|-------|-------|-------|-------|------|--------| | VD-2 | 0 | 0 | 0 | 0 | 0 | 42 | 525 | 567 | | IV | 0 | 0 | 648 | 20332 | 36430 | 4782 | 168 | 62360 | | III-L2 | 0 | 0 | 0 | 0 | 170 | 814 | 243 | 1227 | | III | 0 | 0 | 344 | 5573 | 28964 | 33012 | 1399 | 69292 | | П | 952 | 2735 | 25504 | 19378 | 2591 | 573 | 17 | 51750 | | I-L1 | 22681 | 970 | 730 | 121 | 73 | 48 | 0 | 24623 | | I-TOP | 10941 | 5384 | 2094 | 2487 | 1639 | 605 | 0 | 23150 | | I-BOT | 1634 | 5757 | 5148 | 3850 | 2738 | 595 | 138 | 19860 | | I-COMB | 0 | 4821 | 11830 | 2385 | 247 | 0 | 0 | 19283 | | Total | 36208 | 19667 | 46318 | 54967 | 97542 | 65254 | 3700 | 323656 | # B. For seam thickness 0.50 m to 0.90 m: # B.i. For Opencast The details of the opencastable reserves (as per GR) are given below in Table 4.20 to Table 4.24 for coal thickness between 0.50 m and 0.90 m. TABLE 4.20 SEAM-WISE AND BARRIER-WISE RESERVES (0.50 M TO 0.90 M) OPENCAST (RESERVES IN '000 TONNES) | Seam | Outside | JSPL | River | Forest | Village | Road | Total | |---------|---------|------|-------|--------|---------|------|-------| | X-LA | 8233 | 215 | 346 | 271 | 46 | 1789 | 10900 | | X-TOP | 5205 | 660 | 168 | 97 | 295 | 1004 | 7429 | | X-BOT | 105 | 8 | 0 | 0 | 0 | 0 | 113 | | IX-L2 | 8893 | 260 | 211 | 350 | 381 | 2134 | 12229 | | IX-L1 | 10114 | 42 | 80 | 716 | 373 | 2426 | 13751 | | VIII | 1698 | 136 | 252 | 0 | 85 | 320 | 2491 | | VIII-L | 1302 | 5 | 48 | 79 | 76 | 219 | 1729 | | VII-BOT | 2113 | 0 | 43 | 85 | 27 | 443 | 2711 | | VI | 1382 | 629 | 53 | 0 | 47 | 72 | 2183 | | Total | 39045 | 1955 | 1201 | 1598 | 1330 | 8407 | 53536 | TABLE 4.21 SEAM-WISE AND RATIO RESERVES (0.50 M TO 0.90 M) OPENCAST (RESERVES IN '000 TONNES) | (ILCERTED III 000 FORMED) | | | | | | | | | | | |---------------------------|---------|---------|---------|---------|---------|---------|---------|----------|-------|-------| | Seam | 1:2-1:3 | 1:3-1:4 | 1:4-1:5 | 1:5-1:6 | 1:6-1:7 | 1:7-1:8 | 1:8-1:9 | 1:9-1:10 | >1:10 | Total | | X-LA | 0 | 628 | 979 | 1515 | 2001 | 1824 | 2358 | 747 | 848 | 10900 | | X-TOP | 0 | 0 | 16 | 518 | 1326 | 1073 | 2355 | 830 | 1311 | 7429 | | X-BOT | 0 | 0 | 18 | 0 | 14 | 9 | 0 | 0 | 72 | 113 | | IX-L2 | 0 | 660 | 1194 | 1705 | 1854 | 1831 | 2872 | 1075 | 1038 | 12229 | | JX-Ł1 | 17 | 1042 | 388 | 921 | 1522 | 3109 | 5082 | 1228 | 442 | 13751 | | · UIV O. | 0 | 0 | 0 | 0 | 43 | 108 | 1243 | 525 | 572 | 2491 | | VIII-E | 0 | 6 | 80 | 23 | 20 | 391 | 721 | 170 | 318 | 1729 | | VII-BOT | 0 | 17 | 179 | 448 | 442 | 660 | 428 | 256 | 281 | 2711 | | N. W. | 0 | 0 | 0 | 127 | 151 | 409 | 373 | 312 | 811 | 2183 | | Total | 17 | 2353 | 2854 | 5257 | 7373 | 9414 | 15432 | 5143 | 5693 | 53536 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 4-28 TABLE 4.22 SEAM-WISE AND DEPTH-WISE RESERVES (0.50 M TO 0.90 M) OPENCAST (RESERVES IN '000 TONNES) | Depth | 50-100 | 100-150 | 150-200 | Total | |---------|--------|---------|---------|-------| | X-LA | 952 | 6470 | 3478 | 10900 | | X-TOP | 71 | 2885 | 4473 | 7429 | | X-BOT | 0 | 41 | 72 | 113 | | IX-L2 | 1059 | 6670 | 4500 | 12229 | | IX-L1 | 1160 | 3877 | 8714 | 13751 | | VIII | 11 | 721 | 1759 | 2491 | | VIII-L | 87 | 190 | 1452 | 1729 | | VII-BOT | 96 | 1391 | 1224 | 2711 | | VI | 0 | 717 | 1466 | 2183 | | Total | 3436 | 22962 | 27138 | 53536 | TABLE 4.23 SEAM-WISE AND THICKNESS-WISE RESERVES (0.50 M TO 0.90 M) OPENCAST (RESERVES IN '000 TONNES) | Thickness | 0.5-0.9 | Total | |-----------|---------|-------| | X-LA | 10900 | 10900 | | X-TOP | 7429 | 7429 | | X-BOT | 113 | 113 | | IX-L2 | 12229 | 12229 | | IX-L1 | 13751 | 13751 | | VIII | 2491 | 2491 | | VIII-L | 1729 | 1729 | | VII-BOT | 2711 | 2711 | | . VI | 2183 | 2183 | | Total | 53536 | 53536 | TABLE 4.24 SEAM-WISE AND GRADE-WISE RESERVES (0.50 M TO 0.90 M) OPENCAST (RESERVES IN '000 TONNES) | (0.00 | , | , | | | | | |------------|-----|------|-------|-------|-------|-------| | Seam | С | D | E | F | G | Total | | X-LA | 0 | 0 | 1612 | 5735 | 3553 | 10900 | | X-TOP | 0 | 0 | 396 | 3950 | 3083 | 7429 | | X-BOT | 0 | 0 | 0 | 104 | 9 | 113 | | IX-L2 | 0 | 1042 | 7812 | 2935 | 440 | 12229 | | IX-L1 | 139 | 3331 | 7460 | 1764 | 1057 | 13751 | | - VIII | 0 | 0 | 3 | 668 | 1820 | 2491 | | - MI-L | 0 | 0 | 5 | 735 | 989 | 1729 | | VII-BOT | 0 | 0 | 305 | 1594 | 812 | 2711 | | William II | 0 | 0 | 50 | 511 | 1622 | 2183 | | Total | 139 | 4373 | 17643 | 17996 | 13385 | 53536 | # B.ii. For underground The details of the reserves mineable by underground (as per GR) are
given below in Table 4.25 to Table 4.28 for coal thickness between 0.50 m and 0.90m. TABLE 4.25 SEAM-WISE AND BARRIER-WISE RESERVES (0.50 M TO 0.90 M) UNDERGROUND (RESERVES IN '000 TONNES) | Seam | Outside | JSPL | River | Forest | Village | Road | Total | |--------|---------|------|-------|--------|---------|-------|--------| | VI-L | 5487 | 41 | 0 | 296 | 243 | 983 | 7050 | | VA-1 | 14124 | 204 | 406 | 630 | 515 | 3233 | 19112 | | VA-2 | 3003 | 0 | 0 | 114 | 96 | 523 | 3736 | | VB-1 | 4861 | 0 | 0 | 585 | 217 | 1111 | 6774 | | VB-2 | 7445 | 115 | 153 | 713 | 330 | 1794 | 10550 | | VC-1 | 5492 | 477 | 217 | 81 | 168 | 1041 | 7476 | | VC-2 | 35047 | 1569 | 638 | 1107 | 1475 | 7191 | 47027 | | VD-1 | 1409 | 76 | 0 | 54 | 100 | 218 | 1857 | | VD-2 | 4010 | 254 | 164 | 258 | 215 | 578 | 5479 | | IV | 2097 | 10 | 170 | 188 | 143 | 617 | 3225 | | III-L2 | 3392 | 0 | 0 | 176 | 184 | 532 | 4284 | | 111 | 361 | 0 | 0 | 0 | 12 | 102 | 475 | | [[| 2292 | 83 | 31 | 9 | 19 | 216 | 2650 | | I-L1 | 2088 | 28 | 116 | 5 | 54 | 393 | 2684 | | I-TOP | 1121 | 191 | 35 | 324 | 54 | 139 | 1864 | | I-BOT | 656 | 173 | 0 | 44 | 29 | 106 | 1008 | | Total | 92885 | 3221 | 1930 | 4584 | 3854 | 18777 | 125251 | TABLE 4.26 SEAM-WISE AND DEPTH-WISE RESERVES (0.50 M TO 0.90 M) UNDERGROUND (RESERVES IN '000 TONNES) | (0.50 NI TO 0.90 NI) | UNDERGROUND | (KESEKVES IIV | 000 TONNES | |----------------------|-------------|---------------|------------| | Depth | <300 | >300 | Total | | VI-L | 7050 | 0 | 7050 | | VA-1 | 19112 | 0 | 19112 | | VA-2 | 3736 | 0 | 3736 | | VB-1 | 6774 | 0 | 6774 | | VB-2 | 10550 | 0 | 10550 | | VC-1 | 7476 | 0 | 7476 | | VC-2 | 47027 | 0 | 47027 | | VD-1 | 1857 | 0 | 1857 | | VD-2 | 5479 | 0 | 5479 | | IV | 3225 | 0 | 3225 | | III-L2 | 4284 | 0 | 4284 | | 111 | 173 | 302 | 475 | | 11 | 0 | 2650 | 2650 | | Jacob I-L1 | 0 | 2684 | 2684 | | I-TOP | 0 | 1864 | 1864 | | I-BOT | 0 | 1008 | 1008 | | Total | 116743 | 8508 | 125251 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL SPD TABLE 4.27 SEAM-WISE AND THICKNESS-WISE RESERVES (0.50 M TO 0.90 M) UNDERGROUND (RESERVES IN '000 TONNES) | Thickness | 0.5-0.9 | Total | |-----------|---------|--------| | VI-L | 7050 | 7050 | | VA-1 | 19112 | 19112 | | VA-2 | 3736 | 3736 | | VB-1 | 6774 | 6774 | | VB-2 | 10550 | 10550 | | VC-1 | 7476 | 7476 | | VC-2 | 47027 | 47027 | | VD-1 | 1857 | 1857 | | VD-2 | 5479 | 5479 | | IV | 3225 | 3225 | | III-L2 | 4284 | 4284 | | III . | 475 | 475 | | ll l | 2650 | 2650 | | I-L1 | 2684 | 2684 | | I-TOP | 1864 | 1864 | | I-BOT | 1008 | 1008 | | Total | 125251 | 125251 | TABLE 4.28 SEAM-WISE AND GRADE-WISE RESERVES (0.50 M TO 0.90 M) UNDERGROUND (RESERVES IN '000 TONNES) | Seam | Α | В | С | D | E | F | G | Total | |--------|------|------|------|------|-------|-------|------|--------| | VI-L | 0 | 0 | 0 | 3 | 219 | 3985 | 2843 | 7050 | | VA-1 | 0 | 0 | 0 | 836 | 10848 | 6344 | 1084 | 19112 | | VA-2 | 0 | 0 | 0 | 7 | 1829 | 1896 | 4 | 3736 | | VB-1 | 0 | 0 | 17 | 75 | 3394 | 3108 | 180 | 6774 | | VB-2 | 0 | 291 | 4896 | 4115 | 1139 | 109 | 0 | 10550 | | VC-1 | 0 | 0 | 0 | 63 | 3537 | 3688 | 188 | 7476 | | VC-2 | 0 | 0 | 0 | 747 | 29634 | 16300 | 346 | 47027 | | VD-1 | 0 | 0 | 0 | 38 | 979 | 619 | 221 | 1857 | | VD-2 | 0 | 0 | 0 | 0 | 77 | 907 | 4495 | 5479 | | IV | 0 | 0 | 19 | 980 | 1401 | 776 | 49 | 3225 | | III-L2 | 46 | 24 | 23 | 107 | 1069 | 2811 | 204 | 4284_ | | MOTHE | 0 | 0 | 0 | 36 | 191 | 248 | 0 | 475 | | Cugre | 1556 | 408 | 288 | 214 | 112 | 61 | 11 | 2650 | | a-LA | 2347 | 211 | 89 | 0 | 0 | 37 | 0 | 2684 | | deTOP | 813 | 242 | 366 | 266 | 117 | 60 | 0 | 1864 | | I-BOT | 135 | 362 | 83 | 30 | 153 | 200 | 45 | 1008 | | Total | 4897 | 1538 | 5781 | 7517 | 54699 | 41149 | 9670 | 125251 | Side of the Sun of MTPA of MSPGCL ### **CHAPTER 5** ### MINING ### 5.1 OPTIMISATION OF TARGETED CAPACITY Considering, the available reserves, seam disposition, depth, available strike length for opencast mining and feasibility to deploy large size equipment in opencast operation, feasibility of simultaneous underground operation, the optimum capacity of the mine has been estimated at 23.6 MTPA. The mine has been planned for maximum sustainable production, i.e. 22 Mtpa from opencast and 1.6 Mtpa from UG. Thus the total targeted capacity becomes 23.6 Mtpa. Though both OC and UG would be in production simultaneously from 12th year onwards, for safety reason, the sequence of development in UG would have a lag wrt OC operations. As the gestation period in UG is long and UG operation will reach its peak production level only in 15th year, it has been proposed to reach the total targeted production level of the mine earlier by OC only, i.e. from 7th year, which is feasible due to lower depth and stripping ratio in early years of OC operation. Thus only from 7th year to 14th year, OC operation would make up for UG production for achieving the overall mine target of 23.6 Mtpa. As UG operation builds up to the targeted level of 1.6 Mtpa, the OC production is brought down to its sustainable level, i.e. 22 Mtpa. The OC mine can technically produce at a rated capacity of 20 to 25 MTPA but considering that the opencastable reserves are only 553.177 MT, the OC mine has been planned at 22 MTPA (as explained above) to give the project a nominal life of about 28 years including built up period. There are 18 nos. of coal seams (including splits) occurring below seam VI (proposed quarry floor). Excepting seam-I Combined, all other seams have more than 1 m thickness in localized area only. Even Seam-I Combined has split in major part. The total depth of quarry upto seam-I floor, if considered by opencast, will be more than 450m against the presently proposed depth of upto 190m (Seam VI floor). The incremental stripping ratio for the lower seams considering the batters will be around 20 -25 cum per tonne of coal. 5 Further, in case of Gare Sector-II, additional space is not available for OB disposal as the OB generated upto Seam VI has been adjusted within the ML area with great difficulty and meticulous planning of rehandling schedule. Considering the available area with constraints of dumping space, opencatability is ruled out for lower seams. Target of 1.6 Mtpa for UG operation has been decided considering that a lag is to be maintained taking into account the advancement of operation in overlying seams through opencast. The 1.6 Mtpa target for an UG mine is considered fairly high under Indian conditions. It may be worthwhile to mention here that the earlier allotee of the coal block had also submitted a mining plan to MOC in which, the RQP had assessed the capacity as 23.6 Mtpa as above. ### 5.1.1 Derivation of extractable reserves from geological reserves As per the practice in vogue for OC mine planning, the minimum coal seam thickness for mining is adopted as 1m. However, in this specific case a huge quantity of reserve (53.536 Mt) falls in a thickness range between 0.5m-0.9m. Giving due consideration to conservation of resource, The RQP has calculated the Opencastable reserves by assuming minimum mining seam thickness of upto 0.5m irrespective of the fact that mining of such thickness will require extra efforts as well as lower efficiency of equipment. However the reserves mineable by underground method have been assumed as upto a minimum thickness of 1.5m, though the reserves of lower thicknesses have been mentioned alongside. The overall reconciliation of reserves in the block is as given in following tables Table 5.1A: Derivation of extractable reserves by OC from net geological reserves. Table 5.1B: Derivation of extractable reserves by UG from net geological reserves. Table 5.1C: Summary of derivation of total extractable reserves (OC+UG) from net geological reserves. TABLE 5.1A DERIVATION OF EXTRACTABLE RESERVES BY OC FROM NET GEOLOGICAL RESFRVES (MT) | | | DEFINALI | くば しし とつ | DENIVATION OF EXTRACTABLE | スロのロスくロ | S BY OC | TKOM NE | | KESEKVES BY OC FROM NEI GEOLOGICAL KESEKVES (MI) | VERVED. | | | |----------|---|---|---|---|---|--------------------------------|---|------------------------------|---|----------|------------------------|----------------------| | Seam | Vertical
Seamwise
Geological
Reserves
(>0.5m
Thickness)
upto Seam-
VI for OC
within
ml/block | West-blocked
umder facilities
inglines at north
corner shaft
near Kelo Tiver
and 75m (30m
road & 45m
safety) barrier
along Kelo river | West: blocked in 7.5m barrier along SW boundary | West: blocked in Bajarmura-Ghargoda road diversion along Northern boundary and Milupara-Tamnar road Diversion along north-east boundary | East: blocked under 15m barrier along Kelo river and 7.5m barrier along quarry boundary | Blocked
under
Kelo river | Total coal Coal blocked in Barriers & Batter Facilities | Coal
blocked in
Batter | Total coal blocked in Barriers, Facilities and batter | Mineable | Mining
Losses
5% | Extractable reserves | | | Reserve | X-LA | 10.900 | 0.136 | 0.016 | 0.055 | 0.061 | 0.346 | 0.614 | 0.232 | 0.846 | 10.054 | 0.503 | 9.551 | | X-TOP | 9.772 | 0.151 | 0.017 | 0.131 | 0.172 | 0.169 | 0.640 | 0.698 | 1.338 | 8.434 | 0.422 | 8.012 | | X-BOT | 85.775 | 0.852 | 0.131 | 0.631 | 0.220 | 1.323 | 3.157 | 15.112 | 18.269 | 67.506 | 3.375 | 64.131 | |
IX-L2 | 12.242 | 0.105 | 0.016 | 0.115 | 0.068 | 0.211 | 0.515 | 0.509 | 1.024 | 11.218 | 0.561 | 10.657 | | IX-L1 | 13.961 | 0.441 | 0.042 | 0.257 | 0.063 | 0.080 | 0.883 | 0.513 | 1.396 | 12.565 | 0.628 | 11.937 | | \times | 156.184 | 4.559 | 0.202 | 1.954 | 0.889 | 2.686 | 10.290 | 28.206 | 38.496 | 117.688 | 5.884 | 111.804 | | NIII N | 83.631 | 2.903 | 0.076 | 1.595 | 0.292 | 0.709 | 5.575 | 13.506 | 19.081 | 64.550 | 3.228 | 61.323 | | VIII-L | 13.803 | 0.098 | 0.116 | 0.207 | 0.035 | 0.329 | 0.785 | 0.457 | 1.242 | 12.561 | 0.628 | 11.933 | | VII-TOP | 88.944 | 1.857 | 0.241 | 0.546 | 0,186 | 2.094 | 4.924 | 13.222 | 18.146 | 70.798 | 3.540 | 67.258 | | VII-BOT | 25.457 | 0.279 | 0.073 | 0.168 | 0.075 | 0.645 | 1.240 | 5.215 | 6.455 | 19.002 | 0.950 | 18.052 | | VII-COMB | 82.305 | 3.145 | 0.003 | 1.389 | 0.657 | 1.035 | 6.229 | 14.248 | 20.477 | 61.828 | 3.091 | 58.737 | | | 153.131 | 5.375 | 0.238 | 1.437 | 0.174 | 1.039 | 8.263 | 18.780 | 27.043 | 126.088 | 6.304 | 119.783 | | Total | 736.105 | 19.901 | 1.171 | 8.485 | 2.892 | 10.666 | 43.115 | 110.698 | 153.813 | 582.292 | 29.115 | 553.178 | | R | | | | | | | | | | | | | NON Wining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL VINDE SOLUTION OF SOLUT TABLE 5.1B DERIVATION OF EXTRACTABLE RESERVES BY UG FROM NET GEOLOGICAL RESERVES (MT) | | Workability of | seam | | | | | | Not Workable | Workable | Not Workable | Not Workable | Not Workable | Workable | Not Workable | | |---|----------------|--------------|--------------|-------------|---------------|-------------|------------|--------------|--------------|--------------|--------------|--------------|----------|--------------|--------------|--------------|----------|--------------|----------|----------|----------|----------|----------|----------|---------| | | <u> </u> | Extraction, | mţ | | | | | 0.000 No | 0.000 No | 0.000 No | 0.000
No | 0.000 No | 0.000 | 0.000 Nc | 0.000 Nc | 0.000
Nc | 23.625 W | 0.000 Nc | 27.797 W | 21.297 W | 7.546 W | 6.742 W | 6.192 W | 8.776 W | 101.975 | | (MI) | - | | %0% | | | | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 35.618 | 0.000 | 43.432 | 33.277 | 12.170 | 10.874 | 9.988 | 14.155 | 159.514 | | / 日の日と | _ | Reserve | Ξ. | Blocked | | | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 44.522 | 000.0 | 54.290 | 41.596 | 15.213 | 13.593 | 12,485 | 17.694 | 199.392 | | CALF | Total | Blocked | Coal | | | | | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.383 | 0.000 | 0.000 | 0.000 | 8.677 | 0.000 | 11.060 | 6.952 | 2.790 | 2.634 | 2.936 | 1,590 | 37.025 | | DERIVATION OF EXTRACTABLE RESERVES BY UG FROM NET GEOLOGICAL RESERVES (MIT) | | Economically | Viable | Reserve | | | | 0.005 | 000.0 | 000.0 | 000.0 | 00000 | 0.315 | 000.0 | 0.000 | 0000 | 0.000 | 0.000 | 0.000 | 0.023 | 0.157 | 0.904 | 0.670 | 0.046 | 2.120 | | | | Under Kelo | River | | | | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.638 | 0.000 | 1.152 | 0.002 | 0.097 | 0.193 | 0.647 | 0.043 | 2.771 | | フとしのこ | Blocked | Under Half | Pillar Along | J
M | Boundary | • | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0000 | 1.167 | 0.000 | 1.556 | 0.952 | 0.421 | 0.073 | 0.206 | 0.310 | 4.685 | | くにくらい | Blocked In | Safety | Barriers 25m | on Either | Side Of Fault | | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.068 | 0.000 | 0.000 | 0.000 | 5.073 | 0.000 | 6.378 | 4,091 | 1.047 | 1.297 | 0.974 | 0.884 | 19.812 | | コスロンロト | Blocked | Under Along | | Ε | Safety | Barrier) in | Kelo River | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.323 | 0.000 | 0.555 | 0.000 | 0.058 | 0.128 | 0.372 | 0.037 | 1.473 | | ACIABL | | | Facilities | and Incline | & Shaft | Area | | 0.000 | 00000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.475 | 0.000 | 1.419 | 1.884 | 1.010 | 0.038 | 0.067 | 0.270 | 6.163 | | トロイコス | Net Geo | Reserve | >1.5M | Thickness | | | | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.383 | 0.000 | 0.000 | 0.000 | 53.199 | 0.000 | 65,350 | 48.548 | 18.003 | 16.226 | 15.420 | 19.283 | 236,417 | | | >0.9M TO | <1.5M | Thickness | Reserve | | | | 0.492 | 3.119 | 0.254 | 8.976 | 0.269 | 29.454 | 8.356 | 0.236 | 0.567 | 9.161 | 1.227 | 3.942 | 3.202 | 6.620 | 6.924 | 4.440 | 0.000 | 87.239 | | フロスこと | Total UG | Reserve | M6.0< | Thickness | | | | 0.497 | 3.119 | 0.254 | 8.976 | 0.269 | 29.837 | 8.356 | 0.236 | 0.567 | 62.360 | 1.227 | 69.292 | 51.750 | 24.623 | 23.150 | 19.860 | 19.283 | 323.656 | | | UG Reserve | >0.50M to | M06.0> | | | | | 7.050 | 19.112 | 3.736 | 6.774 | 10.550 | 7.476 | 47.027 | 1.857 | 5.479 | 3.225 | 4.284 | 0.475 | 2.650 | 2.684 | 1.864 | 1.008 | 0.000 | 125.251 | | | | Total UG | Geological | Reserve | Within | ML/Block | | 7.547 | 22.231 | 3.990 | 15.750 | 10.819 | 37.313 | 55.383 | 2.093 | 6.046 | 65.585 | 5.511 | 69.767 | 54.400 | 27.307 | 25.014 | 20.868 | 19.283 | 448.907 | | | Seam | | | | | | | \.\. | VA-1 | VA-2 | VB-1 | VB-2 | VC-1 | VC-2 | VD-1 | VD-2 | 2 | 111-L2 | = | = | 1-1-1 | I-TOP | I-BO:T | I-COMB | Total | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 5-4 SUMMARY OF DERIVATION OF TOTAL EXTRACTABLE RESERVES (OC+UG) FROM NET GEOLOGICAL RESERVES FIGURES IN MILLION TONNES | | L | | スロンロス | 70011001 | | KENERATO FIGURES IN MILLION LONNES | | | | |--------------|---|--------------------------------------|---|---|---|--|---|--|-------------| | Seam | Vertical Total
UG Geological
Reserve within
ML/Block | UG
Reserve
>0.50M to
<0.90M | Total UG
Reserve
>0.9M
Thickness | >0.9M to
<1.5M
Thickness
Reserve | Net Geo.
Reserve
>1.5M
Thickness | Total Blocked
Uneconomical
and Low
Thickness
Blocked and
Uneconomical
Reserves | Net Reserves Excluding Blocked, Un Economical, Low Thickness etc. | Mining
Losses
including
Panel
Barriers | Extractable | | OPENCAST: | | | | | | | | | | | X-LA | 10.900 | | | | | 0.846 | 10.054 | 0.503 | 9.551 | | X-TOP | 9.772 | | | | | 1.338 | 8.434 | 0.422 | 8.012 | | X-BOT | 85.775 | | | | | 18.269 | 67.506 | 3.375 | 64.131 | | IX-L2 | 12.242 | | | | | 1.024 | 11.218 | 0.561 | 10.657 | | IX-L1 | 13.961 | | | | | 1.396 | 12.565 | 0.628 | 11.937 | | × | 156.184 | | | | | 38.496 | 117.688 | 5.884 | 111.804 | | | 83,631 | | | | | 19.081 | 64.550 | 3.228 | 61.323 | | VIII-L | 13.803 | | | | | 1.242 | 12.561 | 0.628 | 11.933 | | VII-TOP | 88.944 | | | | | 18.146 | 70.798 | 3.540 | 67.258 | | VII-BOT | 25.457 | | | | | 6.455 | 19.002 | 0.950 | 18.052 | | VII-COMB | 82.305 | | | | | 20.477 | 61.828 | 3.091 | 58.737 | | 5 | 153.131 | | | | | 27.043 | 126.088 | 6.304 | 119.783 | | Sub Total OC | 736.105 | | | | | 153.813 | 582.292 | 29.115 | 553.178 | | UNDERGROUND | D: | | | | | | | | | | NI-L | 7.547 | 7.050 | 0.497 | 0.492 | 0.005 | 7.547 | 0.000 | 0.000 | 0.000 | | VA-1 | 22.231 | 19.112 | 3.119 | 3.119 | 0.000 | 22.231 | 0.000 | 0.000 | 0.000 | | VA-2 | 3.990 | 3.736 | 0.254 | 0.254 | 0.000 | 3.990 | 0.000 | 0.000 | 0.000 | | VB-1 | 15.750 | 6.774 | 8.976 | 8.976 | 0.000 | 15.750 | 00000 | 0.000 | 0.000 | | | | | | | | | | | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL | Seam | Vertical Total
UG Geological
Reserve within
ML/Block | UG
Reserve
>0.50M to
<0.90M | Total UG
Reserve
>0.9M
Thickness | >0.9M to
<1.5M
Thickness
Reserve | Net Geo.
Reserve
>1.5M
Thickness | Total Blocked Uneconomical and Low Thickness Blocked and Uneconomical | Net Reserves
Excluding
Blocked, Un
Economical,
Low
Thickness etc. | Mining
Losses
including
Panel
Barriers | Extractable
Reserves | |--------------|---|--------------------------------------|---|---|---|---|--|--|-------------------------| | VB-2 | 10.819 | 10.550 | 0.269 | 0.269 | 0.000 | 10.819 | 0.000 | 0.000 | 0.000 | | VC-1 | 37.313 | 7.476 | 29.837 | 29.454 | 0.383 | 37.313 | 0.000 | 0.000 | 0.000 | | VC-2 | 55.383 | 47.027 | 8.356 | 8.356 | 0.000 | 55.383 | 0.000 | 0.000 | 0.000 | | VD-1 | 2.093 | 1.857 | 0.236 | 0.236 | 0.000 | 2.093 | 0.000 | 0.000 | 0.000 | | VD-2 | 6.046 | 5.479 | 0.567 | 0.567 | 0.000 | 6.046 | 0.000 | 0.000 | 0.000 | | 2 | 65.585 | 3.225 | 62.360 | 9.161 | 53.199 | 21.063 | 44.522 | 20.897 | 23.625 | | 111-L2 | 5.511 | 4.284 | 1.227 | 1.227 | 0.000 | 5.511 | 0.000 | 0.000 | 0.000 | | = | 69.767 | 0.475 | 69.292 | 3.942 | 65.350 | 15.477 | 54.290 | 26.494 | 27.797 | | = | 54.400 | 2.650 | 51.750 | 3.202 | 48.548 | 12.804 | 41.596 | 20.299 | 21.297 | | I-L1 | 27.307 | 2.684 | 24.623 | 6.620 | 18.003 | 12.094 | 15.213 | 7.667 | 7.546 | | I-TOP | 25.014 | 1.864 | 23.150 | 6.924 | 16.226 | 11.422 | 13.593 | 6.851 | 6.742 | | 1-BOT | 20.868 | 1.008 | 19.860 | 4.440 | 15.420 | 8.384 | 12.485 | 6.292 | 6.192 | | I-COMB | 19.283 | 0.000 | 19.283 | 0.000 | 19.283 | 1.590 | 17.694 | 8.918 | 8.776 | | Sub Total UG | 448.907 | 125.251 | 323.656 | 87.239 | 236.417 | 249.515 | 199,392 | 97.417 | 101.975 | | Grand Total | 1185.012 | 125.251 | 323.656 | 87.239 | 236.417 |
403.328 | 781.684 | 126.532 | 655.153 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 5 7-17 B.D. SHARMA RQP NO. 34012/03/2014-CPAM The derivation of the extractable reserves by OC as well as UG has been explained in the following paragraphs. ### 5.1.2 Reserves extractable by OC method The total reserves of the block have been divided into two parts (east of Kelo river and west of Kelo river) due to the reason that Kelo river passes through the coal block. Due to the prevailing topography, shape of the block and presence of other coal blocks all around, Kelo river cannot be diverted. In future if the possibility of diversion of the river is worked out, a revised mining plan will be submitted to MOC. Therefore, the reserves will be mined by two pits, one pit on either side of Kelo river - East pit and West Pit. The reserves extractable by OC method from both the Pits are given in Table 5.2. TABLE 5.2 DERIVATION OF EXTRACTABLE OPENCAST RESERVES (PIT WISE) FROM NET GEOLOGICAL RESERVES (MT) UP TO SEAM VI AS QUARRY BOTTOM OF COAL THICKNESS > 0.5M | SI.
No. | Particulars | East Pit
(Mt) | West Pit | Total
Coal (Mt) | |-------------------|--|------------------|-----------------|--------------------| | 1 | Net Geological reserves within vertical block boundaries | , , | (Mt)
653.194 | 736.105 | | 2 | OB/IB within vertical block boundaries (Mcum) | 415.526 | 2706.348 | 3121.874 | | 3 | OB:Coal ratio (vertical) for above (cum:t) | 5.012 | 4.143 | 4.241 | | 4 | Blocked under incline, CHP, facility, etc. in north corner of west part of block | | 12.605 | 12.605 | | 5 | Blocked in shaft pillar area near Kelo river | | 2.533 | 2.533 | | 6 | (i) West of Kelo river : Blocked in 75m barrier along Kelo river (30m road and 45m statutory barrier from quarry edge) | | 4.763 | E COE | | | (ii) East of Kelo river : 15m barrier along
eastern bank of Kelo river and quarry
boundary | 0.932 | | 5.695 | | tjet (1.)
(1.) | West of Kelo river: Blocked under
Bajamura- Ghargoda road diversion along
northern boundary and Milupara- Tamnar
road diversion along north east boundary | 0.000 | 8.485 | 8.485 | | E. | West of Kelo river : Blocked in 7.5m barrier along SW boundary. | | 1.171 | 3.131 | | | East of Kelo river: Blocked in 7.5m barrier along south boundary of quarry | 1.960 | | 3.131 | वेतार शी मास्त घर भारत चर Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL L 5-7 | SI.
No. | Particulars | East Pit
(Mt) | West Pit
(Mt) | Total
Coal (Mt) | |------------|--|------------------|------------------|--------------------| | 9 | Blocked under kelo river (9.465MT >0.9m + 1.201 MT < 0.90m to >0.5m) | 5.333 | 5.333 | 10.666 | | 10 | Total blocked Reserves in barriers (sl no 4 to 9) | 8.225 | 34.890 | 43.115 | | 11 | Reserves blocked in batters | 25.011 | 85.687 | 110.698 | | 12 | Mineable reserves (sl no 1- sl no 10-sl no 11) | 49.675 | 532.617 | 582.292 | | 13 | Mining losses (5%) | 2.484 | 26.631 | 29.115 | | 14 | Extractable reserves (sl no. 12 - sl no 13) | 47.191 | 505.986 | 553.177 | | 15 | OB/IB for by Carlson s/w | 375.270 | 2385.850 | 2761.120 | | 16 | OB:Coal ratio for above (cum:t) | 7.952 | 4.715 | 4.991 | Extraction of coal blocked in barriers with adjacent coal blocks and dip side batters will be examined in consultation with the allottees of adjoining blocks for its possible extraction. ### 5.1.3 Reserves extractable by UG method The reserves extractable by UG method for both the parts (one on either side of Kelo river) are given below in Table 5.3. TABLE 5.3 DERIVATION OF EXTRACTABLE UNDERGROUND RESERVES (MT) (ON EITHER SIDE OF KELO RIVER) FROM NET GEOLOGICAL RESERVES BELOW SEAM VI OF COAL THICKNESS > 0.9M | SI. | Particular | West | East | Total | |-----|--|---------|--------|---------| | No. | | | | Coal Mt | | 1 | Total Net UG reserves >0.9m thick | 295.053 | 28.603 | 323.656 | | 2 | Reserves of thickness from 0.9m to 1.5m | 76.807 | 10.432 | 87.239 | | 3 | Balance Net geological reserves of >1.5m thickness | 218.246 | 18.171 | 236.417 | | 4 | West of Kelo river: Blocked under half pillar along ML boundary | | 1.214 | 4.685 | | | East of Kelo river: Blocked in half pillar in UG mineable area below pit | 3.471 | | 4.000 | | 5 | Blocked in 25m barrier on either side of fault | 18.673 | 1.139 | 19.812 | | 6 | Blocked under incline, CHP, facility, etc. in north corner of west part of block | 5.248 | 0 | 5.248 | | 7 | Blocked in shaft pillar area near Kelo river | 0.915 | 0 | 0.915 | | SI,
No. | Particular | West | East | Total
Coal Mt | |------------|---|---------|--------|------------------| | 8 | Blocked under Kelo river coal of thickness > 1.5m | 1.386 | 1.385 | 2.771 | | 9 | West of Kelo river: blocked in 75m barrier along Kelo (30m road and 45m statutory barrier from quarry edge) | | 0.368 | 1.473 | | | East of Kelo river: 25m barrier along eastern bank of Kelo river and quarry boundary | 1.105 | | 1.475 | | 10 | Reserve not economically viable for UG mining | 0.320 | 1.800 | 2.120 | | 11 | Total blocked (sl no. 4 to sl no.10) | 31.118 | 5.907 | 37.025 | | 12 | Net reserve excluding all blocked reserve (sl no. 3- sl no. 11) | 187.128 | 12.264 | 199.392 | | 13 | Excluding panel pillars 80% (sl no. 12 X 80%) | 149.702 | 9.812 | 159.514 | | 14 | In panel extraction (depending upon pillar size based on regulation | 95.605 | 6.370 | 101.975 | Note: The third digit after decimal may not exactly match in totaling due to rounding of components. The reserves blocked under facilities viz. incline, CHP, office, Shaft Pillar etc. in northern corner of west part of block will be 21.301 Mt. These facilities will be required for supporting the OC operations as well as UG operations. Though the OC operations will exhaust by the end of 29th year, the UG operations have long life and will continue till 77th year. The issue, whether some locked coal under the facilities could be mined, will be examined at the fag end of UG operation under prevailing conditions at that time. As far as the reserves under the batter are concerned, the matter has been studied in detail as follows. The fast advance of mining operations followed closely by the backfilling operations, especially due to dearth of space for disposal of OB on the surface, application of High Wall mining during the operating life of OC mine has been ruled out. It is only at the end of the OC mining operations that the HW mining can be considered. Then also, there will be restriction of application due to practicality of deployment of the equipment as it must operate from the same level as of the bench to be mined by HW mining. After exhausting the OC mine by the end of 29th year, it will be technically possible to deploy the system at the bottom of the quarry i.e. at the floor of Seam VI and VII combined. SIN The upper seams mining by HW will not be possible because of non-availability of space adequate to install and operate this system. Thickness of seam VI is between 0.5m and 0.75m in the reference region. It will not be feasible to deploy the HW system. However, seam –VII combined has a thickness of around 5m in the reference region, application of HW mining could be feasible. In this regard, it is important to note that HW mining has been operational in only two mines in India as follows: ### Sharda Coal OC Mine, SECL, M.P.: Cuprum Bagrodia Ltd, Kolkata has been operating coal extracting machine for High Wall Mining in this mine. The Seam thickness is 1.2-1.5 m and the production is 0.5 MTPA. The drivages are of 2.9m width with 1.2m ribs; and after every 8-10 cuts/drivages, a rib pillar of about 3m is left. The length of each hole (penetration) is 250m. ### Medpalli OC Coal mine of SCCL, Telangana: M/s Advanced Mining Technology Pvt Ltd, Hydrerabad is operating HW system in this mine which has exhausted its reserves after operating normal mine of 4MTPA production. Now coal is being extracted by HW mining. The operation has been on for last 3-4 years (since 2011-12). The thickness of seam is 5.5 m. The HW system which was operational, took one lift of 2.4m thickness while the rest thickness of seam was left unmined. The overall extraction was recorded at about 20% of the whole seam. However, the operating company has developed expertise over time and now it has brought a new machine which can take 2 lifts, each of 2.4m thickness. This operation is expected to start from August 2016. It is anticipated that the extraction percentage with respect to total seam thickness will be about 35%. Accordingly, the calculations have been made for coal which can be extracted from Seam-VII combined assuming 2 lift operation giving 35% extraction. The coal reserves extractable by HW system come to 1.52 MT. Assuming a production rate of about 0.5 MTPA, the said reserves can be mined in 3 years. However, this HW proposal may not be feasible at that stage because the HW drivages will get filled up with water (as the specific location is towards dip side) and the underground operations of lower seams as proposed in the mining Plan will be endangered. It may be noted that it will not be possible to physically inspect the HW drivages for the presence of water irrespective of pumping provision. Eventually, the HW could be carried out only after the exhaustion of UG reserves (after 77th year). The decision regarding mining the coal locked in batter of OC mine may be taken at the end of the UG operations considering the technologies (High wall or otherwise)
available at that time and if the application of Highwall mining at that time is found to be feasible, a revised mining plan will be submitted. ### 5.2 CHOICE OF METHOD OF MINING There are basically two mining methods viz. Opencast (OC) and Underground (UG). Techno-economically, Underground method is adopted only if the OB: Coal ratio in OC becomes so high that the cost of production by OC method becomes higher than the prevailing price of coal in local market in area surrounding the project site. In this specific case OC method has been adopted for the upper seams down upto seam-VI and UG method has been adopted for the lower seams. Opencast mining method has been adopted for the upper seams down upto seam-VI (Seam XL1, XT, XB, IX, VIII, VII and VI) due to following reasons: - The coal seams are incropping, - The OB: Coal ratio is favourable (4.991: 1) for opencast mining - The mining by opencast method will be economical against underground method - The opencast mining operations are comparatively safer and ensure higher recovery of coal resource. - The extraction percentage by OC is fore more than the UG. - The uppermost seam will also have disadvantage of restriction of mining due to weathered mantle at surface below which at least 15 m hard cover is required for UG mining. The weathered mantle varies from 5.8 m (BH No. MMT-13) to 30.32 m (BH No. MMT-23) ### 5.3 OPENCAST METHOD ### 5.3.1 Recoverable reserves, waste quantity and stripping ratio Net geological reserves of coal as per Geological Report (GR) are 1056.298 MT comprising of 736.105 MT (having thickness more than 0.5m proposed for OC mining down upto seam-VI) and 323.193 MT (having thickness more than 0.9m proposed for UG mining below seam-VI). These reserves have been cross checked by Min Mec (RQP) and have been found in order. The extractable reserves come to 553.177 MT by OC method after considering coal blocked in barrier, batters and mining losses and the corresponding waste quantity will be 2761.120 million cum resulting into an OB coal ratio of 4.991 : 1 (cum : t). The extractable reserves by UG method come to 101.975 MT after deducting the coal blocked under peripheral pillars, around faults, safety barriers from rivers, roads etc. Thus, the total extractable reserves by OC and UG come to 655.152 MT. ### 5.3.2 Selection of OC mining technology There are following types of equipment systems available for opencast mining: - a) Bucket wheel mining - b) Dragline mining - c) Shovel dumper combination - d) Surface Miners (SM) Each of them has been explained below: ### (a) The bucket wheel alternative has not been considered due to following reasons: - There are faults in the property - The stratum below the upper most weathered mantle is hard and strong requiring blasting. - Presence of large number of seams and interburden layers of mostly of small thickness which will be uneconomic in this alternative. - Requirement of precision selective mining which will not be possible by bucket wheels especially for thin seams, partings and dirt bands. ### (b) The dragline (DL) has not been recommended mainly due to following reasons: - 1. Multiplicity of seams - Lower most opencastable seam (VI) is highly variable in thickness (0.25m to 24.13m) which should be ideally uniform for DL mining - The OB parting above the lowermost seam is also highly variable (3.30m to 17.43m) which should be ideally uniform for DL mining - 4. The faulted property will further add to the non viability. - 5. Dragline being a high capacity machine will become under utilised. ### (c) Shovel-Dumper Combination: Keeping in mind that there are 8 workable seams including splits (from Seam XB to Seam VI in ascending order) and equal nos. of inter burden layers to be tackled, an equipment system which is capable of dealing many layers at a time (flexibility of operations) has been recommended as shovel dumper combination. The quality problem can be handaled with the help of hydraulic excavators which have three dimensional movement of bucket. They are capable of carrying out selective mining. Further more, to tackle about 130-135 Mcum OB (upto 1st 14 years) and 99 Mcum in later years and 22 mil tonne of coal at many locations in the OC mine, comparatively large size shovels with 10-20 m3 bucket capacity for OB have been envisaged along with 150 tonne rear dumpers. Flexibility in operation will be available due to such equipment system. ### (d) Surface Miners: SSEC CHILLITHNIAN Secretary Surface Miners (SM) are capable of cutting the coal precisely and selectively. Mining of thin coal by surface miners and ripping has also been now investigated by the RQP besides the drilling/ blasting considered earlier and it has been concluded that the coal mining will be carried out totally by Surface Miners however, 2 nos. rippers will be provided which could be utilized in those corners/locations which are difficult to approach by CSMs. In the light of investigations by RQP, the models as well as capacities of CSMs have been recalculated and now 3 nos. CSMs have been proposed as follow: - 2 nos CSM 4200 with 10 Mtpa capacity each = 20 Mtpa - 1 no. CSM 3800 with 4 Mtpa capacity = 4 Mtpa Totaling to 24 Mtpa capacity against the production requirement of 23,6 Mtpa when the UG is not operational and 22 Mtpa when the UG mine is operation at its full capacity of 1.6 Mtpa. Main parameters for few typical surface miners are noted below in Table otho नागपाल M.P. NAGPAL TABLE 5.4 TABLE 5.4 TYPICAL PARAMETERS OF SOME SURFACE MINERS TO SOME SURFACE MINERS | Particulars | 3800SM (W),
Windrow | 4200 SM (W),
Conveyor loading | |----------------------------|------------------------|----------------------------------| | Cutting width in meter | 3.8m | 4.2m | | Cutting Depth in meter av. | 0.250m | Up to 0.800 | | Particulars | 3800SM (W),
Windrow | 4200 SM (W),
Conveyor loading | |-----------------------------------|------------------------|----------------------------------| | Coal production t/hr | 700 | 2000 | | Daily Coal production (t) 18 hrs. | 12600 | 36000 | | Annual Capacity (330 days), Mt | 4158000 | 11880000 | | Say | 4.00 Mtpa | 10.00 Mtpa | The above types of machines are continuous cutting and loading machines. therefore the material produced by the machines needs to be continuously evacuated. One way of making it possible is by designing conveying system through shifting conveyor systems. Such mix of surface miner and shoveldumper combination for working the block in different time frame make very complicated and difficult to use conveyor system for evacuation of coal. Therefore, a more flexible approach for material evacuation is considered, and this is possible through application of off the highway Dumpers of suitable size and numbers, along with the SM. Experience indicates that effective hours of SM on the average with dumpers combination can be taken as 18 hours of SM per day and 330 working days per year. The main objectives of mine development have been - i. to design an economical production of required coal quality for the life of mine - to minimise transportation distance for coal and waste - to minimise adverse effects on environment and Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL non-sterilization of the remaining potential reserves for future mining As already mentioned in Chapter- 4, there are 18 workable seams including their splits (from up downwards seam XB to I-Combined). The equipment selection and operating methods have been designed considering the volume and nature of overburden and disposition of coal seams. Mining of thin coal by ripping has also been now investigated by the RQP besides the drilling/ blasting considered earlier. It has been envisaged that the coal mining will be carried out totally by Surface Miners which are capable of easily taking coal seam/bands of 0.5m. Further, 2 nos. rippers have been provided which could be utilized in those corners/ locations which are difficult to be approached by CSMs. ### 5.3.3 Standardisation of equipment for Overburden removal and coal production The equipment for OB removal has been standardized. Only two types of hydraulic shovels are proposed to be used in the larger size range viz. 12 cum and 20 cum bucket capacity in combination with 150T capacity dumpers. In the smaller capacity range, the 5/5.5 cum shovel will be used for relatively thinner partings between seams themselves in combination with 50T dumpers. ### 5.3.4 Coal production It is necessary to conceive the contribution of each seam in the total reserves so as to visualize the proportional %age of production contribution so that the relevant equipment can be designated and marched to the predetermined seams /locations for mining. The seam wise coal reserves in tonne and their % contribution is given in the following Table 5.5. TABLE 5.5 SEAM WISE COAL, PERCENTAGE CONTRIBUTION BY SEAMS IN RESERVES | Seam | Total
Extractable
Reserve, MT | % contribution of seams in total reserves | % Production
by 2 nos.
4200SMs | % Production
by 1 nos.
3800SMs | |------------|-------------------------------------|---|--------------------------------------|--------------------------------------| | X-LA | 9.551 | 1.73 | 0 | 1.73 | | X-TOP | 8.012 | 1.44 | 0 | 1.45 | | X-BOT | 64.131 | 11.59 | 11.59 | 0.0 | | IX-L2 | 10.657 | 1.93 | 0 | 1.93 | | IX-L1 | 11.937 | 2.16 | 0 | 2.16 | | IX | 111.804 | 20.21 | 20.21 | 0.0 | | VIII | 61.323 | 11.09 | 11.09 | 0.0 | | VIII-L | 11.933 | 2.16 | 0 | 2.16 | | VII-TOP | 67.257 | 12.16 | 12.16 | 0.0 | | P. MIHBOT | 18.052 | 3.26 | 0 | 3.26 | | VII-COMB | 58.737 | 10.62 | 10.62 | 0.0 | | tri Sha VI | 119.783 | 21.65 | 21.66 | 0.0 | | Total | 553.177 | 100.00 | 87.33 | 12.67 | As can be seen from the above table, the coal of thicker 6 seams, viz. XB, IX, VIII, VIIT, VII Combined and VI together accounts for 87.33% while that of other
thinner seams accounts for only 12.67%. R The tentative location of deployment of larger and smaller size surface miners and their contribution to the annual production is given in Table 5.6. TABLE 5.6 TENTATIVE LOCATION OF DEPLOYMENT OF LARGER AND SMALLER SIZE SURFACE MINERS AND THEIR CONTRIBUTION TO THE ANNUAL PRODUCTION | Seam | %
Production
by 2 nos.
4200SMs | %
Production
by 1 nos.
3800SMs | Production
by 2 nos.
4200SMs
@20 Mtpa | Production
by 1 nos.
3800SMs@4
Mtpa | Total
production
Mtpa | |----------|---|---|--|--|-----------------------------| | X-LA | 0 | 1.7 | 0 | 0.4 | 0.4 | | X-TOP | 0 | 1.5 | 0 | 0.3 | 0.3 | | X-BOT | 7.6 | 4.0 | 1.8 | 1.0 | 2.8 | | IX-L2 | 0.0 | 1.9 | 0.0 | 0.5 | 0.5 | | IX-L1 | 0.0 | 2.2 | 0.0 | 0.5 | 0.5 | | IX | 20.2 | 0.0 | 4.9 | 0.0 | 4.9 | | VIII | 11.1 | 0.0 | 2.7 | 0.0 | 2.7 | | VIII-L | 0.0 | 2.2 | 0.0 | 0.5 | 0.5 | | VII-TOP | 12.2 | 0.0 | 2.9 | 0.0 | 2.9 | | VII-BOT | 0.0 | 3.3 | 0.0 | 0.8 | 0.8 | | VII-COMB | 10.6 | 0.0 | 2.5 | 0.0 | 2.5 | | VI | 21.7 | 0.0 | 5.2 | 0.0 | 5.2 | | Total | 83.3 | 16.7 | 20.0 | 4.0 | 24.0 | The 2 nos. 4200SM machines will be mostly busy in the above mentioned thicker 6 seams. The rest 6 nos. thinner seams will be dealt with by the smaller size 3800SM machine. Two ripper machines will also be available for use at isolated locations, small patches etc. The total annual output projected being 23.6 MT upto 11th year, the provision of SM's (2nos. 4200SMs and 1 nos. 3800SMs) has been made for capacity of 24 MT with some cushion. THE SHA It is proposed to deploy 100T and 150T dumpers for coal with surface miners 3800SMs (1 no.) and 4200SMs (2 nos.) respectively. Bench design for the application of SM in coal has been considered. The benches will generally be kept 40 and 100m wide for coal in case of 3800SMs and 4200SMs respectively. As 4200SM gives better results with still wider benches, the width has been kept more than 100m wherever possible. For the operation of large size equipment of 12/20 cum bucket capacity shovels in OB in combination with 150T, operational benches of 30-40m will be kept. ### 5.3.5 Sequence of OC mining It has been assumed that the mining operations in the block will be started after rehabilitating the villages to the extent required with time as well as getting the forestry clearance. Therefore, the mining operations have been planned to be started from rise side (NW side) and to advance towards dip side (south side) and towards eastern side. The block is surrounded by coal bearing areas on east and south direction. The strategy is to divide the block into two parts along Kelo river. The two parts are planned to be mined in sequence by dovetailing. The western part which contains larger reserve will be mined 1st by opening it at the north-western portion and advancing the operations towards dip side (south side) and towards eastern side. The eastern part containing far less reserves within a small triangular portion will be mines towards the end of the operations. As there is no non-coal bearing area available for accommodating the initial cut OB till the back filling can start, the OB will be accommodated over the coal bearing area within the ML area upto 6th year, after which backfilling will be possible concurrent with mining. Ultimately, the whole OB accommodated over the dip side area will be rehandled and backfilled in the void created in the West Pit. After the West Pit nears exhaustion, the mining operations will be smoothly changed over to the East Pit and OB generated from East Pit will be concurrently backfilled in the West Pit. When the East Pit exhausts, high crown dumps will be formed over the West Pit by accommodating the OB generated from the East Pit due to the reason that backfilling of East Pit concurrent with mining virtually will not be possible due to limited dimensions of the created void. However, after the last year of operation of the mine, the operations of the Post Mine Closure will start which have been planned in such a way that the remainder crown dump of the West Pit will be rehandaled and backfilled into the East Pit. Thus, all the OB will be accommodated within the excavated area and there will be no requirement of land for OB dumping outside the block. The ultimate landscape of the backfilled area over both the pits will be brought almost to the pre-mining scenario except the crown dump of 138 ha, the height of which will be reduced to 80m from earlier 100m. ### 5.3.6 Year stage wise development The development works during the first year include making access road to sites of activities, removing and rehabilitating the villages lying over the parts of the block, obtaining 1st set of mining equipment, diversion of local roads, top-soil removal, driving box-cut and taking up other construction activities. The mode of transporting the coal to TPP will be through rail from the nearest available siding. The mining will begin with an aim of producing 11.80 Mtpa from 5th year and peak capacity of 23.6 Mtpa by 7th year onwards from OC. The total coal production in the first five years will be 20.30 MT. However, the production from OC will be reduced from 12th year with the start of UG mining operations such that the total production from the mine is maintained at 23.6 Mtpa. A higher production of 23.6 Mtpa from opencast operation is feasible in some early years when the depth of mine and the lead is lesser as compared to the sustained production of 22.0 Mtpa envisaged from opencast operation. The UG mine is proposed to achieve a peak capacity of 1.6 MT of coal from the 15th year onwards. Accordingly the production from the OC will be kept steady at 22 Mtpa from 15th year onwards. The year wise development of the mine upto 29th years is shown in Plate XIV, XV, XVI, XVII, XVIII, XX, XXII and XXVI. ### Year 1 The initial mine entry will be made in Seam X(B) during which its upper seam XT will also be encountered. The entry mouth will be at 297m RL located in SE direction, about 612m from the northern corner of block boundary and at about 576m perpendicular distance from NW boundary line and 258 m perpendicular distance from NE boundary line. The initial mine entry (haul road) will be aligned along SE direction for a distance of about 250m along the Inclines safety barrier after which it will reach 280m RL at a gradient of 1:16. The lowest bench to be worked in the 1st year is 270m RL which will be approached by a ramp from 280m RL bench. The depth of pit will be 10m to 30m which will be worked in 1 to 3 benches. Coal production during this year will be 0.25 MT with following quality: The corresponding OB (5 Mcum) will be disposed off in Surface Dump over the coal bearing area (to be rehandaled later) in the dip side of the West Pit. There will be no backfilling activities in this year and no activity related to UG mining. ### 2nd to 3rd Year The working benches will be advanced parallel to the already existing benches. The length of the haul road will become 1072m along the safety barrier of the incline landing at 230 m RL. The lowermost levels will go down to about 215 m RL which will be approached by ramps on the benches. The mining operations will reach the seam IX floor during the 3rd year. Coal produced in two years will be 4.55 MT @ 1.55 MT and 3.00 MT respectively during 2nd and 3rd year. The related OB amounting to 44.10 Mcum (14.10 Mcum during 2nd and 30.00 Mcum during 3rd year will be disposed of in Surface Dump in the dip side over the coal bearing area of West Pit as during previous year. A maximum depth of about 82m will be achieved by the end of the 3rd year. There will be no activity related to UG mining or coal production in this year. B.D. SHARMA RQP NO. 34012/03/2014-CPAM ### 4th to Year 5 The working benches will be advanced parallel to the already existing benches in the previous year. The length of the haul road will become 1558m which will approach the floor of the Seam VIII having exposed floor from 205m RL to 230m RL. Coal produced in two years will be 15.50 MT @ 6.00 MT in 4th year and 9.50 MT in 5th year respectively. The related OB (45 Mcum and 80.00 Mcum) will be disposed of in Surface Dump proposed to be located over the coal bearing area (to be rehandaled later) at a distance of over 500m from the uppermost bench. The area required for stacking top soil will be 60 ha for restricting the height to 6 m and the provision of 60 ha has accordingly been made beyond the surface dump. There will be no activity related to UG mining or coal production in this year. ### 6th to 15th year The working benches will be advanced parallel to the already existing benches in the previous years. The SW corner of the advancing working benches will just abut against the batter of Kelo river. Coal produced in ten years (6th to 15th) will be 229.7 MT. The related OB will be disposed of in Surface Dump during a part of the 6th year (47.07 McumB) after which total OB will be accommodated within the backfill of the West Pit. As the decoaled area on the northern side of the West Pit will be required for backfilling the haul road will be shifted and aligned just along the NE batter with its entry mouth located just at the SE end of the incline safety barrier. The mouth will be located at 288m RL. By the end of the 15th year, the length of the haul road will be 3.45 km and it will reach the lowermost seam VI, mineable by OC method. The floor of the seam exposed will vary from 120m to 160m and the depth of the exposed floor will lie between 100m and 170m. The uppermost 5 benches from 220m RL upwards will be advanced by 580m to 870m in order to match with the OB removal requirement as per calendar programme of excavation and in order to accommodate the benches of 100m or more for the
operation of CSMs as required for their successful operation. This will also give possibility of operating at well spaced locations within the pit reducing congestion of operation and plying HEMM. The whole surface dump constructed during the 1st 6 years will be rehandaled and backfilled into the void during the period from 7th year and 20th year (both years including). ### 16th to 25th year The above benches of West Pit will be further advanced towards south direction till they abut against the boundary of the West Pit of the block along the Kelo river. The East Pit will also be opened from 20th year. Therefore the coal production and OB generation will take place from West Pit as well as from East pit from 20th year onwards. All the OB generated from West as well as East Pit will be backfilled into the West Pit decoaled area concurrent with mining. The backfill area will advance upto and abut against the NW end batter of the West Pit by the end of 25th year. A 100m high crown dump will have to be created above the backfill area of West Pit to accommodate the OB generated in the past as will become surplus from the backfill. The coal extracted upto the end of 25th year will be 470 MT and OB generated as 2463.1 Mcum from both the pits with following bifurcation. | Particulars | West Pit | East Pit | Total from both pits | |-------------|----------|----------|----------------------| | Coal, MT | 466.40 | 3.60 | 470.00 | | OB, Mcum | 2315.13 | 147.97 | 2463.10 | ### 26th year to End of OC Mining The total OB waste to be dealt with (generation and disposal) during 26th to 29th year is explained in the following table. | OB generated
from E & W Pits,
Mcum (B) | | ack fillin | g, Mcum(B) | Вас | _ | from crown
ndling | Total
backfilling
from direct | |--|--------------------------|--------------------------|--|-----------------------------|-----------------------------|---|---| | | Into
West pit
void | Into
East pit
void | Total direct
backfilling
into W&E
pit voids | Into
West
pit
void | Into
East
pit
void | Total
backfilling
from cown into
W&E pit voids | and cown
rehandling
into W&E
pit voids | | 296.99 | 148.50 | 148.49 | 296.99 | 241.43 | 42.86 | 284.30 | 581.29 | West Pit will finish in 26.5 years (refer Plate XXII and XXVI) keeping intact the shaft pillar near the Kelo river as well as the area under safety pillars of inclines and facilities located in the northern portion of the West block. These areas will be mined after the mining of eastern part of the block during the following years and will be retained till the coal from UG mining in the western part is exhausted. The total OB produced from both the Pits will be 2761.1 Mcum(B) including Top Soil (14.64 Mcum Bank or 16.84 Mcum Loose). The TS will be accommodated over the dip side coal bearing area of West Pit upto 15th year end after which whatever TS will be required to be preserves, it will be stacked over the backfilled area. The height of the TS stack will be restricted to 6m. Most of the area 2280.17 ha (see Chapter 13 and 15) in the post mine closure stage will be converted into an agriculture area. There will not remain any void within the block after the post mine closure. ### 5.3.7 Calendar program of excavation Year wise production for the life of the mine is tabulated in Table 5.7. **TABLE 5.7** COMBINED (OC AND UG) CALENDAR PROGRAMME WITH OBR FROM **OPENCAST INCLUDING REHANDLING** | Year | Opencast
(Mt) | OBR
MCUM | OBR Incl.
Rehandling
of Surface &
Crown Dump
M Cum | Stripping
Ratio
Cum/ t | SR incl.
Rehandling
of Surface &
Crown Dump
Cum/ t | Under
Ground | Total
(MT) | |-------|------------------|-------------|--|------------------------------|--|-----------------|---------------| | 0 | 0.00 | 0.00 | 0.00 | - | _ | 0.00 | 0.00 | | 1 | 0.250 | 5.000 | 5.000 | 20.00 | 20.00 | 0 | 0.25 | | 2 | 1.550 | 14.100 | 14.100 | 9.10 | 9.10 | 0 | 1.55 | | 3 | 3.000 | 30.000 | 30.000 | 10.00 | 10.00 | 0 | 3.00 | | 4 | 6.000 | 45.000 | 45.000 | 7.50 | 7.50 | 0 | 6.00 | | 5 | 9.500 | 80.000 | 80.000 | 8.42 | 8.42 | 0 | 9.50 | | 6 | 21.300 | 135.000 | 135.000 | 6.34 | 6.34 | 0 | 21.3 | | 7 | 23.600 | 135.000 | 156.740 | 5.72 | 6.64 | 0 | 23.6 | | 8 | 23.600 | 135.000 | 156.740 | 5.72 | 6.64 | 0 | 23.6 | | 9 | 23.600 | 135.000 | 156.740 | 5.72 | 6.64 | 0 | 23.6 | | 10 | 23.600 | 135.000 | 156.520 | 5.72 | 6.63 | 0 | 23.6 | | 11 | 23.600 | 135.000 | 140.220 | 5.72 | 5.94 | 0 | 23.6 | | 12 | 23.200 | 130.000 | 135.220 | 5.60 | 5.83 | 0.4 | 23.6 | | 13 | 22.800 | 130.000 | 135.220 | 5.70 | 5.93 | 8.0 | 23.6 | | 14 | 22.400 | 130.000 | 135.220 | 5.80 | 6.04 | 1.2 | 23.6 | | 15 | 22.000 | 99.000 | 103.750 | 4.50 | 4.72 | 1.6 | 23.6 | | 16 | 22.000 | 99.000 | 120.740 | 4.50 | 5.49 | 1.6 | 23.6 | | 17 | 22.000 | 99.000 | 120.740 | 4.50 | 5.49 | 1.6 | 23.6 | | 18 | 22.000 | 99.000 | 120.740 | 4.50 | 5.49 | 1.6 | 23.6 | | 19 | 22.000 | 99.000 | 120.740 | 4.50 | 5.49 | 1.6 | 23.6 | | 20 | 22.000 | 99.000 | 118.500 | 4.50 | 5.39 | 1.6 | 23.6 | | 21 | 22.000 | 99.000 | 99.000 | 4.50 | 4.50 | 1.6 | 23.6 | | 22 | 22.000 | 99.000 | 99.000 | 4.50 | 4.50 | 1.6 | 23.6 | | 23 | 22.000 | 99.000 | 99.000 | 4.50 | 4.50 | 1.6 | 23.6 | | 24 | 22.000 | 99.000 | 99.000 | 4.50 | 4.50 | 1.6 | 23.6 | | 25 | 22.000 | 99.000 | 99.000 | 4.50 | 4.50 | 1.6 | 23.6 | | 26 | 22.000 | 99.000 | 163.350 | 4.50 | 7.43 | 1.6 | 23.6 | | 27 | 21.997 | 99.000 | 163.350 | 4.50 | 7.43 | 1.6 | 23.597 | | 28 | 22.000 | 95.020 | 172.850 | 4.32 | 7.86 | 1.6 | 23.600 | | 29 | 17.180 | 5.000 | 82.770 | 0.29 | 4.82 | 1.6 | 18.780 | | 30 | | | 44.183 | | | 1.6 | 1.6 | | 31 | | | 44.183 | 550 | | 1.6 | 1.6 | | 32-77 | | | 44.183 | =::: | | 72.375 | 72.375 | | Total | 553.177 | 2761.120 | 3396.800 | 4.99 | 6.14 | 101.975 | 655.152 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL क्षित्र स्थान / Under Secretary भारत स्थान / God, of India क्षांचल मंत्राहत / Ministry of Coal भारत स्थान / Shash Dhawan नह दिल्ली / New Delin B.D. SHARMA # Pit/ Quarry wise Calendar programme of OC mine excluding rehandling is given in Table 5.7A. TABLE 5.7A TABLE 5.7A COAL MINING AND OB REMOVAL EXCLUDING REHANDLING (COAL MINING AND OB REMOVAL EXCLUDING REHANDLING (COAL IN MT, OB IN MBCUM) | | | | | Cumul. | 20.000 | 10.611 | 10.229 | 8.713 | 8.576 | 7.430 | 6.811 | 6.521 | 6.353 | 6.243 | 6.166 | 6.095 | 6.051 | 6.027 | 5.892 | | |-----|---|-----------------------|-----------|---------------|--------|--------|--------|--------|---------|---------|---------|---------|---------|----------------|----------------|----------------|----------|----------|----------|---------| | | (MD; | _ | | Progr. | 20.000 | 9.097 | 10.000 | 7.500 | 8.421 | 6.338 | 5.720 | 5.720 | 5.720 | 5.720 | 5.720 | 5.603 | 5.702 | 5.804 | 4.500 | | | | IDING TS) EXCAVATION FROM EAST AND WEST PIT (COAL IN MT, OB IN MBCUM) | TOTAL EAST + WEST PIT | | Cumul. | 5.000 | 19.100 | 49.100 | 94.100 | 174.100 | 309.100 | 444.100 | 579.100 | 714.100 | 849.100 | 984.100 | 1114.100 | 1244.100 | 1374.100 | 1473.100 | | | | AL IN MT, | TAL EAST | 0B | Progr. | 5.000 | 14.100 | 30.000 | 45.000 | 80.000 | 135.000 | 135.000 | 135.000 | 135.000 | 135.000 | 135.000 | 130.000 | 130.000 | 130.000 | 000.66 | ; | | | PIT (CO | TO | Coal | Cumul. | 0.250 | 1.800 | 4.800 | 10.800 | 20.300 | 41.600 | 65.200 | 88.800 | 112.400 | 23.600 136.000 | 23.600 159.600 | 23.200 182.800 | 205.600 | 228.000 | 250.000 | | | | D WEST | | Coal | Prgr. | 0.250 | 1.550 | 3.000 | 000.9 | 9.500 | 21.300 | 23.600 | 23.600 | 23.600 | 23.600 | 23.600 | 23.200 | 22.800 | 22.400 | 22.000 | | | | EAST AN | | SR | Cumul. | | | | | | | | | | | | | | | | | | 200 | FROM E | | SR | Progr. | | | | | | | | | | | | | | | | | | | VATION | r PIT | OB | Cumul. Progr. | | | | | | | | | | | | | | | | | |) | S) EXCA | EAST PIT | 80 | Progr. | | | | | | | | | | | | | | | | | | | UDING 1 | | Coal | Cumul. | | | | | | | | | | | | | | | | | | 2 | B (INCL | | | Prgr. | | | | | | | | | | | | | | | | | | | 3 AND 0 | | SR | Cumul. | 20.000 | 10.611 | 10.229 | 8.713 | 8.576 | 7.430 | 6.811 | 6.521 | 6.353 | 6.243 | 6.166 | 6.095 | 6.051 | 6.027 | 5.892 | 1 1 1 1 | | | L MINING | | | Progr. | 20.000 | 260'6 | 10.000 | 7.500 | 8.421 | 6.338 | 5.720 | 5.720 | 5.720 | 5.720 | 5.720 | 5.603 | 5.702 | 5.804 | 4.500 | | | | OF COA | PIT | OB | Cumul. | 5.00 | 19.10 | 49.10 | 94.10 | 174.10 | 309.100 | 444.100 | 579.100 | 714.100 | 849.100 | 984.100 | 1114.100 | 1244.100 | 1374.100 | 1473.100 | , , , | | | CRENDAR PROGRAMME OF COAL MINING AND OB (INCLU | WEST PIT | OB Progr. | | 5.00 | 14.10 | 30.00 | 45.00 | 80.00 | 135.000 | 135.000 | 135.000 | 135.000 | 135.000 | 135.000 | 130.000 | 130.000 | 130.000 | 99.000 | 0000 | | d. | NDAR PR | AL. | | Cumul. | 0.250 | 1.800 | 4.800 | 10.800 | 20.300 | 41.600 | 65,200 | 88.800 | 112.400 | 136.000 | 159.600 | 182.800 | 205.600 | 228.000 | 250.000 | | | | S
S | al | Coal | Prgr. | 0.25 | 1.55 | 3.00 | 00.9 | 9.50 | 21.300 | 23.600 | 23.600 | 23.600 | 23.600 | 23.600 | 23.200 | 22.800 | 22.400 | 22.000 | 000 | | | | Year | | | _ | 2 | ω, | 4 | 5 | 9 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | 14 | 15 | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL RQP NO. 34012/03/2014-CPAM B.D. SHARMA | | | SR
Cumul. | 5.684 | 5.602 | 5.530 | 5.467 | 5.411 | 5.362 | 5.317 | 5.277 | 5.241 | 5.208 | 5.177 | 5.142 | 4.991 | | | | | |---|-----------------------|----------------
----------|----------------|----------|----------------|----------------|----------------|----------|----------|---------------------------|----------------|----------|----------|----------|----|----|----|----------| | 6 | | SR
Progr. C | | 4.500 5 | 4.500 | 4.500 | 4.500 | 4.500 | 4.500 | 4.500 | 4.500 | 4.500 | 4.501 | 4.319 | 0.291 | | | | | | SCUM | PIT | S | ┼── | | | ļ <u>-</u> | - | | | | _ | | | <u> </u> | | _ | | }- | | | JDING TS) EXCAVATION FROM EAST AND WEST PIT (COAL IN MT, OB IN MBCUM) | TOTAL EAST + WEST PIT | OB
Cumul. | 1671.100 | 1770.100 | 1869.100 | 1968.100 | 2067.100 | 2166.100 | 2265.100 | 2364.100 | 2463.100 | 2562.100 | 2661.100 | 2756.120 | 2761.120 | | | | | | AL IN MT, | TAL EAST | OB
Progr. | 000.66 | 000.66 | 000.66 | 000.66 | 000'66 | 000.66 | 99.000 | 99.000 | 99.000 | 99.000 | 000.66 | 95.020 | 5.000 | | | | 2761.120 | | PIT (CO) | 10. | Coal
Cumul. | 294.000 | 22.000 316.000 | 338.000 | 22.000 360.000 | 22.000 382.000 | 22.000 404.000 | 426.000 | 448.000 | 22.000 470.000 | 22.000 492.000 | 513.997 | 535.997 | 553.177 | | | | | | ID WEST | | Coal
Prgr. | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 22.000 | 21.997 | 22.000 | 17.180 | | | | 553.177 | | EAST AN | | SR
Cumul. | | | | | 86.111 | 57.986 | 48.611 | 43.924 | 41.103 | 48.984 | 34.359 | 12.338 | 7.952 | | | | | | FROM | | SR
Progr. | | | | | 29.861 | 29.861 | 29.861 | 29.861 | 29.819 | 88.389 | 17.242 | 4.319 | 0.291 | | | | | | VATION | PIT | OB
Cumul. | | | | 40.500 | 62.000 | 83.500 | 105.000 | 126.500 | 21.470 147.970 29.819 | 211.610 88.389 | 275.250 | 370.270 | 375.270 | | | | | | S) EXCA | EAST PIT | OB
Progr. | | | | 40.500 | 21.500 | 21.500 | 21.500 | 21.500 | 21.470 | 63.640 | 63.640 | 95.020 | 5.000 | | | | 375.270 | | UDING T | | Coal
Cumul. | | | | 0.000 | 0.720 | 1.440 | 2.160 | 2.880 | 3.600 | 4.320 | 8.011 | 30.011 | 47.191 | | | | | | B (INCL | | Coal
Prgr. | | | | 0.000 | 0.720 | 0.720 | 0.720 | 0.720 | 0.720 | 0.720 | 3.691 | 22.000 | 17.180 | | | | 47.191 | | 3 AND OF | | SR
Cumul. | 5.684 | 5.602 | 5.530 | 5.354 | 5.259 | 5.173 | 5.096 | 5.027 | 4.964 | 4.820 | 4.715 | | | | | | | | MINING | | SR
Progr. | 4.500 | 4.500 | 4.500 | 2.659 | 3.642 | 3.642 | 3.642 | 3.642 | 3.643 | 1.662 | 1.932 | | | | | | | | OF COAL | ΔIL | OB
Cumul. | 1671.100 | 1770.100 | 1869.100 | 1927.600 | 2005.100 | 2082.600 | 2160.100 | 2237.600 | 2315.130 | 2350.490 | 2385.850 | | | | | | | | CALENDAR PROGRAMME OF COAL MINING AND OB (INCLU | WEST PIT | OB Progr. | 99.000 | 99.000 | 99.000 | 58.500 | 77.500 | 77.500 | 77.500 | 77.500 | 77.530 | 35.360 | 35.360 | | | | | | 2385.850 | | NDAR PR | | Coal Cumul. | 294.000 | 316.000 | 338.000 | 360.000 | 381.280 | 402.560 | 423.840 | 445.120 | 466.400 | 487.680 | 505,986 | | | | | | | | CALE | | Coal
Prgr. | 22.000 | 22.000 | 22.000 | 22.000 | 21.280 | 21.280 | 21.280 | 21.280 | 21.280 | 21.280 | 18.306 | | | | | | 505.986 | | | Year | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | Total | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL ाइंग्रेजि नामा अगर सा भारत सा कोगरत में शान्त्री सा मई दिख्ला 5-23 Andia Coal van ## CALENDAR PROGRAMME OF OC COAL MINING WITH DETAILS OF OB REMOVAL INCLUDING REHANDLING (COAL MT, OB IN MCUM) TABLE 5.7B | | | deled | Cumul. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 21.740 | 43.480 | 65.220 | 86.740 | 91.960 | 91.960 | 91.960 | 91.960 | 91.960 | 91.960 | |---|---|---|----------------|--------|--------|--------|--------|---------|---------|---------|---------|----------|---------|----------|----------|----------|----------|----------|----------| | e 5.7B. | LING | Rehandeled
contractually | Progr. | | | | | | _ | 21.740 | 21.740 | 21.740 | 21.520 | 5.220 | | | | | | | in Table | EHAND | SR Progr. Incl.
rehandl. | Progr. Cumul. | 20.000 | 10.611 | 10.229 | 8.713 | 8.576 | 7.430 | 7.145 | 7.011 | 6.933 | 6.881 | 6.742 | 6.626 | 6.549 | 6.499 | 6.342 | 6.273 | | given | ING R | SR Pro | Progr. | 20.000 | 9.097 | 10.000 | 7.500 | 8.421 | 6.338 | 6.642 | 6.642 | 6.642 | 6.632 | 5.942 | 5.828 | 5.931 | 6.037 | 4.716 | 5.488 | | andling is | INCLUD | disposal
ct +
daled) | Cumul. | 5.000 | 19.100 | 49.100 | 94.130 | 174.100 | 309.100 | 465.840 | 622.580 | 779.320 | 935.840 | 1076.060 | 1211.280 | 1346.500 | 1481.720 | 1585.470 | 1706.210 | | uding reh | MOVAL | Total OB disposal
(direct +
rehandaled) | Progr. | 5.000 | 14.100 | 30.000 | 45.000 | 80.000 | 135.000 | 156.740 | 156.740 | 156.740 | 156.520 | 140.220 | 135.220 | 135.220 | 135.220 | 103.750 | 120.740 | | R) inclu | OB RE | dump
ng west
ast | Cumt.l. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 000.0 | 0.000 | 0.000 | 0.000 | | sal (OB | ILS OF
MCUM) | Crown dump Crown dump rehandling west to west | Progr. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | e Dispo | TABLE 5.7B
MINING WITH DETAILS OF
(COAL MT, OB IN MCUM) | dump
ng west r
est | Cumul. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | of Wast | TABL
G WITH | Crown dump
ehandling wes
to west | Progr. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | details o | MININ
(CO | | Cumul. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 21.740 | 43.480 | 65.220 | 86.740 | 91.960 | 97.180 | 102.400 | 107 620 | 112.370 | 134 110 | | line with | c coal | Surface dump
rehandling from
west to west | Progr. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 21.740 | 21.740 | 21.740 | 21.520 | 5.220 | 5.220 | 5.220 | 5.220 | 4.750 | 21.740 | | ıcast m | E OF O | | SR
Cumul. | 20.000 | 10.611 | 10.229 | 8.713 | 8.576 | 7.430 | 6.811 | 6.521 | 6.353 | 6.243 | 6.166 | 6.095 | 6.051 | 6.027 | 5.892 | 5.780 | | for oper | RAMM | | SR
Progr. | 20.000 | 9.097 | 10.000 | 7.500 | 8.421 | 6.338 | 5.720 | 5.720 | 5.720 | 5.720 | 5.720 | 5.603 | 5.702 | 5.804 | 4.500 | 4.500 | | calendar Programme for opencast mine with details of Waste Disposal (OBR) including rehandling is given in Table 5.7B | TABLE 5.7B
CALENDAR PROGRAMME OF OC COAL MINING WITH DETAILS OF OB REMOVAL INCLUDING REHANDLING
(COAL MT, OB IN MCUM) | West Pit) | OB
Cumul. | 5.000 | 19.100 | 49.100 | 94.100 | 174.100 | 309.100 | 444.100 | 579.100 | 714.100 | 849.100 | 984.100 | 1114.100 | 1244.100 | 1374.100 | 1473.100 | 1572.100 | | ndar Pro | ALENDA | Total (East + West Pit) | OB
Progr. | 5.000 | 14.100 | 30.000 | 45.000 | 80.000 | 135.000 | 135.000 | 135.000 | 135.000 | 135.000 | 135.000 | 130.000 | 130,000 | 130.000 | 99.000 | 99.000 | | alei | p.N | AGPAL | Coal
Cumul. | 0.250 | 1.800 | 4.800 | 10.800 | 20.300 | 41.600 | 65.200 | 88.800 | 112.400 | 136.000 | 159.600 | 182.800 | 205.600 | 228.000 | 250.000 | 272.000 | | | R (Cavt. of
SAL Claimstry
SAL/Shastri B
Gee'll / New D | etary
India
of Coal
nawan
alhi | Coal
Prgr. | 0.250 | 1.550 | 3.000 | 0.00.9 | 9.500 | 21.300 | 23.600 | 23.600 | 23.600 | 23.600 | 23.600 | 23.200 | 22.800 | 22.400 | 22.000 | 22.000 | | | | Year | l | _ | 2 | 3 | 4 | 2 | 9 | | ∞ | б | 10 | 7-7 | 12 | 13 | 14 | 15 | 16 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL RQP NO. 34012/03/2014-CPAM B.D. SHARMA | Year | | Ĕ | otal (East | Total (East + West Pit) | _ | | Surface dump
rehandling from
west to west | 1077 | Crown dump
rehandling wes
to west | dump
ng west
est | Crown dump Crown dump rehandling west to west | dump
ng west
ast | Total OB disposal
(direct +
rehandaled) | | SR Progr. Incl.
rehandl. | gr. Incl.
ndl. | Rehandeled
contractually | deled
tually | |------|---------------|----------------|--------------|--|---------------|--------------
--|---|---|------------------------|---|------------------------|---|----------|-----------------------------|-------------------|-----------------------------|-----------------| | | Coal
Prgr. | Coal
Cumul. | OB
Progr. | OB
Cumul. | SR
Progr. | SR
Cumul. | Progr. | Cumul. | Progr. | Cumul. | Progr. | Cumul. | Progr. | Cumul. | Progr. | Progr. Cumul. | Progr. | Cumul. | | 17 | 22.000 | 294.000 | 99.000 | 1671.100 | 4.500 | 5.684 | 21.740 | 155.850 | 0.000 | 0.000 | 0.000 | 0.000 | 120.740 | 1826.950 | 5.488 | 6.214 | | 91.960 | | 18 | 22.000 | 316.000 | 000.66 | 1770.100 | 4.500 | 5.602 | 21.740 | 177.590 | 0.000 | 0.000 | 0.000 | 0.000 | 120.740 | 1947.690 | 5.488 | 6.164 | | 91.960 | | 19 | 22.000 | 338.000 | 000.66 | 1869.100 | 4.500 | 5.530 | 21.740 | 199.330 | 0.000 | 0.000 | 0.000 | 0.000 | 120.740 | 2068.430 | 5.488 | 6.120 | | 91.960 | | 20 | 22.000 | 360.000 | 000.66 | 1968.100 | 4.500 | 5.467 | 19.500 | 218.830 | 0.000 | 0.000 | 0.000 | 0.000 | 118.500 | 2186.930 | 5.386 | 6.075 | | 91.960 | | 21 | 22.000 | 382.000 | 000.66 | 2067.100 | 4.500 | 5.411 | 0.000 | 218.830 | 0.000 | 0.000 | 0.000 | 0.000 | 99.000 | 2285.930 | 4.500 | 5.984 | | 91.960 | | 22 | 22.000 | 404.000 | 000.66 | 2166.100 | 4.500 | 5.362 | 0.000 | 218.830 | 0.000 | 0.000 | 0.000 | 0.000 | 99.000 | 2384.930 | 4.500 | 5.903 | | 91.960 | | 23 | 22,000 | 426.000 | 000.66 | 2265.100 | 4.500 | 5.317 | 0.000 | 218.830 | 0.000 | 0.000 | 0.000 | 0.000 | 99.000 | 2483.930 | 4.500 | 5.831 | | 91.960 | | 24 | 22.000 | 448.000 | 99.000 | 2364.100 | 4.500 | 5.277 | 0.000 | 218.830 | 0.000 | 0.000 | 0.000 | 0.000 | 99.000 | 2582.930 | 4.500 | 5.765 | | 91.960 | | 25 | 22.000 | 470.000 | 99.000 | 2463.100 | 4.500 | 5.241 | 0.000 | 218.830 | 0.000 | 0.000 | 0.000 | 0.000 | 000.66 | 2681.930 | 4.500 | 5.706 | | 91.960 | | 26 | 22.000 | 492.000 | 99.000 | 2562.100 | 4.500 | 5.208 | 0.000 | 218.830 | 64.350 | 64.350 | 0.000 | 0.000 | 163.350 | 2845.280 | 7.425 | 5.783 | 28.350 | 120.310 | | 27 | 21.997 | 513.997 | 99.000 | 2661.100 | 4.501 | 5.177 | 0.000 | 218.830 | 64.350 | 128.700 | 0.000 | 0.000 | 163.350 | 3008.630 | 7.426 | 5.853 | 28.350 | 148.660 | | 28 | 22.000 | 535,997 | 95.020 | 2756.120 | 4.319 | 5.142 | 0.000 | 218.830 | 77.830 | 206.530 | 0.000 | 0.000 | 172.850 | 3181.480 | 7.857 | 5.936 | 37.850 | 186.510 | | 29 | 17.180 | 553.177 | 5.000 | 2761.120 | 0.291 | 4.991 | 0.000 | 218.830 | 34.910 | 34.910 241.440 | 42.860 | 42.860 | 82.770 | 3264.250 | 4.818 | 5.901 | | 186.510 | | 30 | 0.000 | 553.177 | 0.000 | 2761.120 | 0.000 | 4.991 | 0.000 | 218.830 | 0.000 | 241.440 | 44.183 | 87.043 | 44.183 | 3308.433 | | 5.981 | | 186.510 | | 31 | 0.000 | 553.177 | 0.000 | 2761.120 | 0.000 | 4.991 | 0.000 | 218.830 | 0.000 | 241.440 | 44.183 | 131.227 | 44.183 | 3352.617 | | 6.061 | | 186.510 | | 32 | 0.000 | 553.177 | 0.000 | 2761.120 | 0.000 | 4.991 | 0.000 | 218.830 | 0.000 | 241.440 | 44.183 | 175.410 | 44.183 | 3396.800 | | 6.141 | | 186.510 | | Tota | Total 553.177 | | 2761.120 | | 4.991 | | 218.830 | | 241.440 | | 175.410 | | 3396.800 | | 6.141 | | 186.510* | | | | * 7.4 | in minnetific | od od Him | * This months will be handled described the nation | coffee the on | | Carolina Car | 400000000000000000000000000000000000000 | the house | At way also have | *; * | | | | | | | | * This quantity will be handled contractually and no provision of equipment has been made for it. Mining Plan & Mine Closure Plan for Gage Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Year/Stage wise progressive insitu GCV of coal seams as calculated though MINEX software and the corresponding coal extraction are given below in Table 5.8A and 5.8B respectively. TABLE 5.8A | ति नाम
स्र सतिव
स्र सतिव
स्र सतिव
स्र सतिव | X | YEAR/ STAGE WISE | GE WISE F | TABLE 5.8A
PROGRESSIVE | 5.8A
SIVE GCV | TABLE 5.8A
PROGRESSIVE GCV OF COAL SEAMS | EAMS | | | |--|--------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------|---|-----------|------------------------------------|-------------| | OC IN INC. | | | | | YE/ | YEARS | | | | | SEAM SEAM | 1st | 2 nd -3 rd | 4 th -5 th | 6 th -10 th | 11 th -15 th | 16 th -20 th | 21st-25th | 26 th -29 th | 1st to 29th | | Y TY | 0 | 0 | 3698 | 3926 | 4413 | 4261 | 3854 | 3964 | 4056 | | 4OF X | 2662 | 0 | 3948 | 3488 | 3848 | 3518 | 4152 | 5003 | 3902 | | X_BOT | 4308 | 4337 | 4347 | 4387 | 4362 | 4360 | 4268 | 3959 | 4328 | | IX_L2 | 0 | 5041 | 5011 | 0 | 0 | 4854 | 4404 | 4562 | 4674 | | IX_L1 | 0 | 0 | 4740 | 4951 | 4921 | 5145 | 3825 | 4866 | 4892 | | × | 0 | 5352 | 5102 | 4987 | 4992 | 4976 | 4824 | 5215 | 4987 | | VIII | 0 | 0 | 3869 | 3824 | 3784 | 3699 | 3461 | 3755 | 3766 | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 0 | 0 | 0 | 4201 | 4323 | 4988 | 2765 | 4236 | 4293 | | VII_TOP | 0 | 0 | 0 | 4174 | 4266 | 4236 | 4038 | 4073 | 4110 | | VII_BOT | 0 | 0 | 0 | 4041 | 4138 | 4378 | 4143 | 4073 | 4134 | | VII_COM | 0 | 0 | 0 | 4257 | 4142 | 3823 | 4155 | 4326 | 4198 | | IN | 0 | 0 | 0 | 4528 | 4532 | 4446 | 4336 | 4319 | 4454 | | WEIGHTED AVG. OC | C 4065 | 4744 | 4509 | 4413 | 4431 | 4476 | 4231 | 4353 | 4387 | | II. UG | | | | | | | | | | | \ <u>\</u> | | | | | 4978 | 4929 | 4795 | 4745 | 4864 | | | | | | | 0 | 5015 | 4762 | 4742 | 4832 | | WEIGHTED AVG. UG | 9 | | | | 4978 | 4967 | 4778 | 4743 | 4851 | | 0.1+1.0 | AOGE | A7.4A | 0017 | 1140 | 0777 | 0017 | 000, | 1000 | 0011 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL YEAR/STAGE WISE PROGRESSIVE MINABLE COAL PRODUCTION GARE PALMA SECTOR-II TABLE 5.8B | 1 | ל ה | OL VVIOL | COUNTY | IVE MINABLE | LEALUSTAGE MISE I MOGINESSIVE MINABLE CORETTODIO CANCET ALIMA SECTIONAL | יים אוסיון סטטי | NIT I DEING | 10171 | | |-------------|-------|----------------------------------|----------------------------------|-----------------------------------|---|------------------------------------|------------------------------------|------------------------------------|---------| | Seam | | | | | Years | | | | | | 20 | 1st | 2 nd -3 rd | 4 th -5 th | 6 th -10 th | 11 th -15 th | 16 th -20 th | 21 st -25 th | 26 th -29 th | Total | | X_LA | 0.000 | 0.000 | 0.040 | 0.850 | 090.0 | 3.620 | 1.590 | 3.391 | 9.551 | | X_TOP | 0.040 | 0.000 | 1.260 | 0.390 | 0.530 | 3.800 | 0.670 | 1.322 | 8.012 | | X_BOT | 0.230 | 2.710 | 4.120 | 18.460 | 10.830 | 9.720 | 16.040 | 2.021 | 64.131 | | IX L2 | 0.000 | 0.010 | 0.180 | 0.000 | 0.000 | 4.960 | 1.980 | 3.527 | 10.657 | | IX_L1 | 0.000 | 0.000 | 0.180 | 0.340 | 0.340 | 5.150 | 1.100 | 4.827 | 11.937 | | × | 0.000 | 1.810 | 5.300 | 24.800 | 26.980 | 29.200 | 15.560 | 8.154 | 111.804 | | \\ | 0.000 | 0.000 | 4.240 | 19.740 | 16.990 | 14.600 | 2.940 | 2.813 | 61.323 | | VIII_L | 0.000 | 0.000 | 000.0 | 0.310 | 1.470 | 3.490 | 1.410 | 5.253 | 11.933 | | VII_TOP | 0.000 | 0.000 | 000.0 | 8.830 | 7.000 | 7.260 | 27.720 | 16.447 | 67.257 | | VII_BOT | 0.000 | 0.000 | 000.0 | 3.090 | 1.450 | 3.360 | 7.800 | 2.352 | 18.052 | | VII COM | 0.000 | 0.000 | 000.0 | 10.570 | 15.880 | 3.360 | 12.790 | 16.137 | 58.737 | | N | 0.000 | 0.000 | 000.0 | 28.680 | 32.990 | 20.540 | 21.290 | 16.283 | 119.783 | | Total OC | 0.270 | 4.530 | 15.320 | 116.060 | 114.520 | 109.060 | 110.890 | 82.527 | 553.177 | | UG Mine | | | | | | | | | , | | 2 | | | | | 4.000 | 4.500 | 4.000 | 4.000 | 16.500 | | | | | | | 0.000 | 3.500 | 4.000 | 4.000 | 11.500 | | Total UG | | | | | 4.000 | 8.000 | 8.000 | 8.000 | 28.000 | | Total OC+UG | 0.270 | 4.530 | 15.320 | 116,060 | 118.520 | 117.060 | 118.890 |
90.527 | 581.177 | | A1-4-10 | ouo . | | All what was I am a man | 1.1.1.1. | | 1 - 1: 1: 1: 1: 1 | 1 | | | **Note**: Due to 2^{nd} place rounding, the individual seam contribution and total may show a slight mismatch. The weighted average GCV of insitu coal based on the production contribution from OC and UG combined is 4409 KCal/Kg (時間子報報 1884). The GCV of ROM coal has been considered as 4350 KCal/Kg for calculating coal requirements an 由于 1890 FLDPs. A perusal of above tables shows that average insitu GCV of coal from all workable seams from Opencast is 4387 KCal/Kg and that of Indecement in operation (upto 29 years). Mining Plan & Mine Closure Rain for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPA The year/stage wise progressive ash% of coal seams is given in Table 5.9 below. TABLE 5.9 EAR/STAGE WISE PROGRESSIVE ASH % OF SE | المدن | YE | YEAR/STAG | E WISE F | ROGRES | SIVE ASH | STAGE WISE PROGRESSIVE ASH % OF SEAMS | AMS | | | |------------------|-------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------|---------------------------------------|------------------------------------|------------------------------------|-------------------------------------| | SEAM | | | | | YEARS | S | | | | | | 1st | 2 nd -3 rd | 4 th -5 th | 6 th -10 th | 11 th -15 th | 16 th -20 th | 21 st -25 th | 26 th -29 th | 1 st to 29 th | | OPENCAST MINE | | | | | | | | | | | X_LA | 00.0 | 0.00 | 45.46 | 41.76 | 49.54 | 38.15 | 42.79 | 40.75 | 40.27 | | X_TOP | 56.43 | 0.00 | 42.51 | 35.60 | 43.53 | 48.13 | 25.17 | 34.18 | 42.15 | | X_BOT | 38.81 | 37.85 | 37.24 | 35.81 | 37.50 | 38.13 | 36.87 | 40.03 | 37.03 | | IX_L2 | 0.00 | 29.62 | 29.51 | 00.00 | 00.0 | 30.77 | 36.77 | 34.46 | 33.08 | | IX_L1 | 0.00 | 00.0 | 33.05 | 28.25 | 30.68 | 29.04 | 35.92 | 31.22 | 30.64 | | × | 0.00 | 28.39 | 28.98 | 29.58 | 29.90 | 31.75 | 29.46 | 32.54 | 30.38 | | VIII | 0.00 | 00.0 | 43.71 | 43.93 | 44.20 | 46.28 | 43.17 | 47.98 | 44.70 | | \III_L | 0.00 | 00.00 | 00.0 | 39.54 | 38.72 | 33.10 | 52.38 | 39.57 | 39.09 | | VII_TOP | 0.00 | 00.00 | 00.00 | 39.84 | 39.69 | 42.04 | 41.73 | 41.67 | 41.29 | | VII_BOT | 0.00 | 00.0 | 0.00 | 41.68 | 41.96 | 40.08 | 40.88 | 41.67 | 41.06 | | VII_COM | 0.00 | 00.0 | 0.00 | 39.64 | 40.61 | 43.70 | 40.23 | 41.10 | 40.66 | | I/ | 00.00 | 00.0 | 0.00 | 36.54 | 36.70 | 38.25 | 38.16 | 39.30 | 37.54 | | WEIGHTED AVG. OC | 41.42 | 34.05 | 35.82 | 36.87 | 37.12 | 37.42 | 38.33 | 37.33 | 37.64 | | UG MINE | | | | | | | | | | | <u>\</u> | 0.00 | 0.00 | 0.00 | 0.00 | 30.93 | 30.96 | 33.00 | 32.55 | 31.83 | | === | 00.0 | 0.00 | 0.00 | 0.00 | 00.0 | 31.05 | 33.69 | 31.13 | 32.00 | | WEIGHTED AVG. UG | 00.0 | 0.00 | 0.00 | 0.00 | 30.93 | 31.00 | 33.45 | 31.84 | 31.93 | | OC+UG | 41.42 | 34.05 | 35.82 | 36.87 | 36.91 | 36.98 | 38.00 | 36.84 | 37.37 | However, the Ash % fluctuates from year to year between 34.05 % and 41.42%. There will be some further deterioration in ROM coal quality due to dilution during mining operations. It is evident from Table 5.9 that the average ash content of total insitu extractable reserves is between 37 and 38 %. ाहेर्जीर नागपाल /I.P. NAGPAL अवस्थ सन्धि / Under Secretary भारत संस्थान / Govt. of India कोमला नेवालय / Ministry of Coel धारती गुनन / Shestri Bhawan महे दिल्ली / New Delin Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL ### 5.3.8 Proposed rate of production when the mine is fully developed | Coal production peak for OC when UG mine not operational (upto 11 th year) | 23.6 Mtpa | |--|-----------------------------| | Coal production peak for OC when UG mine is operational at targeted capacity (from 15 th year) | 22.00 | | Overburden excavation without rehandling (cum;t) | 135.00 mm ³ peak | | Stripping ratio without rehandling (cum;t) | 4.99 : 1 | | Stripping ratio with rehandling of Surface Dumps 218.81 Mcum during 7 th to 20 th year (cum:t) | 5.39 : 1 | | Stripping ratio with rehandling of S. Dumps during 7 th to 20 th year and Crown dumps 284.30 Mcum during 27 th to 29 th year (cum:t) | 6.14 : 1 | Note: During the period between 7th and 20th year and 27th to 29th year whole surface dump and part of crown dump will be rehandled and backfilled into the void and no separate provision for the same has been done for the equipment in this Mining Plan as this has been assumed to be tackled by hiring additional equipment over and above the equipment planned for normal direct excavation of OB. ### 5.3.9 Mineable reserves and anticipated life of the mine The recoverable (extractable) reserves are already given in Table 5.2 and Table 5.3 above as 653.47 Mt. | SI. No. | Particulars | East | West | Total | |---------|---|---------|---------|---------| | | Extractable reserves by OC (in East and West Pits), Mt | 47.191 | 505.986 | 553.177 | | | Extractable reserve by UG (on East and West side of Kelo river), Mt | 95.605 | 6.370 | 101.975 | | | Total, Mt | 142.796 | 512.356 | 655.152 | The life of the OC mine will be about 29 years at annual production rate of 22 Mt as per the calendar programme of production. The underground production is envisaged to start from 12th year and end in 77th year. Thus, including 3 years of construction (incline drivage and shaft sinking etc.) the life of underground mine will be 69 year at production rate of 1.6 Mtpa. ### 5.3.10 Proposed method of working Opencast method of mining has been adopted alongwith shovel/ dumper combination as well as Continuous Surface Miners as detailed under para तार्चुंब्पीक नागप**र्क. 3.2. above.** ज्ञापन राचिन / Under Secretary Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 5-29 His Cool / New Delhi ### 5.3.10.1 Opencast working ### (i) Overburden removal: Trucks and shovels The overburden comprises of soil cover underlain by weathered mantle which is, in turn, underlain by comparatively stronger OB strata. 8 m to 10 m high benches will be developed to excavate the OB. To start with, the topsoil material (0.6m thick) will be excavated by 0.9/1.2 cum hydraulic shovel and transported to a designated area by dumpers. Two types of topsoil storages will be made-one permanent type near the external OB dump and another temporary stack on the backfilled area for immediate use within the same year before the onset of monsoon. This topsoil will be eventually re-used for reclamation. It is estimated that a total of 14.64 Mcum(B) of top soil will be generated during the entire period of mining operations i.e. 29 years. The 8 m to 10 m bench in soil and weathered mantle will not require any drilling/blasting where as the underlying stronger strata of OB will be drilled by rotary blast hole drill using a bit size of 200-250mm. The blast hole will be loaded with explosive and blasted. Hydraulic excavators equipped with 12 cum and 20 cum bucket will be used for OB while hydraulic excavator of 5/5.5 m³ will be used for thin interburden/ parting. The dumpers will haul the material either to the surface waste dump or to previously mined pit section for backfilling. At the dump site, dozer will be used for the purpose of grading the dumps. Transport will be affected by 150/100T rear dumpers for larger shovels and 50T for smaller shovel of 5/5.5 cum bucket. ### (ii) Coal mining All the coal production will be done by Surface Miners while two rippers will be provided for use in isolated locations or thinner seams where deployment of CSMs may not be advisable due to time factors and economic factors. Three Surface Miners will also be used for selective mining of coal. Coal from surface miner will be loaded into the dumpers of 100T (windrow from 3800SM) and 150T. All haul roads and roads on dumps will be maintained at a gradient of 1 in 16. (Refer Plate XIV, XV, XVI, XVII, XVIII, XX, XXII and XXVI). ### 5.3.11 Extent of mechanisation Mining and transport of coal and OB will be fully mechanised. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPAM ### 5.3.11.1 Lead for coal and OB transportation As the population of transportation equipment will depend upon the lead, the same was calculated and found to be about 4.50 km on an average for coal as well as for OB. Therefore a lead of 4.50 km has been assumed for calculations of transportation equipment requirement. Average one way lead adopted as 4.5 km for both OB and coal. ### 5.3.11.2 Extent of manual/ machine mining Fully mechanized system of mining has been proposed, as elaborated in this chapter. The annual productivity of various shovel/ dumper combinations is as follows: TABLE 5.10 ANNUAL PRODUCTIVITY OF VARIOUS SHOVEL/ DUMPER COMBINATIONS AND THEIR POPULATION | Equipment | Capacity of the
machine based
on 330 days/year | Population | Total Output | |---|--|-------------------------------------|--------------| | I. Over burden | | | | | 20 cum Hydraulic Elect.
Shovel with 12 nos.150T
dumpers for 4.5 km lead | 5.35 Mcum; OB | 20 shovels + 240
dumpers | 107 Mcum | | 12 cum Hydraulic Elect.
Shovel with 9 nos.150T
dumpers for 4.5 km lead | 3.42 Mcum; OB | 7 shovels + 63
dumpers | 23.94 Mcum | | 5/5.50 cum Hydraulic Elect.
Shovel with 10 nos. 50T
dumpers for 4.5 km lead | 1.45 Mcum; OB | 4 shovels + 40 dumpers | 5.8 Mcum | | Total (I) OB | | | 136.74 Mcum | | II. Coal | | | | | Surface miner (3800SM) | 4.00 Mt | 1 SM + 5 nos. 100T
dumpers (CB) | 4.00 Mt | | Surface miner (4200SM) | 10.00 | 2 SM + 20 nos. 150T
dumpers (CB)
| 20.00 Mt | | Total (II) Coal | | | 24.00 Mt | The equipment calculation has been done assuming 330 days/year operation and 4.5 km average lead. The list of production and auxiliary equipment is given in Table 5.11. TABLE 5.11 LIST OF PRODUCTION AND AUXILIARY EQUIPMENT | SI. No. | Particulars | Quantity | |---------|--|----------| | l. | Heavy Earth Moving Machinery | | | A. | Coal (22 Mtpa) | | | a) | 100 T.R.D.(CB) dumpers for 3800SM(W) CSM | 5 | | b) | 150 T.R.D.(CB) Dumpers for 4200SM(W) CSM | 20 | | c) | 0.9 m ³ hydraulic backhoe | 2 | | d) | Dozer 275-320 HP | 4 | | e) | Dozer 410 HP with ripper | 2 | | f) | Surface miner 3800 SM (W) | 1 | | g) | Surface miner 4200SM (W) | 2 | | h) | 10-16 m ³ Front End Loader (Coal) | 5 | | i) | 6-8 m ³ Front End Loader (Coal) | 4 | | | Sub-Total for Coal | 36 | | В. | Overburden | | | a) | Hydraulic shovel 5/5.5cum | 4 | | b) | Hydraulic Shovel 12 m ³ | 7 | | c) | Hydraulic Shovel 20 m ³ | 20 | | d) | 50 Tonne Dump Truck for 5/5.5 m ³ shovels | 20 | | e) | 150 Tonne Dump Truck for 12 m ³ shovels | 63 | | f) | 150 Tonne Dump Truck for 20 m ³ shovels | 240 | | g) | R.B.H drills 200/250 mm | 31 | | h) | Dozer 410 HP | 30 | | i) | Dozer 275-320 HP | 10 | | | Sub-Total for OB | 425 | | 11. | Common, Auxiliary & Service Equipment | | | a) | Graders 230 HP | 4 | | b) | Diesel Bouser | 6 | | c) | Construction backhoe -0.9 CUM | 2 | | d) | Water sprinkler (26 KL) | 12 | | e) | Tow truck on 50T truck chassis | 2 | | f) | 100 T tractors (Diesel Operated) | 2 | | g) | Rough Terrain Crane - 40T | 4 | | h) | Rough Terrain crane 70 T | 2 | | GPAL i) | Service trucks: | | | WEST | | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA 5-32 RQP NO. 34012/03/2014-CPAM | SI. No. | Particulars | Quantity | |---------|---|----------| | | - Wash trucks | 6 | | | - Mobile maintenance trucks | 6 | | | - Lube trucks | 6 | | | - Fire trucks | 2 | | | - Explosive van | 4 | | j) | Portable air compressor | 4 | | k) | Tyre handler | 4 | | | Sub-Total for Auxiliary & Service Equipment | 79 | | | Reclamation | | | a) | 2.5 cum Front End Loader | 4 | | b) | 10 T Truck | 10 | | c) | 0.9-1.2 cum hydraulic Excavator | 4 | | | Sub-Total for reclamation | 18 | | | Total (Coal+OB+Aux+Reclamation) | 558 | However the quantity of 218.81 Mcum(B) or 251.63 Mcum(L) of rehandling from surface dumps and 186.51 Mcum from crown dump will be got done contractually between 7th and 11th year and 26th and 28th year respectively for which no provision of HEMM has been made in the above table. It is assumed that as this is relatively a smaller period job, it can therefore better be contracted out. It is estimated that deployment of 4/8 nos. 20/10cum bucket capacity hydraulic shovels in combination with 48 nos. 150/100T dumpers will be adequate to do the job for the 1st part and double of these equipment for 2nd part. Rehandling of overburden will be outsourced. Contractor will be permitted to use standard equipments of high capacity which will be available at that time. Indian contractors already have 100T dumpers and 10 cum bucket shovels. Progressively the size of equipments (HEMM) with the contractors may also increase. Because of production contribution from 12 no. of seams at different horizons, dumper transport would be ideally suited. Further, due to dumping constraints, virtually no space is available at quarry floor. The working faces will be moving at 200-300 m per year and it will be difficult to maintain multiple loading points and undertake frequent shifting of loading points in case the conveyor arrangement is to be considered instead of presently proposed dumper system. # 5.3.11.3 Drilling Grawler-mounted pneumatically operated down the hole drilling rigs with hole dwameter of 200-250 mm and those rigs are capable to meet the future that it is a superior of 8 m/hr will be deployed for OB. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 5-33 # 5.3.11.4 Loading The FELs of 6-8 cum and 10-16 cum bucket will be used for loading coal cut by 3800SM and 4200SM (operating in windrow mode) respectively and will be loaded into the 100T and 150T dumper., The OB will be dealt with the help of hydraulic shovel in combination with dumpers after drilling and blasting. # 5.3.11.5 Haulage/Transport The OB will be transported by 150 T and 50 T R.D. trucks to surface dumps and later on, as soon as decoaled area is available suitable for backfilling, to the site of back-filling. The coal from SM will be transported by 100T/150T coal body trucks and will not require any crushing. A coal stack facility has also been provided for accommodating about 3 days production. FE loading machines with 8 m³ coal bucket will load the coal into trucks from coal heaps created by the Surface Miners to transport upto the hoppers within the mine while 5cum bucket capacity FELs will be used for handling coal from the coal stack on the surface. This system will offer mobility or flexibility. The production from each seam will be mined in the ratio's to ensure near consistency of quality over the life of the mine. The main haul roads will be 30m wide and laid at a gradient of 1 in 16. The haul roads, other than the main haul road, will also be laid at 1 in 16 gradient but local ramps can be negotiated at 1 in 10 gradient. The drainage of the road will be affected by a specially built drain, usually along the high wall, towards which the road level will be slightly tilted (1 in 100) for easy water collection. # 5.3.12 Geo-mining Characteristics for OC The geo-mining characteristics are given in Table 5.12. TABLE 5.12 GEO-MINING CHARACTERISTICS OF OC MINING | Particulars | Unit | West of Kelo | East of Kelo | | |---------------------------|-------|--------------|--------------|--| | | | River | River | | | Extractable Reserve | Mt | 655 | .152 | | | i) By opencast mining | Mt | 505.986 | 47.191 | | | | | 553.177 | | | | ii) By underground mining | Mt | 95.605 | 6.370 | | | | | 101 | .975 | | | Overburden | MCum | 2385.850 | 375.270 | | | | | 2761 | 1.120 | | | Stripping Ratio without | Cum/t | 7.952 | 4.715 | | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL | Particulars | Unit | West of Kelo | East of Kelo | | |---------------------------------|---------|-----------------------------|-------------------|--| | | | River | River | | | rehandling | | 4. | 99 | | | Overburden Including | | 297 | 9.95 | | | Rehandling of surface dumps | | | | | | Stripping Ratio with rehandling | Cum/t | 5. | 39 | | | of surface dumps | | | | | | OB including rehandling of | | 339 | 6.80 | | | surface dumps & Rehandling of | | | | | | Crown Dump | | | | | | Stripping Ratio with rehandling | | 6. | 14 | | | of surface dumps & crown | | | | | | dump | | | | | | Total number of seams | Nos. | 31 nos. (including s | | | | | | | ding order | | | Workable Seams | _ | | uding splits | | | | | | eam- VI by OC and | | | Consultations thinks are | | Seam IV to I- (| | | | Seam and partings thickness | | Refer Table 4. | o in Chapter 4 | | | range, m Area of Excavation | На | 2001 76 | 358.79 | | | Area of Excavation | l Ha | 2081.76 | | | | Perimeter | m | 18838 | 1192 | | | Angle of dip | degrees | 2-4 SW (1 in 14 to 1 in 28) | | | | Dip-rise length along floor | ucgrees | 2-4 000 (1111 | 14 (0 1 11 20) | | | i) Minimum | | 2163 | 178 | | | ii) Maximum | m | 3429 | 1332 | | | iii) Average | m | 2796 | 755 | | | Dip-rise length along | | 2.00 | 700 | | | surface: | | | | | | i) Minimum | m | 2485 | 467 | | | ii) Maximum | m | 3809 | 1584 | | | iii) Average | m | 3147 | 1025.5 | | | Quarry depth: | | | | | | i) Minimum_ | m | 92 | 105 | | | ii) Maximum | m | 190 | 165 | | | îii) Average | m | 141 | 135 | | | Strike length along floor: | | | | | | i) Minimum | m | 5257 | 616 | | | ii) Maximum | m | 6776 | 2752 | | | iii) Average | m | 6016.5 | 1684 | | | Strike length along surface: | | | | | | i)s MAMinimum | m | 5714 | 854 | | | ii) r h Maximum | m | 7162 | 3384 | | | ii) Average | m | 6438 | 2119 | | विवर्षीत नागपाल अगर सकित / Un #### 5.4 UNDERGROUND MINING ### 5.4.1 General i. Underground mining method has been adopted for mining coal of lower seams viz. Seam IV, III, II, IL1 and I. Though the reserve of thickness lying between 0.9m and 1.5m has been separately indicated but for the purpose of present Mining Plan, only thickness of more than 1.5m has been considered. ii. The extractable reserves by underground have been derived in Table 5.1B and are 101.975 MT. The distribution of reserves on west and east of Kelo river, seam wise are given below in Table 5.13 to 5.17. TABLE 5.13 ECONOMICALLY EXTRACTABLE RESERVE BY UNDERGROUND (MT) | Seam | Economically Extractable Reserve | | | | | | | | |--------|----------------------------------|-----------------------|-----------------------------------|--|--|--|--|--| | | West of Kelo
River | East of Kelo
River | Total West and East of Kelo River | | | | | | | VI-L | 0.000 | 0.000 | 0.000 | | | | | | | VA-1 | 0.000 | 0.000 | 0.000 | | | | | | | VA-2 | 0.000 | 0.000 | 0.000 | | | | | | | VB-1 | 0.000 | 0.000 | 0.000 | | | | | | | VB-2 | 0.000 | 0.000 | 0.000 | | | | | | | VC-1 | 0.000 | 0.000 | 0.000 | | | | | | | VC-2 | 0.000 | 0.000 | 0.000 | | | | | | | VD-1 | 0.000 | 0.000 | 0.000 | | | | | | | VD-2 | 0.000 | 0.000 | 0.000 | | | | | | | IV | 21.049 | 2.576 | 23.625 | | | | | | | III-L2 | 0.000 | 0.000 | 0.000 | | | | | | | III | 24.004 | 3.793 | 27.797 | | | | | | | H | 21.297 | 0.000 | 21.297 | | | | | | | I-L1 | 7.546 | 0.000 | 7.546 | | | | | | | I-TOP | 6.742 | 0.000 | 6.742 | | | | | | | I-BOT | 6.192 | 0.000 | 6.192 | | | | | | | I-COMB | 8.776 | 0.000 | 8.776 | | | | | | | Total | 95.605 | 6.370 | 101.975 | | | | | | JE W TABLE 5.14 UNDERGROUND WEST SIDE NET AND EXTRACTABLE COAL (MT) | Seam | Total
UG
Reserve
>0.9M
Thickness | < 1.5M
Thickness
Reserve | Net Geo.
Reserve
>1.5M
Thickness | Total
Blocked
Coal | Net Reserve
excluding
Blocked | | In Panel
Extraction,
MT | |--------|---|--------------------------------|---|--------------------------|-------------------------------------|---------|-------------------------------| | VI-L | 0.494 | 0.489 | 0.005 | 0.005 | 0.000 | 0.000 | 0.000 | | VA-1 | 3.111 | 3.111 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | VA-2 | 0.254 | 0.254 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | VB-1 | 8.976 | 8.976 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | VB-2 | 0.269 | 0.269 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | VC-1 | 28.166 | 27.783 | 0.383 | 0.383 | 0.000 | 0.000 | 0.000 | | VC-2 | 7.937 | 7.937 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | VD-1 | 0.236 | 0.236 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | VD-2 | 0.388 | 0.388 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | IV | 53.593 | 6.526 | 47.067 | 7.400 | 39.667 | 31.734 | 21.049 | | III-L2 | 1.227 | 1.227 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 111 | 58.470 | 2.491 | 55.979 | 9.097 | 46.882 | 37.506 | 24.004 | | H | 51.273 | 2.778 | 48.495 | 6.899 | 41.596 | 33.277 | 21.297 | | I-L1 | 23.842 | 6.083 | 17.759 | 2.546 | 15.213 | 12.170 | 7.546 | | I-TOP | YEKLL | 5.383 | 15.077 | 1.485 | 13.593 | 10.874 | 6.742 | | I-BOT | 17.120 | 2.876 | 14.244 | 1.760 | 12.485 | 9.988 | 6.192 | | I-COMB | 19.237 | 0.000 | 19.237 | 1.544 | 17.694 | 14.155 | 8.776 | | Total | 274.593 | 76.807 | 218.246 | 31.118 | 187.129 | 149.703 | 95.605 | TABLE 5.15 UNDERGROUND EAST SIDE NET AND EXTRACTABLE COAL (MT) | | Seam | Total UG
Reserve
>0.9m
Thick. | < 1.5M
Thick.
Reserve | Net Geo.
Res >1.5m
Thickness | Total
Blocked
and Not
Minable
Reserve | Net
Reserve
Ex.
Blocked
Reserve | Ex. Panel
Pillars
80% | In Panel
Extraction | |----|--------------------|--|-----------------------------|------------------------------------|---|---|-----------------------------|------------------------| | | VI-L | 0.0030 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | VA-1 | 0.0080 | 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | VA-2 | 0.0000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | VB-1 | 0.0000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | VB-2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | -4 | VC-1 | 1.6710 | 1.671 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | /VC _t 2 | 0.4190 | 0.419 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | VD-1 | 0.0000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 911 | Seam | Total UG
Reserve
>0.9m
Thick. | < 1.5M
Thick.
Reserve | Net Geo.
Res >1.5m
Thickness | Total
Blocked
and Not
Minable
Reserve | Net
Reserve
Ex.
Blocked
Reserve | Ex. Panel
Pillars
80% | In Panel
Extraction | |--------|--|-----------------------------|------------------------------------|---|---|-----------------------------|------------------------| | VD-2 | 0.1790 | 0.179 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | IV | 8.767 | 2.635 | 6.132 | 1.277 | 4.855 | 3.884 | 2.576 | | III-L2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Ш | 10.822 | 1.451 | 9.371 | 1.963 | 7.408 | 5.927 | 3.793 | | H | 0.477 | 0.424 | 0.053 | 0.053 | 0.000 | 0.000 | 0.000 | | I-L1 | 0.781 | 0.537 | 0.244 | 0.244 | 0.000 | 0.000 | 0.000 | | I-TOP | 2.690 | 1.541 | 1.149 | 1.149 | 0.000 | 0.000 | 0.000 | | I-BOT | 2.740 | 1.564 | 1.176 | 1.176 | 0.000 | 0.000 | 0.000 | | I-COMB | 0.046 | 0.000 | 0.046 | 0.046 | 0.000 | 0.000 | 0.000 | | Total | 28.603 | 10.432 | 18.171 | 5.907 | 12.264 | 9.811 | 6.370 | TABLE 5.16 UNDERGROUND EAST SIDE SEAM WISE BLOCKED COAL RESERVES OF >0.5M THICKNESS (MT) | Seam | Blocked in
Facility and
Incline Area | Blocked
in Shaft
Side Area | Blocked
75m
Barrier in
Kelo River | Blocked
25m Fault
Barrier | Blocked Under
Half Pillar
Along ML
Boundary | Blocked
under
Kelo
River | Reserve Not
Economically
Viable
Reserve* | Total
Blocked
Coal | |--------|--|----------------------------------|--|---------------------------------|--|-----------------------------------|---|--------------------------| | VI-L | 0.000 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.005 | 0.005 | | VA-1 | 0.000 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | | VA-2 | 0.000 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | | VB-1 | 0.000 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | | VB-2 | 0.000 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | | VC-1 | 0.000 | 0.000 | 0.0 | 0.1 | 0.0 | 0.0 | 0.315 | 0.383 | | VC-2 | 0.000 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | | VD-1 | 0.000 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | | VD-2 | 0.000 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | | IV | 1.228 | 0.247 | 0.213 | 4.672 | 0.721 | 0.319 | 0.000 | 7.400 | | III-L2 | 0.000 | 0.000 | | 0.000 | | | 0.000 | 0.000 | | 111 | 1.175 | 0.244 | 0.394 | 5.822 | 0.886 | 0.576 | 0.000 | 9.097 | | Ш | 1.835 | 0.049 | 0 | 4.091 | 0.923 | 0.001 | 0.000 | 6.899 | | I-L1 | 1.010 | 0.000 | 0.058 | 1.030 | 0.421 | 0.027 | 0.000 | 2.546 | | I-TOP | 0.000 | 0.038 | 0.108 | 1.190 | 0.052 | 0.0965 | 0.000 | 1.485 | | I-BOT | 0.000 | 0.067 | 0.295 | 0.916 | 0.158 | 0.3235 | 0.000 | 1.760 | | I-COMB | 0.000 | 0.270 | 0.037 | 0.884 | 0.31 | 0.0425 | 0.000 | 1.544 | | Total | 5.248 | 0.915 | 1.105 | 18.673 | 3.471 | 1.386 | 0.320 | 31.118 | SEA **TABLE 5.17** UNDERGROUND WEST SIDE SEAM WISE BLOCKED COAL RESERVES OF >0.5M THICKNESS (MT) | OF FOLDIN THIOTHEOD (INT) | | | | | | | | | | | |---------------------------|--|--|---------------------------------------|--------------------------------|---|--|--|--|--|--| | Seam | Blocked in
25 m fault on
Either Side | Blocked under
half pillar along
ML boundary
barrier | Blocked
in 25m
River
Barrier | Blocked
Under Kelo
River | Reserve Not
Economically
Viable
Reserve* | Total
Blocked and
Not Minable
Reserve | | | | | | VI-L | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | | | VA-1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | | | VA-2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | | | VB-1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | | | VB-2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | | | VC-1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | | | VC-2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | | | VD-1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | | | VD-2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | | | IV _ | 0.401 | 0.446 | 0.110 | 0.319 | 0.000 | 1.277 | | | | | | III-L2 | 0.000 | 0.000 | 0.000 | | 0.000 | 0.000 | | | | | | 111 | 0.556 | 0.670 | 0.161 | 0.576 | 0.000 | 1.963 | | | | | | 11 | 0.000 | 0.029 | 0.000 | 0.001 | 0.023 | 0.053 | | | | | | I-L1 | 0.017 | 0.000 | 0.000 | 0.070 | 0.157 | 0.244 | | | | | | I-TOP | 0.107 | 0.021 | 0.020 | 0.097 | 0.904 | 1.149 | | | | | | I-BOT | 0.058 | 0.048 | 0.077 | 0.324 | 0.670 | 1.176 | | | | | | I-COMB | 0.000 | 0.000 | 0.000 | 0.000 | 0.046 | 0.046 | | | | | | Total | 1.139 | 1.214 | 0.368 | 1.386 | 1.800 | 5.907 | | | | | The reserves as are not economically viable due to various reasons are shown vide Fig. 5.1, 5.2, 5.3, 5.4 and 5.5 in respect of Seam VC1, II, IL1, I Top and I Bot. & Combined respectively. It is enclosed at the end of Chapter. The mineable seams have following thicknesses. | IV | 0.10-3.70 | |--------|-----------| | 1/1 | 0.10-3.50 | | 11 | 0.05-7.05 | | I-L1 | 0.10-2.89 | | I-TOP | 0.11-3.80 | | I-BOT | 0.19-4.49 | | I-COMB | 2.15-7.87 | | | | TO THE MAGPAL - iv. A designed production capacity of around 1.6 Mty will provide life of about 69 years (including 3 years of construction: incline drivage and shaft sinking) of the below ground workings. - For working belowground seams, the various technology choices available are. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL # 5.4.2 Underground methods of mining The methods for underground mining are described below. # a) Longwall mining with caving The advance of the UG mining faces in this specific case is dictated by the location of the operational faces of OC mining as both the method are used during the 1st 30 years simultaneously. A clear distance of over 500m between the faces of two methods will be required to be kept which will put a restriction on the layout of the longwall faces. Hence for the 1st 30 years, longwall system has not been considered. More deliberations on the matter are given under para 5.4.5 and 5.4.6 of this chapter. # b) Bord & Pillar mining with caving Mechanised Bord and Pillar mining with low height continuous miner and shuttle cars could be one of the suitable systems for an annual coal production of 1.60 Mtpa by underground method inspite of disadvantage of high capital cost. In underground, development and depillaring will be done with the help of Continuous Miners only, requiring no blasting. So explosives will be required only for drifting and drivages of access inclines in stone or
drivages in seams with less than 1.8m thickness for heightening. The average daily requirement will be about 0.50 T and that also during the initial years of UG drivages and shaft sinking. It may be noted that only permitted explosives will be used in underground coal mines. Four nos. of CM will be deployed each producing @ 0.4 Mtpa. They will be appropriately engaged in development and depillaring depending upon the situation. Continuous miner, shuttle car combination along with one LHD and support attachment is proposed. As the parting between seam VI and seam IV is 79.10m (min) and 98.37m (max). It will be prudent to have min 500m lag between the opencast face and the underground face to avoid impact of heavy blasting of opencast working onto the parting between seam IV and seam VI. Accordingly the planning has been done. However, the suggested lag distance of UG mining operations will be subject to DGMS approval. Continuous miner, shuttle car combination along with one LHD and support attachment is proposed. The following precautions will be adopted to facilitate simultaneous operation of OC and UG mining: i) The OB will be layer-wise compacted with rollers to prevent absorption of excessive water. ii) The backfill dumps will be kept well drained. The quarry sump will always be kept dewatered. # 5.4.3 Entries for Underground Mining and their Development schedule # a) Entries for underground mining: Two Inclines (one pair) having cross-section 4.8m x 3m and 2 shafts (Exhaust shaft-1 with 6m dia and Intake shaft-2 with 5m dia), all from surface to the lowermost seam-I Combined are planned to be located in the NW portion of the western part of block. As the two inclines are not adequate to supply the intake air to sustain the proposed 1.60 Mtpa production, an additional Shaft-2 (dia 5m) as mentioned above, is proposed near the inclines which can also be equipped with men/materials winding facilities if required (accordingly ventilation calculations have been carried out in Chapter 8). (Refer Plate XIX for UG development of Seam-IV). The bar chart showing development and production is given in Plate XXXIX. Both the inclines are started from a point located at 100m distance from the NW boundary line of the block. The surface RL at the mouth of inclines will be 299m AMSL and the inclines will be driven at a gradient of 1:4.5 parallel to the NE block boundary at a distance of 100m and 150m respectively. That means that the inclines will be 50m apart. The details related to intersection of various seams with shafts and inclines is given below in Table 5.18. TABLE 5.18 INTERSECTIONS OF SHAFTS AND INCLINES WITH DIFFERENT SEAMS | Seam | Return Shaft
No-1 (6m dia) | | Intake Shaft
No-2 (5m dia) | | Inclines | | | | |------------|-------------------------------|-------------|-------------------------------|-------------|-----------|-------------|--------------------------------|--| | | FRL, m | Depth,
m | FRL, m | Depth,
m | FRL,
m | Depth,
m | Length of incline upto seam, m | | | Surface RL | 28 | 8.5 | 292 | | | 299 | | | | IV | 111 | 177.5 | 103 | 189 | 98 | 201 | 904.5 | | | 181 | 40 | 248.5 | 29 | 263 | 45.28 | 253.72 | 1141.74 | | | 11 | (-) 17 | 305.5 | (-) 27 | 319 | (-) 15 | 314 | 1413 ′ | | | IL1 | (-) 39 | 327.5 | (-) 48 | 340 | (-) 36 | 335 | 1507.5 | | | P I (Top) | (-) 67 | 355.5 | (-) 65 | 357 | (-) 62 | 361 | 1624.5 | | | Gomb.) | (-) 76 | 364.5 | (-) 87 | 379 | (-) 81 | 380 | 1710 | | A perusal of the Table shows that the length of each of the 2 inclines is 1710m in section (1668m length on plan). A safety barrier of 100m is further kept between the southern incline and the NE guarry boundary. The RLs at which the 2 inclines will intersect floors of seams-IV, III, II, IL1, I and finally the lower most seam-I Bot & Comb are given in the last column of the above Table. It may be particularly noted that the location and alignment of the inclines has been selected in such a way that they intersect all the seams. #### Development schedule of the entries to UG: b) The development schedule of the entries to UG mine workings is given in Table 5.19 below: **TABLE 5.19** ASSESSMENT OF TIME SCHEDULE FOR SINKING OF SHAFTS AND INCLINES AND COAL PRODUCTION | SI. | | Driverse/ | T | Time | Remark | |--------|---|---|---------------------|--------------------|---| | No. | Particulars | Drivage/
sinking
Length/
depth (m) | Progress
m/month | required in months | Kemark | | 1 | Drivage of Incline No.1 from surface SRL 299M to Seam-IV at floor FRL 98m at Gradient 1 in 4.5 (4.8mX3.0m). | 904.5 | 45 | 20.1 | During 9 th
and part of
10 th year | | 2 | Drivage of Incline No.2 from surface SRL 299M to Seam-IV at floor FRL 98m at Gradient 1 in 4.5 (4.8mX3.0m). | 904.5 | 45 | 20.1 | do | | 3 | Return Ventilation Shaft-1 sinking from a point having 288.8m RL near incline to Seam-IV at FRL (+) 111m | 177.5 | 12 | 14.8 | do | | 4 | Intake Ventilation Shaft-2 sinking from a point having 292m SRL near incline to seam-IV at FRL (+) 103m | 189 | 12 | 15.8 | do | | 5 | Drivage of Incline No. 1 from Seam-IV FRL 98M to Seam-III at FRL 45.28m at Gradient 1 in 4.5 (4.8mX3.0m). | 237.24 | 45 | 5.3 | During 10 th
and part of
11 th year | | 1 - 41 | Drivage of Incline No. 2 from Seam-IV FRL 98M to Seam-III at FRL 45.28m at Gradient 1 in 4.5 (4.8mX3.0m). | 237.24 | 45 | 5.3 | do | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL | | | | | | | |---|---|---|---------------------|-------------------------------|---| | SI.
No. | Particulars | Drivage/
sinking
Length/
depth (m) | Progress
m/month | Time
required
in months | Remark | | 7 | Return Ventilation Shaft-1 sinking from Seam IV at FRL 111m to Seam-III at FRL (+) 40m | 71 | 12 | 5.9 | During 10 th
year | | 8 | Intake Ventilation Shaft-2 sinking from Seam IV at FRL 103m to seam-III at FRL (+) 29m | 74 | 12 | 6.2 | do | | 9 | Developing the bottoms of shafts and inclines including armouring, equipping to make ready for production | | | 13 | During part
of 10 th year
and full
11th year | | 10 | Production from development and depillaring from seam-IV | | | | From 12 th to 40 th year | | 11 | Production from development and depillaring from seam-III | | | | 16 th to 47 th
year | | 12 | Drivage of Incline No. 1 from Seam-III FRL 45.28m to Seam-I Bot & Comb at FRL (-) 81m at Gradient 1 in 4.5 (4.8mX3.0m). | 568.26 | 45 | 12.6 | During part
of 42 nd and
full 43 rd
year | | 13 | Drivage of Incline No. 2 from Seam-III FRL45.28m to Seam-I Bot & Comb at FRL (-) 81m at Gradient 1 in 4.5 (4.8mX3.0m). | 568.26 | 45 | 12.6 | During part
of 42 nd and
full 43 rd
year | | 14 | Return Ventilation Shaft-1
sinking from Seam III at
FRL (+) 40m to seam-I Bot
& Comb at FRL (-) 76m | 116 | 12 | 9.7 | During part
of 43 rd year | | 15 | Intake Ventilation Shaft-2
sinking from Seam III at
FRL (+) 29m to seam-I Bot
& Comb at FRL (-) 87m | 116 | 12 | 9.7 | During part
of 43 rd year | | 16
mg /L.
/ Under
/ / Oov
/ / Min
/ / Shas | Production from development and depillaring from seam-II and IL1, I Top, I Bot & Comb | | | | From 44 th
to 70 th year | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL # 5.4.4 Working sequence - 1. Seams will be depillared from top to bottom. - 2. Boreholes from lower to upper seam for dewatering water from goaved out area should be done, as per DGMS permission. # 5.4.5 Production from underground mines # a) Computation of production from UG The production from one continuous miner will be 0.4 Mtpa. There will be four continuous miners operational at any time with following capacity. | Production from four set of standard = 4 x 0.40 MT | = | 1.60 Mtpa | |--|---|-----------| |--|---|-----------| The main drives in coal connecting to inclines, shafts as well as all dip drives will be also driven with continuous miners. All the workable seams will be developed and depillared with continuous miners along with two shuttle cars in each set of continuous miner. Accordingly, this mining plan has proposed 1.60 Mtpa production from underground mining which could be easily achieved. # b) Detailing of Bord & Pillar / Room & Pillar Technology Accordingly Bord & Pilar (B&P) or Room & Pillar (R&P) Methods are proposed for this block. Because of the prevailing mining parameters, need for economic exploitation of the multiple seams with maximum percentage of extraction possible, optimum production and productivity two proven B&P technology methods are considered suitable for application. - 1. Mechanized R&P method with application of continuous miner without blasting. - 2. Semi mechanized B&P method with application of blasting with explosives and LHD. - c) Advantages and disadvantages of R&P method with application of continuous miner without blasting Advantages of R&P method with application of continuous miner without blasting are given below: - Very successful and economical to date in Indian applications - Universal acceptance of the technology - Higher percentage of extraction both in first extraction and final extraction is achievable - Pillar extraction achieved successfully - Production levels being maintained till the life of the machine by involving manufacturers in maintenance
of the equipment - Huge potential to improve performance - Does not require blasting and as such better roof control - Since no blasting is required, this method is preferable in working underneath populated surface features like villages, highways etc. - Dispensation from DGMS have been available in India for developing coal seams with gallery widths up to 6.5m and heights up to 4.5m where mining conditions permit, thus allowing much higher percentage of extraction in first extraction which is particularly advantageous in developing coal seams below surface features like villages provided adequate long term factor of safety in maintained. # The disadvantages are - Productivity decreases rapidly with increases in gradient above 1 in 5.5 and the limiting gradient is 1 in 4. - The continuous miner equipment approved for use in India by DGMS has a working height range of 2m to 4.5m. For a different working height range, fresh approval will be required which may require some time. - This method requires an adequately trained and competent term to operate and maintain the equipment and high level of management skill for effective utilization and optimum productivity. - A globally recognized mining method with very high potential production rates up to 1 million tones per month (in China – with Western equipment). - Some Seams can only be extracted by longwall method which is most suitable for depths exceeding 450 m. - · High capital cost. S.O MITTA OF MISTAGE B.D. SHARMA RQP NO. 34012/03/2014-CPAM # 5.4.6 Proposed U/G mining method I. Mechanized Continuous Miner Technology—Development & Depillaring # a) Application of Room and Pillar Mining in India Indian coal mines have a long history of successfully applying Room & Pillar mining methods. Until recently labour intensive "hand got" methods were universally applied. Mechanization to improve productivity by the application of "Side Dump Loaders" (SDL), Load Haul Dump (LHD) and now continuous miner (CM) has been successful and is being widely practiced in the CIL mines. A mechanized room and pillar mining culture therefore already exists. The Indian coal mining industry has also introduced with limited success fully mechanised longwall mining. The mechanization program is now aimed to increase the tonnage produced from each district with minimum capital expenditure with the obvious resultant saving in new mine development cost, utilization of developed coal standing in pillars and a further improvement in productivity. The district layout to introduce one fully mechanized room and pillar mining district may use a combination of 5 heading pillar development and pillar extraction using continuous miners and ancillary equipment. It is proposed to employ mechanized R&P technology for extraction of all seams in this coal block on contract mining basis to ensure highest economy and productivity throughout the life of the equipment. The production equipment package will comprise of one continuous miner, two shuttle cars, one twin boom roof bolter equipment, one LHD, one feeder breaker and associated electrical accessories. The equipment to be selected would have the specification to cover a seam height range in single lift varying from 1.50m to 3.5m (Continuous Miner model CAT: CM 340 (Mining Range 1.37 m to 4.00m, 70 tonnes, 697 KW or other similar CM). The development will be carried out in a height range of seam thickness to maximum up to 3.00m. The DGMS has already approved the application of Continuous Miner in a thickness range of 2m to 4.50m for use in India. During depillaring it should be possible to extract up to a height of at least 5.0m with these equipment. V The development may be carried with gallery height of up to 4.5 m and widths up to 6.5 m which may be permitted by DGMS under special dispensation allowed for mechanized extraction by CM in India. We are proposing the gallery size of 3.00m height and 4.8m width. The centre to centre pillar dimensions shall be as per Regulation no. 99 of CMR, 1957. The five heading dip drives will be also developed with continuous miner. The method of development and depillaring with Continuous Miner technology is discussed in detail later. The general specification of the equipment is given in para 5.6. In this coal block, the winning of coal is proposed to be carried out with continuous miner technology. For the seam height above 5.5m winning is not feasible by this equipment and hence will be left intact. One set of continuous miner equipment package can achieve an annual production capacity of about 0.40 Mtpa on an average. The calculations are given in Table 5.20 below. # **TABLE 5.20** CAPACITY CALCULATION OF CONTINUOUS MINERS USED IN DIFFERENT THICKNESS RANGES OF COAL SEAMS | Seam
thickness, m | Crossection
area @4.8m
width, sqm | Speed of | Coal
Volume, | Daily Coal
Volume, cum/
day assuming
only 8 effective
hrs/day, cum | | Annual Coal
production,
MT | Annual
production
assuming a
factor of
0.75, MT | |----------------------|---|----------|-----------------|--|------|----------------------------------|---| | 2.5-5 (Av 3.75) | 18 | 8.5 | 153 | 1224 | 1958 | 0.587 | 0.44 | | 1.8-3.5 (Av 2.65) | 12.72 | 10 | 127 | 1017 | 1627 | 0.488 | 0.37 | | | | | | | | Average assumed | 0.40 | Speed assumed based on actual operating CMs #### @ 1.6t/cum sp density There will be four continuous miners operational at any time with following capacity. | Production from four sets of CMs= 4 x 0.40 MT = | 1.60 Mtpa | |---|-----------| |---|-----------| Accordingly, this mining plan has proposed 1.60 Mtpa production from underground mining which will be easily achieved. # b) Support In the mechanized R&P technology area, all the supports will be carried out with full column resin grouted roof bolts installed by mechanized roof bolter 15 12 B.D. SHARMA RQP NO. 34012/03/2014-CPAM ⁸ effective hrs adopted based on actual pert net of time distribution activities through 24 hours (working hrs of CM and Shuttle car 8+ Maintenance 4 hrs + Marching time for CM, FB and RB 8 hrs + Break down 2 hrs+ others electrical faults etc 2 hrs) which is supplied as a part of the continuous miner package. Depillaring support is also carried with resin roof bolts. Scientific studies will need to be carried out to assess the support requirement and design by measurement for the pattern of roof bolting and their specifications. During both development and depillaring monitoring of effectiveness of supports will have to be carried out by actual measurements. # c) Typical face equipment Typically the face will be equipped with the following: - One of suitable "Continuous Miner" equipped with radio/umbilical core remote control, dust scrubber and methane monitor approved by the Director General of Mine Safety (DGMS) for use in Indian Coal Mines. The continuous miner cuts and loads the coal in a single operation. - > Two approved "Shuttle Cars", one left and one right hand including service jacks and side boards. The shuttle cars transport the cut coal from the continuous miner loading conveyor to the feeder breaker. - One "Twin Roof bolter" track mounted mobile roofbolting machine with two roof drilling rigs, equipped with a "Temporary-Roof-Support" (TRS) system and set up for wet drilling operations. - One Load-Haul-Dump (LHD) with electric cable reel to be dedicated to the face operation is a multi-purpose vehicle and is essential for the efficient of the district by maintaining the panel floor to the high standard required to sustain high performance. Other uses include but are not restricted to cleaning up spillages in the district from the shuttle cars, to assist with transport for materials to site (from the end of the haulage), to spread stone dust, to lift items and assist with the repair of equipment during break downs and to carry spare parts from the haulage to the equipment. This vehicle is also used to carry out electrical move ups of the load centre/transformer complex. - One "Feeder/Breaker" mounted on tracks to size and feed the tipped coal from the shuttle car on to the conveyor at a consistent controlled rate. The feeder/breaker has a hopper sufficient to hold a complete shuttle car load. The shuttle car is capable of tipping at two speeds. With a feeder/breaker in the system the shuttle car can tip at high speed into the hopper, the feeder/breaker (or with just a breaker plate) then sizes the coal (possibly to 150mm) and feeds the conveyor at a controlled even rate thus preventing belt damage, maximizing conveyor capacity and allowing the shuttle car to travel back to the continuous miner for loading in the shortest time possible. - > Complete set of special maintenance tools with secure storage box. - > Hand tools, shovels, picks, brushes, pinch bars for scaling roof and an assortment of pulling, jacks and lifting tools. # II. Typical Development Mining Method # a) Strike Development It is proposed that the "strike" or "near strike" development and bulk tonnage producing areas be mined by continuous miners and ancillary equipment where the face equipment is installed, maintained and operated. The standard layout consists of a five road development, with the main conveyor and feeder breaker positioned in the Central roadway. # b) Place Changing Place changing is where the continuous miner cuts for a specific distance beyond the last row of support (up to a maximum 15m called a "Place') using radio remote control of the continuous miner. The workforce at all times operates under supported roof. A lesser distance may be advanced depending on DGMS approvals. The time to cut a place is largely dependant upon the efficiency or shuttle car operation
(wheeling"). Once a "Place" is cut the continuous miner is trammed to an adjacent heading to commence the cutting cycle over again. A roof bolting machine then supports the area mined by the continuous miner as a separate operation then the roadway is cleaned by LHD and ventilation extended in preparation for the continuous miner returning. The machines therefore operate independently and hence with greater flexibility for both cutting and roof bolting operations. The work of the LHD cannot be understated. The quality of floor is one of the keys to success in place changing. A clean and well maintained floor provides a safer working environment, enables shuttle cars to operate at fast speeds, lessens the potential for cable damage and allows for unhindered continuous miner and bolter relocations. # c) Mining Geometry The continuous miner typically has a cutting head 3.3m to 3.5m wide. The machine is usually "sumped in" between 0.5m and 0.75m at roof level, the rear stab jack on the machine lowered and the head sheared down to floor level. This cycle is repeated 3 to 4 times, the roof and floor trimmed and the operation repeated. "Bord Width"- Indian Coal Mines Regulations restrict "bord", "room" or "roadway" width to a maximum of 4.8m. The continuous miner and all B.D. SHARMA ROP NO. 34012/03/2014-CPAM ancillary equipment is able to operate at this dimension however productivity and safety around moving equipment is greatly enhanced with wider roads. Since the coal is cut and not blasted, the pillar sides are far stronger. It is estimated that blasting effectively increases the bord width by at least 0.5m on each side of the drive due to the shattering effect of the explosives on the pillar sides. Blasting would therefore effectively create a bord width of 5.8m in a nominal 4.8m wide bord driven using drill and blast methods. It is proposed to work generally with a 6.0m bord width and to optimize the system based on the technical study by a scientific consultant and envisages that DGMS will be approached for an exemption to regulations to permit a bord width up to 6.5m wide. The effect of increasing bord width would be to. - Increase production and productivity of the mining system (Plate XLII) - > Improve safety of men and machines since there would be greater clearances for equipment to operate and for people to travel in the district. # d) Mining height Indian Coal Mines Regulations restrict the mining height during development to 3m. This is understandable for traditional systems of drill, blast and support where access to the roof for support and manual drilling holes etc. in thick seams is onerous and extremely difficult. With the equipment and systems proposed coal winning and support and achieved mechanically and can be undertaken safely and efficiently within the operating range of the equipment. The mining height should therefore be restricted by the operating range of the equipment which in most cases exceeds 3m. It is good practice to mine and support as one phase. Removal of support, particularly cement or resin grouted roof bolts is not possible without blasting. This then further weakens the roof and exposes the work force to unnecessary exposure to unsupported roof. The impact on strata control of working at increased height will be assessed by the scientific consultant and it is envisaged that the DGMS will be approached for exemption to permit the mining height during the development phases be restricted by the operating range of the equipment or seam height which ever the greater. # e) Pillar Dimensions Indian Coal Mines Regulations define pillar dimensions in terms of depth of workings and bord width. In the case where the bord width is 4.8m the distance between the centres of any two adjacent pillars shall not be less than: | Depth | Centres | |---------------------------------------|---------| | Not exceeding 60m | 19.5m | | Exceeding 60m but not exceeding 90m | 21.0m | | Exceeding 90m but not exceeding 150m | 24.5m | | Exceeding 150m but not exceeding 240m | 34.5m | | Exceeding 240m but not exceeding 360m | 45.0m | | Exceeding 360m | 48.0m | It is likely that the continuous miner will be operating at depths around 165 to 465m. The pillar sizes, under current Indian regulations should therefore be 34.5m to 48m (centre to centre) with 4.8m bord width to comply with the Indian Coal Mines Regulations. Scientific studies and practices to date in India indicate that the legislated design criteria are very conservative. These pillar dimensions are considered excessive for the desired Factor of Safety and it is envisaged that application will be made to DGMS to reduce the pillar dimensions in order to increase the productivity of the purposed system. Optimization of the bord width, mining height and pillar sizing may be carried out by calculating and using safety factors from established formulae. # f) Typical method of support A typical support system consists of 4 X 1.8m full column resin grouted roof bolts, the roof bolts being installed and tensioned by the roof bolter. It is anticipated that with bord widths exceeding 4.8m an additional bolt would be required. Design for Resin Bolt System for junction and gallery support is given in Fig. 5.6. During Development Spacing and distance between rows and bolts will be 1.2 m. Pillar extraction generates additional roof stresses and the additional support applied before bed separation can take place, during the development phases, would be beneficial in the long term. # g) Typical Pillar Extraction Methods Pillar removal plans are an important part of the continuous miner operations and must be fully considered prior to the mining of the advancing panel. There are many different methods of pillar removal and these must be assessed to determine the most appropriate to suit the conditions at the mine. This requires full assessment of the mining height, depth, roof strata, floor strata, immediate roof and floor properties, rib stability, pillar size and roadway width. The size of pillar and the roadway width depends on the depth and geological conditions, as well as the proposed method of de-pillaring. The safety factors, method of operation and layout of de-pillaring have a marked effect on the choice of roadway width and pillar size on development. Knowledge of the composition of the overburden is important in deciding whether to carry out retreat mining. This affects pillar dimensions, roof control plans and selection of the technique. The overburden should be strong enough, given the pillar sizes and temporary support, to allow the development work to be carried out safely, yet weak enough to fall at the proper time during retreat. If this is not the case, then variations to the pillaring plan, such as increasing or decreasing pillar dimensions or utilizing a different sequence of cuts must be employed. The composition of the floor under the coal is another important consideration. The floor is often weaker than the roof and if mixed with water can create mud and poor mining conditions. Plastic flow of the floor can cause instability in the pillars. A full geological survey and interpretation of the conditions is necessary to establish the pillar sizing, roadway width and retreat mining sequence of extraction. The seam gradient is another factor that requires careful consideration, with slight grades affecting haulage effort and time for operations, which in turn affects the productivity. Also the gradient may have an effect on the shape of the pillars and layout and direction of the panel with main working along the line of strike and cross cuts angled to reduce the angle of apparent dip. There are many different methods of pillar removal and these must be assessed to determine the most appropriate to suit the conditions at the mine. # h) Operating Methods for De-pillaring The standard operating method in India is to fully develop the panel, with typically 5 entries on advance, to the panel boundary. At the boundary, the panel may be connected to other 'bleeder' ventilation roadways depending on the mine layout. Height of development and extraction is usually the full seam section or 4.6m (the maximum extraction height of the only approved continuous miner operating in India). During retreat from the panel, the pillars are split, depending on panel size and caving conditions) and extracted on their side or at angles to take the ribs in an arranged and safe extraction method. Extra roof bolting is used at the edges of the pillars to provide an effective 'breaker line' and ensure that E. B. B B.D. SHARMA after the extraction sequence is complete the roof collapses in a controlled manner up to the roof bolt breaker line. It is suggested that 3 additional rows of bolts will be put to support goaf edge, with distance and spacing of 0.4 m. During retreat mining/pillar removal the aim is to keep active working places (where the continuous miner is operating) away from the caved areas. Also the length of time that openings are maintained must be kept to a minimum and workplaces should be concentrated in a limited area. The infrastructure, conveyors, material transport system, power, water, pumping and ventilation are in place from the development phase. The same equipment is required for pillar extraction as for development. Pillar extraction techniques may follow the traditional 45° "stooping" line, or the preferred straight line method employed with continuous miners. Two pillars are mined simultaneously using either system. The disadvantage of the traditional "45° System" with FULLY mechanized equipment is the creation of excessive tramming distances which effectively restricts production. The protection afforded by the 45° line was originally developed for a hand loading scenario due to the long time period the pillar had to stand whilst being extracted and the number of working places required by the cyclic, drill, blast and hand load method. The
straight line method reduces both tramming distances and cable lengths to a minimum whilst optimizing tramming routes. #### i) Percentage extraction The "IN PANEL" extraction is estimated with both the 45° and straight line methods as shown above to typically be 80% by area, this may increase by "robbing snooks" (pillar remnants) whilst retreating from the pillar. # j) Conveyor A 1200mm "fire resistant" conveyor at around 3m/s with a duty equivalent to average 500T per hour (TPH) would be installed in the centre roadway (as shown in all stage plans) to ensure equal tramming distances and cable lengths on each side of the loading point. Peaks of 750 TPH are expected. The conveyor will be equipped with a loop take-up at least of sufficient capacity to hold belt stretch for one week and preferably to hold one roll (usually 300m) of conveyor belting for extension and retreat of the B.D. SHARMA RQP NO. 34012/03/2014-CPAM conveyor. At the in bye end of the conveyor, a sledge mounted and guarded return pulley frame, graduated loading section (at least 3m in length) equipped with impact rollers, and anchor chains will be provided. The "head" end of the conveyor should be equipped with a suitable loading section on to the trunk conveyor, dust suppression equipment, belt alignment, belt slack and belt slip detectors. The "gate" belt should be electrically interlocked with the "trunk" conveyor to automatically stop the gate belt. Communication and continuous signaling and "stop pulls" will be provided along the length of the conveyor. The conveyor will also be provided with an effective bottom belt scrapper. One side of the conveyor will be designated as the "man walkway" into the district. To prevent "Tripping and Falling" accidents, this walkway will be kept clear of any supplies, materials, be clean, level and well illuminated. District materials should not as far as possible be transported along the conveyor belt route. 5 Heading Development by Continuous Miner showing Bord & Pillar Layout with Transport has been shown vide Fig 5.7. # k) Material Transport Materials such as timber, roof bolts, grouts/resins, spare parts, cables, lubricants, ventilation stopping materials etc. are to be transported by mine tubs to within one split of the gate belt "tail end". Familiar method such as an endless rope haulage system using 15 kg track with a 0.6m gauge may be used. The track and return wheel should lag no more than 2 pillars behind the conveyor tail end. The rail track will be laid in the incline (other than the conveyor incline) extending to all the UG workings. # I) Pumping Water made in the district shall be pumped out via at least a 100 mm pump range running along side of the conveyor. This district range shall be connected to intermediated sumps in the district and ultimately in the mine main sump. The pump range, intermediate sumps and pumps shall be provided, installed and maintained by the mine. The pump range shall at all times be advanced or retreated to the gate belt tail end and provided with a 100 mm valve at each end. The CM district will require two mobile face pumps, cables, switchgear, flexible hoses and manifold to connect to the 100 mm valve provided by the mine. Should more "permanent" or intermediate pump installations be required within the district as a result of "hitting" water, "permanent / intermediate pumps" shall always be kept supplied, installed, maintained and operated by the mine (including all electrical and pipe connections) to appropriate standards. # m) Clean water In the case of CM districts clean water at neutral pH and minimum suspended solids is required to be provided at the rate of 250 l/min at 2000 kpa for cooling motors, drilling and dust suppression of the CM system. In all cases drinking water need to be provide in the district inbye. The clean water shall be supplied by means of a 100 mm pipe range installed in the conveyor road. A 100 mm valve shall be provided at each end of the district clean water range. Fire hydrants shall be installed along the clean water range at intervals not exceeding 200m. At each hydrant in box containing fire hoses (sufficient for 200 m), nozzles etc. shall be provided. The clean water range to the gate belt "tail end", valves, fire hydrants hoses etc. shall be supplied, installed and maintained by the mine. # n) Power supply Power is to be supplied to the districts at a tension of 3.3 KV. The main feed cable to the district transformers (HT) shall be supplied and installed along the No 4 roadway. This would be required whichever technology is employed. It is required to have an installed capacity of 1500 KVA to supply the face equipment in the mechanized R&P district from the conveyor tail end inbye. / The face equipment will operate at 1100V. The CM package will include all electrical equipment, transformer (3.3 to 1.1 KV), switchgear, cables sockets etc. for the face equipment. It is necessary to provide separate HT cable and section isolator to the face transformer and between the district transformer and the face switchgear. # o) Communications A suitable communication system shall be provided between the district gate belt tail end, mid-point of the conveyor run, gate belt head end and the office on the surface of the mine (or control centre if available) by the mine. # p) Safety management Safe is paramount to all operations. A project management plan will be developed specific to the continuous miner operations. The plan will include standards and procedures for the safe and efficient undertaking of all activities and tasks within the project scope. Standards will, as an absolute minimum, comply with the Coal Mines Regulations 1957. # q) Development of panels The pattern of panel formation and likely number of faces as available during initial stage is shown in Plate XIX, XXI, XXIII and XXIV. Underground working plans for Seam-IV, Seam-III, Seam-II, Seam IL-1, Seam-I (Top) and Seam I (Bot.& Comb.) are given in Plate VIII to XIII). The Conveyor and haulage are kept in inclines which also serves the purpose of intake for the panels. The same extends in the seam with four headings dip drives. The idea is to keep two panels operating. The panels shall be laid out on apparent gradient, thus reducing the gradient of the headings and to be self draining. # III. List of equipments for UG mining The following are the main equipments required for fully mechanised bord and pillar method deployed with Continuous Miner in Table 5.21. TABLE 5.21 EQUIPMENT CONFIGURATION FOR FULLY MECHANISED PANELS | SI. | Name of equipment | No. | Broad Specification | | | |-----|----------------------------------|-----------------|---|--|--| | No. | | | | | | | 1. | Continuous Miner | 4 | Remote controlled machine similar to CAT: CM 340 (Mining Range 1.37 m to 4.00m, 70 tonnes, 697 KW | | | | 2. | Shuttle Cars | 8 | 2.5 cum capacity | | | | 3. | Twin Mast Roof Bolter | 4 | Rotary wet flush drilling | | | | 4. | LHD with Electric cable reel | 4 | 1.2-1.4 cum | | | | 5. | Feeder/Breaker | 4 | Crushing coal
(-) 150mm | | | | | Load centre and transformer | 4 | 3.3kV/1130 V 1500kVA TX | | | | .7. | Special Maintenance | Complete Set | - | | | | | tools along with Hand | with secure | | | | | - N | tools, shovels, picks, | storage box for | | | | | | brushes, pinch bars & jacks etc. | each miner | | | | V The general strategy will be to drive five main heading to the dip most points about (1.5 m to 2.0 km) and then make 5 heading panels (150 m wide) on both wings along strike. Fortunately gradient is not a constraint in orientation of panels. Considering all the pros and cons, it is considered that B & P mining will be more prudent choice here. To start with level of mechanization could be semi mechanized one (side discharge loader / load haul dumper) but with some mining experience fully mechanized B & P (Continuous miner) could be best option, to reduce human drudgery and for improved ventilation and faster production. The coal from underground will come up the incline mouth by conveyors which will unload the same to hopper of the coal handling plant and then to the dispatch bunker of the cross country conveyor. # 5.5 PRECAUTIONS FOR SIMULTANEOUS OPERATION BY OC AS WELL AS UG METHOD WITHIN THE BLOCK Normally the UG development and depillaring operations will lag by at least 500m, hence no problem is expected to arise during simultaneous operation by OC and UG method. However, the safe distance will require approval of DGMS. # 5.6 PROPOSAL FOR WORKING UNDERGROUND MINE AFTER COMPLETION OF OPERATIONS OF OPENCAST MINE Underground mining operations have been designed keeping in view the top seams extraction through OC method which will entail heavy blasting at the rate of about 120 TPD. The UG operations are maintained at a distance of over 500m away from the actual operations of the OC mine, thus the planning and the equipment design for UG mine have been adopted completely in view of the above fact. The continuous miner has been found to be the best option to maintain a reasonable level of high production and productivity without resorting to blasting. This system is quite flexible. It is planned to continue with such process of operation at least for 1st 30 years till the OC operations conclude (Refer Plate XXVII and XXVIII). Final pit floor can be seen in Plate XXV. Course with It may be noted that mine area is very long extending to over 9km from one end to the other. It is, therefore, desirable that around 25th year of mine operation, the mine planning should be relooked into for the following (Refer Plate XXIII and XXIV). a) Additional shaft entry for production as well as for movement of men and material with a view to cut down the long haulage and travelling from the existing entry point and also for lowering mine resistance to improve the ventilation in the lower
seams. Indicative location of the shaft for consideration is shown on the western bank of Kelo river (Refer Plate IV). b) Almost all the lower seams (to be worked by UG) have coal grade varying between A to F as compared to top seams which are of grade between E to G as being worked by OC. It is, therefore, desirable to maximize the extraction percentage by further realistic planning and better technology input. Examination at this stage may be necessary to consider the application of LWPS system wherever feasible. Though use of LWPS may not be completely ruled out, its applicability will be restricted in view of the fact that there are 10 faults and varying seam thickness in two seams (II and I Comb.) upto 7 m. The initial 15 to 18 years of the UG mining operations will provide realistic input for further detailed planning of the remaining working area of UG after the OC mining operation comes to complete closure. At that stage it is suggested that a re-examination of the Mining Plan may be carried out. The underground mining stage plans from 40th to 77th year are given in Plate XXIX to XXXIV respectively. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL # FIG 5.7: 5 HEADING DEVELOPMENT BY CONTINUOUS MINER SHOWING BORD & PILLAR LAYOUT WITH TRANSPORT Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPAM #### **CHAPTER 6** ### DRILLING AND BLASTING ### 6.1 INTRODUCTION This mine will be operated both by OC as well as by UG method. The method of blasting and requirement of the explosives has, therefore been separately described below. The total coal production planned is 23.6 MT. The equipment configuration for winning coal envisages deployment of 3 nos. surface miners which does not require drilling/ blasting. However, the total OB is proposed to be mined deploying shovel dumper combination requiring drilling/ blasting. After shot holes are drilled into the horizontal bench of OB cut by the shovel, the faces are blasted using explosives and detonators. ### 6.2 OPENCAST MINING All of the coal 23.6 MT will be produced by OC mining during the initial years as the UG mining operations will start contributing to the coal production only from 12th year (including) onwards. After shot holes are drilled into the horizontal bench cut by the shovel, the OB benches are blasted using ANFO/SME/SMS with booster explosives and detonators or TLD and DTH combination. In this mine, main waste is overburden in the form of top soil, alluvium and weathered mantle. Only 0.60 m average thickness of top soil has been considered for separate removal and stacking for use in mine reclamation later. # 6.2.1 Broad blasting parameters The drill is deployed on the horizontal bench cut by the shovel. From this level, blast holes are drilled down to the floor of the seam or bench, the length of holes will be 10% longer than the height of the bench. Easy access to the drill is provided via the waste bench. In the blasting operations, shaking blast practices are proposed using low powder factor. This method will generate a set of cracks in the blasted strata with material movement reduced to minimum. It has been assumed that 10% of the OB may not require blasting due to weathered mantle. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA B.D. SHARMA RQP NO. 34012/03/2014-CPAM Medium dia. holes of 200/250mm will be drilled in order to excavate on an average of 135 million BCM (Bank Cubic Meter of OB) per year upto 11th year and later reducing to 130 mcum(B) per year. A powder factor of 0.30 to 0.35 kg per BCM has been adopted for overburden. The highest production of coal is 23.6 MTPA from OC mine by CSMs (when UG is not under operation). Short delay detonators shall be used. The control blasting techniques will be adopted whereever required to reduce noise, ground vibrations and fly rocks. # 6.2.2 Type of explosives to be used The open cast mine production is envisaged as 23.6 MTPA. ANFO/SME/SMS explosive is proposed to be used for heavy blasting and the daily requirement will be as follows for 23.6 MTPA coal production with maximum 135 mcum annual OB removal. TABLE 6.1 REQUIREMENT OF EXPLOSIVES | | | Te/day | |---|---|--------| | For peak OB 135 Mill.cum. x 10 ⁶ x 0.32 powder | = | 117.82 | | factor in kg/Te x 90%* ÷ 330 days ÷ 1000 | | | | For coal | = | 0.00 | | Total | = | 117.82 | Assumed that 10% of Overburden does not require the blasting. # 6.3 UNDERGROUND MINING The mine is also envisaged to be worked with underground system. The mine is targeted for an annual coal production of 1.6 MTPA by underground method. In underground, development and depillaring will be done with the help of Continuous Miners only, requiring no blasting. So explosives will be required for drifting and drivage of access inclines in stone or drivage in seams with less than 1.8 m thickness for heightening and for odd connections between galleries. The average daily requirement will be about 0.50 T and that also during the initial years of UG drivages and shaft sinking. It may be noted that only permitted explosives will be used in underground coal mines. Four nos. of CM will be deployed each producing @ 0.4 MTPA on an average. One will be deployed in driving the dip drivages, two in developing the western flank panel and one in the eastern side panels. One set of CM will be deployed in each separate panel. Later, two CMs will be engaged in depillaring and two remain in development operations. # 6.3.1 Broad blasting parameters Mine is planned to be worked by board & pillar underground mining method. The width of the development galleries will be 4.8 m and height of such gallery will be maximum 3 m. It will be not less than 1.8 m where the seam thickness is less than 1.8 m. All these galleries are driven with the help of continuous miner. Hence no blasting is required for winning coal except drifting in stone. The drilling pattern has to be evolved for best results on the basis of hardness and other parameters. However, wedge cut is generally practiced and in section of 4.8X2.0 by putting around 18 holes, a pull of 1.5 m could be obtained getting muck around 32 tonnes in one round of blast, charging the holes between 0.5 to 0.6 kg each with permitted explosive like Soligex etc. Blasting efficiency could be achieved to over 3 tonnes/kg. # 6.3.2 Storage of explosives to be used Manufacturers and suppliers of permitted explosives are few and a large numbers of holes are to be blasted frequently in OC, which required considerable quantity of booster explosives and considering that there could be delays in supplies for several reasons, a 2X20 tonnes magazine capacity for 2 to 3 weeks of storage of permitted explosive, detonators primers and fuse etc has been provided. SMS will be prepared at site immediately before blasting is required to be carried out for which an SMS plant of suitable capacity will be installed. # **CHAPTER 7** # DRAINAGE, PUMPING, POWER SUPPLY & ILLUMINATION # 7.1 DRAINAGE & PUMPING # 7.1.1 General The coalfield is characterised by undulatory and rolling topography, consisting of hills interspersed with broad valleys. The general elevation of the ground ranges from 270m to 340m above MSL. The slope is either towards southwest or southeast. The hills are relict type and rise about 450m above MSL. The southerly flowing perennial Mand River with its tributaries constitute the main drainage of the area. The Kelo River, a tributary of Mahanadi, drains the eastern part of the coalfield. The topography of Gare-Palma Area is mostly covered by softer horizon and in general represents an undulating terrain, more resistant sedimentary rocks stand out as ridges, rising as high as 580m above MSL (Silot Pahar) in the north west and 600m above MSL (Morga Pahar) in the north east. The general ground elevation of the Sector-II area under investigation varies between 242 m and 303m above MSL. The block exhibits undulating topography. Kelo Nadi flows from north to south through the south eastern part of the block. A few ponds are present within the block. The summer season lasts from March to the middle of June, and the period from June to September is the south west monsoon season. The rainfall does not show any cyclic occurrences and shows wide and erratic variations, ranging from as low as 144.9 mm in 2004 to 1852.4 mm in 2003. The average annual rainfall for the period 1996 to 2005 was 1216.4 mm. The monsoon season is spread over the months from June to September. No water accumulation in OC mine workings will be allowed to remain when the UG mining operations are in progress. There are two sources of water accumulation in the mine pit during open cast mining operation. The first source is direct rainfall and second source is mine seepage. As far as surface water sources are concerned, Kelo is flowing through the eastern portion of ML. The mine working will be protected from the river inundation by providing embankments on either side of the river. The embankments will have 3m height and 10m width. Adequate measures to protect the mine workings from surface water flow during the rains will be taken by way of providing garland drains around the mine excavations and also by providing suitable W drainage gradients for mine benches. Sumps of adequate capacity will be provided on the quarry floor. The coal excavation and transport machinery are organised to be sited over the coal bench top and will not be affected by water accumulation from rains or strata seepage. The Hydrogeological study is under preparation. The matter regarding the water make and its evacuation has been separately discussed in the following paragraphs. # 7.1.2 Opencast mine # a. Planning of Mine
Drainage The ultimate depths of the West OC Pit will reach around 200m. It will be planned to intercept the rain water as well as the seepage water at upper benches to the extent possible so that the water can be accumulated in sumps at 2-3 different elevations and the pumping can be accordingly planned with pumps of appropriate capacity and head. Pontoons mounted pumps will usually be installed in main sumps to prevent their submergence in the unexpectedly heavy rainfall. # b. Make of Water There are two sources of water accumulation in the mine pit during open cast mining operation. The first source is direct rainfall and second source is mine seepage. The rainwater accumulation is estimated for two options. - i. For normal pumping - ii. For emergency pumping Each case has been described below separately. # For normal pumping The normal pumping has been calculated based on the average rainfall of monsoon season for which data of Raigarh meteorological station has bee utilized as given in Table 7.1 below. TABLE 7.1 METEOROLOGICAL DATA OF RAIGARH (1996-2005) | Month | Average monthly rainfall, mm | |----------|------------------------------| | January | 14.2 | | February | 9.3 | | March | 9.1 | | April | 37.9 | | Month | Average monthly rainfall, mm | |----------------|------------------------------| | May | 23.5 | | June | 202.5 | | July | 324.3 | | August | 371.6 | | September | 220.0 | | October | 35.6 | | November | 7.4 | | December | 13.7 | | Total (annual) | 1216.4 | The total rainfall in four monsoon months (June, July, August and September) is 1118.4 and dividing this by 120 days, the daily average rainfall comes to 9.32 mm. The make of water is calculated in the following Table 7.2. TABLE 7.2 CALCULATION OF PUMPING REQUIREMENT IN NORMAL CIRCUMSTANCES | Stage | Excavated
Area (Ha) | Void left
after
backfilling
(ha) | Rainwater
volume within
void @9.32mm
(Ham) | Balance Rainwater
accumulated after
50% losses for
evacuation
(cum/ day) | Seepage
assumed,
cum/day | Hourly pumping
requirement @18
hrs /day in 1 days
(cum/hr) | |--|------------------------|---|---|--|--------------------------------|---| | 1 st year | 26.16 | 26.16 | 0.24 | 1219.1 | 500 | 95.50 | | 3 rd year | 129.97 | 129.97 | 1.21 | 6056 | 1000 | 392 | | 5 th year | 380.7 | 380.7 | 3.55 | 17741 | 2000 | 1096.70 | | 15 th year | 1747.06 | 1066.26 | 9.94 | 49688 | 5000 | 3038.21 | | 25 th year | 2272.42 | 702.39 | 6.55 | 32731 | 5000 | 2096.19 | | End of mine
(29 th year) | 2440.55 | 191.78 | 1.79 | 8936.9 | 2000 | 607.61 | # ii. For emergency pumping Using peak 24 hours rainfall observed at Raigarh (Source IMD data) as 315.2 mm on 25th of August 1970, the water accumulation is as follows in Table 7.3. TABLE 7.3 RAINWATER ACCUMULATION | Stage | Excavated
Area (Ha) | Void left
after
backfilling
(Ha) | Rainwater
falling over
the void
@315.2mm
(Ham) | Balance Rainwater
accumulated after
50% losses for
evacuation
(cum/ day) | Seepage
assumed,
cum/day | Hourly pumping
requirement
@18 hrs /day in
3 days (cum/hr) | |----------------------|------------------------|---|--|--|--------------------------------|---| | 1 st year | 26.16 | 26.16 | 8.25 | 41228.16 | 500 | 791.26 | | 3 rd year | 129.97 | 129.97 | 40.97 | 204833 | 1000 | 3848.75 | | 5 th year | 380.7 | 380.70 | 120.00 | 599983.2 | 2000 | 11221.91 | Mining Plan & Mine Crosure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL S)7 () B.D. SHARMA RQP NO. 34012/03/2014-CPAM 7-3 | Stage | Excavated
Area (Ha) | Void left
after
backfilling
(Ha) | Rainwater
falling over
the void
@315.2mm
(Ham) | Balance Rainwater
accumulated after
50% losses for
evacuation
(cum/ day) | Seepage
assumed,
cum/day | Hourly pumping
requirement
@18 hrs /day in
3 days (cum/hr) | |--|------------------------|---|--|--|--------------------------------|---| | 15 th year | 1747.06 | 1066.26 | 336.09 | 1680425.76 | 5000 | 31396.77 | | 25 th year | 2272.42 | 702.39 | 221.39 | 1106966.64 | 5000 | 20777.16 | | End of mine
(29 th year) | 2440.55 | 191.78 | 60.45 | 302245.28 | 2000 | 5708.25 | ^{* 30%} operation losses and 20% infiltration # c. Pumping requirements criteria To calculate the pumping requirements and for selecting the pumps, following points should be considered:- - 1. Climatic conditions of the area. - 2. Account must be taken of maximum rainfall as 315.2 mm in 24 hours. - 3. Inflow from seepage water is assumed as 5000 cum/day (max) 4. - 4. Pumping requirements are assessed on the basis that the make of water on the day of maximum rainfall will be pumped out in next three days. For smooth working during monsoon: - 1. Coal and OB working faces and the haul roads will be maintained free of water as far as possible. - 2. Within the quarry, the faces will be so laid that water from the working areas shall flow into sump by gravity. From the sump, water would be pumped out to the surface, stagnated in a settling pond, utilised for the mine activities and then discharged to the nearest streamlet. - 3. Water garland drains will be developed in advance for each stage of mine working so that water is collected by the garland drains collected in a settling tank, utilised for the mine activities and then discharged to the nearest streamlet. **Main Sump:** Main Sump will have adequate capacity to store enough water as the entire rain water of the excavated mine area / catchment area will be flowing into the sump. For the sake of calculation, effective pumping hours per day are taken as 18 during peak period. Adequate number of standby pumps will be provided for unforeseen hazards. ## d. Requirement of pumps ## i. For normal pumping Based on the data of Table 7.2, the requirement of pumps has been worked out as follows to deal at any stage of mining. | 1 | Pump capacity | 75LPS | 38 LPS | 15 LPS | |---|---------------|-----------|----------|----------| | | | (1000GPM) | (500GPM) | (200GPM) | | 2 | No. of units | 4 | 9 | 15 | However, any convenient combination of pump capacities can be deployed to deal with the total water volume indicated. At least 30% of the main sump pumps will be Pontoons mounted to prevent their submergence in the unexpectedly heavy rainfall. # For emergency pumping The data of Table 7.3 shows that under heaviest rainfall conditions, the water volume to be tackled can be as high as 10 times the normal situation. Hence, adequate nos, of relevant capacity should be kept in the store or kept identified with any source around the area which can be made use of in case of emergency. Requirement of pumps has been calculated on the basis of the following assumptions: - Total accumulation of rain water in the sump has been calculated on the assumption of 315.2 mm rain in 24 hours for emergency situation and based on 9.32 mm per day average rainfall for normal conditions. The catchment area of the mine will be determined between the garland drains constructed over the surface of the opencast mine to protect inrush of water from outside. - ii. The pumps should be able to de-water the sump, with this rainfall, in three days. - At least 30% of the main sump pumps will be Pontoons mounted to prevent their submergence in the unexpectedly heavy rainfall. - In addition to above, spare pumps will also be kept in the ĺν. workshop/stores to meet the emergency. Pumps of 15/38 / 75 lps or other convenient capacity having sufficient head will be procured in the required numbers. P. NAGI Water stagnated on the haul roads, near the working faces and from undesirable water pockets will be handled by separate pumps, to discharge The Main sump. > B.D. SHARMA RQP NO. 34012/03/2014-CPAM भवर समित । Und मारत सहसार / G The installed pumps will discharge water to the surface for the entire life of the mine. # Other Pumps During rainfall, the water inflow into the sump contains clay & silt as well. To handle slurry, one number pump of slurry has been provided. In addition to above-mentioned pumps, adequate number of diesel pumps have also been envisaged. # Delivery Range The delivery ranges will be laid along the batter of the mine as per the site of the main sump. Also, additional pipe lines from surface to the sumps of adequate throughput should be always kept laid so that they can be made use of in emergency and can be directly connected to the pumps arranged in that situation without any loss of time. # 7.1.3 Underground mine The probable source of water to be taken care as mine drainage in any mine could be either accumulation of rain/surface water in working area or contribution of groundwater as mine seepage. The proposed mine will be worked out through underground as well as open cast mining techniques. Hence accumulation of rain / surface water is primarily considered for open cast mines. Only the groundwater seepage will form the source of water for underground mine drainage. The make of water in the underground mine will be from following sources. - a) Normal seepage / leakage from overlying sandstone of Barakar formation. - b) Inflow of water from Barakar sandstone roof
during underground mining. - c) Part of water percolated from the OC excavated and backfilled area. The water will be automatically drained to the sump in underground working at the lower most part of the mine. Adequate provision for draining out the seepage water from the sump will be provided and the working face will be kept dry. The face pumps will pump the water to the intermediate stage sumps from where the pumps will be finally pumping the water to the surface reservoir. Though the quantity of water make will be available from the project specific hydro-geological study based on which the capacity and number of pumps will be decided, the present estimates are based on the nearby operational mine at Milupara described below. Hydrogeological data collected from neighboring underground mine block IV/5 of M/s Monnet Ispat Ltd. idicated that total make of water from the underground working inseam-II is of the order of 1 m³/min in dry season and 3 m³/min in monsoon season with extension of workings over an area of 4 sq km. As the area of Gare Sector-II UG workings is likely to be about double the above area and 2 seams can be operational at a time, volumes of water to be tackled could be 4 time higher than these. The daily water for evacuation, therefore could be assumed as follows: | Units | Dry summer | Monsoon | |---------|------------|------------| | cum/min | 4 | 12 | | GPM | 881.06 | 2643.17 | | cum/hr | 240 | 720 | | GPH | 52863.44 | 158590.31 | | cum/day | 5760 | 17280 | | GPD | 1268722.47 | 3806167.40 | It has been assumed that on an average about 2000 GPM evacuation will be adequate, pending the establishing exact availability of volume of water after the hydrogeological Study is completed. The delivery ranges can initially be laid along the inclines while drifting but later on a proper delivery pipes will be laid through the shafts once the development is started in the coal seams. Normally 2 ranges of 8" pipe lines will be laid through the intake shaft which can evacuate about 2000 GPM. These can be accordingly modified later once the hydrogeological study indicates the actual make of water. # 7.2 REQUIREMENT OF WATER FOR SERVICE BUILDINGS & DUST SUPPRESSION The total water requirement will be 1995 cum/day (Refer Table 10.1 in Chapter 10). The requirement of water for dust suppression, plantation, dump trucks washing workshop etc. is estimated to be about 1546 cum/day. The requirement of potable water for other site services i.e. Canteen, Rest shelter, Offices is estimated at about 1239 cum/day out of which 790 cum/day will be reclaimed from the STP of colony. The total water requirement will be met by bore-wells at site during the initial 2-3 years after which the mine water will be used after appropriate treatment as required. office नामापाल / treatment ser सक्ति their Secretary ser सक्ति (Covt. of India गरंत प्रकार / Covt. of End जारत प्रकार / Shastn Bhawan सम्बो भवन / Shastn Bhawan नव दिस्ली / New Delhi # 7.3 POWER SUPPLY & ILLUMINATION # 7.3.1 Source of supply The power will be fed to the project by an 11 KV overhead line from the existing grid sub-station at Tamnar. # 7.3.2 Electric load Most of the HEMM Equipment will be diesel operated except the high capacity shovels. Electrical power supply will be needed for Coal Handling Plant, illumination, Pumping, Workshop and residential colony. The estimated connected load comes to the tune of 70000 KW as broadly calculated below. TABLE 7.4 TENTATIVE POWER REQUIREMENT | SI.
No. | Particulars | Quantity | Unit
power
KW | Total
power
KW | |------------|--|----------|---------------------|----------------------| | I. | Opencast | | | | | A. | Coal | | nil | 0 | | В | Overburden | | | | | a) | Hydraulic shovel 5/5.5cum | 4 | 350 | 1400 | | b) | Hydraulic Shovel 12 m³ (electric) | 7 | 600 | 4200 | | c) | Hydraulic Shovel 20 m³ (electric) | 20 | 1300 | 26000 | | g) | R.B.H drills 200/250 mm | 24 | 100 | 2400 | | II. | Others | | | | | i) | CHP etc | | | 2000 | | ii) | Workshop | | | 5000 | | iii) | Pumping combined OC+UG (2*350KW+2*200KW+4*160KW+ 13*40KW+20*11KW+4*50) | | | 2680 | | iv) | Colony | | | 2000 | | V) | Quarry and dump lighting | | | 2000 | | vi) | Miscellaneous | | | 1000 | | | Total (I+II) | | | 48680 | | III. | Underground | | | | | a) | Continuous miner 12CM27D | 4 | 750 | 3000 | | b) | \$huttle car | 8 | 219 | 1752 | | (c) | Roof bolter | 4 | 112 | 448 | | SI.
No. | Particulars | Quantity | Unit
power
KW | Total
power
KW | |------------|--|----------|---------------------|----------------------| | d) | Feeder breaker | 4 | 110 | 440 | | e) | Main fan | 1 | 2250 | 2250 | | f) | LHD | 4 | 160 | 640 | | g) | Conveyors(3*250 KW + 3*200 KW
+9*50 KW +6*150 KW +9*60 KW
+6*120 KW) | | | 4000 | | | Rope haulage
(2*100KW+2*80KW+2*60KW+1*20KW,)
winder 400KW and manriding 100 KW | | | 1000 | | | Total (III) | | | 13530 | | IV. | Misc. like overland conveyor to TPP | | | 6000 | | | Total (III+IV) | · | | 19530 | | | Grand Total OC, UG and others | - | | 68210 | | | Say | | | 70 MW | # 7.3.3 Voltages & system earthing The various voltages proposed to be used at the project are: Incoming Supply - 33 KV Pumping - 6.6/3.3 KVA & 415 Volts Workshop - 415 Volts CHP - 6.6/3.3 KV & 415 Volts Lighting inside the quarry - 220 Volts Lighting outside the quarry - 220 Volts It has been proposed to adopt restricted earth neutral system for all equipment. An effective earthing system is planned to ensure safety to personnel as well as to prevent shock hazards. There will be an earthing grid surrounding the main substation. Its combined resistance shall be preferably kept below 2 ohms. # 7.3.4 Illumination Quarry illumination has been planned as under: Power to the light shall be fed through transformers of 10 KVA 3.3/0.415 kV capacity. The working areas of the quarry shall be illuminated by a system of 4 x 400 W HPSV Lamps mounted on 15 m high mobile masts. Transformers will be backed by DG Sets of suitable capacities arranged on hire basis. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 5,2 n) B.D. SHARMA RQP NO. 34012/03/2014-CPAM 7-9 Entire haul roads will be illuminated by 250 W HPSV Lamps mounted on steel poles erected along the haul roads. Power to these lamps would be supplied at 240 Volts from 100 KVA, 3.3/0.415 kV transformers. OB dump and soil dumps will be illuminated by 1000 W metal halide lamps mounted on steel tubular poles with 10 KVA, 3.3/0.415 kV transformers. # 7.3.5 Emergency lighting Provision has been made for portable emergency lights during power failures for illumination of important locations such as project office, substation, store, hospital, time office etc. # **CHAPTER 8** # **VENTILATION** # 8.1 VENTILATION INCLINES AND SHAFTS DETAILS Two Inclines (one pair) having crossection 4.8m X 3m and 2 shafts (Exhaust shaft-1 with 6m dia and Intake shaft-2 with 5m dia), all from surface to the lowermost "Seam-I Bot & Combined" are planned to be located in the NW portion of the western part of block. As the two inclines are not adequate to supply the intake air to sustain the proposed 1.60 MTPA production, an additional Shaft-2 (dia 5m) as mentioned above, is proposed near the inclines to augment the Intake Air which will be provided with proper Winding arrangements for regular use as man winding and material supplies and the same has been considered in the calculation. (Refer Plate VIII for UG development of Seam-IV). Both the inclines are started from a point located at 100m distance from the NW boundary line of the block. The surface RL at the mouth of inclines will be 299m AMSL and the inclines will be driven at a gradient of 4.5:1 parallel to the NE block boundary at a distance of 100m and 150m respectively. That means that the inclines will be 50m apart and will have a length of 1709m in section (1668m length on plan). A safety barrier of 100m is further kept between the southern incline and the NE quarry boundary. The inclines and shafts will intersect floors of seams-IV, III, II, IL1, I and finally the lowermost seam-I Bot. & Comb. at RLs as given in Chapter 5 (Table 5.18). It may be particularly noted that the location and alignment of the inclines has been selected in such a way that it intersects all the seams. The exhaust fan will be installed at the shaft through a properly constructed evacuee. The sinking of the shaft is so scheduled that the drivage from incline and shafts reaches at the same time in seam-IV. The assessment of time required for drivages of inclines and sinking of shafts can be seen in Chapter 5 (Table 5.19). # 8.2 REQUIREMENT OF QUANTITY OF AIR The requirement of air is calculated and given in Table 8.1 below: ादिक्षीव सम्मात /1 P. NAGPAL अध्य सर्वे व / Um et Socretary मारत सम्मात / Govt. of India मोराला प्रमासन / Ministry of Coat मारती मारा / Shastri Bhawan मार्च दिल्ली / New Dethi TABIE 0 4 | | REQUIREMENT OF AIR FOR VENTILATION OF MINE | AIR FOR VEI | NTILATIO | N OF MINE | TABLE (| ~ | (.1
COMPLIANCE WITH SPEED LIMITS (GARE SECTOR-II) | SPEED LIMIT | S (GARE SEC | TOR-II) | |----------
---|----------------------|------------------|------------------------|--|----------|--|------------------------------|-------------------------|------------------------------------| | | Particulars | Annual
Production | Daily
tonnage | Manpower
in general | Daily Gas Air
emission for required | | Air incl. elect. SS,
pump house, | Total Intake
Air with 30% | Total Quantity with 10% | Remark | | | | (| | | | | assumed 10%
(cum/min) | assumed,
cum/min | assumed/
Velocity | | | | (1) | (2) | (3) | (4) | (5) | (9) | (2) | (8) | (6) | (10) | | ď. | Requirement of Air on Production Basis | | | | | | | | | | | | i) Requirement of air for the Mine @2.5 cum/T | 9. | 4848.48 | | | 12121.21 | 13333.33 | 15757.58 | 17333.33 | | | | ii) Requirement of air for the District in the Mine @2.5 | 4.0 | 1212.12 | | | 3030.30 | NA | 3939.39 | NA | | | α | Red | | 63 | 800 | | 3600 | 3060 00 | 1680 00 | 6118 00 | | | <u> </u> | | | | 8 | | | 0000 | 0000 | 00.04 | | | ن
ن | | | | | | | 00.00 | | | | | | irement | | 4848.48 | | 48484.85 | 4489.34 | 4938.27 | 5836.14 | 6419.75 | Degree of gassiness | | | total Mine (inflammable | | | | | | | | | l De | | | gas basis) to dilute down to 0.75% | | | | | | | | | liberates max gas @10cum/T of coal | | | ii) Requirement of air for the | | 1212.1 | | 12121.21 | 1122.33 | | 1459.03 | | Same as above | | | District in the Mine (gas basis) | | | | | | | | | | | Ū | Compliance to speed Limits. | | 1212.1 | | | 3030.303 | NA | 3939.39 | AN | Max. 4.0 m/s & min | | | Minimum air required in CM | | | | | | | | | 0.5m/s vide DGMS | | | district as per A.ii above (@2.5 | | | | | | 11 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | circular No. 8674-94 | | | cum/min) for 4.8m wide and | | | _ | | | ाप्या ।
प्राप्ता ।
प्राप्ता ।
प्राप्ता । | | | dated 29.5.74 for CM | | ŀ | 3.0m high face. | | | | | | राहिस से निर्माण | | | working district | | <u> </u> | Thus, the velocity of air current in CM face (3030.303/4.8*3*60) | | 11 | | | | ITHIO
THE TO
THE THE THE THE THE THE
THE THE THE THE THE THE
THE THE THE THE THE THE THE THE
THE THE THE THE THE THE THE THE THE THE
THE THE THE THE THE THE THE THE THE THE | | 3.51 | Complies with <4m/s | | | Mining Plan & Mina Closura Plan for Gara Palma Soctor Il Coal Mina 22 & MIDA of MSBGCI | Plan for Garo D | Jalma Cocto | L. H. Coal Mino | DO & MITDA OF M | 100001 | der | 4 | | | | | Tallogo and a supply of the control | ian ioi dale i | anna Sector | - II COG IMILE | W 10 Y 1 W 0.57 | 3000 | Secretor of the Shall sells | | | | | | C | | | | | | AGP/
etary
ndia
f Coa
Wan | | | | | | B D SHARMA | | | | | | IL. | | | | RQP NO. 34012/03/2014-CPAM Hence, considering all the options from "A" to "D", the option "A" is selected i.e. 12121.21cum/min. After considering 30% leakage during circulation and requirement of panels individually, total air requirement works out to 15757.58 m³/min. After considering 10% extra air for ventilating other locations (electrical sub-station, pump house, drifting work etc), total air requirement works out to 17333cum/min. The UG mine operation extends over 9 km length and the working life of the UG mine is 77 years, as such another indicative shaft location has been suggested (to be firmed only after fresh study after about 25 years of the mine operation) to reduce mine resistance and cut down transportation distance of men materials etc. With this in view, it is proposed to install 1 nos. mechanical Ventilator of total capacity of 17350 m³/min. One fan (exhaust) will be installed at ventilation shaft-1 (Return) having 6m dia on surface through evacuee. The exhaust fan will have the provision of variable pitch of blades to improve the quantity of air required in future. Accordingly intake air is planned to be sent through 2 nos. inclines each having crossection of 4.8mX3m along with a 5m dia ventilation shaft-2 (with facilities for men and materials winding), all to be located in the NW portion of the block. It is to be specifically noted that the Intake inclines and shafts have been provided with such dimensions as will permit expansion in production in future. The calculations for cross checking the speed in shafts and inclines for ascertaining the adequacy of air (being supplied or exhausted) are as follows: TABLE 8.2 CALCULATIONS FOR CROSS CHECKING THE SPEED IN SHAFTS AND INCLINES FOR ASCERTAINING THE ADEQUACY OF AIR (BEING SUPPLIED OR EXHAUSTED) | Particulars | Annual
Prodn.
MTPA | | Air required
in cum/min @
2.5 cum/t | Air required
in cuml min
considering
30% leakage | Total
Intake air
required
(cum/sec) | Vol through
particular
working,
cum/sec | Incline/ Shaft
dimensions,
m | Area of Incline/ shaft crossection, sqm | Actual
Speed
kept m/s | Max
permitted
speed m/s | Remark | |---|--------------------------|---------|---|---|--|--|------------------------------------|---|-----------------------------|-------------------------------|--| | Overall air | 1.6 | 4848.48 | 12121.21 | 17333.33 | 288.89 | | | | | | | | volume required | | | | | | | | | | | J | | Incl No.1 with conveyor | | | | | | 57.6 | 4.8*3 | 14.4 | 4 | 4 | | | Incl No. 2 without conveyor | | | | | 111 | 115.2 | 4.8*3 | 14.4 | 8 | 8 | | | Vent shaft-2
intake with
manwinding/
material system | | | | | | 116.09 | 5 | 19.63 | 5.92 | | OK, it has extra
cap of over 35%
and will serve
future expn plans
of 2MT | | Total in Intakes
(inclines + Shaft) | 1.6 | 4848.48 | 12121.21 | 17333.33 | 288.89 | 288.89 | | | | | | | RETURNS | | | | | | | | | | | | | Vent. Shaft-1
(Exhaust)
without man
winding | | | | | | | 6 | 28.26 | 10.22 | | OK, has 17%
extra to keep
future in mind for
2MT | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for
Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL Mine Closure Plan for Gare Palma Secto The above table shows that the Intake and Return air ways are adequate to fulfill the ventilation requirement. # 8.3 SIZE AND CAPACITY OF MAIN FAN Air pressure (p) required for the mine works out on the basis of the following formula: $$P = RQ^2$$ # Where - P is pressure (gauge) in pascal, - R is resistance in Gaul and - Q is volume of air in m³/sec The value of R has been calculated as 0.117 Gauls Therefore pressure has been calculated as follows: P = 0.085x 288.89 x 288.89 = 7094 pascals = 723mm of wg (as 1 Pascal=0.1019 mm of water gauge or 1 mm of wg = 9.81 pascals). Fan HP=(Q in cum/sec*100)/(75*0.8) | HP=288.89*850)/(75*0.8) | 3014 | |-------------------------|------| | KW @0.746HP/KW | 2248 | # Say 2250 KW The main mechanical ventilator of following specification will be installed at the Exhaust (Return) ventilation shaft-1 through evacuee. TABLE 8.3 SPECIFICATIONS OF MAIN VENTILATOR | <u> </u> | THORGOT MAIN TENTIER TOR | |--------------------|---| | Туре | Axial flow fan at Shaft (serving for 1.60 MTPA coal production) | | KW | 3000 | | RPM | 600 | | Air flow (cum/sec) | 290 | | W.G. | 1002 mm | Evacuee of suitable design will be constructed for improving the efficiency of the mechanical ventilators. # 8.4 DESCRIPTION OF VENTILATION ROUTE The main mechanical ventilator will be installed at surface for exhaust ventilation system for all the seams. Both the inclines will be kept as air intakes besides the Shaft-2 with 5m dia will help in augmenting the volume to adequacy. The inclines and the shaft will be connected by 3 drives in each coal seam. The five heading dip drives will serve the purpose of ventilation for each of the seams. The three inner dip drives connected to panels will be kept as air intakes and outer side dip drives will work as return from the panels. The air route will be maintained by erecting proper air crossings in the panels (Refer Plate XXXVIII). Underground ventilation can be seen in Plate XIX and XXIV. From the very beginning all the 2 inclines with one shaft-2 (5m dia) will be used for intake and shaft-1 with 6m dia will be used for return air ways. Auxiliary fans with suitable ducts will be used for blind headings of more than 30 meters length for a sufficient supply of air. Following objectives are to be attained by adequate ventilation:- - a) The inflammable gas does not exceed 0.75% in return air of any ventilating district and 1.25% in any place in the mine. - b) The velocity of air at immediate out bye connection from the face should not be less than 30m/minute. For other places it should be as follows: TABLE 8.4 VELOCITY OF AIR CURRENT REQUIRED AT VARIOUS PLACES IN UG MINE WORKINGS | | OG MINE WORKINGS | | |---|---|-----------| | Degree of | Places where velocity of air is to be | Velocity | | Gassiness | measured | of Air | | 1 st , 2 nd , 3 rd | Immediate out bye ventilation connection from | 30 m/min. | | degree | the face. | | | 1 st & 2 nd degree | i) 4.5m from any face in intake side of brattice | 30 m/min | | | or partition | | | | ii) 7.5m outbye of the discharge end of air pipe | | | 3 rd degree | i) 4.5 m from any face on intake side of brattice | 45 m/min | | | or partition | | | | ii) 7.5m outbye of the discharge end of an air | 25 m/min. | | | pipe | | c) In case of solid blasting, a minimum of 284 m³/min of air should be circulated to every face. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL पाई वर्षा जागान / U.P. NAGPAL अपर साम्य / Under Secretary पारव परानार / Gavt. of India अभिकार मंत्राराव / Ministry of Coal आपने | अस्ति / Shastri Bhawan पूर्व किस्ती | New Delhi - d) If wet bulb temp at any working place exceeds 30.5°C, the air current should be less than 60m/min and more. - e) Provision and transport of the ventilation stopping materials (including access doors), building of the walls, air crossings etc. shall be the responsibility of the mine. Nowadays a range of pre-fabricated pressure rated ventilation structures may also be used which can offer significant savings in installation time and cost and also in materials transport. - f) Ventilation monitoring, measurements, updating of plans etc. and all legal responsibilities as required by the Indian Coal Mines Regulations shall be the responsibility of the mine. Exemption from existing quantity requirements as specified in the Indian Coal Mines Regulations would be required. The Block coal seams are considered as degree 2nd gassiness for all purposes of calculation of ventilation. # 8.4.1 Ventilation in mine panels Mechanized Bord and Pillar mining generally results in a high quantity/low pressure ventilation system due to the large cross section and the number of driven roadways. The ventilation system will be finalized in conjunction with the mining design work. It may utilize flanking returns whereby intake ventilation reaches the face along the centre drives of the district, coursed by brick (Breeze Block, IBR sheeting etc.) ventilation stopping with the other central roadways used as return airways. The number of intakes and returns will take into account not only the quantity of air at the face but also the air velocity within the roadways to prevent "dead ends/ blind headings". Stoppings shall be maintained within a maximum 2 splits of the conveyor "tail end". Leakage through the last split is controlled by temporary ventilation stoppings usually made from hanging strips of old conveyor belting bolted to the roof. Two auxiliary fans with a minimum duty of 10 cum/sec discharging into the return airways are to be installed with reinforced flexible ventilation ducting between the face and fans or should be used and hung from the roof bolts on straining wires. # 8.4.2 Section ventilation requires • One operating auxiliary exhaust fans with a capacity each to deliver 10m³/sec. at the working face. - Standby auxiliary fans to maintain efficient ventilation management during panel advance and relocations. - · Cables and switchgear. - Sufficient staining wire reinforced flexible ventilation tubing etc. as necessary (at least 200 m) and 'T" pieces etc. to ventilate all blind ends. # 8.4.3 Precautions against coal dust explosions Precautions against coal dust explosions such as the application of stone dust, stone dust/water barriers in districts, haulage & conveyor should be installed as per CMR, regular sampling and analysis of dust shall be according to the requirements of the Indian Coal Mines Regulations. These precautions shall be the responsibility of the mine. Stone dust etc. shall be applied by the mine during periods outside of district production shift times. Stone dusting of the district shall at all times be at least to the last split. # **CHAPTER 9** # STACKING OF MINERAL REJECTS AND DISPOSAL OF WASTE - WASTE GENERATED DURING OPENCAST AND UNDERGROUND 9.0 MINING - WASTE GENERATED DURING OPENCAST MINING Α. - 9.1 NATURE OF TOP SOIL AND OVERBURDEN/ WASTE Overburden consists predominantly sandstone with minor amount of shale, carbonaceous shale, ungraded coal and thin coal bands. Besides, the overburden also includes soil, weathered rocks, obvious bands of any thickness and dirt bands of >1m thickness. 0.60 meter average thickness of top soil has been considered for separate removal and stacking for use in mine reclamation later. ### 9.2 YEAR/STAGE WISE WASTE GENERATION The waste generation year/stage wise is given in Table 9.1. TABLE 9.1 WASTE GENERATION (TOPSOIL & OVERBURDEN) IN M.CUM (BANK) **PROGRESSIVE** | Year | Excavation
Area | OB+TS
Removal | Topsoil
Generated
From
Excavation | Pure OB From
Excavation,
Mcum | |---|--------------------|------------------|--|-------------------------------------| | | Progressive | Progressive | Progressive | Progressive | | Const. (0) | 0.00 | 0.00 | 0.00 | 0.00 | | 1 st year | 26.16 | 5.00 | 0.16 | 4.84 | | 2 nd -3 rd year | 103.81 | 129.97 | 0.62 | 43.48 | | 4 th - 5 th year | 250.73 | 152.60 | 1.50 | 123.50 | | 6 th - 10 th year | 718.67 | 675.00 | 4.31 | 670.69 | | Year | Excavation
Area | OB+TS
Removal | Topsoil
Generated
From
Excavation | Pure OB From
Excavation,
Mcum | |---|--------------------|------------------|--|-------------------------------------| | | Progressive | Progressive | Progressive | Progressive | | 11 th - 15 th year | 647.69 | 624.00 | 3.88 | 620.11 | | 16 th - 20 th year | 202.79 | 495.00 | 1.22 | 493.78 | | 21 st - 25 th year | 322.57 | 495.00 | 1.94 | 493.06 | | 26 th - 29 th End
of mine | 168.13 | 298.00 | 1.01 | 296.99 | | Closure plan
30 th - 32 nd | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 2440.55 | 2761.10 | 14.64 | 2746.46 | # 9.3 WASTE DISPOSAL SITES There are different waste disposal sites located within the ML as follows: # i. The surface dumps There is only one surface dump proposed which will be
located over the coal bearing area in the southern portion of the West pit area. This dump will be spread over a maximum area of 380 ha (5th year) and will accommodate 218.81 Mcum (B) OB waste. The Dumping will start from 1st year and continue upto 6th year, however the exclusive dumping into this surface dump will be upto 5th year after which part (47.07) of the OB will be backfilled in 6th year. The full height of the dump will be 90m in 6th year. No OB will be required to be disposed over the surface dump after 6th year. As the surrounding area of the mine is coal bearing and belonging to other coal blocks, availability of external dumping space other than within the block is not foreseen. The entire block area is coal bearing and dumping location, schedule and rehandling have been envisaged accordingly which will cater to the dump space requirement for the project. The proposed design layout has been arrived after also considering the simultaneous operation of OC and UG. # ii. Backfill dump Backfilling will start from 6th year of the project operation with a quantity of 87.068 mcum(B). During 6th year partial backfilling will be done and then upto final year full backfilling will take place concurrent with mining. In the Mining Plan, provision for space for a washery has been made. The decision regarding capacity and layout of washery will be reached after thorough investigation. The rejects generated from the washery could also be backfilled into the quarry voids after taking permission from the relevant authorities. However, quantification of rejects is not possible at this stage as the washability study is still under preparation. # iii. Top soil dump The total topsoil generated will be 14.64 mcum (B) during the life of the mine. Unutilised part of the same will be stacked separately in a soil stack pile located beyond the surface dump over the coal bearing area within West Pit area of 60.00 Ha (max). It will be used for growing plants along the fringes of the site roads and reclamation of surface dump and backfilled area. The top soil stockpile will be low height not exceeding 6 m and will be grassed to retain fertility. Besides this, there would be temporary stacks near the excavation area and area to be reclaimed which will be made use of for concurrent filling without bringing the topsoil to the soil stack near the OB dump. # 9.4 THE VOID The remaining void area of 331.06 ha (195.15 ha in east pit with 170m depth upto pit floor + 135.91 ha in west pit with reduced depth of 60m as a result of partial backfilling) of the excavated pits will be at the end of mine life 29th year. The voids will be completely backfilled during post mine closure period 30th to 32nd both in East as well as West pit. Plate XXVI shows the final stage at the end of mine operations with external dump rehandled and final void. The generation and disposal of total waste quantities for the life of the mine are shown in Table 9.1 and Table 9.2 respectively. TABLE 9.2 WASTE DISPOSAL (TOP SOIL & OB) IN MCUM (BANK) | | | | Γ | | | | | | | | \Box | | | | | | | | | | |--|---|-----------|-------|----------------|-------|-------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|----------|-------------| | (BCUM) | Total OB Disposal
(Direct + Rehandeled) | Cumul. | 5.00 | 19.10 | 49.10 | 94.10 | 174.10 | 309.10 | 465.84 | 622.58 | 779.32 | 935.84 | 1076.06 | 1211.28 | 1346.50 | 1481.72 | 1585.47 | 1706.21 | 1826.95 | 1947.69 | | MT, OB IN M | Total OB
(Direct + R | Progr. | 5.00 | 14.10 | 30.00 | 45.00 | 80.00 | 135.00 | 156.74 | 156.74 | 156.74 | 156.52 | 140.22 | 135.22 | 135.22 | 135.22 | 103.75 | 120.74 | 120.74 | 120.74 | | ST PIT (COAL | Rehandling
o East | Cumul. | 00.0 | 00.00 | 00:0 | 0.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.0 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | | ELED) IN EAST AND WE | Crown Dump Rehandling
West To East | Progr. | 0.00 | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | 00:00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | NDELÉD) IN E | Crown Dump Rehandling
West to West | Cumul. | 0.00 | 00.00 | 00.00 | 0.00 | 00.0 | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | | T AND REHAN | Crown Dump Rehai
West to West | Progr. | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | 00.0 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SAL (DIREC | Dump
from West
est | Cumul. | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | 00.00 | 21.74 | 43.48 | 65.22 | 86.74 | 91.96 | 97.18 | 102.40 | 107.62 | 112.37 | 134.11 | . 155.85 | 177.59 | | ASTE DISPO | Surface Du
Rehandling froi
to West | Progr. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 21.74 | 21.74 | 21.74 | 21.52 | 5.22 | 5.22 | 5.22 | 5.22 | 4.75 | 21.74 | 21.74 | 21.74 | | CALENDAR PROGRAMME OF WASTE DISPOSAL (DIRECT AND REHANDELED) IN EAST AND WEST PIT (COAL MT, OB IN MBCUM) | + West Pit | OB Cumul. | 5.00 | 19.10 | 49.10 | 94.10 | 174.10 | 309.10 | 444.10 | 579.10 | 714.10 | 849.10 | 984.10 | 1114.10 | 1244.10 | 1374.10 | 1473.10 | 1572.10 | 1671.10 | 1770.10 | | ALENDAR PRO | Total East + West Pit | OB Progr. | 5.00 | 14.10 | 30.00 | 45.00 | 80.00 | 135.00 | 135.00 | 135.00 | 135.00 | 135.00 | 135.00 | 130.00 | 130.00 | 130.00 | 00.66 | 00.66 | 00.66 | 99.00 | | 3 | Year | | 1 | 2 | 3 | 4 | 5 | 9 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | H | म्पीत स्वत्या
यह स्वीदेव ११
विस्त संस्कृति
स्वी मंजस्य
स्वी मंजस्य
सई दिल्ली | Min | atry | india
of Co | l and | | | | | | | | | | | | | RQP | NG. | 3.D.
340 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL # Min Mec Consultancy Pvt. Ltd. | Year | Total East | Total East + West Pit | Surface Dump
Rehandling from West | Dump
from West | Grown Dumk
West to | Crown Dump Rehandling
West to West | Crown Dump Rehandling
West To East | Rehandling o East | Total OB
(Direct + R | Total OB Disposal
(Direct + Rehandeled) | |-------|------------|-----------------------|--------------------------------------|-------------------|-----------------------|---------------------------------------|---------------------------------------|-------------------|-------------------------|--| | | 1 | | ro west | isa | 1 | | | | 1 | | | | OB Progr. | OB Cumul. | Progr. | Cumul. | Progr. | Cumul. | Progr. | Cumul. | Progr. | Cumul. | | 19 | 99.00 | 1869.10 | 21.74 | 199.33 | 0.00 | 0.00 | 0.00 | 0.00 | 120.74 | 2068.43 | | 20 | 89.00 | 1968.10 | 19.50 | 218.83 | 00.00 | 00.00 | 00.00 | 00:00 | 118.50 | 2186.93 | | 21 | 99.00 | 2067.10 | 00.00 | 218.83 | 00:00 | 00.0 | 00.00 | 00:00 | 00.66 | 2285.93 | | 22 | 99.00 | 2166.10 | 00.00 | 218.83 | 00.00 | 0.00 | 00.0 | 00.00 | 00.66 | 2384.93 | | 23 | 00.66 | 2265.10 | 00.00 | 218.83 | 00.00 | 00.00 | 00.00 | 00.00 | 99.00 | 2483.93 | | 24 | 00.66 | 2364.10 | 00.00 | 218.83 | 0.00 | 00.00 | 0.00 | 00:00 | 99.00 | 2582.93 | | 25 | 99.00 | 2463.10 | 00.00 | 218.83 | 0.00 | 00.00 | 0.00 | 00:00 | 00.66 | 2681.93 | | 26 | 99.00 | 2562.10 | 00.00 | 218.83 | 64.35 | 64.35 | 00.00 | 00.00 | 163.35 | 2845.28 | | 27 | 99.00 | 2661.10 | 00.00 | 218.83 | 64.35 | 128.70 | 00.00 | 00.0 | 163.35 | 3008.63 | | 28 | 95.00 | 2756.10 | 00.00 | 218.83 | 77.83 | 206.53 | 0.00 | 00.00 | 172.83 | 3181.46 | | 29 | 5.00 | 2761.10 | 00.00 | 218.83 | 34.91 | 241.44 | 42.86 | 42.86 | 82.77 | 3264.23 | | 30 | 0.00 | | 00.00 | 218.83 | 00.00 | 241.44 | 44.18 | 87.04 | 44.18 | 3308.41 | | 31 | 0.00 | | 0.00 | 218.83 | 0.00 | 241.44 | 44.18 | 131.23 | 44.18 | 3352.60 | | 32 | 0.00 | | 0.00 | 218.83 | 0.00 | 241.44 | 44.18 | 175.41 | 44.18 | 3396.78 | | Total | 2761.10 | | 218.83 | 2 min | 241.44 | | 175.41 | | 3396.78 | | िक नामपाल II.P MAGPAL र गा के / Under Secudity रेग नाम / Govt. of India मा मताहाय / Ministry of Coal की पान / Shastri Bhawan माई हिस्ली / New Dalhi Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 13.1 The year/stage wise surface dump area and backfill area are given below in Table 9.3 and 9.4 respectively. TABLE 9.3 PROGRAMME OF EXCAVATED AND BACKFILLED AREA, CUMULATIVE (HA) | Upto the end of year | Area mined | Backfilled | Remark | |------------------------------|------------|------------|---------------------------------------| | | | area | | | 1 st year | 26.16 | 0.00 | No backfilling | | 3 rd year | 129.97 | 0.00 | No backfilling | | 5 th year | 380.70 | 0.00 | No backfilling | | 10 th year | 1099.37 | 358,27 | Part Direct Backfilling and | | | | | Part from rehandled surface Dump | | 15 th year | 1747.06 | 673.05 | Part Direct Backfilling and | | | | 200 | Part from rehandled surface Dump | | 20 th year | 1949.85 | 1122.31 | Part Direct Backfilling and | | | | 16.00 | Part from rehandled surface Dump | | 25 th year | 2272.42 | 1536.00 | Part direct backfilling and part from | | | | | rehandled surface dump | | End of mine 29 th | 2440.55 | 2109.49 | Part direct backfilling and part from | | | | | rehandled crown dump | | Post mine closure | 2440.55 | 2440.55 | Backfilling from rehandled crown | | stage 32 ND | | | dump* | ^{*} During the post mine closure period (30th to 32nd year), part of the crown dump will be fully rehandaled and backfilled into the residual void (below surface level) while part of the crown dump (with an extent of 138 ha with 72.37 mcum B) will be reduced in height from 100m to 80m and backfilled. TABLE 9.4 YEAR / STAGE WISE DUMPED CUMULATIVE AREA AND HEIGHT | Year | Surface | Dump | |--|----------|-----------| | | Area, Ha | Height, m | | 1 st | 36.19 | 20.00 | | 3
rd | 173.33 | 60.00 | | 5 th | 380.00 | 90.00 | | 10 th | 292.72 | 90.00 | | 15 th | 190.59 | 90.00 | | 20 th | 0.00 | 0.00 | | 25 th | 0.00 | 0.00 | | At the end of final year (29 th) | 0.00 | 0.00 | | Closure stage (32 nd) | 0.00 | 0.00 | The surface dump constructed during the initial 6 years over the coal bearing area will be rehandled between 7th and 20th year and backfilled. # B. WASTE GENERATED DURING UNDERGROUND DEVELOPMENT AND MINING # B.1 Waste generated from shaft sinking and drivage of inclines The waste generated from shaft sinking and drivage of inclines is given below in Table 9.5. TABLE 9.5 WASTE GENERATED FROM SHAFT SINKING AND DRIVAGE OF INCLINES | Particulars | Surface | Deepest level | Total | Actual | Length | Cross- | Volume of | |----------------------------|----------|------------------|--------|-----------|----------|-------------|------------| | | level, m | reached at floor | depth, | Length | in plan, | section | rock | | | RL | of seam- I Bot | m | along | m | area, sq. m | generated, | | | | & Comb, m RL | | section | | | cum | | | | | | @4.5:1, m | | | | | INTAKES | | | | | | | | | INCL NO.1 with | 299 | -81 | 380.00 | 1710.00 | 1626.70 | 14.40 | 24624.00 | | conveyor (4.8m*3m) | | | | | | | | | INCL N.2 without | 299 | -81 | 380.00 | 1710.00 | 1626.7 | 14.40 | 24624.00 | | conveyor (4.8m*3m) | | | | | | | | | Vent shaft-2 intake with | 292 | -87 | 379.00 | 379.00 | 0.00 | 19.625 | 7437.875 | | man winding/ material | | | | | | | | | system (dia 5m) | | | | | | | | | Total in Intakes (inclines | | | | | | | 56685.88 | | + Shaft) | | | | | | | | | RETURNS | | | | | | | | | VENT Shaft-1 (Exhaust) | 288.5 | -76 | 364.50 | 364.50 | 0.00 | 28.26 | 10300.77 | | without man winding | | | | | | | | | (dia 6m) | | | | | | | | | Total (inclines + Shaft) | | | | | | | 66986.65 | # B.2 Waste generated from drift drivage (for crossing the faults) The detailed calculations drift-wise have been given in Annexure 9-1 and the same is summarized below: Volume of waste material from drifts in seam IV = 32860.8 cum Volume of waste material from drifts in seam III = 41659.2 cum Volume of waste material from drifts in other seams = 75480.0 cum Total Volume of waste material from drifts in all seams = 150000 cum This material will be hauled through the inclines (using mine tubs or conveyor as applicable) or shaft (using mine tubs) to the pit top from where loaded into dumpers through appropriate arrangement and disposed of on to the surface dumps (constructed for OC operations) or backfilled into the de-coaled area if available. # **CHAPTER 10** # COAL HANDLING, WASHING & MODE OF DISPATCH # 10.1 COAL HANDLING PLANT A Coal Handling Plant with design capacity of 23.6 million tonnes per annum will be established. As coal is to be produced through surface miners from OC, additional crushing of coal in the CHP is not required. OC Coal will be transported by 100/150T dumpers directly to the ground Bunker of 70000 tonne capacity via unloading platform, reclaim conveyor and Transfer Point (TP1). UG coal produced by Continuous miners will also not require additional crushing. This coal will be directly fed to the ground bunker through the conveyor emanating from the incline. The alignment of railway corridor passing through the coalfield has yet to be frozen after addressing concerns of different stake holders by the Govt. The loading system will be decided in totality, once the parameters like alignment of the siding and its distance and its corridor from the mine etc. are available. The truck transport system is proposed as an option till the alternative system takes a shape. The coal from ground bunker can be sent to three directions through Transfer Point (TP2) as follows. - To and from washery, - ii. To silos for railway despatch of washed coal or unwashed coal bypassing the washery circuits, so that the despatch is not affected in case of any problem in washery. - iii. To bins/hoppers for truck despatch of washed coal or unwashed coal. Plate No. XLI shows plan view, elevation view and coal flow of the Coal Handling Arrangement. The salient features of the CHP are as under: - a. A 1800/2000 mm wide Belt Conveyors System designed to run at upto 3500 TPH to meet the 23.6 MTPA design output. - b. A Belt Weigher and an on-line Coal Ash Analyser will be located on the conveyor to get the tonnage and on line indication of ash and moisture prior to feeding into bunker or the stockpile. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 10-1 c. A suspended magnet will be provided to remove tramp iron at appropriate location. The truck transport system is proposed as an option till the alternative system takes a shape. # 10.1.1 Ground Stock and Bunkerage Ground stock yard to accommodate about 0.2 Mt of coal production of the mine will be located near the coal handling plant and coal from this ground stock will be loaded into trucks with the help of pay loaders. The stock pile will be created by trucks bringing coal from surface miners in emergencies as normally surface miner coal will be discharged into the ground bunker of 70000 t capacity through the dumper unloading platform equipped with 8 nos. grizzlies. # 10.1.2 Weighment One electronic weigh bridge, of 100 tonne capacity, has been proposed to be installed near to the stock pile. Tare and Gross Weight of the trucks shall be recorded for dispatch of coal leaving the premises. # 10.2 COAL WASHERY The average ash content of total insitu extractable reserves works out to 37 to 38 % (refer Table 5.9 of Chapter 5). However, the Ash % fluctuates from year to year between 34.05 % and 41.42%. There will be some further deterioration in ROM coal quality due to dilution during mining operations. In the Mining Plan, provision for space for a washery has been made. The decision regarding capacity and layout of washery will be reached after thorough investigation. MSPGCL has approached CMPDIL (Copy enclosed as Annexure 1-3) for generation of data (washability tests, cleaning possibilities etc) and report preparation. The washery rejects shall be within the normative limits and will be disposed off strictly as per rules and regulation framed by Ministry of Environment, Forests and Climate Change and change from time to time. # 10.2.1 Transportation of coal to the EUPs Coal will be transported to the TPPs through rail from the nearest available railway siding. A coal stack facility has been provided for accommodating three days production. # **CHAPTER 11** # MINE INFRASTRUCTURE # 11.1 GENERAL The following Infrastructure will be developed for smooth operations of the mine to ensure un-interrupted supply of coal to the End Use Plants: - Coal handling plant and Washery (Covered in previous Chapter 10). - 2. Mine site infrastructure. - 3. Residential colony outside the ML area. The details about the Coal handling Plant have been provided in Chapter 9. This Chapter deals with the balance two packages of the Mine Infrastructure. A Master Plan indicating the Coal Block, CHP Area, Mine Site Infrastructure Area etc. is given as Plate IV. The infrastructure facilities have been proposed to be located over the coal bearing area as there is no non-coal bearing area available for this purpose. # 11.2 MINE SITE INFRASTRUCTURE The Mine Site Infrastructure will consist of the following facilities: - (i) Light Vehicle Workshop - (ii) Lubricants & Oil Storage - (iii) Main Office - (iv) Training Centre - (v) Workers Canteen - (vi) Fuel Tank Farm - (vii) Explosives Magazine for storage of Detonators & Safety Fuses. - (viii) Coal Quality Monitoring Laboratory - (ix) Infrastructure Roads - (x) Hard Standing Areas for HEMM - (xi) Miscellaneous Storage Areas Mining Plan & Wine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPAM 11-1 लपाल / P. NAGPAL - (xii) First Aid Room - (xiii) Pithead bath # 11.2.1 Light vehicle workshop A Light Vehicle Workshop will be provided to maintain light trucks and vehicles. The workshop will be equipped with standard equipments like overhead crane, lathe machines etc along with other facilities. # 11.2.2 Lubricants & oil storage A Lubricants & Oil Storage facility will be provided for Heavy Earthmoving Machinery complete with rapid fill devices. It will be constructed adjacent to the filling pad with adequate storage capacities. Stock equivalent to one months' consumption shall be normally maintained. # 11.2.3 Main office complex The Office complex comprising of Mine Managers Office, other offices and meeting rooms of varying sizes, partitioned offices and cubicles, store rooms, a kitchen and toilets will be constructed. It will house the Survey Room, First Aid Room, Medical check up room and safety and Personnel Departments. # 11.2.4 Vocational training centre The Training Centre complex with sufficient floor space comprising offices of varying sizes, theory training class rooms, practical training rooms, Pantry and toilet. The Vocational Training Centre is required for imparting training for workers / engineers on various operational safety issues. # 11.2.5 Worker canteen The canteen & recreational area, toilets & shower facilities will be constructed as per statutory requirement. # 11.2.6 Fuel tank farm A diesel filling station with rapid fill arrangement will be provided for Heavy Earthmoving Machinery. A piping and pump injection system from the tanks will facilitate rapid filling of machinery from the filling Pad. The filling Pad will have dimensions 10 m x 20 m. The top surface will be sloped to ensure any loose hydrocarbons drain into the slab edge drains which will direct the hydrocarbons flow to a fuel-oil interceptor. # 11.2.7 Explosive magazine It is proposed to use Site Mix Slurry (SMS) Explosives for blasting in the Mine. This will obviate the need for a regular explosive Magazine for conventional explosives. However, for storage of required amount of
detonator fuses, safety cords etc a 2X20 Tonne Capacity Explosive Magazine will be constructed in the block area falling in east of the Kelo river which is proposed to be mined after about 2 decades in sequence to the West portion of the block. The magazine will, however, be shifted over to the backfilled area of the West Pit later. # 11.2.8 Coal quality monitoring laboratory For quality assurance and control, it is proposed to establish a Coal Laboratory with all the necessary equipment for daily analysis of the coal quality at Mine end. # 11.2.9 Internal infrastructure roads Internal roads leading to Coal Handling Plant and other service facilities will be developed during development of the Mine Site Infrastructure. # 11.2.10 Hard standing areas Hard Standing Areas are required to be provided to facilitate parking as well as for undertaking minor repairs / inspections of the heavy mining equipment. The Areas are required to be constructed by laying Reinforced Cement Concrete. It is proposed to establish two separate Hard Standing Areas suitably located on the pit top. # 11.2.11 Miscellaneous storage areas Open miscellaneous storage areas will be constructed at suitable locations by laying RCC to facilitate storage of materials like tyres, construction steel, pipes etc. It is proposed to construct two separate storage areas suitably fenced for this purpose. # 11.3 RESIDENTIAL COLONY The Gare Palma area is situated around 35 km away from Raigarh Township. The block is connected by road from Raigarh via Punjipathara by State Highway. Punjipathara village is situated on Raigarh-Ghargoda main road. The distance from Raigarh to Ghargoda is around 40 km. The road distance between Raigarh to Punjipathara is about 20 Km and Punjipathara top Ghargoda is 20 Km towards north. From Punjipathara the road leads to the Gare Palma area via Tamnar TPP area situated at a distance of 10 Km on Punjipathara- Milupara road, which passes through the block. Considering the above, it is proposed to establish only some essential quarters within the ML for the Mine Personnel to cater to essential services. Remaining persons will be accommodated at a suitable site outside the ML area. The Residential Colony will be equipped with fully serviced accommodation units for different class of employees. All the units will be provided with power, communication, potable water supply, and sewerage and garbage collection facilities. The Residential Colony will also contain the Bachelor's Hostel as well as Recreation Facility for all employees. The layout of the Residential Colony will have provision of garden and green belt along the periphery. The Mine Infrastructure will be established in synchronization with each other for timely implementation of the Coal Mining Project. The manpower required is 3400 and it is planned to provide accommodation to 50% of the employees, the rest are expected to be local. # 11.4 WATER SUPPLY Industrial water required for washing, sprinkling on mine roads for dust suppression and for watering the mine site plantations, will be supplied from pumping installation at mine sump and its surface reservoir after adequate water is available in the mine. However, in the initial stage, the requirement will have to be met from the ground water through bore wells. The drinking water will be supplied from bore well and stored in overhead tank near the facilities area and distributed through pipe lines to different facilities area for drinking and domestic purposes. Total net requirement of water for mining and allied activities are estimated as 1995 m³/day. Out of this 1239 m³/day will be potable water and the rest 756 KLD will be required for industrial use in addition to the 790 cum/day reclaimed water from colony STP which will be reused. The break up of the required water for different activities is as follows: TABLE 11.1 WATER REQUIREMENT | i. Potable water | Daily requirement, cum | |--|------------------------| | Drinking at working place @ 45 lpd/head for 3400 workers etc. (Total 3400) | 153.00 | | *Colony (for 50% employees)= 3400/2=1700*4 | 986 | | members in family @ 135 lpd | | |--|---------| | For peripheral villages | 100.00 | | Total of (i) | 1239 | | ii. Industrial water* | | | Sprinkling @ 30 m ³ /km of road length (10km) | 300.00 | | Plantation @ 20 cum/hac {1509.12 ha/22.5 years=59.18 ha (say 60 ha) | 1200.00 | | Vehicles washing @ 2.0 m³/vehicle/day {washable vehicles about (400X2 times a weak)/7 days=115 veh/day(Water required 115x2-80%*230 re-circulation=46) | 46.0 | | Total (ii) | 1546 | | Grand total (i + ii) | 2785 | | Reclaimed water from STP of colony (80% of 986 cum) which can be used in watering the plantation | 790 | | Net water requirement | 1995 | ^{*} It does not include requirement of water for washery as the size of washery and washery circuit have not been decided yet pending the study in progress by CMPDIL. As the make of water into the OC mine workings is expected to be more than the requirement from 5^{th} year onwards (Refer table 7.2 in Chapter 7), the water requirement projected above can be easily met from the mine water after 5^{th} year. # **CHAPTER 12** # MANPOWER, SAFETY AND SUPERVISION # 12.1 MANPOWER AND SUPERVISION REQUIREMENT A number of local personnel including land losers would be recruited in unskilled and semi skilled categories. These personnel need training and orientation before project starts. Besides, some I.T.I. qualified young people from the region can be recruited for operation and maintenance job of plant and machinery after proper training. The employment of local people in primary and secondary sectors of project shall upgrade the prosperity of the region. But, many skilled and highly skilled personnel have to be brought from outside as there is no industrial culture in the locality. It is proposed to outsource the major equipment required for OB & Coal removal. Also some of the services like Security, Canteen etc are recommended to be out sourced for better management and improved results. The company will engage only the statutory manpower required for mining including for blasting. The manpower for operating the hired equipment will be arranged by the contractor. It is estimated that manpower of 60 will be required for operating and maintaining Coal Handling Plant. However, the details of the total employment potential of Project including Departmental Manpower, Contractor Manpower and Manpower required for other allied works are provided in Table 12.1. TABLE 12.1 TOTAL TENTATIVE EMPLOYMENT POTENTIAL | SI. No. | Particulars | No. of workers | |---------|--|----------------| | I. | Heavy Earth Moving Machinery | | | Α. | Coal | | | a) | 100 T.R.D.(CB) dumpers (Diesel Operated) for | 15 | | | 3800SM(W) | _ | | b) | 150 T.R.D.(CB) Dumpers (Diesel Operated) for | 60 | | | 4200S(W) CSM | | | c) | 0.9 m3 hydraulic backhoe (diesel operated) | 6 | | d) | Dozer 275-320 HP | 12 | | | Dozer 410 HP (Diesel Operated) with ripper | 6 | | e) | Surface miner 3800 SM(W) | 6 | | f) | Surface miner 4200S (W) | 12 | | | Sub-Total for Coal | 117 | X/ Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 12-1 B.D. SHARMA | SI. No. | Particulars | No. of workers | |-----------|--|----------------| | B. | Overburden | | | a) | Hydraulic shovel 5/5.5cum | 12 | | b) | Hydraulic Shovel 12 m3 (electric) | 21 | | c) | Hydraulic Shovel 20 m3 (Electrical) | 60 | | d) | 50 Tonne Dump Truck for 5/5.5 m3 shovels | 60 | | e) | 150 Tonne Dump Truck for 12 m3 shovels | 189 | | f) | 150 Tonne Dump Truck for 20 m3 shovels | 720 | | g) | R.B.H drills 200/250 mm (Diesel Operated) | 144 | | h) | Dozer 410 HP (Diesel Operated) | 90 | | i) | Dozer 275-320 HP (Diesel Operated) | 30 | | , | Sub-total for OB | 1326 | | IJ. | Auxiliary & Service Equipment | | | a) | 8 m3 Front End Loader (Coal) (Diesel Operated) | 15 | | b) | 5 m3 Front End Loader (Coal) (Diesel Operated) | 12 | | c) | Graders 230 HP (Diesel Operated) | 8 | | d) | Diesel Bouser | 18 | | e) | Construction backhoe -0.9 CUM (Diesel Operated) | 4 | | f) | Water sprinkler (26 KL) (Diesel Operated) | 36 | | <u>g)</u> | Tow truck on 50T truck chassis (Diesel Operated) | 4 | | h) | 100 T tractors (Diesel Operated) | 4 | | i) | Rough Terrain Crane - 40T mobile (Diesel Operated) | 4 | | j) | Lattice crane 70 T | 2 | | k) | Service trucks | 0 | | , | Fuel trucks (Diesel Operated) | 18 | | | Wash trucks (Diesel Operated) | 18 | | | Mobile maintenance trucks (Diesel Operated) | 18 | | | Lube trucks (Diesel Operated) | 12 | | | Fire trucks (Diesel Operated) | 6 | | | Explosive van (Diesel Operated) | 4 | | (i) | Portable air compressor | 12 | | m) | Tyre handler | 12 | | | Sub Total for Auxiliary & Service Equipment | 207 | | _ | Reclamation | | | a) | 2.5 cum Front End Loader | 8 | | b) | 10 T Truck | 20 | | <u>c)</u> | 0.9-1.2 cum hydraulic Excavator | 8 | | , | Sub Total for reclamation | 36 | | | Total (coal+OB+Aux+Reclamation) | 1674 | | a) | Excavation | 74 | | b) | CHP etc | 60 | | c) | Mining, safety, Qualiy, Despatch | 100 | | d) | Store, Purchase | 16 | | e) | Water supply | 12 | | · f) | Environment | 10 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL | SI. No. | Particulars | No. of workers | |---------|---|----------------| | g) | Personnel | 5 | | h) | Finance | 2 | | i) | Workshop | 60 | | j) | Pumping | 14 | | k) | Communication | 7 | | 1) | Mine pumping | 14 | | m) | Survey | 11 | | n) | training | 5 | | 0) | Miscellaneous | 13 | | p) | Others (Drivers for fire tender, Cash van and Ambulance
| 7 | | | Grand Total | 2096 | | | Provision for Sick and leave (16%) | 334 | | | Grand Total including sick and leave | 2430 | | III. | Underground @ 5 OMS | 970 | | | Grand Total (OC+UG) | 3400 | # 12.2 SAFETY ASPECTS AND DISASTER MANAGEMENT All types of industries face certain types of hazards which can disrupt normal activities abruptly and lead to disaster like fires, inundation, failure of machinery, explosion to name a few. Similarly coal mines also have impending dangers or risk which need be investigated addressed, disaster management plan formulated with an aim of taking precautionary steps to avert disaster and also to take such action after the disaster which limits the damage to the minimum. # 12.2.1 Inundation There is only one prominent water course passing through the eastern part of the block i.e. Kelo river. An action plan is needed to be drawn as a contingency measure to guard against danger from inundation. A stand by diesel generator will be provided for un-interrupted supply of power to the pumps in the event of failure of power. The mine working will be protected from the river inundation by providing embankments on either side of the river. The embankments will be designed with 3m height above HFL and 10m width. The slope of the sides will be 1 in 3 on river side and 1 in 2 on quarry side. Core of the embankment will be constructed from impervious clay. Both sides of embankment will be clad/paved with stones. Adequate measures to protect the mine workings from surface water flow during the rains will be taken by way of providing garland drains around the mine excavations and also by P providing suitable drainage gradients for mine benches. Sumps of adequate capacity will be provided on the quarry floor. The coal excavation and transport machinery are organised to be sited over the coal bench top during rainy season and will not be affected by water accumulation from rains or strata seepage on the guarry floor. No water accumulation in OC mine workings will be permitted to remain when the UG mining operations are in progress. # 12.2.2 Disaster due to failure of pit slope The proposed OC mine is planned for future 29 years period operation. The ultimate depth at the end of mining operation will be upto about 205m, the general surface level varies between 190 and 200 m RL. Slopes of pits (opencast mine) with such depth can cause pit slope failures thus endangering the safety of the mine. This problem has been overcome by changing over to inside dumping (backfilling) at the early stage from 6th year of mine operation. All of the OB waste has been planned to be backfilled combined with rehandling which will act as support to the pit slope. Strict vigil will be kept by reconnaissance surveys specially in rainy season to detect any impending danger so that the men and equipment can be accordingly moved out of danger area in time. # 12.2.3 Disaster due to failure of waste dump There are two types of waste dumps which are discussed below: # i. Surface dump Sliding of surface waste dump is an equally severe risk compared with quarry slope failure. Hence, it is imperative that the degree of hazard against potential failure of waste dump slope should be identified and that precautionary measures are to be adopted, if required. The surface waste dump will be located within the ML area over the dip part of the block. The temporary dumping is proposed to be carried out upto 100 m height. The waste dump will be rehandled between 7th and 20th year however a part of it will be stabilised by tree plantations and other arrangements as detailed below:- Drains will be made on the top of waste dump to arrest uncontrolled descent of water to drain away during rainy season through specially made chutes. Besides gullies (chutes) will be cut for flow of water from the waste dump slowly to channelise it to garland drain. This Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPAM 12-4 precaution is necessary to prevent erosion of waste dump here and there due to erratic flow of rainwater. - 2. On the slope of the dump, small pits of 0.3 x 0.3 x 0.3 m will be cut and seedlings will be planted and also over the 1.5 m width of top from edge of the bench similar plantation shall be done so that the top of the waste dump slope will get stabilized. - 3. A stone toe wall will be made all around the waste dump to prevent waste dump material being carried out of the dump area and mixing with the general drainage system of the area. - 4. A garland drain will be constructed all around the waste dump area for smooth flow of water. - 5. The overall slope of dump sides will be kept below 28°, each their being at 37°. - 6. Though the height of the surface dumps will be 100 m, with the help of additional precautions being taken as mentioned above, there is no dangers of the slope failure of the surface dumps. # ii Backfill dump The height of the backfill dump will be maximum upto about 180 m which will, though, be supported at the sides by quarry batters but the main advancing front of the backfill dump towards dip side will be amenable to slope failure. No danger is anticipated for the equipment or manpower because the backfilling will start only after total coal evacuation from the Quarry. The dump will be planted as soon as ultimate height (surface level) is achieved. It is planned not to have overall gradient of the dump more than 28°. A systematic study will be commissioned to study the various slope stability parameters to reach at the optimum slope angle during the mine operation period. Appropriate factor of safety will be adopted supported by sensitivity analysis of critical parameters. It is also proposed to monitor the backfill dump with latest geo-technical/surface/equipment e.g. Bore hole extensometer, tape extensometer, EDM, Piezometers, Theodolites etc. The monitoring will commence as a part of safety measures. # 12.2.4 Disaster due to surface fire/coal stack fires Sufficient fire extinguishers will be installed at selected locations on surface like Electrical Sub-stations, work-shop, Garage, Diesel Depot, Stores etc. Besides sufficient number of water hydrants with sufficient hose pipes will be made available in the surface for fire protection. AP John Shasin Bhak Shi Mew Delhi In order to prevent fire hazards in coal stock piles, following types of precaution shall be taken. - (i) Prevent the happening or presence of any external source of fire in the vicinity of coal stockpiles i.e. - naked fire - electric fire - fuel oil fire In case of electric equipment operating in the vicinity of fuel oil being used or stored in the vicinity of the coal stock piles, appropriate types of fire extinguishers will be provided on or near such equipment in order to extinguish the fire at the very start. - (ii) Restrict the stacking height of the coal to below two meters. Higher height may only be attempted for shorter interval of stacking. - The time and height shall be established with respect to spontaneous combustion which will help in restricting to safe parameters. - (iii) Appropriate arrangement will be made by inserting pipes in the stack to monitor the internal temperature of coal. In case, temperature is found to shoot above safe limits, the coal from the part of stack shall be immediately dug out and disposed safely. - (iv) In certain mines, the insitu coal exposed in coal bench catches fire due to spontaneous heating which has to be kept under vigil. Under such circumstances the affected area of coal shall be separately dug up and disposed off safely. #### 12.2.5 Possible dangers due to storage of explosives in the magazine Since site mixed slurry will be used, there will be no requirement of large storage facilities. However a 2 X 20 T capacity magazine is to be provided for the storage of primers. detonators, fuse etc. The explosive magazine is designed in such a manner that normal chances of fire inside the magazine ruled out. Still following precaution are taken: - Clearance of dried vegetation within 15 m of Magazine House. - Installation of lightening arresters on the Magazine to prevent damages in the event of an explosion. - Provision of fire extinguishers, water and sand filled buckets. - Arrangement of mounds around the magazine to mitigate damage in the event of an explosion. Lal Keeping a safety zone margin around the Magazine as per the guidelines given in Schedule VIII of The Explosives Rules, 1983. The safety distance of 605m will be maintained from the public establishments. ## 12.2.6 Safety Measures to be adopted Considering Large Fleet of Dumpers The high production and the large dumper fleet would require proper management, maintenance and operation of dumper fleet and observation of safety measures as dumpers and trucks have been the cause of most of the accidents in opencast mines. To deal with the issue following measures are suggested. - i) Managers shall ensure that all Dumpers are properly maintained and safe to operate. - ii) Only people with appropriate skills, knowledge and training are allowed to drive dumpers. - Drivers should also be trained in the safe operation of the specific dumpers that they are required to drive. - iv) Dumper operator shall not drive too fast, shall avoid distractions, and drive defensively, not attempt to overtake another vehicle unless he can see clearly far enough distance ahead to be sure that he can overtake it safely and sound the audible warning signal before overtaking. - v) When approaching a stripping or loading equipment, Dumper Operator shall sound the audible warning signal and not attempt to pass the stripping equipment until he has received proper audible signal in reply; - vi) No unauthorised person(s) shall be allowed to ride on the Dumper. - vii) All roads for trucks, dumpers or other mobile machinery shall be designed, constructed and maintained in such condition as to be fit
for their use. - viii) Where practicable, all roads from the opencast working shall be arranged to provide for one-way traffic and where not practicable, no road shall be of a width less than three times the width of the largest vehicle plying on that road unless definite turnouts and waiting points are designated. - ix) All corners and bends in road shall be made in such a way that the operators and drivers of vehicles have a clear view upto a distance not less than 30 metres along the road. Provided that where it is not possible to ensure visibility upto a distance of not less than 30 metres, there shall be provided two roads for the incoming and outgoing traffic or an alternative system. - x) Standard traffic signs shall be displayed at conspicuous places along the haul road. - xi) All roads shall be provided with side drains to prevent water logging and damage to the road. - xii) The portion of roads where there is heavy traffic of men and machine shall have separate lane properly fenced off from haul road for use by pedestrians and two wheelers. - xiii) Loaded trucks, dumpers or other vehicles shall not be reversed on gradient. - xiv) A berm of height at least half the diameter of the wheel of the largest dumper plying or one meter whichever is greater and of adequate width shall constantly be provided and maintained at the edge of the spoil or coal dump. - xv) Sufficient number of stop-blocks shall be provided at every discharge point and it shall be used every time material is dumped from the truck, dumper or other such vehicle. - xvi) The manager shall formulate traffic rules for movement of trucks, dumpers or other vehicles which shall be prominently displayed at the relevant places in the opencast working and truck/dumper roads. - xvii) Separate roads shall be provided for small vehicles. - xviii) Only authorised small vehicles shall be allowed in opencast working which have a raised red flag in day time and a red light in the night which shall be visible to a dumper operator from a distance of at least 30 metres. - xix) All heavy earth moving machinery including light motor vehicle permitted to ply on the haul road shall be provided with flasher lights on top, indicator lights in front and rear sides of the vehicle as approved by the Chief Inspector. - xx) Anti-Collision and Proximity Detection Device shall be installed on every Heavy Earth Moving Machinery. VOC. With multi seam operation, the excavation, loading, and hauling operation will be carried out at different places. Minimum 4 main hauling routes will be available exclusively for dumpers through quarry floor and flanks at different horizons, for transport to internal and external OB dump sites, CHP, stockyards etc. The average distance between two dumpers comes to about 120 m and the minimum distance while hauling would not be less than 30m providing adequate safety for which relevant instructions will be issued to the dumper operators. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPAM 12-9 #### **CHAPTER 13** #### LAND REQUIREMENT #### 13.1 LAND REQUIREMENT & LEASEHOLD AREA BREAK-UP The present land use of the area required for the project is given below in Table 13.1. It may be noted that all facilities will be located within the ML area except the colony. TABLE 13.1 PRESENT/PRE-MINING LAND USE OF THE ML AREA GARE PALMA SECTOR-II (HA.) | | <u> </u> | | | | C T OR-II | , , | | | | I | |-------|--------------|------------------|------------------------|---------------|-----------|---------------|----------|---------|---------------|--------------------------------------| | SI. | Village | Р | rivate Lar | nd | | G | ovt. Lan | d | | Total | | No. | | Agricul-
ture | Non
Agricult
ure | Total
Area | Populated | Water
body | Other | CBJ** | Total
Area | Area
(Private +
Govt.
Land) | | 1 | Tihlirampur | 97.902 | 62.685 | 160.587 | 6.83 | 21.225 | 39.094 | 0 | 67.149 | 227,736 | | 2 | Dholnara | 59.64 | | 59.64 | 6.833 | 0.376 | 3.317 | 2.788 | 13.314 | 72.954 | | 3 | Murogaon | 302.393 | | 302.393 | 8.256 | 1.303 | 4.29 | 23.504 | 37.353 | 339.746 | | 4 | Libra | 121.416 | 7.621 | 129.037 | 2.897 | 0.439 | 4.694 | 15.943 | 23.973 | 153.01 | | 5 | Kunjemura | 199.715 | | 199.715 | 14.221 | 13.596 | 8.308 | 30.17 | 66.295 | 266.01 | | 6 | Jhinkabahal | 3.844 | | 3.844 | 0 | 0 | 0 | 0 | 0 | 3.844 | | 7 | Radopali | 351.676 | | 351.676 | 8.336 | 5.895 | 19.955 | 0.125 | 34.311 | 385.987 | | 8 | Dolesara | 20.748 | | 20.748 | 0 | 0 | 1.242 | 0 | 1.242 | 21.99 | | 9 | Bhalumura | 16.297 | | 16.297 | 0 | 0 | 0.704 | 0.622 | 1.326 | 17.623 | | 10 | Sarasmal | 56.869 | 9.158 | 66.027 | 0 | 1.332 | 3.563 | 15.236 | 20.131 | 86.158 | | 11 | Pata | 316.064 | 13.166 | 329.23 | 13.314 | 5.529 | 14.47 | 15.326 | 48.639 | 377.869 | | 12 | Chitwahi | 142.461 | | 142,461 | 0.252 | 0.867 | 8.153 | 0 | 9.272 | 151.733 | | 13 | Gare | 157.224 | | 157.224 | 10.482 | 4.241 | 11.596 | 1.957 | 28.276 | 185.5 | | 14 | Saraitola | 156.228 | 13.722 | 169.95 | 8.395 | 1.364 | 7.969 | 29.703 | 47.431 | 217.381 | | T | otal of A | 2002.477 | 106.352 | 2108.829 | 79.816 | 56.167 | 127.355 | 135.374 | 398.712 | 2507.541 | | B. As | per Forest | Departmer | ıts Record | t | | | | | | | | Gove | ernment Fore | est Land | | | | | | | | *75.945 | | Gran | d Total | | | E 18 | | | | | | 2583.486 | Note: * 75.945 Ha of Protected Forest land and 135.374 Ha of Revenue Forest land is present within the mine lease area, which needs to be diverted for mining purpose after obtaining forestry clearance from the Ministry of Environment and Forest, Govt. of India under the Forest (Conservation) Act 1980. ** Chhote Bade Jhar ka Jungle (Small/ big trees forest) आप सामित / Under Secretary भारत एकाल / Govt. of India भारत एकाल / Govt. of India भारत प्रकार / Ministry of Coal भारत प्रकार / Shastri Bhawan नहीं जिस्ली / New Dalhi. #### 13.2 PROPOSED 'DURING- MINING' LAND USE IN HA The total land area of the block is required for Mining Lease. The requirement for additional land required for mining purpose for approach road to the block and approach to railway siding etc. will be assessed after finalisation of railway alignment passing through Gare Palma Coalfield and considering limited availability of land, as the block is surrounded by other coal blocks. The colony will be located away from the block non coal bearing area to be identified in consultation with local authorities. The 'during-mining' stage land use is given in Table 13.2. TABLE 13.2 DURING MINING LAND USE (HA) WITHIN ML AREA | DOKING IMMING LAND OSE (ITA) WITHIN INE AREA | | | | | | | | | |---|---------------------------------------|---|--|--|--|--|--|--| | Landuse | At the end
of 5 TH Year | At the end
of 25 TH
Year | At the end
of OC
mining
(29 TH Year) | OC Post
mine
closure
30 th to 32 nd
year | End of OC
and UG
mining
(77 th year) | | | | | Excavation | 380.70 | 2272.42 | 2440.55 | 2440.55 | 2440.55 | | | | | Backfill | 0.00 | 1535.00 | 2248.77 | 2440.55 | 2440.55 | | | | | Void | 380.70 | 737.42 | 191.78 | 0.00 | 0.00 | | | | | Surface dump# | 380.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | Bund | 5.20 | 5.20 | 5.20 | 5.20 | 5.20 | | | | | Green Belt | 36.07 | 36.07 | 36.07 | 36.07 | 36.07 | | | | | Top Soil Dump* | 60.00 | 00.00 | 0.00 | 0.00 | 0.00 | | | | | Settling Pond## | 10.00 | 5.00 | 5.00 | 5.00 | 5.00 | | | | | Road diversion< | 30.30 | 30.30 | 30.30 | 30.30 | 30.30 | | | | | Facilities (West Part:
CHP, Inclines, Shaft Pit,
Office, Lamp room,
Attendance Office, Rest
Room, Parking, First aid
room, Sub Station etc.)** | 50.94 | 50.94 | 50.94 | 50.94 | 5.00 | | | | | Facilities (East Part:
Office, Workshop,
magazine, washery etc) | 68.54 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Mining Plan & Mine Cosure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 13-2 | Landuse | At the end
of 5 TH Year | At the end
of 25 TH
Year | At the end
of OC
mining
(29 TH Year) | OC Post
mine
closure
30 th to 32 nd
year | End of OC
and UG
mining
(77 th year) | |------------------|---------------------------------------|---|--|--|--| | Under Kelo river | 15.42 | 15.42 | 15.42 | 15.42 | 15.42 | | Dismantling | 0.00 | 0.00 | 0.00 | 0.00 | 45.94 | | Disturbed area | 1017.17 | 2415.35 | 2583.48 | 2583.48 | 2583.48 | | Undisturbed | 1566.31 | 168.13 | 0.00 | 0.00 | 0.00 | | Total | 2583.48 | 2583.48 | 2583.48 | 2583.48 | 2583.48 | - * Top soil dump will be over the backfilled area towards the end of mine life. - ** Main colony will be located away from the ML area. - # The OB dump lying over the coal bearing area will be fully rehandled and backfilled by 20th year. - ## The settling ponds in 5th year will comprise of 5 ha for mine water and 5 ha for surface dump but the later will not remain after 20th year as surface dump will be rehandaled and become non-existent. - < Diverted road is for public use. #### 13.3 FOREST LAND Approval of Govt. of India, MoEF will be obtained for diversion of 211.319 Ha (75.945 Ha of Protected Forest land and 135.374 Ha of Revenue Forest land) of Forest Land for mining under the Forest (Conservation) Act 1980. #### 13.4 REHABILITATION POLICY Policy of Govt. of Chhattisgarh for resettlement & rehabilitation of displaced
persons/families, in case of mining projects, shall be followed. R&R Colony will be accordingly planned and established. 5.01 #### **CHAPTER 14** #### **ENVIRONMENTAL MANAGEMENT PLAN** #### 14.1 INTRODUCTION The environmental management plan has been prepared for the proposed "Gare Palma Sector - II coal block of M/s Maharashtra State Power Generation Company Limited (MSPGCL) located in villages Tihli Rampur, Kunjemura, Gare, Saraitola, Murogaon, Radopali, Pata, Chitwahi, Dholnara, Jhinka Bahal, Dolesara, Bhalumura, Sarasmal and Libara of District Raigarh in Chhattisgarh as per the requirement of Ministry of Environment & Forest. Government of India. The coal block is proposed to produce coal at the rate of 23.60 MTPA (22.00 MT from OC + 1.6 MT from UG) though the peak capacity of OC will be 23.6 MTPA before the UG becomes operational. Opencast mining and to some extent under ground mining in the block is related to land, air, water and its inter-relationship with inhabitants and organic life in the immediate surroundings. The operations have also a direct bearing on the socio-economic environment of the area. Therefore, as an essential part of the mining plan, an environmental management plan has been incorporated which includes a study covering the following major aspects: - Collection of baseline information related to relevant environmental aspects for establishment of prevailing environmental status. - Assessment of environmental impacts due to mining activities. - Management plan stipulating control measures to mitigate possible environmental hazards resulting from mining. The environmental management plan includes the evaluation of total impacts after superimposing the predicted impacts over baseline data. This helps in incorporating proper mitigation measures wherever necessary for preventing deterioration in environmental quality. The mining lease area constitutes the 'core zone' and the area falling within 10 km radius of the leasehold area has been considered as the 'buffer zone' for general information. Both are together referred to as the 'study area'. The key map (Plate II) and location map (Plate I) depicts the situation of the core area and location of the mine site with respect to the surrounding region. The salient features of the mine that have been taken into consideration while planning the study are described below briefly: a) ML Area 2583.486 Ha b) Nature of land Agricultural & forest land क्षिण नामपाल गा. १. दे) AG! Mineral to be mined Coal Scale of operation 23.60 million tonnes per annum (MTPA) Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14-1 (22.00 MT by OC + 1.6 MT by UG). Total 75 years (Life of OC mine - 29 years and UG mine - 64 years starting from 12th year onwards). f) Method of mining General Surface transport By trucks/ dumpers to the appropriately located hopper/CHP within the ML area. #### 14.2 BASELINE STATUS OF ENVIRONMENT The base line status of environment was prepared by Min Mec R&D laboratory, New Delhi. The schedules adopted for sampling/monitoring the area are indicated in Table 14.1 below. The summary of Soil Sample Analysis is given in Table 14.4, ambient air quality monitoring results in Table 14.5, Noise sampling in Table 14.7 and Water Sample Analysis in Table 14.8. The different elements of environment namely land, water, ecology, air, climate and socio-economic status of the area was studied for the post monsoon season of 2012. The schedules adopted for sampling/monitoring the area are indicated in Table 14.1 and the location of sampling/monitoring stations is enclosed (Plate II) along with 10 km buffer zone (study area). TABLE 14.1 MONITORING SCHEDULE AND PARAMETERS | SI. | Description of parameters | Schedule and duration of | | | | | | |-----|---|-------------------------------|--|--|--|--|--| | No. | | monitoring | | | | | | | 1. | Air quality in the vicinity of the mine | 6 stations. Twice a week for | | | | | | | | – PM 10, PM 2.5, SO₂, and NO _X | three months | | | | | | | 2. | Water quality (all parameters as | 4 samples once a year | | | | | | | | per drinking water standards | | | | | | | | | IS:10500) | | | | | | | | 3. | Ambient noise levels | 5 stations once a season | | | | | | | 4. | Study of Flora and Fauna | Within the study area | | | | | | | 5. | Soil quality | One sample from core zone and | | | | | | | | | one from study area | | | | | | Secondary data sources were utilized for collection of information about hydro-geological conditions, socio-economics, seismicity and important places and industries in surrounding areas. # 14.2.1 Existing/Pre-Mining land use pattern #### a) Core zone The total area of 2583.486 Ha, covering part of the 14 villages is mostly in the form of private, government and forest land. Summary of the existing land details as per revenue and forest department records are given in Table 14.2 and the details khasra wise are given in **Annexure 3-1**. TABLE 14.2 EXISTING LAND USE DETAILS OF TOTAL AND APPLIED MINING LEASE AREA (HA) | SI.
No. | Village | Private Land | | | | Govt. Land | | | | | | |--|--------------|--------------|--------------------|---------------|-----------|---------------|--------|--------|---------------|----------------|--| | | | Agriculture | Non
Agriculture | Total
Area | Populated | Water
body | Other | CBJ** | Total
Area | Govt.
Land) | | | A. | As per Reve | nue Departm | ents Record | S | | | | | | | | | 1 | Tihlirampur | 97.902 | 62.685 | 160.587 | 6.83 | 21.225 | 39.094 | 0 | 67.149 | 227.736 | | | 2 | Dholnara | 59.64 | | 59.64 | 6.833 | 0.376 | 3.317 | 2.788 | 13.314 | 72.954 | | | 3 | Murogaon | 302.393 | | 302.393 | 8.256 | 1.303 | 4.29 | 23.504 | 37.353 | 339.746 | | | 4 | Libra | 121.416 | 7.621 | 129.037 | 2.897 | 0.439 | 4.694 | 15.943 | 23.973 | 153.01 | | | 5 | Kunjemura | 199.715 | | 199.715 | 14.221 | 13.596 | 8.308 | 30.17 | 66.295 | 266.01 | | | 6 | Jhinkabahal | 3.844 | 42.4 | 3.844 | 0 | 0 | 0 | 0 | 0 | 3.844 | | | 7 | Radopali | 351.676 | | 351.676 | 8.336 | 5.895 | 19.955 | 0.125 | 34.311 | 385.987 | | | 8 | Dolesara | 20.748 | | 20.748 | 0 | 0 | 1.242 | 0 | 1.242 | 21.99 | | | 9 | Bhalumura | 16.297 | | 16.297 | 0 | 0 | 0.704 | 0.622 | 1.326 | 17.623 | | | 10 | Sarasmal | 56.869 | 9.158 | 66.027 | 0 | 1.332 | 3.563 | 15.236 | 20.131 | 86.158 | | | 11 | Pata | 316.064 | 13.166 | 329.23 | 13.314 | 5.529 | 14.47 | 15.326 | 48.639 | 377.869 | | | 12 | Chitwahi | 142.461 | | 142.461 | 0.252 | 0.867 | 8.153 | 0 | 9.272 | 151.733 | | | 13 | Gare | 157.224 | | 157.224 | 10.482 | 4.241 | 11.596 | 1.957 | 28.276 | 185.5 | | | 14 | Saraitola | 156.228 | 13.722 | 169.95 | 8.395 | 1.364 | 7.969 | 29.703 | 47.431 | 217.381 | | | Total of A 2002.477 106.352 2108.829 79.816 56.167 127.355 135.374 398.712 | | | | | | | | | 2507.541 | | | | B. A | s per Forest | Departments | s Record | | | | | | | | | | Gove | rnment Fore | st Land | | | | | | | | *75.945 | | | Gran | d Total | | | | | | | | | 2583.486 | | Note: #### b) Buffer zone The land use pattern in the buffer zone as per Census 2011 is summarised in Table 14.3. TABLE 14.3 LAND USE PATTERN OF BUFFER ZONE (AS PER CENSUS 2011) | is | | |------------------------|------| | ्राप्तिकार
विक्रमान | 1111 | | Land use | Area (Ha) | Percent | |-----------------------------|-----------|---------| | Irrigated agricultural land | 1052.93 | 1.66% | | Uningated agricultural land | 28577.71 | 45.16% | | Culturable waste land | 1368.24 | 2.16% | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL _ . 14-5 ^{* 75.945} Ha of Protected Forest land and 135.374 Ha of Revenue Forest land is present within the mine lease area, which needs to be diverted for mining purpose after obtaining forestry clearance from the Ministry of Environment and Forest, Govt. of India under the Forest (Conservation) Act 1980. ^{**} Small/ big trees forest | Land use | Area (Ha) | Percent | |------------------------------------|-----------|---------| | Area not available for cultivation | 15654.31 | 24.74% | | Forest land | 16624.81 | 26.27% | | Total | 63278 | 100% | ## 14.2.2 Soil quality Top soil samples were collected from core zone and buffer zone. The results of analysis are given in Table 14.4. TABLE 14.4 SOIL TEST RESULTS | Parameter | Units | Pata | Tamnar | |-------------------|-------------------|-------------|---------------| | | | (core zone) | (buffer zone) | | рН | - | 7.80 | 8.10 | | E.C | μmho/cm | 203 | 202 | | CaCO ₃ | % by mass | 17.8 | 17.2 | | Bulk Density | g/cm ³ | 1.7 | 1.5 | | Moisture | % by mass | 13.97 | 20.86 | | Organic Carbon | % by mass | 0.46 | 0.28 | | Organic Matter | % by mass | 0.79 | 0.48 | | Chloride | % by mass | 1.5 | 2.5 | | Sulphate | % by mass | 1.06 | 0.24 | | Phosphorous | mg/kg | 1.25 | 1.44 | | Nitrate | mg/kg | 10.3 | 8.55 | | Iron | mg/kg | 24.04 | 13.28 | | Sodium | % by mass | 0.0162 | 0.0331 | | Potassium | % by mass | 0.0032 | 0.0041 | The soil is silty clay in texture and red to pale brown in colour. pH of 7.80 and 8.10 show that the soil is nearly neutral. The conductivity is normal. The soil has sufficient organic carbon. Available Nitrogen in soil was found very less. Available Phosphorous (P) is low and was found 1.25 mg/kg and 1.44 mg/kg in core and buffer zone respectively. #### 14.2.3 Water regime # a) Surface water regime The block exhibits undulating topography. The ground elevation in the block ranges from 242 m to 303 m. General slope of the ground is towards South. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL The easterly flowing Kelo River constitutes the main drainage system of the block. Kelo River is flowing across the coal block towards East and its diversion is not proposed. It will be protected by leaving statutory barriers. A number of
small streamlets drain the terrain in various directions giving a sub dendritic drainage pattern. Elevation in the study area varies from 240 m to 640 m. Other than nalas and rivers, there exist a number of surface water bodies like rainfall fed ponds/dug wells etc. within the buffer zone. #### b) Ground water The district is mainly underlain by crystalline rocks of Proterozoic age belonging to Chota Nagpur gneissic complex. Presence of sandstone of Lameta Formation (infratrappeans) and Deccan trap basalt though insignificant, have also been reported. Extensive Lateritisation with occasional bauxite deposits are also found. Ground water occurs under water table condition in, laterite and weathered mantle. It occurs under semi-confined to confined conditions in the deeper fractured basalts. The depth of water level varies from 4.67 to 12.34 m bgl during pre-monsoon period and from 1.43 to 9.35 m bgl during postmonsoon period in the shallow aquifers. The long term (decadal) trend analysis of water level indicates that about 13% of the wells in pre monsoon and none of the wells in post monsoon period show a significant (20 cm/year) falling trend. The exploration by Central Ground Water Board had indicated presence of potential fractures upto 90 m bgl. The optimum depth of bore wells in the district is found to be between 50 to 90 m bgl. (http://cgwb.gov.in/nccr/Raigarh1.htm) #### 14.2.4 Ecology The leasehold area can be demarcated under two major groups of vegetation structure i.e. Forest land and non forest land. The non forest land under Government ownership is barren land while under private ownership it is agriculture and non agricultural land. The area of protected forest is 75.945 Ha and that of revenue Forest is 135.374 Ha. The forest area will be diverted after obtaining Forest Clearance from MoEF, Govt. of India. #### a) Flora Red / New Delhi The forest of the study area as per revised classification of Indian Forest types belongs to sub group 5B/C1 (Northern Tropical dry deciduous Sal Bearing Forest) and sub group 5B/C2 (Northern Tropical dry Mixed deciduous Forest). Common plant species found in the forest are Sal (Shorea robusta), Mahua (Madhuca latipolia), Tendu (Diospyros melanozylon), Palas (Butea monosperma), Neem (Azadiracta indica) etc. and the crops grown in the area are gram, maize and paddy. STATE OF MY IN CHA Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14-5 #### b) Fauna Due to biotic pressure, forest fire and overgrazing, the number of fauna seen in the study area is limited. During survey of the study area and interview from local old age persons at site, it is observed that most of the species which were common in the area in the past are seen rarely nowadays. Animals found in the core zone include rabbit, mongoose, house rat etc. The animals found in study area are rabbit, Jackal, Fox, Monkey, Langur, Jungle myna, Grey heron, Owl, House crow, Common quail etc. #### 14.2.5 Quality of air, ambient noise and water #### i. Air quality Ambient air quality monitoring results of 6 different stations including 1 station within the core area is given in Table 14.5. The monitoring results indicated that the air quality is good and conforms to the standards stipulated for rural areas. TABLE 14.5 AIR QUALITY OF THE STUDY AREA | | PM
10 | PM
2.5 | SO ₂ | NOx | PM 10 | PM
2.5 | SO ₂ | NO _x | PM
10 | PM
2.5 | SO ₂ | NO _x | |---------|----------|-----------|-----------------|------------|-------|--------------|-----------------|-----------------|----------|-----------|-----------------|-----------------| | | Ku | ınjemı | ıra (C | A1) | 7 | Tamna | r (BA1 |) | KI | namha | ria (BA | 12) | | Max. | 47.3 | 27.8 | 11.9 | 17.2 | 64.2 | 37.8 | 17.6 | 22.9 | 52.0 | 30.3 | 12.5 | 17.5 | | Min. | 39.0 | 22.0 | 7.5 | 8.9 | 50.7 | 28.3 | 11.3 | 12.9 | 36.0 | 20.3 | 8.2 | 10.2 | | Avg. | 42.5 | 24.5 | 9.8 | 13.3 | 57.3 | 32.9 | 14.6 | 18.8 | 44.8 | 25.9 | 10.1 | 14.7 | | 98%tile | 47.1 | 27.6 | 11.9 | 17.1 | 63.7 | 37.1 | 17.5 | 22.7 | 51.9 | 30.2 | 12.4 | 17.4 | | | K | erakho | ol (BA | 3) | U | kraipa | lli(BA | 1) | Dha | urabh | ata (B | A5) | | Max. | 42.8 | 25.0 | 5.9 | 11.9 | 44.2 | 26.3 | 11.0 | 12.3 | 65.3 | 38.7 | 21.7 | 30.0 | | Min. | 31.9 | 17.7 | 7.7 | 9.0 | 32.9 | 1 9.1 | 7.6 | 9.3 | 35.9 | 21.2 | 11.3 | 16.1 | | Avg. | 37.5 | 21.6 | 8.8 | 10.5 | 37.4 | 21.5 | 9.2 | 11.2 | 52.0 | 30.0 | 16.6 | 24.3 | | 98%tile | 42.7 | 24.4 | 9.9 | 11.8 | 44.1 | 25.5 | 11.0 | 12.3 | 65.0 | 38.5 | 21.7 | 29.4 | The Indian Ambient Air Quality Standards permitting the maximum concentration of contaminants for ambient air quality, set for different categories of areas are given in Table 14.6 for the sake of comparison. TABLE 14.6 AMBIENT AIR QUALITY STANDARDS | Area | Category | 24 hours average concentrations, μg/m³ | | | | | | | |------|--|--|-------|-----------------|-----|----------------------|--|--| | | | PM10 | PM2.5 | SO ₂ | NOX | СО | | | | | | | | | | (8 hourly) | | | | А | Industrial, Residential, Rural and Other Area | 100 | 60 | 80 | 80 | 02 mg/m ³ | | | | В | Ecologically Sensitive Area (notified by Central Government) | | 60 | 80 | 80 | 02 mg/m ³ | | | Source: National Ambient Air Quality Standards vide CPCB Notification B-29016/20/90/PCI-L dated 18th November 2009 As is apparent from the analytical data, the ambient air quality in the region is well within the standards specified as per the Air (Prevention & Control of Pollution) Act, 1981. #### ii. Ambient noise quality Noise level survey has been conducted and results at 5 locations including 1 at core zone and 4 in the buffer zone is given in Table 14.7. The noise level monitoring data was recorded round the clock for 24 hours. The ambient noise levels were found within the permissible limits as per the statutory norms. TABLE 14.7 AMBIENT NOISE LEVELS IN THE STUDY AREA, Leq dB(A) | Hours | Gare | Kerakhol | Kondkel | Tamnar | Ukraipali | |---------------------|-------|----------|---------|--------|-----------| | | (N1) | (N2) | (N3) | (N4) | (N5) | | Day time Leq. | 61.20 | 49.50 | 46.70 | 54.20 | 47.20 | | Night time Leq. | 47.90 | 41.60 | 41.30 | 45.00 | 42.30 | | Average Leq. | 56.22 | 46.60 | 44.70 | 50.80 | 45.30 | | Permissible (Day) | 55 | 55 | 55 | 55 | 55 | | Permissible (Night) | 45 | 45 | 45 | 45 | 45 | #### iii. Water quality Ve Water quality survey to assess the quality of both surface & ground water has been conducted during the post monsoon season (October – December 2012. The results of 2 surface water samples and 2 ground water samples are given for assessing the water quality in core and study area. The samples were tested as per the drinking water standards (IS: 10500) and the fest results show that all the elements concentration is below permissible limits. The details of water test analysis are given in Table 14.8. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL SPGCL 14-7 TABLE 14.8 WATER QUALITY TEST RESULTS | Parameters | IS : 105 | ions as per
600:2012 | Pata
Core zone | Mudagaon
(GW-2) | Budia (Kelo
River | Jorekela
Pajhar nadi | |---|------------------|-------------------------|-------------------|--------------------|-----------------------|-------------------------| | | Acceptable limit | Permissible
limit | | | Downstream)
(SW 1) | (SW-2) | | Colour, Hazen units | 5 | 15 | <5 | <5 | <5 | <5 | | Taste | Agreeable | Agreeable | Agreeable | Agreeable | Agreeable | Agreeable | | Odour | Agreeable | Agreeable | | Ag | reeable | | | Turbidity, NTU | 1 | 5 | 38.6 | 17.6 | 82.7 | 220.9 | | pH value | 6.5-8.5 | No relaxation | 5.3 | 5.15 | 6.54 | 6.66 | | Total Dissolved solids, mg/l | 500 | 2000 | 106 | 85 | 195 | 173 | | Total hardness (as CaCO ₃) mg/l | 200 | 600 | 52 | 48 | 120 | 104 | | Alkalinity, mg/l | 200 | 600 | 56 | 48 | 56 | 48 | | Chlorides (as CI) mg/l | 250 | 1000 | 20 | 20 | 28 | 12 | | Iron (as Fe) mg/l | 0.3 | No
relaxation | 2.1 | 0.5 | 0.6 | 2.6 | | Fluoride (as F) mg/l | 1.0 | 1.5 | 0.3 | 0.04 | 0.03 | 0.04 | | Sulphate (as SO ₄) mg/l | 200 | 400 | 7 | 2 | 62 | 4 | | Nitrate (as NO ₃) mg/l | 45 | No
relaxation | 3.9 | 1.7 | 0.8 | 84.6 | | Calcium (as Ca), mg/l | 75 | 200 | 13 | 11 | 45 | 13 | | Magnesium (as Mg) | 30 | 100 | 5 | 5 | 2 | 17 | | Copper (as Cu) mg/l | 0.05 | 1.5 | BDL | BDL | BDL | BDL | | Manganese (as Mn) mg/l | 0.1 | 0.3 | 0.1158 | 0.75 | BDL | 0.0058 | | Mercury (as Hg) mg/l | 0.001 | No
relaxation | BDL | BDL | BDL | BDL | | Cadmium (as Cd) mg/l | 0.003 | No
relaxation | BDL | BDL | BDL | BDL | | Selenium (as Se), mg/l | 0.01 | No
relaxation | BDL | BDL | BDL | BDL. | | Arsenic (as As), mg/l | 0.1 | 0.05 | BDL | BDL | BDL | BDL | | Lead (as Pb), mg/l | 0.01 | No
relaxation | BDL | BDL | BDL | BDL | | Zinc (as Zn), mg/l | 5 | 15 | 0.1011 | 0.6532 | BDL | BDL | | Total Chromium as Cr, mg/l | 0.05 | No
relaxation | BDL | BDL | BDL | BDL | | Aluminum (as Al) | 0.03 | 0.2 | BDL | BDL | 0.27 | 1.08 | | Boron, mg/l | 0.5 | 1.0 | 0.040 | 0.0076 | 0.0854 | 0.1736 | Note: BDL of Cu is 0.0032; Mn is 0.0026; Hg is 0.0008; Cd is 0.0027; Al is 0.0046; Se is 0.0031; As is 0.0029; Pb is 0.0037; Cr is 0.0009; Zn is 0.0048 mg/l #### 14.2.6 Climatic conditions The area experiences tropical climate. The meteorological data recorded at IMD station Raigarh from 1999 to 2008 are given in Table 14.9. | TABLE 14.9 | | | | | | | | | | |----------------------------------|------------|--|--|--|--|--|--|--|--| | METEOROLOGICAL DATA OF RAIGARH (| 1999-2008) | | | | | | | | | | Month | Relative | humidity | Tempe | erature | Wind velo | city* km/hr | Rainfall | |-----------|----------|-----------|-------|---------|-----------|-------------|----------| | | (| %) | (° | C) | | · | in mm | | | 8.30 hrs | 17.30 hrs |
Min. | Max. | 8.30 hrs | 17.30 hrs | | | January | 68 | 44 | 29.01 | 12.22 | 3.4 | 2.6 | 7.94 | | February | 63 | 44 | 31.14 | 15.98 | 3.5 | 3.1 | 17.52 | | March | 53 | 37 | 35.87 | 20.04 | 4.3 | 2.4 | 9.97 | | April | 43 | 30 | 40.55 | 24.56 | 4.8 | 3.2 | 12.55 | | May | 46 | 31 | 41.36 | 27.41 | 3.9 | 3.1 | 32.10 | | June | 66 | 54 | 37.47 | 26.18 | 3.4 | 2.6 | 197.99 | | July | 83 | 76 | 32.34 | 25.21 | 5.1 | 4.5 | 283.31 | | August | 87 | 82 | 31.45 | 24.26 | 5.0 | 4.8 | 368.97 | | September | 82 | 79 | 32.23 | 23.94 | 3.7 | 3.8 | 204.63 | | October | 73 | 65 | 32.27 | 21.31 | 4.3 | 3.7 | 44.97 | | November | 72 | 54 | 31.26 | 15.40 | 3.7 | 3.7 | 9.22 | | December | 72 | 53 | 28.82 | 12.75 | 3.3 | 3.3 | 0.00 | | Average | 67 | 54 | 33.67 | 20.41 | 4.0 | 3.5 | 1189.17 | ^{*} Data for wind velocity at 8.30 hrs and 17.30 hrs is from 2001 to 2005 #### Micro-meteorological survey On-site monitoring was undertaken for various meteorological variables in order to generate the site-specific data. The central micro-meteorological station was installed at a height of about 5 meters from ground level free from any obstruction. The data generated is then compared with the meteorological data generated by nearest India Meteorological Department (IMD) station located at Raigarh. Hourly micro-meteorological data has been recorded at the site. Minimum and maximum temperature recorded was 7.50°C and 34.90°C with mean of 21.66°C, minimum and maximum relative humidity recorded was 33.20% and 97.20% with mean of 70.12%. The wind speed varied between 1.50 km/hr to 25.50 km/hr with mean of 4.93 km/hr and the predominant wind direction was observed from NE with 28.32% of occurrences including calm. #### 14.2.7 Human settlements A socio-economic study has been carried for the study area. The data are based on 2011 Census report. The break-up of population for male, female is summarized in Table 14 10 TABLE 14.10 DISTRICT AND BLOCK WISE POPULATION IN THE STUDY AREA | District | Tehsil | No. of villages | Total population | Male | Female | |------------|--------|-----------------|------------------|------|--------| | Sundergarh | Hemgir | 10 | 6591 | 3340 | 3251 | | District | Tehsil | No. of villages | Male | Female | | |----------|-----------|-----------------|--------|--------|-------| | Raigarh | Lailunga | 3 | 1004 | 487 | 517 | | | Gharghoda | 22 | 23898 | 4829 | 4626 | | | Tamnar | 92 | 82690 | 41390 | 41300 | | | Total | 35 | 114183 | 50046 | 49694 | The employment pattern, break-up of main workers and SC/ST and amenities are summarised in Table 14.11. TABLE 14.11 EMPLOYMENT PATTERN IN STUDY AREA | Occupation | Population | % | |--------------------------|------------|--------| | Main workers | 36522 | 31.98 | | Marginal workers | 16171 | 14.16 | | Non workers | 61490 | 53.86 | | Total | 114183 | | | Break-up of main workers | | | | Cultivators | 14246 | 39.01 | | Agriculture labour | 10971 | 30.04 | | Household industry | 600 | 1.64 | | Others | 10705 | 29.31 | | Total | 36522 | 100.00 | | Other Details | | | | Literate | 72301 | 63.32 | | SC | 11535 | 10.10 | | ST | 56651 | 26.58 | From the above table, it can be observed that about 50% of the population is non workers. Out of the total main workers, about 50% are involved as cultivators, about 31% as agriculture labour and about 3% in household industries. The literacy in the study area is about 60% as compared to the national rate of 65.28 % as per Census 2011 records. #### 14.2.8 Places of historical, tourist and religious importance There is no such place within core or study area. #### 14.2.9 Mines and industries within study area The block is free from any mining activity and there are 12 mines and industries present within the buffer zone. # 14.2.10 Does area (Partly or fully) fall under notified area under water (Prevention & control of Pollution) Act 1974. No. #### 14.3 ENVIRONMENTAL IMPACT ASSESSMENT Baseline information on various relevant environmental aspects generated and compiled for the project area, covering both core and buffer zones has been incorporated in para 14.1 and paragraphs there under. This information provides an outline of the prevailing environmental scenario at the mining site and its surroundings. Mining, like any other development activity, is bound to have some impact on the existing environment; both adverse and beneficial. The impacts on the physical, ecological and socioeconomic environment of the area due to the proposed project are given in the following paragraphs: #### 14.3.1 Land environment #### a) Land degradation and aesthetic environment The total mine lease area is 2583.486 Ha. At the end of 5th year 1621.40 Ha i.e. 62.76 % of land will remain undisturbed. The disturbed area within ML will comprise excavated land, external dumps, area occupied by infrastructure, diverted road, inclines, green belt etc. The anticipated land use at the end of 5th year and at the end of mining operations is tabulated in Table 14.12. TABLE 14.12 PROPOSED LAND USE AT THE END OF FIFTH YEAR & END OF MINE LIFE | SI.
No. | Particulars | At the end of 5 th
Year of Mine
Operation | At the end of
Last Year of
Mine Operation | |------------|-------------|--|---| | 12 N | Excavation | 380.70 | 2440.55 | | 2 | Backfilling | 0.00 | 2109.49 | | 3 | Void | 380.70 | 331.06* | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14-11 | SI.
No. | Particulars | At the end of 5 th
Year of Mine
Operation | At the end of
Last Year of
Mine Operation | |------------|---|--|---| | 4 | Surface Dump | 380.00 | 0.00 | | 5 | Bund/ Embankment | 5.20 | 5.2 | | 6 | Top Soil Dump | 60.00 | 0.00 | | 7 | Settling pond* | 10,00 | 5.00 | | 8 | Diverted Road | 30.30 | 30.30 | | 9 | In West Part: CHP. Inclines and shaft pit, Head office, Lamp room, Attendance office, Driver rest room, parking & sub station | 50.94 | 50.94 | | 10 | In East Part: Office, workshop, washery etc | 68.54 | 0.00 | | 11 | 7.5 m green belt around ML boundary | 12.44 | 12.44 | | 12 | Green belt along Kelo river 45 m west side and 15 m east side | 23.63 | 23.63 | | 13 | Under Kelo River | 15.42 | 15.42 | | 14 | Undisturbed area / Indirectly affected area/ area for exploration | 1566.31 | 0.00 | | | Total | 2583,48 | 2583.48 | ^{* 331.06=195.15} ha in East Pit with 170m depth +135.91 ha in West Pit with 60m depth **Surface dump:** There will be only one surface dump proposed which will be located over the coal bearing area in the southern portion of the West pit area. This dump will be spread over an area 380 ha and will accommodate 218.81 Mcum (B) OB waste. The dumping will start from 1st year and continue upto 6th year. However the exclusive dumping into this surface dump will be upto 5th year after which part of the OB will be backfilled in 6th year. **Top soil dump:** The total topsoil generated will be 14.64 mcum (B) during the life of the mine. Unutilised part of the same will be stacked separately in a soil stack pile located beyond the surface dump over the coal bearing area within West Pit area of 60.00 Ha before 15th year after which it will be over the backfilled area. ^{**} Settling pond 10 ha in 5th year (5 ha for mine water+5ha for dump runoff) #### b) Land profile Presently, the core zone is virgin and plain terrain sloping towards southwest. The mining operations are not anticipated to cause any adverse impact on topography outside the core zone. It is proposed to establish only some essential quarters within the ML for the Mine Personnel to cater to essential services manpower. Remaining persons will be accommodated at a suitable site outside the ML area. Within core zone, the void area of the excavated pit at the end of mine life 29th year will be 331.06 ha=195.15 ha in East Pit with 170m depth +135.91 ha in West Pit with 60m depth. #### c) Visual intrusion Due care has to be taken (from the conception stage of the project) for reducing the visual intrusion to a minimum. However, the movement of vehicles for transportation of coal to the coal receiving pit/crusher may cause some intrusion. Appropriate measures such as green belt cover will be needed to reduce visual intrusion from dumps, roads and facilities. ## 14.3.2 Impact on air quality The opencast mining operations are prone to generation of higher levels of SPM and to a limited extent of SO_2 , NO_x and CO due to blasting, fuel, oil combustion, burning of coal etc. However, there are no point source emissions. The OB will be transported by 150 T and 100 T R.D. trucks to surface dumps and later on, as soon as decoaled area is available suitable for backfilling, to the site of back-filling. The coal will be transported by 85T/100 T R.D.(CB) trucks to the coal receiving pit/crusher and further transported to the plant by conveyors. This may cause increased air pollution along the roads, if adequate control measure like regular maintenance of road, tree plantation along road and maintenance of leak proof truck bodies are not taken. #### 14.3.3 Impact on water quality The surface water quality is likely to be affected with higher load of suspended solids by the following: - Wash off from dumps - Soil erosion from mine and roads - Pumping out mine water to surface water channels The outside dump may contribute to the pollution of surface water in terms of suspended solids. Since dumping location proposed to be carried out is at a safe distance (2 km) from existing surface water channels i.e. Kelo River, it will have limited impact on water quality. The pumped out water 80 B.D. SHARMA RQP NO. 34012/03/2014-CPAM 14-13 during dewatering may
carry higher levels of suspended solids. Other sources of pollution are by oil spillage at the pit head and at the mine site infrastructure viz. light vehicle workshop, lubricant and oil storage area resulting in oil and grease contamination of surface water if appropriate control measures are not adopted. Control measures like check dams will be adopted to counter any solids being carried away by precipitation. Ground water pollution can take place only if dumps and stock piles contain harmful chemical substances, which may get leached by precipitation of water and percolate to the ground water table, thus causing water pollution. However, this is not the case with this mine, as neither the coal nor the OB, contains any harmful ingredients which may leach down to the water table and pollute it. Therefore, no adverse impact on ground water quality is anticipated considering this aspect. The leaching down of pollutants (oil, grease etc.) to the ground water may render the water un-potable and hence cannot be used by the local people. The percolation of sewage waste from the pit head as well as mine area can also pollute the ground water if control measures are not adopted as envisaged in the management plan. Meager amount of sanitary waste, expected to be generated from various facilities will be treated properly through septic tanks and soak pits and is not anticipated to cause any water pollution. #### 14.3.4 Impact on noise level Noise is unwanted and unpleasant sound which causes distraction, disturbance and annoyance. Continuous exposure to high level of noise can impair human hearing power. The mining activities generate noise mainly on account of: - Operating mining machinery - Use of explosives - Moving road vehicles The impact of this airborne noise will be more on the operating personnel and on the persons working nearby and not so much on the surroundings. The noise of activities may also disturb animals/birds living in the surroundings forcing them to change their habitat. In the present case, the noise caused will be mainly restricted to the core zone. The noise level data recorded at various places in the study area is well within the desired limit. But, the future establishment of noise due the proposed project activity may pose some problem if project management does not adopt appropriate control measures. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14-14 #### 14.3.5 Effect on vibration level (due to blasting) No ground vibration study has been conducted hence the impact of the proposed activity on ground vibration cannot be exactly anticipated. But, based on experience of similar mines appropriate control measures have been spelt out in management plan. #### 14.3.6 Impact on water regime Water required during initial 3 years for construction and mine development is proposed to be sourced form Kelo river or Bore wells. From 3rd year onwards. Industrial water from mine sump and settling pond would be used till the end of the life of the mine. Kelo River is flowing across the coal block. Thus impact on the surface water resources is envisaged during initial years only. However, in view of availability of ground water at shallow levels, most of water requirement is planned to be drawn from ground water (mine sump), which will have some impact on the ground water resources. #### 14.3.7 Impact on socio-economic environment #### Human settlement 1679 project affected families of all fourteen villages within the mine lease area will have to be rehabilitated. The land owners will be deprived of their land and the non land owners will be deprived of their earnings. Care will be taken for rehabilitation and employment of the displaced people. On the other hand, the mining and allied activities will provide job opportunities for eligible persons and many will find employment in service sector and marketing of day-to-day needs viz. poultry and other agricultural products. The facilities and amenities like first aid room, training centre etc. to be set up for the project will improve the basic infrastructure and these amenities can also be used by the people of the nearby villagers. The proposed long term activity will open up market and opportunities growth for self employed and cultivators. To this extent, the impact will be significantly beneficial since un-employment and under employment is the main socio-economic problem faced by the people in this area. #### Impact on historical monument/ religious place/ tourist places 14.3.8 ारिक्पील नामवाल H.P. NAGPAL There is no such place within and outside the ML boundary upto 10 km radius. Hence, impact on historical monument religious place/ tourist places will not take place. अगर सहित / United Secretary आप सामान र Gravt. of India मारत सारमार I Gravt. of India भारत सारमार / Ministry of Coal Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL #### 14.4 ENVIRONMENTAL MANAGEMENT PLAN The environmental impact assessment made in the preceding section has identified the areas where certain control measures are called for to minimise the negative impacts. Subsequent paragraphs deals with effective measures proposed to be taken up with regard to the following aspects so that the proposed mining and allied activities can be continued in an environment-friendly manner: - Land use planning Afforestation and landscape development - Air pollution control - Blasting and noise control - Water pollution control - Socio-economic aspects #### 14.4.1 Land use planning #### i. Land degradation control measures Land degradation is one of the major adverse outcomes of opencast mining activities and any effort to control adverse impacts is considered incomplete when appropriate land reclamation strategy is not adopted. Since the land degradation in this mine is partly in the form of excavated void and partly in the form of external and internal dumps, the reclamation strategy must include a programme for the reclamation of the disturbed land. #### a) Mined area reclamation The lessee will have to take necessary steps to keep the area under disturbance at any stage of mining operation to a minimum. This can be achieved by carrying out the reclamation programme simultaneously with excavation. The gap can be reduced between degradation and the reclamation by this programme. The post mining land use of core zone shows that all the disturbed areas will be reclaimed before abandoning the mine. #### b) Reclamation procedure Reclamation procedure has been described stage wise in the following paragraphs. Year wise reclamation programme is as shown in Table 14.13. 14 # TABLE 14.13 PROGRAMME OF EXCAVATED AND BACKFILLED AREA, CUMULATIVE (HA) | Upto the end of year | Area
mined | Backfilled
area | Remark | | | | | | | | | | |---|---------------|--------------------|--|--|--|--|--|--|--|--|--|--| | or year | | | | | | | | | | | | | | 1 st year | 26.16 | 0.00 | No backfilling | | | | | | | | | | | 3 rd year | 129.97 | 0.00 | No backfilling | | | | | | | | | | | 5 th year | 380.70 | 0.00 | No backfilling | | | | | | | | | | | 10 th | 1099.37 | 358.27 | Part Direct Backfilling and | | | | | | | | | | | | | | Part from rehandled surface Dump | | | | | | | | | | | 15 th year | 1747.06 | 673.05 | Part Direct Backfilling and | | | | | | | | | | | | | | Part from rehandled surface Dump | | | | | | | | | | | 20 th | 1949.85 | 1122.31 | Part Direct Backfilling and | | | | | | | | | | | | | | Part from rehandled surface Dump | | | | | | | | | | | 25 th year | 2272.42 | 1536.00 | Part direct backfilling and part from rehandled surface dump | | | | | | | | | | | End of mine 29 th | 2440.55 | 2109.49 | Part direct backfilling and part from rehandled crown dump | | | | | | | | | | | Post Mine Closure
Stage 32 nd | 2440.55 | 2440.55 | Backfilling from rehandled crown dump* | | | | | | | | | | During the post mine closure period (30th to 32nd year), part of the crown dump will be fully rehandaled and backfilled into the residual void (below surface level) while part of the crown dump (with an extent of 138 ha with 72.37 mcum B) will be reduced in height from 100m to 80m and backfilled #### ii. Top soil management The total topsoil generated will be 14.64 mcum (B) during the life of the mine. Unutilised part of the same will be stacked separately in a soil stack pile located beyond the surface dump over the coal bearing area within West Pit area of 60.00 Ha before 15th year after which it will be over backfilled area. It will be used for growing plants along the fringes of the site roads and reclamation of surface dump and backfilled area. The top soil stockpile will be low height not exceeding 6 m and will be grassed to retain fertility. Besides this, there would be temporary stacks near the excavation area and area to be reclaimed which will be made use of for concurrent filling without bringing the topsoil to the soil stack near the OB dump. The generation and disposal of total waste quantities for the life of the mine are shown in Table 14.14. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14-17 TABLE 14.14 WASTE DISPOSAL (TOP SOIL & OB) IN MCUM (BANK) PROGRESSIVE | | Resultant total backfilling including rehandling of crown and s. dump | Cumul | 0.00 | 0.00 | 0.00 | 0.00 | 468.38 | 866.95 | 1467.18 | 1960.25 | 2541.54 | 2674.09 | | |---|---|-------|------------|----------------------|---------------------------------------|--|---|--|--|--
--|---|--------------| | | & T soil | Cumul | 0.00 | 4.84 | 48.25 | 171.74 | 931.37 | 1579.52 | 2182.00 | 2677.25 | 3262.37 | 3396.84 | | | | Total OB & T soil | Prog | 00.0 | 4.84 | 43.48 | 123.5 | 759.56 | 648.14 | 602.49 | 495.25 | 585.12 | 134,46 | 3396.84 | | ш | Top soil
Utilised | Cumul | 00.00 | 00.0 | 00.00 | 00.00 | 2.05 | 4.46 | 6.72 | 8.90 | 12.74 | 14.65 | | | ESSIV | Top
Utili | Progr | 00.00 | 00.00 | 00.00 | 00.00 | 2.05 | 2.41 | 2.25 | 2.19 | 3.83 | 1.91 | 14.65 | | TOP SOIL & OB) IN MCUM (BANK) PROGRESSIVE | Resulfant of surface dumping & S. Dump rehandling | Cumul | 0 | 0 | 0 | 0 | 132.07 | 106.45 | 0 | 0 | 0 | 0 | | | BANK | Dump | Cumul | 00.00 | 00.0 | 00.00 | 00.00 | 86.74 | 112.36 | 218.81 | 218.81 | 218.81 | 218.81 | | | CUM (| Surface Dump
Rehandling | Prog | 00.00 | 00.00 | 00.00 | 00.00 | 86.74 | 25.62 | 106.45 | 00.00 | 00.0 | 00:00 | 218.81 | | N
N | OB Dumping | Cumul | 0.00 | 4.77 | 48.25 | 171.74 | 218.81 | 218.81 | 218.81 | 218.81 | 218.81 | 218.81 | | | - & OE | OB Du | Prog | 00.0 | 4.77 | 43.48 | 123.5 | 47.07 | 0.00 | 00.00 | 00.00 | 00.00 | 0.00 | 218.81 | | IOP SOIL | Resultant of crown dumping & rehandling OB dump | Cumul | 00.00 | 00.0 | 00.0 | 00.0 | 00.0 | 0.00 | 00.0 | 00.00 | 204.92 | 72.37 | | | | daled
n OB | Cumul | 0.00 | 0.00 | 00.0 | 00.0 | 00.00 | 00.00 | 00.0 | 00.00 | 284.30 | 416.85 | | | DISPO | Rehandaled
crown OB | Prog | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00'0 | 00.00 | 489.22 284.30 | 132.55 | 416.85 | | WASTE DISPOSAL (| oing | Cumul | 00:00 | 00.0 | 0.00 | 0.00 | 242.05 | 489.22 | 489.22 | 489.22 | 489.22 | 489.22 | | | ≥ | Crown OB
dumping | Prog | 0.00 | 0.00 | 0.00 | 0.00 | 242.05 | 247.17 | 0.00 | 0.00 | 0.00 | 00.00 | 489.22 | | | ng upto
e level
3, | Cumul | 00.00 | 0.00 | 0.00 | 0.00 | 381.64 | 754.59 | 1248.38 | 493.06 1741.44 | 2038.43 | 2038.43 | | | | Bund Backfilling upto
surface level
OB, | Prog | 00.00 | 0.00 | 00.0 | 00.00 | 381.64 381.64 242.05 242.05 | 0.00 372.95 754.59 247.17 489.22 | 0.00 493.78 1248.38 | 493.06 | 296.99 2038.43 | 0.00 | 0.07 2038.43 | | | Bund | Prog | 00.0 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | | | Year/ Stage | | Const. (0) | 1 st year | 2 nd -3 rd year | 4 th - 5 th year | 6 th - 10 th year | 11 th - 15 th year | 16 th - 20 th year | 21 st - 25 th year | 26 th - 29 th End of
mine | Closure plan 30 th
- 32 nd | Total | CUSOUTO PIPUTE /I P. NAM SING STORY PURE THOMAS PURE TO A STORY OF Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL. 14-18 #### iii. Post reclamation land use The first step in a successful reclamation programme is to decide the post reclamation land use. The post mine closure land use at the end of Opencast and underground stage (78th to 80th year) is given in Table 14.15. TABLE 14.15 MINE CLOSURE LAND USE (OC AND UG) IN HA (END OF 80TH YEAR) | CI | Description of Land use (Ha.) | | | | | | | | | | | | | |------|-----------------------------------|------|------|--------|---------|-----------|--------------|---------|--|--|--|--|--| | SI. | Description of | | | | | | | | | | | | | | No. | ML Area | Bund | Void | Public | Company | | Plantation | Total | | | | | | | J | | | | use | use | disturbed | (Forest)/ | | | | | | | | | | | | | | | agriculture | | | | | | | | | _ | | | | | | including GB | | | | | | | | 1. | Backfill | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2440.55 | 2440.55 | | | | | | | 2. | Void/water body | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | 3. | Surface dump | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | 4. | Bund | 5.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.20 | | | | | | | 5. | Green belt # | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 36.07 | 36.07 | | | | | | | 6. | Top soil dump* | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | 7. | Settling pond** | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.00 | 5.00 | | | | | | | | Road diversion | 0.00 | 0.00 | 30.30 | 0.00 | 0.00 | 0.00 | 30.30 | | | | | | | 9. a | Facilities Retained part (West | 0.00 | 0.00 | 5.0 | 0.00 | 0.00 | 0.00 | 5.00 | | | | | | | | part: CHP Incline, Shaft, Pit, | | | | | | | } | | | | | | | | office, lamp room, attendance | | | | | | | | | | | | | | | office, rest room, parking, first | | | | | | | | | | | | | | | aid room, substation etc.) | | | | | | | | | | | | | | 9.b | Dismantled Part (West part: | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 45.94 | 45.94 | | | | | | | | CHP Incline, Shaft, Pit, office, | Ì | | 1 | | | | | | | | | | | | lamp room, attendance office, | | | | | | | | | | | | | | | rest room, parking, first aid | | | | | | | | | | | | | | | room, substation etc.) | | | | | | | | | | | | | | 10. | Under Kelo River | 0.00 | 0.00 | 0.00 | 0.00 | 15.42 | 0.00 | 15.42 | | | | | | | 11. | Undisturbed | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | Total | 5.20 | 0.00 | 35.30 | 0.00 | 15.42 | 2527.56 | 2583.48 | | | | | | Notes: * Top soil dump of 60 Ha. was over the coal bearing area before 10th year after which it reduced to zero by 15th year as area under it was excavated, the topsoil in subsequent years was stacked over the backfilled area ** Surface water reservoir in facilities area measuring 5.0 Ha will be backfilled in the post mine closure stage (OC+UG combined) *** Surface dump will be rehandled from 7th year to 20th year and area below it excavated #. Green Belt of 36.07 ha = 23.63 ha along Kelo river 45 m westside and 15 m eastside + 12.44 ha over 7.5 m along ML boundary. ## During post mine closure plan period, agriculture is proposed instead of plantation over the rehandled crown dump area as well as over the backfilled area obtained as a result of reducing the void except over 211.319 ha including the crown dump of 138 ha which will be left for forest use as in pre-mining scenario. It would be appropriate to restore the lands to the original land use to the extent possible. The crown dump will be reduced from +100 m height to 0 m (general ground level) during 30th to 32nd year and the material will be backfilled into the void upto surface fully except the crown dump of 138 ha which will be left with a 80m height. The level area may be converted into agriculture land in the post mine closure scenario so that some of the people could go back to agriculture profession. The stage plan at the end Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14-19 29th year & section showing the mine at the conceptual stage is given in Plate XXVI & XXXVI respectively. #### iv. Soil conservation measures The following control measures to prevent soil erosion and wash off of fines from freshly excavated benches and dumps will be adopted: - Garland drains will be provided around the mine whenever required to arrest any soil from the mine area being carried away by the rain water. - The bench levels will be provided with water gradient against the general pit slope to decrease the speed of storm water and prevent its uncontrolled descent. - Special local stone paved chutes and channels will be provided wherever required, to allow controlled descent of water, especially from external dumps. - Gullies formed, if any, on side of the benches shall be provided with check dams of local stone or sand filled bags. - The inactive dump slopes will be planted with bushes, grass, shrubs and trees to prevent soil erosion after applying top soil. - Retaining walls (with gabion, concrete or local stone) will be provided, wherever required, to support the benches or any loose material and also to arrest sliding of loose debris. #### v. Afforestation #### a) Compensatory afforestation Compensatory plantation will be provided in line with the prevailing rules of forest department. #### b) Plantation during mining A plantation program over life of the mine has been planned in a phase wise manner. The plantation will be started from first year of mining along the boundary of ML area from south to north. A 7.5 m width of green belt development around the ML area will be carried out and more width of green belt will be taken up wherever space is available. Plantation over surface dump area will be not be done as it will be backfilled. A thick plantation is proposed to be provided and maintained around the mining area and along the roads. Plantation over the backfilled area will be begin from 16th year. The yearly requirement of plants during the various years and stages of the mining project is as shown in the Table 14.16. # YEAR/STAGE WISE AND LOCATION WISE REQUIREMENT OF PLANTS ALONG WITH BIELIPOATION INTO EODEST AND AGRICULT TIGHT I AND ISE **TABLE 14.16** | | e st | | | | | | | | | | | | | _ | |--|---|--|---------------|-----|----------------------|---------------------------------------|----------------|---|------------------|------------------|------------------|---------------------------------|---|--------------| | | Fit for Fores
in Post Min | Closure | | 12 | | | | | | | | | 211.32 | 211.32 | | REAR/STAGE WISE AND LUCATION WISE REQUIREMENT OF PLANTS ALONG WITH BIFURCATION INTO FOREST AND AGRICULTURE LANDUSE | Total fit for agriculture |) | | 11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2316.24 | 2316.24 | | | Settling pond Total fit for Fit for Forest area filled for agriculture in Post Mine | agriculture
without | plantation | 10 | | | | | | | | | 5.00 | 5.00 | | | Dismantled area for | agriculture
without | plantation | 6 | | | | | | | | | 45.94 | 45.94 | | | Made Fit
for
Agriculture in | Post Mine
Closure after | cutting trees | 8 | | | | | | | | | 1850.52 | 1850.52 | | | Backfilled
area for | agriculture
without | plantation | 7 | | | | | | | | | 414.78 | 414.78 | | ON INTO F | Total tree
@ 2500 | | | 9 | 18,025 | 36,075 | 36,075 | 984,325 | 703,250 | 1,286,275 | 1,047,375 | 1,530,100 | | 5641500 | | WISE AND
FURCATION | Total plantation | area in ha | | 2 | 7.21 | 14.43 | 14.43 | 393.73 | 281.30 | 514.51 | 418.95 | 612.04 | 0.00 | 2256.60 | | AGE
BIS | Green
belt | area | | 4 | 7.21 | 14.43 | 14.43 | | | | | | | 36.07 | | IAK/31 | Dump
reclm. | area | | က | ' | ' | ' | 194.76 | | | | | ı | 194.76 36.07 | | ≻ | Backfilled
reclm. | area | | 2 | 0.00 | 00.00 | 0.00 | 198.97 | 281.30 | 514.51 | 418.95 | 612.04 | | 2025.77 | | | Year | | | - | 1 st year | 2 nd -3 rd year | 4th - 5th year | 6 th - 10 th year | 11th - 15th year | 16th - 20th year | 21st - 25th year | End of OC mine 29 th | Closure plan 78 th
-80 th year | Total* | | THOUSE
SURE
SURE
SURE
SURE
SURE
SURE
SURE
S | ि नाम
स्वतिक
त सरक
त मेंग्रेस
भीग्रेस
महे ति | पाल / l
/Unde
re / Gn
re / Gn | P. S. | 170 | pter
ndi
if G | gal | | | | | | | | | Total backfilled area of 2440.55 comprises of 2025.77 ha planted (out of which 175. 249 ha will be returned as forest land and 1850.52 ha will be for agriculture use) +414.78 ha area made fit for agriculture. Thus, total agriculture land in backfilled area of 2265.30 ha comprises 1850.52 ha made fit for agriculture after cutting trees + 414.78 ha directly converted to agriculture after backfilling. ha will also be useable as agriculture land. Hence the total land useable as agriculture land will be 2265.30 + 45.94 + 5.0 ≖ mining 75.945 Ha of Protected Forest land and 135.374 Ha of Revenue Forest land) will be converted into forest use while the rest 2265.30 ha will be useable as agriculture land where as in facilities area 45.94 ha and in backfilled settling pond 5 Out of 2583.48 ha ML area, 2440.55ha will be backfilled. Out of backfilled area of 2440.55ha, 211.319 ha (during pre-2316.24 ha. The plan showing mine closure at the abandoned stage is given Plate XXXVI. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14-21 The common species used for plantation in the region are Sal, Mahua, Gulmohar, Neem, Siris, Acacia, Casuarina, Pongamia, Mango, China-rose, Kaner, etc. #### 14.4.2 Air and dust pollution control measures The SPM, CO, SO_2 and NO_x concentrations are within limits as already discussed earlier. The mining operations and related activities are anticipated to increase the levels of SPM and gaseous pollutants to a limited extent. The control measures to be adopted are mentioned in the following paragraphs: #### i. Controlling fugitive dust Dust particles, which are normally generated during mining operation and transportation, deteriorate the ambient air quality. Adequate control measures are, therefore, proposed to be taken during mining operations, transportation and loading operations. These control measures are discussed as follows: #### a) Mines - a) Dust suppression systems (like water spraying) will be adopted at: - · Faces before and after blasting - Faces while loading - b) Dust extraction systems will be used in drill machines and coal handling systems. - c) Dust generation will also be reduced by using sharp drill bits for drilling holes and drills with flushing system. #### b) Haul roads and stock-piles - Dust suppression system (like water spraying) would be adopted at roads, which are used for transportation. Fixed sprinklers (Whirling) have been proposed with timers to be installed along the haul roads and coal transportation roads to suppress the dust. - Transport vehicles shall be maintained leak proof. - Suitable dust suppression systems such as mist sprays with or without chemical will be provided at appropriate places for preventing dust pollution during handling and stockpiling of coal. Transfer points of coal will be provided with appropriate hoods/chutes Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14-22 #### ii. Preventing dispersal of air borne dust In addition to the control measures proposed during mining and transportation operations, following steps will be taken to prevent air pollution due to airborne dust: - Dense tree belts will be planted around the mine and sites housing handling/ loading facilities. - Plantation over already mined out area will be done after backfilling as per schedule (with minimum gap between excavation and afforestation) - Dust masks will be provided as safety measure to the workers, engaged at dust generation points like drills, loading/unloading points, etc. ## iii. Measures to mitigate CO levels It has already been discussed that the concentration of CO in the ambient air is negligible and is far below the prescribed limit of CPCB and is not anticipated to exceed it in future. Still all heavy and light vehicles shall be tested for pollutants concentration in their exhausts regularly and well maintained. Strict vigil will be kept in and around the operational area for any fire which shall be immediately controlled. #### iv. Measures to mitigate NO_x levels The main reasons of production of NO_x gases are: - a. Poor quality of explosive having large oxygen imbalance which can be due to following reasons: - Manufacturing defect - The use of expired explosives in which disintegration of ingredients has taken place. - b. Incomplete detonation is caused mainly due to low primer: column ratio. To ensure that NO_x levels do not increase during the proposed mining operations, the following control measures will be adopted: Good quality explosives will be used for which the oxygen balance will be checked from time to time. The expired explosives will not be used for which a strict vigil will be kept on the date of manufacture. Even as Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14-2 a normal procedure, all explosives will be subjected to a visual inspection and if disintegrated ingredient are spotted, the explosives will not be used even if it is within expiry date. b. Primer: Column ratio will be rationalised. The ratio thus established, for producing minimum NO_x, will be adhered to. The mine ambient air quality will be regularly tested to detect the presence of any pollutants above prescribed limits and appropriate measures will be adopted. #### 14.4.3 Noise and blasting #### a) Measures to control noise pollution The following control measures will be adopted to keep the ambient noise levels below permissible limits of 75 dB (A). - Provision and maintenance of thick tree belts to screen noise. - ii. Avenue plantation within the project area to dampen the noise. - iii. Proper maintenance of noise generating machinery including the transport vehicles will be ensured. - iv. Provision of the air silencer to modulate the noise generated by the machines will be made wherever required. To protect the workers from exposures to higher noise levels, the following measures will be adopted: - i. Provision of protective devices like ear muffs/ear plugs to those workers who cannot be isolated from the source of noise. - ii. Confining the noise by isolating the source of noise. - iii. Reducing the exposure time of workers to the higher noise levels. ## Measures to reduce ground vibrations due to blasting and prevent fly rocks The vibrations due to blasting will be studied during stages of mining operations and the recommendations/ suggestions given as per the result of the said study will be strictly adhered to especially the charge per delay. #### c) General recommendations and suggestion The peak particle velocity (PPV) of ground vibration will be kept below permissible limits by controlled blasting techniques. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14-24 - ii. Suitable powder factor will be adopted for overburden and coal. - iii. Drilling and charging pattern will be modified, if required, based on the vibration study to be carried out. - iv. Short delay detonators will preferably be used in blasting rounds rather than detonating fuse as trunk line. - v. To contain fly rocks, stemming column will not be less than burden of the hole and the blasting area will be muffed. - vi. Each blast will be carefully planned, checked, executed and observed. Blasting data will be recorded. During blasting, a responsible officer will be supervising the whole operation. - vii. Covering the detonating fuse, in case it is used, at least with 150 mm thick cover of sand or drill cuttings. - viii. Blasting will be carried out at mid-day and never at night. - ix. Blasting will not be carried out when strong winds are blowing towards the inhabited areas. Apart from the above, in order to ensure slope stabilisation, controlled production blasting will be adopted to avoid tension cracks and back breaks. Such cracks filled with water reduce stability of excavated slopes and angle of slopes. Good drainage system will be provided in and around the mine. #### 14.4.4 Water pollution control measures #### a) Effluent from mine - i. To prevent surface and ground water contamination by oil/grease and sewage waste, following control measures are proposed to be implemented: - Leak proof containers will be used for storage and transportation of oil/grease. In the store also, the container containing oil/grease will be kept in empty, safe and open containers of higher volume than the containers to avoid oil/grease spillage. The area over which oil/grease is handled will be kept effectively impervious. Any wash off from the oil/grease handling area or workshop will be drained through impervious drains, collected in specially constructed pit and treated appropriately to remove any
oil/grease and the water will be recycled. The oil grease will be sold to authorized vendors and sludge disposed off in specially constructed pit. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14 - The sewage waste generated will be drained by underground impervious drains, lead to appropriately designed septic tanks and soak pits to prevent any pollution of surface or ground water. - ii. The surface and ground water in and around the mine, loading plant and infrastructure will be regularly tested and appropriate control measures adopted in case of any pollutant is detected above the prescribed limit. - iii. All stacking and loading areas will be provided with proper garland drains equipped with baffles to prevent wash offs from reaching the downstream natural channels. - iv. A domestic waste water treatment plant will be provided in mine office area so that the water after treatment can be reused. #### b) Storm water Control measures to be adopted are briefly discussed below: - Check dams will be provided to prevent solids from wash off and screen if any from the mine related activities. - Peripheral bunds will be erected on the outer edge of the abandoned benches before reclamation so that the soil is not carried away by storm water - A water gradient of about 1 in 100 will be kept at every bench towards inside of the bench to prevent formation of gullies in the bench slopes causing serious erosion. - Chutes will be constructed by using local stone or masonry to guide the water in areas with loose soil to prevent erosion and uncontrolled descent of water wherever necessary. - Construction of garland drains around freshly excavated and dumped areas so that flow of water with loose material is prevented. The mine water will be passed through specially constructed settling ponds to arrest any loose material being carried away with water. - Any areas with loose debris within the lease hold will be planted. # c) Measures to minimise adverse effects on water regime During the process of mine rehabilitation and with the completion of backfilling, a water body will be created in the mined out pit which will act as water reservoir improving the ground water recharge, source of attraction for fauna and will help in the maintenance of afforested areas. To enhance aesthetic appearance, parks and lawns will be made around the water body. SE 17 B.D. SHARMA #### 14.4.5 Socio-economic aspects including resettlement and benefits As there will be displacement of 1679 families in all fourteen villages, a rehabilitation programme is required. However, the land and home or both oustees will be given rehabilitation and resettlement benefits according to the Govt. of Chhattisgarh Policies and prevailing practice in industries in the vicinity. The detailed R&R plan is under preparation. In addition to the provisions of the CG R&R Policy 2007, as the proportion of tribal families among the land losers is significant and in view of project area falling under scheduled V, a separate Tribal Development Plan (TDP) is essential for vulnerable group. The company is in the process of making a Tribal Development Plan containing the profile of community, livelihood pattern, a need assessment for community development and a specific communication program to engage with the community. The survey is being done by Asian Institute of Sustainable Development Ranchi (Jharkhand). The employment will be provided as per the provisions of the Policy of Govt. of Chhattisgarh. Advisory Committee will be formed by Collector/ Revenue Divisional Commissioner. The development in the area which is predominantly backward, will largely benefit the local population. Preference will be given to the local people for gainful employment in the unskilled and semi-skilled categories as and when the need arises. Due to development activity in the rural and backward area, traders and private enterprises will grow in the region, which will provide indirect employment to the local people. The company will arrange medical camps, sports competitions and awareness programmes for the benefit of the local people. #### 14.5 MONITORING SCHEDULE OF EMP - i. In order to keep a watch on the environmental control measures discussed about air quality, water quality and noise level monitoring shall be done regularly every year by taking measurements near the mine and residential areas preferably close to some of the earlier stations so as to keep a comparative check with respect to the base line data. For air quality monitoring, continuous monitoring on 24 hours sampling basis should be done for two days per week and analytical checks made for SPM, SO₂, NO_x and CO. - ii. For effective management of the environment, it is envisaged to have an organisational set-up under the administrative supervision of the Mines Management where responsibilities can be delegated to technical personnel like Mining Engineer, Geologist/Chemist and Horticulturist with regard to specific aspects of environment management plan. The organisation for the purpose is as indicated in the chart given in Plate XL. Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of M/s MSPGCL 14-2 iii. The Master Surface Plan (Plate IV) on 1: 10,000 scale and the Key Map (Plate II) portray the general environmental picture of the area and the region surrounding it. #### Conclusion - 1. Project affected families will be 1679 of fourteen villages. - 2. Compensatory plantation is to be planned in line with Forest Department Rules. - 3. Agricultural land shall be converted to industrial or mining site during mining tenure. - 4. After the change in land use, the mining will provide the opportunity to create a water storage reservoir and comparatively higher tree plantation and greenery will improve the general quality of the environment. In the process, sustained production of energy vital for the power industry and economy of the area will be ensured. - 5. Meteorology and general air quality of the area will not suffer and the planned operations will not have any significant adverse impact on the hydrograph and water quality in the area. - 6. Only minor nature of air pollution is visualized for which more than adequate preventive measures have been contemplated. TEORIGO THEIR ALP, NAGPAL THE TOTAL PLANT SERVED THE S //S MSPGCL 14-28 SK-17 # **CHAPTER 15** #### MINE CLOSURE PLAN #### 15.1 INTRODUCTION The overall area which will ultimately come under mine planning is termed as Gare Palma Sector – Il coal mine has been allotted to M/s Maharashtra State Power Generation Company Limited (MSPGCL) by Ministry of Coal vide allotment order no.103/30/2015/NA, dated 31-08-2015. The Coal mine lies in Mand Raigarh Coalfield of Raigarh district in Chhattisgarh state. This coal block (Extent of area 2583.486 Ha) is proposed to produce coal at the rate of 23.60 MTPA (22.00 MT from OC +1.6 MT from UG) though the peak capacity of OC will be 23.6 MTPA before the UG becomes operational. The coal produced from this block shall be utilized in the existing and proposed thermal power plants. # I). Name of applicant with complete address The name of the applicant and address is given in Table 15.1. TABLE 15.1 NAME AND ADDRESS OF THE COMPANY | Particulars | Information | |---------------------|--| | Name of the Company | Maharashtra State Power Generation Company Limited | | Address | "Prakashgad" | | | Plot No. G-9, Anant Kanekar Marg, Bandra (East), | | | Mumbai, Maharashtra-400051. | | Phone | 022 – 26476231; 022-26474211 | | Fax | 022 – 26581400 | | E- mail | md@mahagenco.in | | Official Website | http://www.mahagenco.in | # II). Status of the applicant le MSPGCL is a State owned PSU of Govt. of Maharashtra. It was incorporated in India under Company's Act1956 with Corporate Identity no. **U400100MH2005SGC153648** Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 15-1 Maharashtra State Power Generation Company Limited (MSPGCL) is engaged in power generation with total Installed capacity of 12077 MW as on 31.01.2016, as below: | Thermal | : | 8640 MW | |-------------|---|----------| | Gas Turbine | : | 672 MW | | Hydro | : | 2585 MW | | Solar | : | _180 MW | | Total | : | 12077 MW | The company has 2570 MW of ongoing projects and 7870 MW in planning stage, and is also planning to install 2500 MW of solar power projects in 5 years. Ministry of Coal vide, letter no. 13016/ 26/2004-CA-I/CA-III(Pt.)(Vol.II) Dt. 24.02.2016 also allotted Mahajanwadi Coal Block to Mahagenco for captive use only under Rule 4 of the Auction by Competitive Bidding. III). Minerals which are occurring in the area and which the applicant intends to mine Coal - IV). Information about Enduse Plants - a. As Per Allotment order TABLE 15.2 NAME WITH LOCATION AND REQUIREMENT OF COAL AS PER ALLOTMENT ORDER DT 31-08-2015 | SI.
No. | Name of specified
End Use Plant | Location/ Address | Configuration | Capacity | |------------|---|--|---------------|----------| | 1. | Thermal Power
Station Unit 8 &
Unit 9 | Chandrapur Thermal Power Station Unit 8 & 9(2x500MW), Expansion Project, Nirman Bhavan, Urja Nagar, Chandrapur-442404. | | 1000 MW | | | | Distance from mine 800 km | | | | 2. | Power Station Unit
8, Unit 9 and Unit | Koradi Complex,
Chindwara Road, Koradi-
441111, Distt. Nagpur,
Maharashtra. | 3x660 MW | 1980 MW | | 10 Sp | Cody. | Distance from mine 595 km | | | Tomas I Now Daily | SI.
No. | Name of specified
End Use Plant | Location/ Address | Configuration | Capacity | |------------|------------------------------------|---|---------------|----------| | 3.
| | Taluka parli Vaijnath, Dist.
Beed-431520, Maharashtra
Distance from mine 1147
km | | 250 MW | | | Total | | | 3230 MW | # b. Additionally Proposed MSPGCL have requested MOC/NA vide letter No. CMD Mahagenco/ED(Coal/Fuel)/34C (a copy of the letter enclosed at **Annexure-1-2**) proposing to extract coal from Gare Palma Coal Mine up to its full capacity, i.e. 23.6 Mty, and utilise extra coal for other thermal plants of Mahagenco and surrender an equal amount of linkage coal from CIL to the extent the demand for other EUPs will be met from the coal mine. MOC/NA vide letter no.103/32015/ NA dt. 19.02.2016 (Annexure 1-3) clarified that the issue of diversion arises after the commencement of production and advised that Mahagenco may submit the Mining Plan to Ministry of coal for approval and tender intimation towards proposed diversion as per clause 8.4 of Allotment Agreement (Annexure 15-1) as and when required. Taking the above into consideration, the Mining Plan has been prepared for the full capacity of the mine, i.e. 23.6 Mtpa. # V). Annual coal requirement The coal requirement calculation with norms used for computing consumption is given in Table 15.3. TABLE 15.3 NORMS USED FOR COMPUTING CONSUMPTION | SI. | Particulars | Nan | Total | | | |------|-----------------------------------|------------|------------|--------|--------| | No. | | Chandrapur | Koradi | Parli | | | 1 | Capacity, MW | 2x500=1000 | 3x660=1980 | 1x250 | 2330 | | 2 | Station Heat Rate
"KCal/KWhr" | 2375 | 2250 | 2375 | 2308 | | 3 | Avg Calorific value
"KCal/kg)" | 4350 | 4350 | 4350 | 4350 | | 4 | Specific consumption "Kg/kWhr" | 0.5460 | 0.5172 | 0.5747 | 0.5306 | | 7115 | Plant Load Factor | 85% | 85% | 85% | 85% | Mining Plate & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL | SI. | Particulars | Nam | Name of power plant | | | | | |-----|--|------------|---------------------|---------|--------|--|--| | No. | | Chandrapur | Koradi | Parli | | | | | 6 | Total Coal | 2x2.0327 | 3x2.5419 | 1X1.12 | 12.761 | | | | | Requirement "MTPA" | = 4.065 | = 7.626 | = 1.070 | | | | | 7 | Coal availability from this project "MTPA" | 4.061 | 7.626 | 1.070 | 12.761 | | | | 8 | Linkage/e-Auction from CIL"MTPA" | Nil | Nil | Nil | Nil | | | | 9 | Other blocks of the company "MTPA" | Nil | Nil | Nil . | Nil | | | | 10 | Percentage of end use requirement to be met from this mine | 100% | 100% | 100% | 100% | | | The total coal requirement for already linked power plants as per allotment order and as per specific heat consumption norms comes to 12.761 MTPA. The balance coal out of the total production of 23.6 MTPA will be used for other thermal plants of Mahagenco as explained in the paragraph 1.8.2. # VI). Annual target coal production Based on the above explanation this block is proposed to produce Opencast Normative- 22MTPA & Peak-23.6 MTPA and Underground- 1.6 MTPA. # VII). Name of RQP preparing mining plan The particulars of RQP are given in Table 15.4. # TABLE 15.4 PARTICULARS OF RQP | | _ | | | | |-------------------------|----|---------------------------------------|--|--| | Name | ; | Mr.B.D.Sharma | | | | Address (i) Office | : | A-121, Paryavaran Complex, IGNOU Road | | | | | | New Delhi – 110030 | | | | Phone | : | 011-29534777, 29532236, 29535891 | | | | Fax | : | +91-11-29532568 | | | | E-mail | : | min_mec@vsnl.com; minmec@bol.net.in | | | | Web site | : | http://www.minmec.co.in | | | | Registration Number | : | 13016/18/2004-CA | | | | Date of grant / renewal | : | 01.06.2004 | | | | (ii) Residence | : | A-121, Paryavaran Complex, IGNOU Road | | | | | | New Delhi – 110030 | | | | Phone | 1: | 011-29534777, 29535891 | | | de Copy of RQP certificate are attached as Certificate I). Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL # VIII). Location The "Gare Palma Sector – Il Coal Block area lies in Mand Raigarh Coalfield in Raigarh district of Chhattisgarh state. The mine site is located in Tihli Rampur, Kunjemura, Gare, Saraitola, Mudagaon, Rodopali, Pata, Chitwahi, Dholnara, Jhinka Bahal, Dolesara, Bhalumura, Sarasmal and Libara of District Raigarh in Chhattisgarh. The area is covered in the Survey of India Toposheet No. 64 N/8 & 12 (R.F. 1:50,000) and is bounded by: As per Allotment Letter: Latitude 22° 06' 23.55" N to 22° 10' 37.04" N Lonaitude : 83°26' 22.18" E to 83°31' 19" E As per Nominated Authority letter F.No.104/28/2015/NA dt. 13-10-2015 (Copy at Annexure 3-2A), the coordinates in WGS 84 system are given below. As mentioned in the letter, the earlier coordinates were using reference system based on modified Everest datum but presently CMPDI is following WGS 84 System which is the standard reference system followed globally. It is to be need that the respective position of any point does not change physically on the ground. Latitude 22° 06' 24.215" to 22° 30' 49.891" N Longitude 83° 26' 15.433" to 83° 31' 12.632" E (Refer location plan and key plan - Plate I & II) # IX). Communication & accessibility The Gare Palma area is situated around 35 km away from Raigarh Township, which is also the nearest railway station on Mumbai-Howrah main line of SE Railway. The block is connected by road from Raigarh via Punjipathara by State Highway. Punjipathara village is situated on Raigarh-Ghargoda main road. The distance from Raigarh to Ghargoda is around 40 km. The road distance between Raigarh to Punjipathara is about 20 Km. and Punjipathara to Ghargoda is 20 Km towards north. From Punjipathara the road leads to the Gare Palma area via Tamnar TPP Area situated at a distance of 10 Km. on Punjipathara- Milupara road, which passes through the block. Tamnar is situated in the south-western part of the Gare Palma Sector-I area in the sub block 'F'. A network of road is present within the block. # X). Summary details of the coal block area Land Use and Ownership / Occupancy क्षीक नागाति II.P. NAGPAL आर श्रीविव / Under Secistary भारत सुरुपर / Govt. of India Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL ____ 15-5 The present land use of the area required for the project is given below in Table 15.5. TABLE 15.5 PRESENT LAND USE OF THE AREA REQUIRED FOR THE PROJECT | SI. | Village | | Private Land | | Govt. Land | | | | Total | Total Area | |-------|-------------------------------------|-------------|--------------------|------------|------------|---------------|---------|---------|----------|---------------------------| | No. | | Agriculture | Non
Agriculture | Total Area | Populated | Water
body | Other | CBJ** | Area | (Private +
Govt. Land) | | A. As | s per Revenu | e Departme | nts Records | ; | | | 28555 | | | | | 1 | Tihlirampur | 97.902 | 62.685 | 160.587 | 6.83 | 21.225 | 39.094 | 0 | 67.149 | 227.736 | | 2 | Dholnara | 59.64 | | 59.64 | 6.833 | 0.376 | 3.317 | 2.788 | 13.314 | 72.954 | | 3 | Murogaon | 302.393 | | 302.393 | 8.256 | 1.303 | 4.29 | 23.504 | 37.353 | 339.746 | | 4 | Libra | 121.416 | 7.621 | 129.037 | 2.897 | 0.439 | 4.694 | 15.943 | 23.973 | 153.01 | | 5 | Kunjemura | 199.715 | | 199.715 | 14.221 | 13.596 | 8.308 | 30.17 | 66.295 | 266.01 | | 6 | Jhinkabahal | 3.844 | | 3.844 | 0 | 0 | 0 | 0 | 0 | 3.844 | | 7 | Radopali | 351,676 | | 351.676 | 8.336 | 5.895 | 19.955 | 0.125 | 34.311 | 385.987 | | 8 | Dolesara | 20,748 | | 20.748 | 0 | 0 | 1.242 | 0 | 1.242 | 21.99 | | 9 | Bhalumura | 16.297 | | 16.297 | 0 | 0 | 0.704 | 0.622 | 1.326 | 17.623 | | 10 | Sarasmal | 56.869 | 9.158 | 66.027 | 0 | 1.332 | 3.563 | 15.236 | 20.131 | 86.158 | | 11 | Pata | 316.064 | 13.166 | 329.23 | 13.314 | 5.529 | 14.47 | 15.326 | 48.639 | 377.869 | | 12 | Chitwahi | 142.461 | | 142.461 | 0.252 | 0.867 | 8.153 | 0 | 9.272 | 151.733 | | 13 | Gare | 157.224 | | 157.224 | 10.482 | 4.241 | 11.596 | 1.957 | 28.276 | 185.5 | | 14 | Saraitola | 156.228 | 13.722 | 169.95 | 8.395 | 1.364 | 7.969 | 29.703 | 47.431 | 217.381 | | Total | of A | 2002.477 | 106.352 | 2108.829 | 79.816 | 56.167 | 127.355 | 135.374 | 398.712 | 2507.541 | | B. As | B. As per Forest Departments Record | | | | | | ===== | | | | | Gove | Government Forest Land | | | | | | | | | *75.945 | | Gran | Grand Total | | | | | | | | 2583.486 | | Note: ** Small/ big trees forest #### 15.1.1 Reasons for closure It is a new allotted block. Therefore Progressive Mine Closure Plan is described along with the coverage of activities to be taken care of at the closure stage. Reasons for Mine Closure can be exhaustion of mineral, lack of demand, uneconomic operations, natural calamity or directives from a statutory organization. # 15.1.2 Statutory obligations # I. Statutory Obligations already received The following letters/ permissions/approvals have been received: 1. Allotment Order vide Ministry of Coal letter No.103/30/2015/NA, dated 31-08-2015 (Annexure 1-1) Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 15-6 ^{75.945} Ha of Protected Forest land and 135.374 Ha of Revenue Forest land is present within the mine lease area, which needs to be diverted for mining purpose after obtaining forestry clearance from the Ministry of Environment and Forest, Govt. of India under the Forest (Conservation) Act 1980. - 2. The Agreement signed with the Nominated Authority on 30th March 2015 (**Annexure 15-1**) - 15.1.2.1 Compliance to various conditions mentioned in the letters/ permissions issued so for is tabulated below: - 1. Allotment Order vide Ministry of Coal letter No.103/30/2015/NA, dated 31-08-2015 (Annexure 1-1) | SI. No. | Obligations | Compliance | |---------|-----------------------------------|--| | 1 | To depute an Authorised | The Agreement Signed on 30 th | | | Representative to execute the | March 2015 | | | Allottee Agreement (the | | | | "Agreement") on its behalf as | The First Amendment | | | per the following schedule: | Agreement
signed on 30 th | | | Date: 30 th March 2015 | March 2015 | 2. The Agreement signed with the Nominated Authority on 30th March 2015 (Annexure 15-1) | SI.
No. | Conditions and Obligations Related to Mining/ Safety Closure and Conservation | Compliance | |------------|---|---| | 1. | Within 30 days allotee shall submit detailed plan towards commencement of mining operation (Commencement Plan) including mining lease and required and revision of mining plan, if any. | Complied | | 2. | Make an application to state Govt. for grant of mining lease in the name of Allottee. | Shall be complied | | 3. | Coal extracted from the coal mine shall be utilized strictly in the specified end use plant. | Out of the 23.6 Mtpa planned production, 12.761 Mtpa coal will be utilized in existing 3 plants as per the allotment order. For the balance production, the procedures of tendering intimation towards proposed diversion as per clause 8.4 of Allotment Agreement will be followed as and when required, when such capacity of mine is reached (refer MOC letter Annexure 1-4). | | 4. | Reduce Generation of Middlings and washery rejects, which in any case shall not exceed | In the Mining Plan, provision for space for a washery has been | of the Island they below Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPAM | SI.
No. | Conditions and Obligations Related to Mining/ Safety Closure and Conservation | Compliance | |------------|---|--| | | normative limit, and utilize them in any captive power plant of the allottee. Any Middlings and washery rejects, may be sold by the allottee. | made. The decision regarding capacity and layout of washery will be reached after thorough investigation. | | | | MSPGCL has approached CMPDIL for generation of data (washability tests, cleaning possibilities etc) and report preparation. | | | | Being thermal coal, no middlings are anticipated to be generated. The washery rejects shall be within the normative limits and will be disposed off strictly as per rules and regulation framed by Ministry of Environment & Forest and change from time to time | | 5. | In the event that the allottee is desirous of utilizing the coal in his other plant or subsidiary company then he shall provide written intimation (Diversion Notice) to Central Govt, at least thirty days prior to the such intended utilization., with mechanism for transportation of coal. | The procedures of tendering intimation towards proposed diversion as per clause 8.4 of Allotment Agreement will be followed as and when required, when such capacity of mine is reached. | | 6. | The allotee shall comply with all applicable laws and observe Good Industry Practice for the protection of the general health, safety, welfare, social security and minimum wages of employees engaged including contractor or sub contractor. | Shall be complied with | | 7. | The Allottee shall install and utilize such recognized modern safety devices and observe such recognized modern safety precautions as are provided and observed under Good Industry Practice. The allotee shall maintain in a safe and sound condition all infrastructure and equipment constructed or acquired in connection with mining operations and required for ongoing operations. | Shall be complied with | my/ | allottee, if any shall also be applicable to the allottee. 2015- NA, dt. 11.01.2016, intimated that the Mining Plan submitted by the earlier allottee did not receive MOC approval revise the Mine Plan for extraction of more | | | | |---|-----|---|---| | the Coal Mine including employees of any contractor or sub-contractor and of all other person having legal access to the area covered by this Agreement in accordance with the Good Industry Practice. The allottee shall construct maintain, and operate health programs and facilities to serve the employees engaged at the Coal Mine including employees of any contractor or sub-contractor and of all other person having legal access to the area covered by this Agreement which programs and facilities shall install, maintain and use modern health devices and equipment and shall practice modern health procedures and precautions in accordance with Good Industry Practice. 8. In the event allottee provides housing, the same shall be built to a standard that provides suitable living environments adequate for health and well being and which meets applicable sanitation standards in term of good industry practice. 9. The Mine Plan approved in relation to the prior allottee, if any shall also be applicable to the allottee. Upon allocation of coal mine, the allottee may revise the Mine Plan for extraction of more coal as compared to mine plan subject to revision. Allottee may increase the production to the maximum possible extent and utilize the coal | | | Compliance | | operate health programs and facilities to serve the employees engaged at the Coal Mine including employees of any contractor or subcontractor and of all other person having legal access to the area covered by this Agreement which programs and facilities shall install, maintain and use modern health devices and equipment and shall practice modern health procedures and precautions in accordance with Good Industry Practice. 8. In the event allottee provides housing, the same shall be built to a standard that provides suitable living environments adequate for health and well being and which meets applicable sanitation standards in term of good industry practice. 9. The Mine Plan approved in relation to the prior allottee, if any shall also be applicable to the allottee. Upon allocation of coal mine, the allottee may revise the Mine Plan for extraction of more coal as compared to mine plan subject to revision. Allottee may increase the production to the maximum possible extent and utilize the coal | | the Coal Mine including employees of any
contractor or sub-contractor and of all other
person having legal access to the area
covered by this Agreement in accordance with | | | same shall be built to a standard that provides suitable living environments adequate for health and well being and which meets applicable sanitation standards in term of good industry practice. 9. The Mine Plan approved in relation to the prior allottee, if any shall also be applicable to the allottee. Upon allocation of coal mine, the allottee may revise the Mine Plan for extraction of more coal as compared to mine plan subject to revision. Allottee may increase the production to the maximum possible extent and utilize the coal | | operate health programs and facilities to serve
the employees engaged at the Coal Mine
including employees of any contractor or sub-
contractor and of all other person having legal
access to the area covered by this Agreement
which programs and facilities shall install,
maintain and use modern health devices and
equipment and shall practice modern
health
procedures and precautions in accordance | | | allottee, if any shall also be applicable to the allottee. Upon allocation of coal mine, the allottee may revise the Mine Plan for extraction of more coal as compared to mine plan subject to revision. Allottee may increase the production to the maximum possible extent and utilize the coal | 8. | same shall be built to a standard that provides suitable living environments adequate for health and well being and which meets applicable sanitation standards in term of good | Shall be complied with. | | maximum possible extent and utilize the coal prepared. The capacity of the | 9. | allottee, if any shall also be applicable to the allottee. Upon allocation of coal mine, the allottee may revise the Mine Plan for extraction of more coal as compared to mine plan subject to | intimated that the Mining Plan
submitted by the earlier allottee
did not receive MOC approval
and MSPGCL need to apply
afresh seeking approval of | | plants) maximum. | | maximum possible extent and utilize the coal as per clause 8 (i.e. in specified end use | prepared. The capacity of the mine has been optimised to the | | 10. Upon exhaustion of the extractable reserves, coal mine shall be closed in the manner provided in the mine closure plan and the applicable laws. Mine Closure Plan and the applicable Laws shall be adhered to | 10. | coal mine shall be closed in the manner provided in the mine closure plan and the | applicable Laws shall be | Ve # II. Statutory obligations still to be received Other obligations will be there as a result of the following approvals: - a. Mining Plan approval letter from MOC - b. Environmental clearance letter from MOEF - c. Forestry clearance letter from Forest Dept. MOEF - d. No objection certificate from State Pollution Control Board - e. Permission from CGWB for withdrawal of ground water - f. Permission for mine opening from coal controller - g. Permission letter from Controller of Explosives - h. Letter from DGMS for use of HEMM and drilling /blasting All the obligations spelt out in the above letters/ clearances and also in other letters which may be issued in future will be complied by the Company. # 15.1.3 Closure plan preparation The Progressive Mine Closure Plan and Mine Closure Plan have the approval of the Board of Directors of the Company and the relevant document is attached as **Annexure 15-2**. ### 15.2 MINE DESCRIPTION Mine description comprises Geology, Reserves, Mining Method and Coal Beneficiation. Geology and reserves are already covered under Chapter 4 and Mining method under Chapter 5. # 15.3 MINE CLOSURE PLAN #### 15.3.1 Mined out land ## i Land degradation and aesthetic environment The year wise position of mining is given below in Table 15.6. TABLE 15.6 YEAR WISE POSITION OF MINING AREA | | Year | Excavation Area Ha. | | |----|--|---------------------|------------| | ı | N NASA | Progressive | Cumulative | | | 1 st Year | 26.16 | 26.16 | | T. | 2 nd -3 rd year | 103.81 | 129.97 | | 1 | 4 th - 5 th year | 250.73 | 380.70 | Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL 15-10 | Year | Excavation Area Ha. | | |--|---------------------|------------| | | Progressive | Cumulative | | 6 th - 10 th year | 718.67 | 1099.37 | | 11 th - 15 th year | 647.69 | 1747.06 | | 16 th - 20 th year | 202.79 | 1949.85 | | 21 st - 25 th year | 322.57 | 2272.42 | | End of mine 26 th - 29 th | 168.13 | 2440.55 | | OC Closure plan 30 th -32 nd | 0.00 | 2440.55 | | Total | 2440.550 | | #### Land degradation control measures ii. Land degradation is one of the major adverse outcomes of opencast mining activities and any effort to control adverse impacts is considered incomplete when appropriate land reclamation strategy is not adopted. Since the land degradation in this mine is partly in the form of excavated void and partly in the form of external and internal dumps, the reclamation strategy must include a programme for the reclamation of the disturbed land. #### Mined area reclamation iii. The lessee will take necessary steps to keep the area under disturbance at any stage of mining operation to a minimum. This can be achieved by carrying out the reclamation programme simultaneously with excavation. The gap can be reduced between degradation and the reclamation by this programme. The post mining land use of core zone shows that all the disturbed areas will be reclaimed before abandoning the mine excluding the small void. #### iv. Reclamation procedure Reclamation procedure has been described stage wise in the following paragraphs. Transportation and unloading of top soil at reclamation dump site/spoil bank and levelling of top soil heaps After the levelling of OB heaps is completed by the dozers, laying of topsoil will be undertaken. The topsoil will preferably be directly brought from the freshly excavated area for the purpose of maximum benefit. In case it is not adequate, the top soil deficiency will be made up from the top soil stack, for which provision has been made. The top soil brought to the reclamation dump site and unloaded will also be in the form of heaps. Dozers will be deployed for levelling the top soil. It is proposed to lay about 10.5m 1m thick layer of top soil during levelling. नाम्बा पान / Shastri Bhawan Mining Plan & Mine Closure Plan for Gare Palma Sector-II Coal Mine 23.6 MTPA of MSPGCL B.D. SHARMA RQP NO. 34012/03/2014-CPAM # Biological reclamation After levelling of top soil, the technical reclamation is complete. The next step will be biological reclamation comprising plantation of grasses, legumes, herbs and trees. All these species will preferably be local. Before planting the trees, dug pits will be made and filled with top soil mixed with manure. Thus the area will be prepared for plantation before the onset of monsoon. The plantation will then be done during June/July after the 1st rain showers. All the above steps have been explained by a section presented in Fig 15.1 below: # DEPICTION OF METHOD OF PHYSICAL AND BIOLOGICAL RESTORATION/ RECLAMATION/ REHABILITATION | STAGE-I | |---------------------------------| | | | DUMPER UNLOADING IN HEAP SHAPES | | лопт. | | | | | | AGES OF RECLAMATION | | / | # Arrangement of Plants/ saplings To fulfil the requirements of nursery plants, a nursery will be established at the site. During peak requirements, additional plants will be transported from Govt./Forest nurseries located around the area. Local species will be opted for plantation. # Protection of Reclaimed Area The reclaimed and afforested area has to be protected from cattle menace, soil erosion, plant diseases, etc. Plants will be protected from diseases by the application of proper pesticides. Soil working, manuring, etc. will be done whenever necessary. Plants will be protected from cattle menace by proper watch and ward or fencing. Watering will be done periodically as per requirement to support the normal growth of the plants. 10/