

#### Contents

#### CHAPER – 0 Executive Summary

| 1  | Introd  | uction                            | 3  |
|----|---------|-----------------------------------|----|
| 2  | Projec  | t Description                     | 3  |
| 3  | Traffic | Survey and Analysis               | 6  |
| 4  | Engine  | eering Surveys and Investigations | 10 |
|    | 4.1     | Pavement Condition Survey         | 13 |
|    | 4.2     | Pavement Structural Strength      | 14 |
|    | 4.3     | Sub Grade Investigation           | 15 |
|    | 4.4     | Existing Pavement Investigation   | 19 |
| 5  | Mater   | ial Investigation                 | 22 |
| 6  | Stone   | Aggregates                        | 22 |
| 7  | Alignn  | nent                              | 23 |
|    | 7.1     | Climate                           | 24 |
|    | 7.2     | Land Use                          | 24 |
|    | 7.3     | Right of way                      | 24 |
|    | 7.4     | Roadway                           | 24 |
|    |         | 7.4.1 Intersections               | 24 |
|    |         | 7.4.2 Submergence                 | 27 |
| 8  | Propo   | sed Alignment                     | 27 |
| 9  | Bypass  | Ses                               | 29 |
| 10 | Paven   | nent Design                       | 29 |
| 11 | Propo   | sal for Structures                | 31 |
|    | 11.1    | Culverts                          | 31 |
|    | 11.2    | Bridges                           | 32 |
|    | 11.3    | Railway Crossing                  | 33 |
|    | 11.4    | Tree in ROW                       | 33 |
|    | 11.5    | Utilities                         | 33 |
| 12 | Enviro  | nmental Impact Assessment         | 34 |
| 13 | Cost E  | stimate and Financial Analysis    | 35 |
|    | 13.1    | Abstract of Cost                  | 35 |
|    | 13.2    | Financial Analysis                | 36 |
| 14 | Conclu  | ision                             | 36 |





#### LIST OF TABLES

| Table: 0.1  | Homogeneous Sections                                                        | 6  |
|-------------|-----------------------------------------------------------------------------|----|
| Table: 0.2  | Traffic Survey Location                                                     | 7  |
| Table: 0.3  | Project Section in PCU's                                                    | 9  |
| Table: 0.4  | Pavement Condition                                                          | 13 |
| Table: 0.5  | Homogeneous Sections with Respective Design                                 | 14 |
| Table: 0.6  | Field Soil Investigation                                                    | 16 |
| Table: 0.7  | Existing Pavement Investigation                                             | 19 |
| Table: 0.8  | Settlement Locations along the Project Corridor                             | 23 |
| Table: 0.9  | Table showing road way                                                      | 24 |
| Table: 0.10 | List of Intersections                                                       | 25 |
| Table: 0.11 | Cross Sectional Elements                                                    | 28 |
| Table: 0.12 | Sight Distances                                                             | 28 |
| Table: 0.13 | Geometric Design Standards for Horizontal Alignment                         | 28 |
| Table: 0.14 | Min. Radius (for 2.5% camber) not requiring super elevation                 | 28 |
| Table: 0.15 | Radius of circular curves not requiring transition curve                    | 29 |
| Table: 0.16 | Details of Proposed Bypasses                                                | 29 |
| Table: 0.17 | Input Parameters for Flexible Pavement Design Flexible Pavement Composition | 30 |
| Table: 0.18 | Overlaying on Existing Pavement                                             | 30 |
| Table: 0.19 | New Constructions due to Horizontal Improvement                             | 30 |
| Table: 0.20 | New Construction due to Vertical Improvement/ Raising of Pavement           | 30 |
| Table: 0.21 | Detail of exiting culverts                                                  | 31 |
| Table: 0.22 | Bridges                                                                     | 31 |
| Table: 0.23 | Railways Crossing                                                           | 32 |
| Table: 0.24 | Preliminary Construction Cost                                               | 33 |
| Table: 0.25 | Traffic Data Inputs                                                         | 35 |
| Table: 0.26 | Financial Inputs                                                            | 35 |
| Table: 0.27 | Structuring of Project Finance                                              | 36 |
| Table: 0.28 | Maintenance Cost                                                            | 36 |

## LIST OF FIGURES

| Figure 0.1 | Location Map of Project Road | 5 |
|------------|------------------------------|---|
| Figure 0.2 | Traffic Survey Locations     | 8 |



#### **EXECUTIVE SUMMARY**

## 1. INTRODUCTION

The Governor of Rajasthan acting through the Chief Engineer (Roads), Public Works Department, Government of Rajasthan (the "Authority") is engaged in the development of state highways and as part of this endeavour, the Authority has decided to undertake two-laning of Tarnau to Mukundgarh (the "Project") through Public Private Partnership (the "PPP") on Design, Build, Finance, Operate and Transfer (the "DBFOT") basis.

Authority has decided to conduct feasibility studies for determining the technical feasibility and financial viability of all Highways comprising the Project. If found technically feasible and financially viable, the Highways under the Project may be awarded on DBFOT basis to a private entity (the "Concessionaire") selected through a competitive bidding process. The Project would be implemented in accordance with the terms and conditions stated in the concession agreement to be entered into between the Authority and the Concessionaire (the "Concession Agreement").

In pursuance of the above, the Authority has decided to carry out the process for selection of a Technical Consultant, a Financial Consultant and a Legal Adviser for preparing the Feasibility Report and bid documents. The Financial Consultant will develop the revenue model and assist the Authority in the bidding process. The Legal Adviser will review the draft concession agreement based on the Model Concession Agreement for State Highways through Public Private Partnership (the "MCA") read with the Manual of Standards and Specifications. The Technical Consultant shall prepare the Feasibility Report in accordance with the Terms of Reference specified ("TOR").

In developing the Work Plan for completing the assignment, the activities have been categorized under nine stages as follows:

| 1. | Stage I    | - | Inception Report                                       |
|----|------------|---|--------------------------------------------------------|
| 2. | Stage II   | - | Supplementary Inception Report                         |
| 3. | Stage III  | - | Report on Alignment and First Traffic Survey           |
| 4. | Stage IV   | - | Report on Land Plan Schedules and Utility Relocation   |
| 5. | Stage V    | - | Report on Indicative GAD of Structures                 |
| 6. | Stage VI   | - | Report on Environment and Social Impact Assessment     |
| 7. | Stage VII  | - | Draft Feasibility Report                               |
| 8. | Stage VIII | - | Final Feasibility Report                               |
| 9. | Stage IX   | - | Completion of Services including assistance during Bid |
|    |            |   | Process                                                |

## 2. PROJECT DESCRIPTION

 The corridor starts at Tarnau town from at chainage 39+668 of SH-60. Tarnau is a Village in Nagaur district in the Indian state of Rajasthan. Tarnau is a village Panchayat located in the Nagaur district of Rajasthan state, India. The latitude 27.1421517 and longitude 74.1166127 are the geocoordinate of the Tarnau. Jaipur is the state capital for Rajasthan. It is located



around 211 kilometer away from Tarnau. The other surrouning state capitals are Delhi 348.3 KM., Gandhinagar 452.6 KM. Tarnau is located around 72.7 kilometer away from its district head quarter nagaur. The other nearest district headquarters is Ajmer situated at 112 KM distance from Tarnau.

- The corridor End at Mukundgarh (Y-junction) on Chainage 205.233 of SH-8. Mukundgarh is a 2. city and municipality in Jhunjhunu district in the Indian state of Rajasthan. It is part of Shekhawati region. Mukundgarh is located at 27.95°N 75.2167°E. It has an average elevation of 349 meters (1148 feet). In routing of project corridor Laxmangarh is a town in Sikar district of Rajasthan state in India. It is the sub-divisional headquarters of the Laxmangarh sub-division in Sikar district. It is also the Tehsil headquarters of the Laxmangarh Tehsil. Laxmangarh is also Panchayat samiti headquarters of the Laxmangarh Panchayat samiti in the Sikar district. It is situated on National Highway-11 at a distance of 24 km from Sikar in north. The great fair is organized every year on the sixth of Bhadarpad (Hindi Month). Large numbers of people participate in the fair. The project road ends at Salasar-Sikar SH-83 at salasar. Salasar Balaji is in the religious circuit that includes the pilgrim centers of Rani Sati Temple of Jhunjhunu and Khatushyamji Sikar, which are both located close to it. Initially a small construction, the temple of Salasar Balaji is now considered to be a Shakti Sthal (a place of power) and Swayambhu (self-creation) by faith, belief, miracles and wish fulfillments of the devotee.
- **3.** Nagaur is situated amidst 6 districts namely Bikaner, Churu, Jaipur, Ajmer, Pali, Jodhpur. Nagaur is the fifth largest district in Rajasthan with a vast terrain spreading over 17,718 sq.km. Its geographical spread is a good combine of plain, hills, sand mounds & as such it is a part of the great Indian Thar Desert.
- 4. **Sikar** is a city located in the Shekhawati region of Rajasthan state in India. It is the administrative headquarters of Sikar District. Sikar is a historical city and contains many old Havelis (big houses with Mughal-era architecture) which are a huge tourist attraction. It is 114 km away from Jaipur, 320 km from Jodhpur 215 km from Bikaner and 280 km from Delhi.
- 5. **Churu** is a city in the desert region of Rajasthan state of India. It is known as gateway to the Thar Desert of Rajasthan. It is the administrative headquarters of Churu District. It lies in the Thar Desert on the National Highway-65 connecting Pali to Ambala and is a junction station on the railway line to Bikaner. It is near the shifting sand dunes of the Thar Desert and has grand havelis with marvelous fresco paintings, namely Kanhaiya lal Bagla ki Haweli and Surana Haweli, with hundreds of small windows. It also has some fine Chhatris. Near the town is a religious seat of the Nath sect of Sadhus where there are life-size Marble statue of their deities and a place for prayers. There stands a Dharam Stup, a symbol of religious equality. At the centre of the town is a fort built about 400 years ago. Churu is a junction station on Delhi-Rewari-Bikaner broad Gauge railway line and also connected to JAIPUR via sikar. The railway tracks to Jaipur are meter gauge and are being converted to broad gauge. Churu lies on NH-65 and is connected to all major cities by all-weather roads.
- 6. **Jhunjhunu :-** Jhunjhunu is a town in the state of Rajasthan, India and the administrative headquarters of Jhunjhunu District. It is located a 180 km away from Jaipur, 220 km from

216.6.2017



Bikaner and 245 km from Delhi. The town is famous for the frescos on its grand Havelis; a special artistic feature of this region. As of 2001 India census, Jhunjhunu had a population of 100,476. Males constitute 53% of the population and females 47%. Jhunjhunu has an average literacy rate of 74%, higher than the national average of 59.5%: male literacy is 86.61%, and female literacy is 60%. In Jhunjhunu, 18% of the population is under 6 years of age. According to Haryana State Gazetteer languages like Ahirwati and Bagri is mainly spoken in Jhunjhunu The headquarters of the district is located in the town of Jhunjhunu. Jhunjhunu is a well-known trading hub and is home to plenty of industries.

7. The entire corridor has variable lane configuration which varies from intermediate lane to 2lane with granular/earthen shoulder. While traversing it passes through 28 villages.



8. This corridor is comprises of various road sections, the sections are given in the table below.

Figure 0.1 Location Map of Project Road

Mostly the project corridor has a two lane carriageway. In general the terrain is plain. There are sections of roads having carriageway width of two lane and intermediate lane configuration. In some built-up sections, higher road widths were observed. The land use pattern is mainly agricultural, commercial and built-up area. Existing road has 0.55m to 2.16m earthen shoulder exists.

# 3. TRAFFIC SURVEY AND ANALYSIS

Estimation of traffic over the project corridor is an essential step in project preparation. This includes conducting field traffic surveys, data analysis estimation of traffic (ADT & AADT) and





estimating commercial vehicles loading (CSA) for pavement design.

The traffic surveys have been planned in a way to obtain all the necessary information and data deemed necessary for the detailed project preparation. In order to identify traffic survey locations, the project road is divided into homogeneous sections based traffic flow pattern as given **Table 0.1**.

| Sections | From                                                                     | En-route                                                                       | То            | Design<br>Length in km |  |  |  |
|----------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------|------------------------|--|--|--|
| 1        | Tarnau                                                                   | Jayal, Kathoti, Bhantri,<br>Ransisar Charna, Kairap,<br>Nozlo ki Dhani, Koliya | Raghunathpura | 47.502                 |  |  |  |
| 2        | Raghunathpura                                                            | Deedwana, Aas ki Dhani,<br>Thanu, Ambapa, Indarpura,<br>Meethri, Bochi, Ganeri | Salasar       | 52.930                 |  |  |  |
| 3        | Salasar                                                                  | Juliyasar, Dhanani, Jajod,<br>Choto Bhuma, Sanwali                             | Laxmangarh    | 35.285                 |  |  |  |
| 4        | 4 Singroda, Aantroli, Balaran,<br>Churimiyan, Ghoribara Khurd Mukundgarh |                                                                                | 29.848        |                        |  |  |  |
|          | Total =                                                                  |                                                                                |               |                        |  |  |  |

#### Table 0-1: Homogeneous Sections

The existing road passing through Deedwana, Mithari, Bochi & Laxmangarh built-up area is excluded and in-lieu of this bypasses have been proposed.

To establish the traffic flow characteristics and travel pattern on the corridor and to evaluate the viability of the project road on PPP mode, the following surveys were conducted on the identified locations along the project road sections.

- 7-days Classified Traffic Volume Count (CTVC) Surveys
- 1-day 24 hr. Axle Load Surveys
- Location for carrying out traffic surveys were selected so as to coincide with the proposed toll plaza locations based on site reconnaissance and was finalized in-consultation with the client. The traffic survey locations on project road along with survey schedule are presented in *Table 0.2* and shown in *Figure 0.2*.
- The surveys were undertaken Initially during the period for Tarnau to Salasar is 29<sup>th</sup> October 2014 to 04<sup>th</sup> November 2014 & Salasar to Mukundgarh is 26<sup>th</sup> December 2014 to 1<sup>st</sup> January 2015.
- Later on combined survey was carried out during 28/04/2015 to 04/05/2015 (Second Traffic Survey). The results obtained during this survey showed huge variations in Traffic due to a local Festival in Salasar and hence data thus obtained has not been used in analysis.

#### Table 0-2: Traffic Survey Location



Anna.

PUBLIC WORKS DEPARTMENT Government of Rajasthan Final Feasibility Report Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

| S no | Traffic survey details      | Section   | Location details<br>(As per Design Chainage)             | Start date  | End date     |
|------|-----------------------------|-----------|----------------------------------------------------------|-------------|--------------|
| 1    | Tarnau to Jayal             | Section-1 | Km. 45.000 befor Jayal                                   | 15/09/2014  | 22/09/2014   |
| 2    | Jatal to Didwana            | Section-2 | Km 82.000, before Koliya                                 | 15/09/2014  | 22/09/2014   |
| 3    | Didwana to Ganeri           | Section-3 | Km 102.000, Near Aas ki<br>Dhani                         | 15/09/2014  | 22/09/2014   |
| 4    | Ganeri to Salasar           | Section-4 | Km 132+000, After<br>Ganeri                              | 15/09/2014  | 22/09/2014   |
| 5    | Salasar to Laxmangarh       | Section-5 | Km 161.500, Near<br>existing Chhota Bhooma<br>Toll Plaza | 26/12/ 2014 | 01 /01/ 2015 |
| 6    | Laxmangarh to<br>Mukundgarh | Section-6 | Km 191.000, Near<br>Balaran                              | 26/12/ 2014 | 01 /01/ 2015 |







Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary



Figure 0.2: Traffic Survey Locations

Traffic demand plays the most important factor in deciding the type of facility (infrastructure) to be provided. This in turn determines likely benefits and costs to develop the same. A highway project of this nature calls for significant investment. Prediction of traffic demand becomes an important task and has to be nearly accurate. For the design of pavement and to plan for the future maintenance programmer as well as capacity augmentation and for economic evaluation, it is necessary to have realistic estimate of the size of traffic in the year 2014 to year 2040.

Traffic forecasting is made by determining the past trend of traffic flow along the corridor and by use of economic models developed to co-relate past vehicle registration data and economic indices such as per capita income (PCI), gross state domestic product (GSDP) and gross domestic product (GDP). By using the elasticity values obtained from the econometric models and the likely rate of growth of indices, population and zonal influences, the mode wise growth rates are established. Applying this growth rates, future traffic volume is estimated. The traffic estimated for future years are given in the **Table 0.3** below.

Table: 0.3 Projected sectional traffic in PCUs (As per Design)



Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

| Year      |      | Km.45+00<br>0 Before<br>Jayal | Km.<br>82+000<br>Near Koliya | Km.102+00<br>0 Near Aas<br>Ki Dhani | Km.132<br>After<br>Ganeri | Km. 161.500 At<br>Existing Chhota<br>Bhooma Toll Plaza | Km.191+<br>000 After<br>Balaran | Average |
|-----------|------|-------------------------------|------------------------------|-------------------------------------|---------------------------|--------------------------------------------------------|---------------------------------|---------|
| Base Year | 2014 | 2590                          | 4696                         | 2122                                | 5110                      | 6416                                                   | 4099                            | 4172    |
| 1         | 2015 | 2720                          | 4931                         | 2228                                | 5366                      | 6737                                                   | 4304                            | 4381    |
| 2         | 2016 | 2855                          | 5177                         | 2340                                | 5634                      | 7074                                                   | 4519                            | 4600    |
| 3         | 2017 | 2998                          | 5436                         | 2456                                | 5915                      | 7427                                                   | 4745                            | 4830    |
| 4         | 2018 | 3148                          | 5708                         | 2579                                | 6211                      | 7799                                                   | 4982                            | 5071    |
| 5         | 2019 | 3306                          | 5993                         | 2708                                | 6522                      | 8189                                                   | 5231                            | 5325    |
| 6         | 2020 | 3471                          | 6293                         | 2844                                | 6848                      | 8598                                                   | 5493                            | 5591    |
| 7         | 2021 | 3644                          | 6608                         | 2986                                | 7190                      | 9028                                                   | 5768                            | 5871    |
| 8         | 2022 | 3827                          | 6938                         | 3135                                | 7550                      | 9479                                                   | 6056                            | 6164    |
| 9         | 2023 | 4018                          | 7285                         | 3292                                | 7927                      | 9953                                                   | 6359                            | 6472    |
| 10        | 2024 | 4219                          | 7649                         | 3457                                | 8324                      | 10451                                                  | 6677                            | 6796    |
| 11        | 2025 | 4430                          | 8032                         | 3629                                | 8740                      | 10974                                                  | 7011                            | 7136    |
| 12        | 2026 | 4651                          | 8433                         | 3811                                | 9177                      | 11522                                                  | 7361                            | 7493    |
| 13        | 2027 | 4884                          | 8855                         | 4001                                | 9636                      | 12098                                                  | 7729                            | 7867    |
| 14        | 2028 | 5128                          | 9298                         | 4201                                | 10117                     | 12703                                                  | 8116                            | 8261    |
| 15        | 2029 | 5384                          | 9763                         | 4411                                | 10623                     | 13338                                                  | 8522                            | 8674    |
| 16        | 2030 | 5654                          | 10251                        | 4632                                | 11154                     | 14005                                                  | 8948                            | 9107    |
| 17        | 2031 | 5936                          | 10763                        | 4864                                | 11712                     | 14706                                                  | 9395                            | 9563    |
| 18        | 2032 | 6233                          | 11301                        | 5107                                | 12298                     | 15441                                                  | 9865                            | 10041   |
| 19        | 2033 | 6545                          | 11867                        | 5362                                | 12913                     | 16213                                                  | 10358                           | 10543   |
| 20        | 2034 | 6872                          | 12460                        | 5630                                | 13558                     | 17024                                                  | 10876                           | 11070   |
| 21        | 2035 | 7216                          | 13083                        | 5912                                | 14236                     | 17875                                                  | 11420                           | 11624   |
| 22        | 2036 | 7576                          | 13737                        | 6207                                | 14948                     | 18768                                                  | 11991                           | 12205   |
| 23        | 2037 | 7955                          | 14424                        | 6518                                | 15695                     | 19707                                                  | 12590                           | 12815   |
| 24        | 2038 | 8353                          | 15145                        | 6844                                | 16480                     | 20692                                                  | 13220                           | 13456   |
| 25        | 2039 | 8771                          | 15902                        | 7186                                | 17304                     | 21727                                                  | 13881                           | 14128   |
| 26        | 2040 | 9209                          | 16697                        | 7545                                | 18169                     | 22813                                                  | 14575                           | 14835   |
| 27        | 2041 | 9670                          | 17532                        | 7922                                | 19078                     | 23954                                                  | 15303                           | 15577   |
| 28        | 2042 | 10153                         | 18409                        | 8319                                | 20032                     | 25152                                                  | 16069                           | 16355   |
| 29        | 2043 | 10661                         | 19329                        | 8734                                | 21033                     | 26409                                                  | 16872                           | 17173   |
| 30        | 2044 | 11194                         | 20296                        | 9171                                | 22085                     | 27730                                                  | 17716                           | 18032   |

| Colour ID | DSV (PCU/day) | Lane Configuration       | LOS     |
|-----------|---------------|--------------------------|---------|
|           | 6000          | DSV of Intermediate Lane | LOS - B |
|           | 8400          | DSV of Intermediate Lane | LOS - C |
|           | 15000         | DSV of Two Lane          | LOS - B |
|           | 21000         | DSV of Two Lane          | LOS - C |
|           | 17250         | DSV of 2 Lane + P Shld   | LOS - B |
|           | 24150         | DSV of 2 Lane + P Shld   | LOS - C |

#### 4. ENGINEERING SURVEYS AND INVESTIGATIONS

216.6.201



This activity includes the following tasks:

- Topographic, alignment and land use survey
- Road inventory survey
- Road condition survey
- Bridge condition survey
- Soil, geo-technical, material, hydrology and drainage surveys

## Topographic, alignment and land use survey

The activities and Deliverables forming part of the topographic, alignment and land use survey are described below:

- a) Divide the Project into various stretches as per terrain classification
- **b)** Identify sections of Project which fall within urban limits and need four laning in accordance with the Manual.
- c) Identify sections of Project which require raising. Such sections will be identified with attention being paid to the previous history of submergence and the extent to which the subgrade is likely to be affected by the capillary action if the section is not raised.
- **d)** As far as possible, the existing alignment would be retained subject to the following requirements:
  - i. Identify stretches which do not meet the criterion of ruling design speed, i.e. where radii of horizontal curves are less than desirable minimum. Prepare realignment plans for improving geometrics in such stretches.
  - ii. Identify stretches out of (i) above, which meet the criterion of minimum design speed, i.e. where the radii of horizontal curves are more than the absolute minimum (This will enable the Authority to take a view on whether to include such stretches for improving geometrics in the initial stage or these can be postponed by a few years and in the meantime steps can be taken to acquire the necessary land for the ROW).
  - iii. Identify stretches where stopping sight distance is not available. Work out possible improvement plan to increase the sight distance to provide overtaking sight distance. Also work out option to increase the sight distance to provide at least the intermediate sight distance.
  - iv. Identify stretches, other than those in (iii) above, where intermediate sight distance is not available. Work out possible improvement plan to increase the sight distance to provide overtaking sight distance. Also work out possible improvement plan to increase the sight distance to provide at least the intermediate sight distance.
  - v. Identify stretches where the gradients are steeper than the ruling gradient for the relevant terrain condition. Work out and prepare an improvement plan for the vertical alignment in such stretches. Divide improvement plans of such stretches into the following two parts:
    - a. Stretches where gradient is more than the ruling gradient but less than the limiting gradient. (The Authority can take a view on whether improvements of stretches in this category shall be taken up or not.)
  - vi. Identify stretches where extra width of roadway and carriageway at curves is required.



- e) Identify stretches involving construction of new bridges and other grade separated structures including those requiring reconstruction and their approaches. Work out proposal for location of such structures and alignment of approaches.
- f) Based on the improvement plans of horizontal and vertical alignment worked out as a result of tasks in (d), (e) and (f), prepare alignment plans, L-Sections and cross-sections of the entire Project. Scale of drawings shall be as per IRC: SP: 19. Proposed improvements shall be marked on the plans. Such improvements will include raising of road, widening of roadway, widening of existing carriageway, provision of shoulders both paved and granular, new structures, underpasses, grade separators, service roads, additional road signs, road furniture, safety devices, relocation of utilities, removal of trees, etc.
- g) Also prepare a separate Land Plan of the Project showing the existing ROW (along with all the existing assets within the ROW e.g. structures, drains, service roads, trees, utilities and safety devices) and proposed additional land required in various stretches for improvement of geometrics, construction of new structures, provision of intersections, interchanges, service roads, toll plazas, project facilities, etc. The Land Plan should also show encroachments, if any. A list of such encroachments along with their brief description shall also be prepared and included in the Feasibility Report.
- h) For additional land proposed to be acquired as per final alignment plan of the Project, the Land Plans shall be marked on duly certified village maps showing khasara numbers and shall be furnished along with a report which will include detailed schedules in respect of the proposed acquisition of land holdings as per revenue records in a format that would enable the Authority to initiate land acquisition proceedings.
- i) A set of cross-sections of the existing road including urban sections at one interval for each homogeneous section in plain/rolling terrain and at 100 m intervals in mountainous/steep terrain shall be provided by the Consultant. In plain/ rolling terrain, additional cross-sections shall be provided for curves at the start, at the middle and at the end. These cross-sections along with proposed improvement plan and preliminary design shall form the basis of preparation of indicative BOQ for the Project.

# Road inventory survey

Deliverables under this component shall include:

- a) An inventory of road, culverts, bridges and other structures like railway over/under bridges, flyovers (grade separated structures), underpasses and overpasses.
- b) Identification of stretches of the Project which
  - i. are affected by frequent flooding;
  - ii. are subjected to water logging;
  - iii. pass through black cotton soil area;
  - iv. pass through marshy area; or
  - v. pass through weak soil stratum
- c) Typical cross-sections of the existing road showing the crust composition of pavement, shoulders and drains (one cross-section for every five of the road).

216.2017

- d) Identification of sections in cutting.
- e) Identification of culverts requiring:



- i. Reconstruction (all culverts which are structurally distressed shall be reconstructed as new structures).
- ii. Widening (all existing culverts which are not to be reconstructed shall be widened equal to the roadway width).
- iii. Repairs and/or rehabilitation along with preliminary proposals.
- iv. New construction.

## Road condition survey

The Consultant has undertaken a survey of the visual condition of the pavement and shoulders of the Project and provides its report as per Proforma-4 and also report if distresses are observed in the pavement and shoulders. Identify sections requiring reconstruction.

## Bridge condition survey

The activities and Deliverables forming part of bridge condition survey are specified below:

- a. The Consultant has carried out a detailed inspection of every bridge and other structures such as railway over/under bridges, overpasses, underpasses and grade separators including flyovers. (For guidance, see IRC: SP: 35 and IRC: SP: 52).
- b. For each structure, the Consultant will indicate the distresses observed, if any, in respect of various components of the structures e.g. bearings, expansion joints, wearing coat, railings/crash-barriers, foundations, substructures (abutments, piers, pier caps), superstructure (Proforma-5). On the basis of the distresses observed, the Consultant shall divide the structures into the following categories:
- c. Structures requiring reconstruction immediately as part of first stage development (all such structures shall be provided as new structures);
- d. Structures where distresses are not so severe and reconstruction can be postponed to a subsequent stage say for a period of 7 to 8 years; if any major repairs are required in the meantime, these shall be so indicated for each such location;
- e. Structures requiring repairs and/or rehabilitation (for such structures indicate preliminary proposals for repairs and/or rehabilitation);
- f. Structures requiring widening (for such structures indicate widening methodology); and
- g. Structures that shall be retained.

## Soil, geotechnical, material, hydrology and drainage surveys

The activities and Deliverables forming part of the soil, geotechnical, material, hydrology and drainage surveys are described below:

- (a) The characteristics of the existing soil, one samples from every three km of the Project or closer where change in soil type is encountered.
- (b) The determination of subgrade CBR (soaked) every three km of the Project or closer where change in soil type is encountered.
- (c) Benkelman Beam Deflection measurements on the Project one set of ten readings in for every three of the Project.
- (d) Investigations of the subsoil strata (one trial bore and/or test pit at embankment and one in river bed at locations where new bridges or other structures are proposed. The depth

21 6-201



of trial bore/ test pit shall be as per IRC standards).

- (e) Preliminary hydraulic data for bridges, design discharge, HFL, LWL, etc. with a view to checking adequacy of existing waterway.
- (f) A broad assessment of the drainage condition and requirement of the Project.

## 4.1 Pavement Condition Survey

The existing pavement for the most of the stretch is of bituminous or flexible surface, except at few stretches in built-up/settlement/villages sections from Design Km.50+200 to 51+200, Km 60+200 to 60+800, Km 72+800 to 72+500, Km 83+100 to 83+600, Km 87+200 to 87+300, Km 102+000 to 102+200, Km 104+450 to 104+850, Km 110+250 to 110+350, Km 111+000 to 111+100, Km 152+500 to 152+740, km 155+500 to 156+500, km 170+050 to 170+650 km 180+900, to 181+300 km 183+550 to 183+750 km 189+380 to 190+300 & 199+800 where the Pavement is of rigid surface.

The details of condition of Pavement by visual observation are given in **Table 0.4** below:

| Description  | Design Length<br>(km) | % of total length | Details of Chainage                                                                                                          |
|--------------|-----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| Good         | 46.213                | 27.91             | 130+090 to 151+400, 151+640 to<br>172+010, 200+600 to 203+850, 203+950<br>to 205+233                                         |
| Poor         | 99.212                | 59.92             | 39+668 to 89+400, 100+400 to 128+250,<br>130+060 to 130+090,151+400 to<br>151+640, 179+340 to 200+600, 203+850<br>to 203+950 |
| Overlapping  | 7.635                 | 4.61              | 95+740 to 100+00, 172+010 to 175+385                                                                                         |
| Kuccha track | 12.505                | 7.55              | 89+400 to 95+740, 100+000 to 100+400,<br>128+250 to 130+060, 175+385 to<br>179+340                                           |
| Total        | 165.565               | 100.00            |                                                                                                                              |

**Table: 0.4 Pavement Condition** 



13-201 1.6.201









At Km. 55+000 to 56+000 Poor Pavement Condition

At Km 128+00 to 130+000 Kuccha Track

#### 4.2 Pavement Structural Strength

Benkelman Beam deflection studies are carried out for evaluating the requirements of strengthening of Flexible pavements, because the existing road Performance of flexible pavement is closely related to elastic deflection under the wheel loads. The deformation under a given load depends upon sub-grade soil type, its moisture content and dry density, pavement surface temperature, drainage condition etc. The project road is divided into homogeneous sections based on the BBD survey. The homogeneous sections are mentioned in the following **Table 0.5**. Among the Homogeneous sections the characteristic deflection varies from 0.989mm to 2.323mm.

| C No   | Design Chainage    | Deflection | Deflection | Deflection |
|--------|--------------------|------------|------------|------------|
| 5. NO. | (Km.)              | LHS        | RHS        | Average    |
| 1      | 39+668 to 44+668   | 1.15       | 0.83       | 0.989      |
| 2      | 44+668 to 49+668   | 2.11       | 1.34       | 1.726      |
| 3      | 49+668 to 54+668   | 1.55       | 1.70       | 1.624      |
| 4      | 54+668 to 59+668   | 1.79       | 1.56       | 1.677      |
| 5      | 59+668 to 64+668   | 1.81       | 1.00       | 1.404      |
| 6      | 64+668 to 69+668   | 3.61       | 1.04       | 2.323      |
| 7      | 69+668 to 74+668   | 1.35       | 1.45       | 1.399      |
| 8      | 74+668 to 79+668   | 2.74       | 1.11       | 1.926      |
| 9      | 79+668 to 84+668   | 2.34       | 1.43       | 1.889      |
| 10     | 84+668 to 89+668   | 1.30       | 1.38       | 1.339      |
| 11     | 89+668 to 94+668   | 1.34       | 1.25       | 1.291      |
| 12     | 94+668 to 99+668   | 1.34       | 1.22       | 1.282      |
| 13     | 99+668 to 104+668  | 2.20       | 1.33       | 1.768      |
| 14     | 104+668 to 109+668 | 0.96       | 1.71       | 1.332      |
| 15     | 109+668 to 114+668 | 1.33       | 1.01       | 1.169      |
| 16     | 114+668 to 119+688 | 1.08       | 1.06       | 1.069      |
| 17     | 119+668 to 124+668 | 2.08       | 2.44       | 2.259      |
| 18     | 124+668 to 129+668 | 1.50       | 1.89       | 1.692      |
| 19     | 129+668 to 134+668 | 1.78       | 1.10       | 1.443      |
| 20     | 134+668 to 139+668 | 1.44       | 1.43       | 1.435      |
| 21     | 139+668 to 144+668 | 1.31       | 1.32       | 1.316      |
| 22     | 144+688 to 149+668 | 1.29       | 1.27       | 1.282      |

| Table: 0.5 | Homogeneous  | Sections w | ith Resp | ective | Design |
|------------|--------------|------------|----------|--------|--------|
| 10010.0.0  | noniogeneous | 3000113 44 |          | CCLIVE | Design |

21 hosen - 201



Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

| S. No. | Design Chainage<br>(Km.) | Deflection<br>LHS | Deflection<br>RHS | Deflection<br>Average |
|--------|--------------------------|-------------------|-------------------|-----------------------|
| 23     | 149+668 to 154+668       | 1.44              | 1.25              | 1.347                 |
| 24     | 154+668 to 159+668       | 1.06              | 1.00              | 1.030                 |
| 25     | 159+668 to 164+668       | 0.90              | 0.91              | 0.906                 |
| 26     | 164+668 to 169+668       | 1.09              | 1.08              | 1.084                 |
| 27     | 169+668 to 174+668       | 0.99              | 1.08              | 1.034                 |
| 28     | 174+668 to 179+668       | 0.84              | 0.84              | 0.836                 |
| 29     | 179+668 to 184+688       | 1.78              | 1.87              | 1.828                 |
| 30     | 184+668 to 189+668       | 2.01              | 1.99              | 2.000                 |
| 31     | 189+668 to 194+668       | 1.61              | 1.94              | 1.779                 |
| 32     | 194+688 to 199+686       | 1.72              | 2.04              | 1.882                 |
| 33     | 199+688 to 204+500       | 2.06              | 2.02              | 2.041                 |

#### 4.3 Sub grade Investigations

Investigations have been carried out by digging test pits to assess the adequacy of existing pavement layers including sub-grade soil properties to establish the strengthening / reconstruction requirements to cater for design traffic during service life. The laboratory investigations of sub-grade indicate that the existing sub-grade varies from location to location along the road. The summary of the sub-grade soil properties is given in **Table 0.6**.



Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

|     | Table: 0.6 Field Soil Investigation |                 |                    |             |                       |              |                       |      |                           |                 |                 |                             |
|-----|-------------------------------------|-----------------|--------------------|-------------|-----------------------|--------------|-----------------------|------|---------------------------|-----------------|-----------------|-----------------------------|
|     | СНА                                 | INAGE NO.       | PARTIC             | CAL SIZE AI | NALYSIS               | ATTER<br>LIM | RBERG<br>IITS         | DEE  | CLASSIFICATION<br>OF SOIL | STANE<br>PROCTO | DARD<br>DR TEST | CALIFORNIA<br>BEARING RATIO |
| NO. | Design<br>Ch.                       | Existing Ch.    | Gravel<br>s<br>(%) | Sand<br>(%) | Silt +<br>Clay<br>(%) | W∟<br>(%)    | ₩ <sub>₽</sub><br>(%) | (%)  | SOIL TYPE                 | MDD<br>(gm/cm3) | ОМС<br>(%)      | CBR<br>(%)                  |
| 1   | 42+668                              | 109+000 (SH-60) | 19.58              | 59.50       | 20.92                 | 24.52        | NP                    | 0.00 | SM*                       | 1.95            | 12.10           | 5.98                        |
| 2   | 45+668                              | 112+000 (SH-60) | 6.84               | 70.76       | 22.40                 | 28.21        | NP                    | 0.00 | SM                        | 1.88            | 11.20           | 5.16                        |
| 3   | 48+668                              | 115+000 (SH-60) | 5.26               | 84.00       | 10.74                 | 27.45        | NP                    | 0.00 | SM                        | 1.85            | 10.60           | 5.40                        |
| 4   | 51+668                              | 118+000 (SH-60) | 37.90              | 42.06       | 20.04                 | 23.87        | NP                    | 0.00 | SM*                       | 2.01            | 10.70           | 9.17                        |
| 5   | 54+668                              | 121+000 (SH-60) | 5.84               | 83.46       | 10.70                 | 28.34        | NP                    | 0.00 | SM                        | 1.88            | 12.00           | 5.89                        |
| 6   | 57+668                              | 124+000 (SH-60) | 24.02              | 64.92       | 11.06                 | 22.56        | NP                    | 0.00 | SM*                       | 1.95            | 10.20           | 7.86                        |
| 7   | 60+668                              | 127+000 (SH-60) | 16.56              | 68.80       | 14.64                 | 30.12        | NP                    | 0.00 | SM*                       | 1.92            | 12.10           | 7.04                        |
| 8   | 63+668                              | 130+000 (SH-60) | 14.40              | 68.35       | 17.25                 | 28.74        | NP                    | 0.00 | SM*                       | 1.93            | 13.20           | 6.88                        |
| 9   | 66+668                              | 133+000 (SH-60) | 8.35               | 74.25       | 17.40                 | 27.65        | NP                    | 0.00 | SM                        | 1.84            | 11.30           | 5.89                        |
| 10  | 69+668                              | 136+000 (SH-60) | 43.80              | 43.50       | 12.70                 | 27.98        | NP                    | 0.00 | SM*                       | 1.97            | 11.00           | 10.07                       |
| 11  | 72+668                              | 139+000 (SH-60) | 19.70              | 66.00       | 14.30                 | 21.88        | NP                    | 0.00 | SM*                       | 1.92            | 11.80           | 7.20                        |
| 12  | 75+668                              | 142+000 (SH-60) | 22.05              | 63.35       | 14.60                 | 23.65        | NP                    | 0.00 | SM*                       | 1.96            | 11.00           | 7.78                        |
| 13  | 78+668                              | 145+000 (SH-60) | 12.06              | 72.96       | 14.98                 | 27.41        | NP                    | 0.00 | SM*                       | 1.96            | 11.40           | 6.63                        |
| 14  | 81+668                              | 148+000 (SH-60) | 14.21              | 64.61       | 21.18                 | 28.19        | NP                    | 0.00 | SM*                       | 1.90            | 10.80           | 6.14                        |
| 15  | 84+668                              | 151+000 (SH-60) | 21.16              | 64.56       | 14.28                 | 24.28        | NP                    | 0.00 | SM*                       | 1.97            | 9.00            | 7.61                        |
| 16  | 87+668                              | 154+000 (SH-60) | 18.25              | 51.95       | 29.80                 | 21.58        | NP                    | 0.00 | SM*                       | 1.93            | 10.60           | 6.38                        |
| 17  | 90+668                              | 157+000 (SH-60) | 31.74              | 53.90       | 14.36                 | 25.15        | NP                    | 0.00 | SM*                       | 1.99            | 7.90            | 8.19                        |
| 18  | 93+668                              | 160+000 (SH-60) | 10.02              | 53.20       | 36.78                 | 27.32        | NP                    | 0.00 | SM                        | 1.85            | 11.20           | 5.48                        |
| 19  | 96+668                              | 174+000 (SH-60) | 24.62              | 51.78       | 23.60                 | 29.05        | NP                    | 0.00 | SM*                       | 1.91            | 11.30           | 6.55                        |
| 20  | 99+668                              | 177+000 (SH-60) | 1.60               | 78.55       | 19.85                 | 22.20        | NP                    | 0.00 | SM                        | 1.85            | 12.20           | 5.57                        |
| 21  | 102+668                             | 180+000 (SH-60) | 23.85              | 58.10       | 18.05                 | 23.61        | NP                    | 0.00 | SM*                       | 1.98            | 10.80           | 7.45                        |
| 22  | 105+668                             | 183+000 (SH-60) | 16.28              | 70.80       | 12.92                 | 27.24        | NP                    | 0.00 | SM*                       | 1.94            | 9.40            | 6.96                        |
| 23  | 108+668                             | 186+000 (SH-60) | 12.85              | 71.75       | 15.40                 | 23.54        | NP                    | 0.00 | SM*                       | 1.96            | 8.90            | 7.28                        |
| 24  | 111+668                             | 189+000 (SH-60) | 15.20              | 63.83       | 20.97                 | 26.72        | NP                    | 0.00 | SM*                       | 1.91            | 12.30           | 6.87                        |
| 25  | 114+668                             | 192+000 (SH-60) | 0.00               | 67.15       | 32.85                 | 26.22        | NP                    | 0.00 | SM                        | 1.88            | 11.60           | 6.06                        |
| 26  | 117+668                             | 195+000 (SH-60) | 13.42              | 73.38       | 13.20                 | 27.25        | NP                    | 0.00 | SM*                       | 1.92            | 8.70            | 6.63                        |

216.6.2017

Gove Fina

PUBLIC WORKS DEPARTMENT Government of Rajasthan Final Feasibility Report Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

| SAMDLE | СНА           | CHAINAGE NO.   |                    | CAL SIZE AI | NALYSIS               | ATTEF<br>LIN | RBERG<br>IITS         | DES  | CLASSIFICATION<br>OF SOIL | STANI<br>PROCTO | DARD<br>DR TEST | CALIFORNIA<br>BEARING RATIO |
|--------|---------------|----------------|--------------------|-------------|-----------------------|--------------|-----------------------|------|---------------------------|-----------------|-----------------|-----------------------------|
| NO.    | Design<br>Ch. | Existing Ch.   | Gravel<br>s<br>(%) | Sand<br>(%) | Silt +<br>Clay<br>(%) | W∟<br>(%)    | ₩ <sub>₽</sub><br>(%) | (%)  | SOIL TYPE                 | MDD<br>(gm/cm3) | ОМС<br>(%)      | CBR<br>(%)                  |
| 27     | 120+668       | 10+000 (SH-20) | 2.45               | 84.45       | 13.10                 | 29.66        | NP                    | 0.00 | SM                        | 1.82            | 12.20           | 6.47                        |
| 28     | 123+668       | 7+000 (SH-20)  | 0.60               | 86.90       | 12.50                 | 26.31        | NP                    | 0.00 | SM                        | 1.82            | 13.00           | 6.22                        |
| 29     | 126+668       | 4+000 (SH-20)  | 8.70               | 76.00       | 15.30                 | 28.75        | NP                    | 0.00 | SM                        | 1.85            | 10.70           | 5.32                        |
| 30     | 129+668       | 1+000 (SH-20)  | 1.05               | 85.05       | 13.90                 | 26.31        | NP                    | 0.00 | SM                        | 1.83            | 11.90           | 6.55                        |
| 31     | 132+668       | 0+000          | 1.80               | 84.35       | 13.85                 | 28.11        | NP                    | 0.00 | SM                        | 1.82            | 12.60           | 7.12                        |
| 33     | 140+000       |                | 5.25               | 72.15       | 22.60                 | 25.84        | NP                    | 0.00 | SM                        | 1.87            | 13.00           | 6.47                        |
| 34     | 147+000       |                | 8.25               | 69.85       | 21.90                 | 23.54        | NP                    | 0.00 | SM                        | 1.86            | 13.40           | 6.55                        |
| 35     | 151+000       |                | 7.10               | 73.85       | 19.05                 | 26.38        | NP                    | 0.00 | SM                        | 1.83            | 13.20           | 6.30                        |
| 36     | 176+000       |                | 8.20               | 62.00       | 29.80                 | 21.58        | NP                    | 0.00 | SM                        | 1.88            | 10.55           | 6.38                        |
| 37     | 179+000       |                | 6.84               | 82.46       | 9.70                  | 29.34        | NP                    | 0.00 | SM                        | 1.87            | 12.00           | 6.12                        |
| 38     | 181+000       |                | 7.38               | 72.77       | 19.52                 | 25.77        | NP                    | 0.00 | SM                        | 1.86            | 11.92           | 6.27                        |
| 39     | 185+000       |                | 5.20               | 73.83       | 20.90                 | 26.79        | NP                    | 0.00 | SM                        | 1.85            | 12.30           | 6.77                        |
| 40     | 189+000       |                | 5.06               | 75.96       | 18.98                 | 27.41        | NP                    | 0.00 | SM                        | 1.86            | 11.39           | 6.60                        |
| 41     | 193+000       |                | 6.63               | 73.48       | 19.66                 | 26.21        | NP                    | 0.00 | SM                        | 1.86            | 11.89           | 6.41                        |
| 42     | 201+200       |                | 4.62               | 71.78       | 23.65                 | 29.00        | NP                    | 0.00 | SM*                       | 1.81            | 12.80           | 6.15                        |





## 4.4 Existing Pavement Investigation

| Design Chainage | Excavation upto | Thickness of       | of crust | Description                           |
|-----------------|-----------------|--------------------|----------|---------------------------------------|
| Ex. Chainage    | Depth of :      |                    |          |                                       |
| 1               | 0.35 mtr.       | 5.0                | cm       | Surface Course (BT)                   |
| 42+668          |                 | 21.0               | cm       | WBM+GSB                               |
| 109+000         |                 | Below this         |          | Silty Sand (SM) mixed with Gravels    |
|                 |                 |                    |          |                                       |
| 2               | 0.42 mtr.       | 7.5                | cm       | Surface Course (BT)                   |
| 45+668          |                 | 24.5               | cm       | WBM+GSB                               |
| 112+000         |                 | Below this         |          | Silty Sand (SM)                       |
|                 |                 |                    |          |                                       |
| 3               | 0.75 mtr.       | 5.5                | cm       | Surface Course (BT)                   |
| 48+668          |                 | 23.5               | cm       | WBM+GSB                               |
| 115+000         |                 | Below this         |          | Silty Sand (SM)                       |
|                 |                 |                    |          |                                       |
| 4               | 0.70 mtr.       | 6.0                | cm       | New Surface Course (BT)               |
| 51+668          |                 | 5.0                |          | Old Surface Course (BT)               |
| 118+000         |                 | 26.0               | cm       | WBM+GSB                               |
|                 |                 | Below this         |          | Silty Sand (SM) mixed with Gravels    |
|                 |                 |                    |          |                                       |
| 5               | 0.65 mtr        | 4.0                | cm       | Surface Course (BT)                   |
| 54+668          | 0.05 mm         | 26.0               | cm       | WBM+GSB                               |
| 121+000         |                 | Below this         | CIII     | Silty Sand (SM)                       |
| 1211000         |                 | Delow this         |          |                                       |
| 6               | 0.75 mtr        | 2.5                | cm       | Surface Course (BT)                   |
| 57+668          | 0.75 mm         | 14.0               | cm       | WBM                                   |
| 12/1+000        |                 | 26.5               | cm       | Sub Base                              |
| 1241000         |                 | Below this         | CIII     | Silty Sand (SM) mixed with Gravels    |
|                 |                 | Delow this         |          | Sity Sand (Sivi) mixed with Graveis   |
| 7               | 0 59 mtr        | 2.0                | cm       | New Surface Course (BT)               |
| 60+668          | 0.55 mm.        | <u> </u>           | cm       | Old Surface Course (BT)               |
| 127,000         |                 | 17.0               | cm       |                                       |
| 127+000         |                 | 17.0<br>Delow this | CIII     | Cilty Sand (SM) mixed with Croyals    |
|                 |                 | Below this         |          | Silty Salid (Sivi) mixed with Graveis |
| 0               | 0.45 matr       | 2.2                | 0.000    | Surface Course (DT)                   |
| 8               | 0.45 mur.       | 3.2                | CIII     |                                       |
| 63+668          |                 | 28.0               | ст       | WBIVI+GSB                             |
| 130+000         | 0.072           | Below this         |          | Silty Sand (SIVI) mixed with Graveis  |
| 9               | 0.672 mtr.      | 5.5                | ст       | Surface Course (BT)                   |
| 66+668          |                 | 26.5               | ст       | GSB                                   |
| 133+000         |                 | Below this         |          | Silty Sand (SM)                       |
|                 |                 |                    |          |                                       |
| 9A              | 0.225 mtr.      | 3.0                | cm       | Surface Course (BT)                   |
| 69+668          |                 | 10.0               | ст       | WBM                                   |
| 134+000         |                 | 7.5                | ст       | GSB                                   |
|                 |                 | Below this         |          | Silty Sand (SM) mixed with Gravels    |
|                 |                 |                    |          |                                       |
| 10              | 0.63 mtr.       | 4.0                | cm       | Surface Course (BT)                   |

#### **Table: 0.7 Existing Pavement Investigation**

21 hoser 1810 16.6.201



| Design Chainage | Excavation upto | Thickness of | of crust | Description                        |
|-----------------|-----------------|--------------|----------|------------------------------------|
| Ex. Chainage    | Depth of :      |              |          |                                    |
| 72+668          | -               | 9.0          | cm       | WBM                                |
| 136+000         |                 | 120          | cm       | GSB                                |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 11              | 0.67 mtr.       | 3.0          | cm       | Surface Course (BT)                |
| 75+668          |                 | 12.0         | cm       | WBM                                |
| 139+000         |                 | 6.0          | cm       | GSB                                |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 12              | 0.65 mtr.       | 3.0          | cm       | Surface Course (BT)                |
| 78+668          |                 | 13.0         | cm       | WBM                                |
| 142+000         |                 | 12.0         | cm       | GSB                                |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 13              | 0.56 mtr.       | 6.50         | cm       | Surface Course (BT)                |
| 81+668          |                 | 13.5         | cm       | WBM                                |
| 145+000         |                 | 13.5         | cm       | Sub Base                           |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 14              | 0.60 mtr.       | 4.5          | cm       | Surface Course (BT)                |
| 84+668          |                 | 18.0         | cm       | WBM                                |
| 148+000         |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 15              | 0.70 mtr.       | 4.5          | cm       | Surface Course (BT)                |
| 87+668          |                 | 14.5         | cm       | WBM                                |
| 151+000         |                 | 9            | cm       | Sub Base                           |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          | , , , ,                            |
| 16              | 0.67 mtr.       | 3            | cm       | Surface Course (BT)                |
| 90+668          |                 | 11           | cm       | WBM                                |
| 154+000         |                 | 13           | cm       | Sub Base                           |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 17              | 0.57 mtr.       | 6            | Cm       | Surface Course (BT)                |
| 93+668          |                 | 24           | cm       | WBM                                |
| 157+000         |                 | 18           | cm       | Sub Base                           |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 18              | 0.60 mtr.       | 5.0          | cm       | New Surface Course (BT)            |
| 96+668          |                 | 3.5          | cm       | Old Surface Course (BT)            |
| 0+000           |                 | 16.5         | cm       | WBM                                |
|                 |                 | Below this   |          | Silty Sand (SM)                    |
|                 |                 |              |          |                                    |
| 19              | 0.625 mtr.      | 6.5          | cm       | New Surface Course (BT)            |
| 99+668          |                 | 3.0          | cm       | Old Surface Course (BT)            |
| 3+000           |                 | 14.0         | cm       | WBM                                |
|                 |                 | 6.5          | cm       | Sub Base                           |

21 hoser1910 16.6.201



| Design Chainage | Excavation upto | Thickness of | of crust | Description                        |
|-----------------|-----------------|--------------|----------|------------------------------------|
| Ex. Chainage    | Depth of :      |              |          |                                    |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 20              | 0.67 mtr.       | 7.0          | cm       | New Surface Course (BT)            |
| 102+668         |                 | 0.4          | cm       | Old Surface Course (BT)            |
| 6+000           |                 | 17.5         | cm       | WBM                                |
|                 |                 | Below this   |          | Silty Sand (SM)                    |
|                 |                 |              |          |                                    |
| 21              | 0.71 mtr.       | 4.5          | cm       | Surface Course (BT) New            |
| 105+668         |                 | 7.0          | cm       | WBM                                |
| 11+000          |                 | 10.50        | cm       | GSB                                |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 22              | 0.675 mtr.      | 5.0          | cm       | Surface Course (BT)                |
| 108+668         |                 | 5.5          | Cm       | WBM                                |
| 14+500          |                 | 22.5         | Cm       | Sub Base                           |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 23              | 0.70 mtr.       | 3.5          | cm       | Surface Course (BT)                |
| 111+668         |                 | 18.5         | cm       | WBM                                |
| 17+500          |                 | 26.5         | cm       | GSB / Sub Base                     |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 24              | 0.70 mtr.       | 3.5          | cm       | Surface Course (BT)                |
| 114+668         |                 | 18.5         | cm       | WBM                                |
| 20+500          |                 | 22.5         | cm       | GSB / Sub Base                     |
|                 |                 | Below this   |          | Silty Sand (SM) mixed with Gravels |
|                 |                 |              |          |                                    |
| 25              | 0.69 mtr.       | 6.0          | cm       | Surface Course (BT)                |
| 117+668         |                 | 14.0         | cm       | WBM                                |
| 23+000          |                 | 11.0         | cm       | Sub Base                           |
|                 |                 | Below this   |          | Silty Sand (SM)                    |
|                 |                 |              |          |                                    |
| 26              | 0.61 mtr.       | 5.0          | cm       | Surface Course (BT)                |
| 120+668         |                 | 10.0         | cm       | WBM                                |
| 26+500          |                 | Below this   |          | Silty Sand (SM) mixed with gravels |
| 27              | 0.60 mtr.       | 3.0          | cm       | Surface Course (BT)                |
| 123+668         |                 | 6.5          | Cm       | WBM                                |
| 30+000          |                 | 7.0          | Cm       | Sub Base                           |
|                 |                 | Below this   |          | Silty Sand (SM)                    |
|                 |                 |              |          |                                    |
| 28              | 0.69 mtr.       | 7.0          | cm       | Surface Course (BT)                |
| 126+668         | -               | 17.0         | cm       | WBM                                |
| 32+500          |                 | Below this   |          | Silty Sand (SM)                    |
|                 |                 |              |          |                                    |
| 29              | 0.70 mtr.       | 3.0          | cm       | Surface Course (BT)                |
| 129+668         |                 | 3.5          | cm       | WBM                                |
| 35+500          |                 | 17.0         | Cm       | Sub Base                           |

216.6.201



| Design Chainage | Excavation upto | Thickness of crust | Description         |
|-----------------|-----------------|--------------------|---------------------|
| Ex. Chainage    | Depth of :      |                    |                     |
|                 |                 | Below this         | Silty Sand (SM)     |
|                 |                 |                    |                     |
| 30              | 0.60 mtr.       | 4.0 cm             | Surface Course (BT) |
| 132+668         |                 | 5.0 cm             | WBM                 |
| 38+500          |                 | Below this         | Silty Sand (SM)     |
|                 |                 |                    |                     |
| 31              | 0.65 mtr.       | 3.0 cm             | Surface Course (BT) |
| 135+668         |                 | 5.0 cm             | Sub Base            |
|                 |                 | Below this         | Silty Sand (SM)     |

## 5. MATERIAL INVESTIGATIONS

The material investigation for road construction has been carried out to identify the potential sources of construction materials and to assess their general availability, mechanical properties and quantities. This is one of the most important factors for stable, economic and successful implementation of the road program within the stipulated time. For improvement work as well as for new carriageway / bypass the list of materials includes the following:

- Granular material for lower sub-base works
- Crushed stone aggregates for upper sub-base, base, surfacing and cement works
- Sand for filter material and cement, concrete works, sub-base and filling material
- Borrow material for embankment, sub grade and filling
- Manufactured material like cement, steel, bitumen, geo-textiles etc. for other related works.

Potential sources of soil for the construction of embankment and sub grade (for Reconstruction / New Carriageway) were identified on either side of the project road. The summary of test results of all the borrow areas investigated with their respective locations; corresponding chainage and description / properties of material are tabulated in **Table: 0.6** presented in previous chapter.

#### 6. STONE AGGREGATES

The availability and quality of material as coarse and fine aggregate was explored and it was found that crushers are available near Jayal, Deedwana and Mukundgarh. This material is suitable for construction of road.

Bitumen (IS 73- 1961) is available at Mathura in Uttar Pradesh, which is around 310 km from Start of the Project road.

The steel to be used as reinforcement for cross drainage structures shall be Deformed Steel Bars conforming to IS 1786.

The cement of various types like Ordinary Portland Cement - 43 Grade, 53 Grade and Pozzolana Cement is required for the construction. The steel and Cement are available in Didwana, Salasar, Laxmangarh & Mukundgarh.

21 horestra



## 7. ALIGNMENT

The existing alignment of Road traverses through Nagaur, Sikar, Churu and Jhunjhunu Districts in the State of Rajasthan as shown under:

Project road completely passes through plain terrain. The road lies mostly in rural area, passing through few rural and quasi-urban settlements causing mild hindrance to the uninterrupted flow of traffic. The settlement locations are listed below.

| Sr. No. | Existing Chainage<br>(km) |                  | Design Chainage<br>(km) |         | Length of | Name of Village                             |
|---------|---------------------------|------------------|-------------------------|---------|-----------|---------------------------------------------|
|         | From                      | То               | From                    | То      | Section   |                                             |
| 1       | 116.412                   | 119.012          | 48.9                    | 51.5    | 2.6       | Jayal Village                               |
| 2       | 127.57                    | 129.07           | 60                      | 60.800  | 1.5       | Kathoti Village                             |
| 3       | 133.695                   | 134.295          | 66.1                    | 66.7    | 0.6       | Bhantri Village                             |
| 4       | 136.75                    | 137.35           | 69.2                    | 69.8    | 0.6       | Ransisar Charana                            |
| 5       | 139.747                   | 140.097          | 72.1                    | 72.500  | 0.35      | Kairap Village                              |
| 6       | 144.48                    | 144.68           | 77.75                   | 77.95   | 0.2       | Nozlon ki dhani                             |
| 7       | 150.765                   | 151.265          | 83.1                    | 83.6    | 0.5       | Koliya Village                              |
| 8       | 157.08                    | 171              | 89.4                    | 95.74   | 6.34      | Deedwana Town<br>(Deedwana Bypass Proposed) |
|         |                           |                  | 95.74                   | 100     | 4.26      | Overlapping With SH-7D                      |
| 9       | 172.59                    | 172.79           | 102                     | 102.2   | 0.2       | Aas ki dhani Village                        |
| 10      | 174.885                   | 175.285          | 104.45                  | 104.85  | 0.4       | Thanu Village                               |
| 11      | 180.72                    | 180.92           | 110.250                 | 110.350 | 0.10      | Ambapa Village                              |
| 12      |                           | 180.415          | 111.00                  | 111.100 | 0.100     | Inderpura Village                           |
| 13      | 187.26                    | 190.86           | 118.05                  | 121.75  | 3.7       | Meethri Village (Bypass Proposed)           |
| 14      | 193.48                    | 195.585          | 124.9                   | 125.9   | 1         | Bochi Village (Bypass Proposed)             |
| 15      | 196.96                    |                  | 128.4                   | 130.06  | 1.66      | Ganeri Village (Bypass Used)                |
| 16      | 52.14                     | 39               | 140.1                   | 142.435 | 2.335     | Salasar Town                                |
| 17      | 38.64                     | 37.94            | 142.8                   | 143.5   | 0.7       | Juliyasar Village                           |
| 18      | 30.045                    | 30.245           | 152.5                   | 152.740 | 0.240     | Dhanani Village                             |
| 19      | 16.5                      | 15.5             | 155.5                   | 156.5   | 1         | Jajod Village                               |
| 20      | 2.01                      | 1.41             | 170.05                  | 170.65  | 0.6       | Sanwali Village                             |
| 21      | Overlapp<br>NH            | oing With<br>-11 | 172.01                  | 175.385 | 3.375     | Laxmangarh Town                             |
| 21      | Laxmar<br>Byp             | ngarh P.<br>Dass | 175.385                 | 179.34  | 3.955     | (Proposed Bypass)                           |
| 22      | 2.785                     | 3.135            | 179.7                   | 180.05  | 0.35      | Siagroda Dhani Village                      |
| 23      | 4.015                     | 4.415            | 180.9                   | 181.3   | 0.4       | Saigroda Village                            |
| 24      | 6.635                     | 6.835            | 183.55                  | 183.75  | 0.2       | Aantoril Village                            |
| 25      | 12.525                    | 13.445           | 189.38                  | 190.3   | 0.92      | Balaran Village                             |
| 26      | 16.34                     | 16.84            | 193.2                   | 193.7   | 0.5       | Churimiyan                                  |
| 27      | 5.645                     | 43.005           | 199.8                   | 203     | 3.2       | Mukundgarh Town                             |
| 28      | 43.982                    | 44.082           | 203.95                  | 204.05  | 0.1       | Goribara khurd Village                      |

Table 0.8: Settlement Locations along the Project Corridor

21 6. 6. 201



## 7.1 Climate

These districts have dry climate. The cold season lasts for about three and half months from November to the end of February. The period from April to the end of June constitutes the hot season. The Monsoon starts in the end of June. The temperature rises to  $50^{\circ}$ C in summers and falls to a minimum of  $-5^{\circ}$  to  $4^{\circ}$  in winters.

#### 7.2 Land Use

Land use along the project road is mostly agricultural & residential. Scattered quasi-urban and rural settlements exist on both sides of the road with intervals.

## 7.3 Right of Way

The existing right of way is not marked along the corridor and the same has been collected from Revenue Department. From the reconnaissance it is suggested to carry out concentric widening. However, the alignment would be so designed as to keep the resulting carriage in the centre of the final right of way for the sake of ease of future widening. Additional Land Acquisition, may be a necessary and will essentially be to accommodate geometric improvements and widening the road to 2-lane.

#### 7.4 Roadway

The existing carriageway width for the entire project road is varying from 3.75 –15.00 m with a varying earthen shoulder.

| SN | Road Section<br>(Design)                                                             | Design Chainage    | C/W                          | Formation Width        |
|----|--------------------------------------------------------------------------------------|--------------------|------------------------------|------------------------|
|    | T-Junction Start of Project<br>Road Km. 39+668 to                                    | 39+668 to 89+400   | 7.00m                        | 11.00 M                |
| Ţ  | 112+835 After Inderpura<br>village (Nagaur)                                          | 89+400 to 95+500   | Kuccha Tr                    | ack (Proposed Bypass)  |
|    |                                                                                      | 95+740 to 100+000  | R                            | DCOR Section           |
|    |                                                                                      | 100+000 to 112+835 | 3.75                         | 7.0                    |
|    |                                                                                      | 112+835 to 118+100 | 7.0                          | 11.0                   |
|    | Km. 112+835 After<br>Inderpura Village to<br>139+350 Salasar Bypass<br>Start (Sikar) | 118+100 to 121+840 | Meethari Bypass Kuccha Track |                        |
|    |                                                                                      | 121+840 to 124+840 | 7.0                          | 11.0                   |
| 2  |                                                                                      | 124+840 to 125+840 | Kuccha                       | track Bochi Bypass     |
|    |                                                                                      | 125+840 to 127+990 | 3.75                         | 7.0                    |
|    | otare (ontary                                                                        | 127+990 to 129+690 | C                            | Ganeri Bypass          |
|    |                                                                                      | 129+690 to 140+050 | 5.5                          | 9.0                    |
| 3  | Km. 139+350 Salasar<br>Bypass Start to 151+950<br>Dhanani Village (Salasar)          | 140+050 to 152.650 | 5.5                          | 9.0                    |
|    | Km. 151+950 Dhanani                                                                  | 151+950 to 171+970 | 7.00                         | 12.00                  |
| 4  | Village to 200+500 Before                                                            | 179+270 to 175+345 | Ν                            | IH-11 Overlap          |
|    | Mukundgarh (Sikar)                                                                   | 175+345 to 179+270 | Kuccha Tra                   | ck (Laxmangarh Bypass) |

Table 0.9: Table showing road way

21 6.20



| SN | Road Section<br>(Design) | Design Chainage    | c/w   | Formation Width |  |
|----|--------------------------|--------------------|-------|-----------------|--|
|    |                          | 179+270 to 195+790 | 5.5   | 9.0             |  |
|    | Km. 200+500 Before       | 195+790 to 199+270 | 3.75  | 9.0             |  |
| 5  | After Y-Junction at Of   | 199+270 to 200+550 | 15.00 | 16.00           |  |
|    | Project Road (Jhunjhunu) | 200+550 to 205+233 | 5.5   | 9.0             |  |

## 7.4.1 Intersections

A total of 68 roads meet the project road, 22 Major Junctions and 46 Minor Junction. The details of junctions are given below:

| S.No. | Existing<br>Chainage | Type of<br>Junction | Design<br>Chainage | Direction | Type<br>Cross | Remarks                                    |       |
|-------|----------------------|---------------------|--------------------|-----------|---------------|--------------------------------------------|-------|
|       | citating c           |                     |                    |           | Road          | <b>.</b> .                                 |       |
| 1     | 107.188              | ⊢                   | 39.668             | Right     | Paved         | Nawa                                       | Major |
| 2     | 116.14               |                     | 48.615             | Left      | Paved         | Mandir Road                                | Major |
| 3     | 116.97               | F                   | 49.43              | Right     | Paved         | Uchaina                                    | Minor |
| 4     | 117.62               | F                   | 50.09              | Right     | Paved         | Chhajoti                                   | Minor |
| 5     | 117.7                | +                   | 50.2               | Both      | Paved         | L- Station Road ,R-<br>Barnel              | Minor |
| 6     | 117.94               | -                   | 50.42              | Left      | Paved         | Gujariyas                                  | Minor |
| 7     | 119.4                | -                   | 51.9               | Left      | Paved         | Nokha Jodha                                | Minor |
| 8     | 127.59               | -                   | 60.02              | Right     | Paved         | Kathoti Village                            | Minor |
| 9     | 128.48               | -                   | 60.9               | Left      | Paved         | Nimbi Jodha                                | Major |
| 10    | 128.535              | F                   | 60.955             | Right     | Paved         | Khatu Kala                                 | Major |
| 11    | 133.77               | -                   | 66.175             | Left      | Paved         | Nimbi Jodha                                | Major |
| 12    | 134.225              | -                   | 66.63              | Right     | Paved         | Chhoti Khatu                               | Major |
| 13    | 138.325              | -                   | 70.68              | Left      | Paved         | Ransisar Jodha                             | Minor |
| 14    | 138.415              | -                   | 70.78              | Right     | Paved         | Sagoo Kalan                                | Minor |
| 15    | 140.49               |                     | 72.84              | Left      | Paved         | Agrot                                      | Minor |
| 16    | 145.52               | 4                   | 77.85              | Right     | Paved         | Nozlon ki Dhani<br>Village                 | Minor |
| 17    | 148.925              | -                   | 81.32              | Left      | Paved         | Minning                                    | Minor |
| 18    | 150.13               | -                   | 82.48              | Right     | Paved         | Khunkhuna                                  | Major |
| 19    | 157.075              | F                   | 89.4               | Both      | Paved         | Deedwana Town<br>(Used Deedwana<br>Bypass) | Major |
| 20    | 118.055<br>(SH-7D)   | -                   | 95.74              | Left      | Paved         | Sujangarh/Ladnoo                           | Major |
| 21    | 117.595              | ⊢                   | 96.2               | Right     | Paved         | Deedwana Town                              | Minor |
| 22    | 113.6                | +                   | 100                | Both      | Paved         | Kuchaman ,<br>Deedwana                     | Major |
| 23    | 172.64               | F                   | 102.13             | Right     | Paved         | Khichiya basni                             | Minor |

## Table 0.10: List of Intersections

21 hore 2410 16.6.201



Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

216.6.201

| S.No. | Existing<br>Chainage | Type of<br>Junction | Design<br>Chainage | Direction | Type<br>Cross<br>Road | Remarks                              |       |
|-------|----------------------|---------------------|--------------------|-----------|-----------------------|--------------------------------------|-------|
| 24    | 175.2                | Т                   | 104.7              | Left      | Paved                 | Gheezdod Meetha                      | Minor |
| 25    | 176.44               | Т                   | 106.4              | Right     | Paved                 | Darathi                              | Minor |
| 26    | 180.8                | +                   | 110.3              | Both      | Paved                 | Kanwai , Jestan                      | Minor |
| 27    | 183.85               | +                   | 114.7              | Both      | Paved                 | Kheenwaj , Dhayawa                   | Minor |
| 28    | 186                  | Т                   | 116.85             | Left      | Paved                 | Rampuriya                            | Minor |
| 29    | 187.25               | T                   | 118.05             | Right     | Paved                 | Lacchari                             | Minor |
| 30    | 187.3                | Т                   | 118.1              | Right     | Paved                 | Meethadi                             | Major |
| 31    | On<br>Meethadi       | +                   | 119.42             | Both      | Paved                 | Aaspura Pipakuri/<br>Meethri Village | Minor |
| 32    | Bypass               | +                   | 120.81             | Both      | Paved                 | Ringun town ,<br>Meethari town       | Minor |
| 33    | 190.335              | +                   | 121.75             | Right     | Paved                 | Meethri Village                      | Major |
| 34    | 193.48               | Т                   | 124.9              | Left      | Paved                 | Bochi Village                        | Major |
| 35    | 194.38               | Т                   | 125.8              | Left      | Paved                 | Bochi Village                        | Major |
| 36    | 198                  | -                   | 128.25             | Left      | Paved                 | Ganeri Town                          | Major |
|       |                      |                     | 130.06             | Right     | Paved                 | Sikar                                | Major |
| 37    | 42.775               | Y                   | 130.8              | Both      | Paved                 | Ganeri                               | Major |
| 38    | 43.275               | -                   | 131.2              | Left      | Paved                 | Ganeri , Salasar                     | Minor |
| 39    | 44.47                | +                   | 132.47             | Both      | Paved                 | Pranavaashram, Dhani<br>Ridmal       | Minor |
| 40    | 46.6                 | +                   | 134.66             | Both      | Paved                 | Suthod/ Dhani Ridmal                 | Minor |
| 41    | 52.14                | Y                   | 140.1              | Both      | Paved                 | Sujangarh , Salasar<br>Village       | Major |
| 42    | 39                   | Т                   | 142.44             | Both      | Paved                 | Salasar                              | Major |
| 43    | 38.25                | -                   | 143.2              | Left      | Paved                 | Juliasar Town                        | Minor |
| 44    | 33.665               | +                   | 147.78             | Both      | Paved                 | Talab ki Dhani/<br>Mangloona         | Minor |
| 45    | 29.66                | -                   | 151.76             | Right     | Paved                 | Deewan ji ka bass                    | Minor |
| 46    | 15.94                | Т                   | 156                | Right     | Paved                 | Nechawa                              | Minor |
| 47    | 15.72                | +                   | 156.22             | Both      | Paved                 | Dhani Charna , Jajod<br>Village      | Minor |
| 48    | 9.18                 | +                   | 162.92             | Both      | Paved                 | Chota Bhuma , Bada<br>Bhuma          | Minor |
| 49    | 8.05                 | -                   | 164                | Right     | Paved                 | Kheri Dookiya                        | Minor |
| 50    | 6.1                  | -                   | 166.1              | Left      | Paved                 | Banai                                | Minor |
| 51    | 5.675                | -                   | 166.47             | Right     | Paved                 | Kheri                                | Minor |
| 52    | 375.75               | +                   | 172.01             | Both      | Paved                 | Bikaner NH-11 , Sikar ,              | Major |
| 53    | 376.35               | +                   | 172.58             | Both      | Paved                 | Bagri/ Laxmangarh<br>Town            | Minor |



Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

| S.No. | Existing<br>Chainage | Type of<br>Junction | Design<br>Chainage | Direction | Type<br>Cross<br>Road | Remarks                        |       |
|-------|----------------------|---------------------|--------------------|-----------|-----------------------|--------------------------------|-------|
| 54    | 378.48               | ~                   | 175.385            | Right     | Paved                 | Bikaner NH-11,<br>Laxmangarh   | Major |
| 55    |                      | -                   | 177.65             | Left      | Paved                 | Basni                          | Minor |
| 56    | 2.415                |                     | 179.3              | Right     | Paved                 | Laxmangarh Town                | Minor |
| 57    | 4.615                |                     | 181.5              | Left      | Paved                 | Bairas                         | Minor |
| 58    | 7.72                 | н                   | 183.62             | Left      | Paved                 | Dishnau                        | Minor |
| 59    | 8.9                  | н                   | 185.82             | Right     | Paved                 | Kaswali                        | Minor |
| 60    | 10.435               | +                   | 187.3              | Both      | Paved                 | Bhaironpura, Sawai ki<br>Dhani | Minor |
| 61    | 13.05                | +                   | 189.96             | Both      | Paved                 | Bhinchari. Dundlod             | Minor |
| 62    | 14                   | -                   | 190.9              | Left      | Paved                 | Chrumiyan                      | Minor |
| 63    | 16.335               | +                   | 193.24             | Both      | Paved                 | Banklu , Chrumiyan<br>Village  | Minor |
| 64    | 3.83                 | н                   | 198.8              | Right     | Paved                 | Pabhana                        | Minor |
| 65    | 40.66                | ~                   | 200.62             | Both      | Paved                 | Navalgarh                      | Major |
| 66    | 43                   | -                   | 203.005            | Left      | Paved                 | Mandawa                        | Minor |
| 67    | 44.04                | -                   | 203.93             | Left      | Paved                 | Ghoribara Khurd                | Minor |
| 68    | 45.26                | ×                   | 205.233            | Both      | Paved                 | Nawalgarh/<br>Jhunjhunu        | Major |

#### 7.4.2 Submergence

The project road does not come under submergence at any location.

#### 8. PROPOSED ALIGNMENT

The present scope of work is to develop the existing two-lane/ intermediate Lane carriageway configuration to 2-lane standard carriageway configuration in order to ensure better speed of travel with comfort and safety. Minimum cutting of road side trees, relocation of temples and relocation of existing utility lines situated with-in ROW has been taken in to consideration while finalising widening proposals. Existing road has two-lane to intermediate lane carriageway. Project road sections witness annual average daily traffic (AADT) in the range of 1818-4605 vehicles (2122-6416 PCUs).

That has already exceeded prescribed for SL design service volume of 2000 PCU for National/ State Highway by Indian Roads Congress. Based on traffic analysis and forecasting, capacities augmentation to 2-lane configurations is required immediately. Thus the proposed cross-sections for improvement of existing road is worked out in accordance with the design standards and the Major features are given here:

|                          | •                  | 0 /                        |                         |
|--------------------------|--------------------|----------------------------|-------------------------|
| Section                  | Design Chainage    | Width of Carriageway       | Width of Shoulder       |
| Tarnau to Ganeri         | 39.668 to 130.090  | 7.00 m                     | 2.50 m (on either side) |
| Ganeri to Laxmangarh     | 130.090 to 172.010 | 2-Lane with Paved shoulder | 1.00 m (on either side) |
| Laxmangarh to Mukundgarh | 172.010 to 205.233 | 7.00 m                     | 2.50 m (on either side) |

#### Table 0.11: Proposed Section Wise Carriageway Width

21 6-20



Widening in the form of concentric widening has been proposed to minimise the interruption to the traffic movement during the construction. However, in case of geometric improvement the small realignment stretches have been planned to ease the alignment over the existing scenario. The widening has been proposed concentric wherever it is passing through the settlements. Design of widening scheme is governed by the roadside constraints and availabilities of right of way. The proposed alignment has been designed for 100 kmph but in some cases this has not been possible to avoid major improvement. All such locations had been discussed with working group who decided to reduce the design speed. The proposed geometric standards are given in the following table.

| Particulars                              | Design Values |
|------------------------------------------|---------------|
| Width (m) Lane                           | 3.5           |
| Hard shoulder                            | 2.50          |
| Camber (%)                               |               |
| Carraigeway                              | 2.5           |
| Shoulders                                | 3             |
| Embankment Side Slope                    | 1(V) : 2(H)   |
| Gradient (%)                             |               |
| Maximum                                  | 4             |
| Right of Way (m)                         | 24            |
| Overall width (m) between Building lines | 24            |
| Overall width (m) between Control lines  | 24            |

#### Table 0.12: Cross Sectional Elements

#### Table 0.12: Sight Distances

| Design Speed<br>(kmph) | Sight distance (m)                                                       |     |     |  |  |
|------------------------|--------------------------------------------------------------------------|-----|-----|--|--|
|                        | Stopping SightOvertaking SightIntermediate SightdistanceDistanceDistance |     |     |  |  |
| 100                    | 180                                                                      | 640 | 360 |  |  |
| 80                     | 120                                                                      | 470 | 240 |  |  |

#### Table 0.13: Geometric Design Standards for Horizontal Alignment

| Particular                              | Design Speed (Kmph) |          |  |
|-----------------------------------------|---------------------|----------|--|
|                                         | 100                 | 80       |  |
| Minimum Radius (m) of horizontal curves | 360                 | 230      |  |
| Maximum Super Elevation (%)             | 7                   | 7        |  |
| Rate of change of Super elevation       | 1 in 200            | 1 in 200 |  |

#### Table 0.14 Min. Radius (for 2.5% camber) not requiring super elevation

21 hose 270

| Design Speed (kmph) | Radius (m) |
|---------------------|------------|
| 100                 | 1800       |
| 80                  | 1100       |

CEMOSA AVANZA PCPL CONSORTIUM



| Design Speed (kmph) | Radius (m) |
|---------------------|------------|
| 100                 | 2000       |
| 80                  | 1200       |

#### 9. BYPASSES

The available ROW all along the project road is 7-15m and hence five bypasses have been proposed. This has been done in consultation with the working group of PWD.

| 6 No   | Design ch | nainage | Design Longh (Km)  | Name of Village                                         |  |
|--------|-----------|---------|--------------------|---------------------------------------------------------|--|
| 5.110. | From      | То      | Design Lengn (Km.) |                                                         |  |
| 1      | 89.4      | 95.74   | 6.34               | Deedwana Bypass Proposed                                |  |
| 2      | 118.1     | 121.75  | 3.65               | Meethari bypass Proposed                                |  |
| 3      | 124.9     | 125.8   | 0.9                | Bochi bypass Proposed                                   |  |
| 4      | 128.4     | 130.06  | 1.66               | RUN ON GANERI (SIKAR B/P)<br>{Not Part of This Project} |  |
| 5      | 175.385   | 179.34  | 3.955              | Proposed Laxmangarh Bypass                              |  |

#### Table 0.16: Details of Proposed Bypasses

#### **10. PAVEMENT DESIGN**

Flexible pavement has been adopted for new carriageways, widening of existing flexible pavement carriageway portion in plain and rolling terrains.

#### Flexible/Rigid Pavement Design

The pavement design basically aims at determining the total thickness of the pavement structure well as thickness of individual structural components. The following assumptions are considered for the preliminary pavement design. The input parameters and pavement design compositions are presented in **Table 0.17** below.

#### Section -

#### Tarnau to Mukundgarh

| Design Life  | : | 15 Years for Sub Base and Base Course and 10 years for |
|--------------|---|--------------------------------------------------------|
|              |   | Bituminous Course                                      |
| CBR          | : | 6%                                                     |
| MSA (Design) | : | 42 / 25                                                |

The project road has been considered as four traffic homogeneous sections based on traffic intensity in terms of commercial vehicles.





# Table: 0.17 Input Parameters for Flexible Pavement Design Flexible Pavement Composition(IRC: 37-2012) for section I to II Strengthening of Existing Road (Partial/Full Construction)

| S.  | Design Chainage | 15 Years Design Life |     | 10 Years Design<br>Life |    | Design | MSA (Design) | MSA (Design) |
|-----|-----------------|----------------------|-----|-------------------------|----|--------|--------------|--------------|
| INO |                 | GSB                  | WMM | DBM                     | BC | CDK    | for 15 fears | TOT TO Tears |
| 1   | 38-50 Kms       | 260                  | 250 | 100                     | 40 | 6      | 42           | 25           |
| 2   | 51-91 Kms       | 260                  | 250 | 100                     | 40 | 6      | 42           | 25           |
| 3   | 91-93 Kms       | 260                  | 250 | 100                     | 40 | 6      | 42           | 25           |
| 4   | 93 - 101 Kms    | 260                  | 250 | 100                     | 40 | 6      | 42           | 25           |
| 5   | 101 – 176 kms.  | 260                  | 250 | 100                     | 40 | 6      | 42           | 25           |
| 6   | 176-205 kms.    | 260                  | 250 | 100                     | 40 | 6      | 42           | 25           |

#### **Table: 0.18 Overlaying on Existing Pavement**

| S. No. | DBM | BC | Design Length                |
|--------|-----|----|------------------------------|
| 1      | 100 | 40 | 128.450 Km – 152.410 Km.     |
| 2      | 50  | 40 | Km. 152.650 – Km.171.970 Km. |

#### Table 0.19: New Construction due to Horizontal Improvement

| S. No. | Start Chainage | End Chainage | Design Length |
|--------|----------------|--------------|---------------|
| 1      | 100.00         | 100.40       | 0.400         |
| 2      | 128.250        | 128.400      | 0.150         |
| 3      | 130.00         | 130.090      | 0.090         |
|        |                | Total        | 0.640         |

#### Table 0.20: New Construction due to Vertical Improvement/ Raising of Pavement

| S. No. | Start Chainage | End Chainage | Design Length |
|--------|----------------|--------------|---------------|
| 1      | 48.760         | 48.880       | 0.120         |
| 2      | 50.040         | 50.200       | 0.160         |
| 3      | 60.660         | 60.820       | 0.160         |
| 4      | 61.140         | 61.280       | 0.140         |
| 5      | 62.220         | 62.240       | 0.020         |
| 6      | 73.060         | 73.100       | 0.040         |
| 7      | 75.620         | 75.680       | 0.060         |
| 8      | 108.060        | 108.140      | 0.080         |
| 9      | 110.420        | 110.460      | 0.040         |
| 10     | 110.520        | 110.760      | 0.240         |
| 11     | 110.920        | 111.140      | 0.220         |
| 12     | 111.660        | 111.880      | 0.220         |
| 13     | 111.940        | 112.320      | 0.380         |
| 14     | 112.560        | 112.680      | 0.120         |
| 15     | 113.380        | 113.480      | 0.100         |
| 16     | 113.720        | 113.780      | 0.060         |

21 6.6.201



Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

216.6.201

| S. No. | Start Chainage | End Chainage | Design Length |
|--------|----------------|--------------|---------------|
| 17     | 114.120        | 114.300      | 0.180         |
| 18     | 115.750        | 115.900      | 0.150         |
| 19     | 118.100        | 118.400      | 0.300         |
| 20     | 118.580        | 119.160      | 0.580         |
| 21     | 119.560        | 119.700      | 0.140         |
| 22     | 119.860        | 119.980      | 0.120         |
| 23     | 125.100        | 125.420      | 0.320         |
| 24     | 125.540        | 125.780      | 0.240         |
| 25     | 125.820        | 125.920      | 0.100         |
| 26     | 126.060        | 126.140      | 0.080         |
| 27     | 126.260        | 126.740      | 0.480         |
| 28     | 131.400        | 131.460      | 0.060         |
| 29     | 145.600        | 145.720      | 0.120         |
| 30     | 145.880        | 146.040      | 0.160         |
| 31     | 147.680        | 147.880      | 0.200         |
| 32     | 150.780        | 150.960      | 0.180         |
| 33     | 154.380        | 154.420      | 0.040         |
| 34     | 154.500        | 154.560      | 0.060         |
| 35     | 156.960        | 157.080      | 0.120         |
| 36     | 157.400        | 157.620      | 0.220         |
| 37     | 176.760        | 176.980      | 0.220         |
| 38     | 177.120        | 177.300      | 0.180         |
| 39     | 178.480        | 178.620      | 0.140         |
| 40     | 178.960        | 179.040      | 0.080         |
| 41     | 180.220        | 180.480      | 0.260         |
| 42     | 182.860        | 182.980      | 0.120         |
| 43     | 183.760        | 184.260      | 0.500         |
| 44     | 184.380        | 184.800      | 0.420         |
| 45     | 185.740        | 185.800      | 0.060         |
| 46     | 186.280        | 186.460      | 0.180         |
| 47     | 186.860        | 186.920      | 0.060         |
| 48     | 187.100        | 187.160      | 0.060         |
| 49     | 187.560        | 187.680      | 0.120         |
| 50     | 187.780        | 188.220      | 0.440         |
| 51     | 188.300        | 188.620      | 0.320         |
| 52     | 189.080        | 189.180      | 0.100         |
| 53     | 190.280        | 190.380      | 0.100         |
| 54     | 192.080        | 192.240      | 0.160         |
| 55     | 192.640        | 192.840      | 0.200         |
| 56     | 192.980        | 193.260      | 0.280         |
| 57     | 193.540        | 193.680      | 0.140         |
| 58     | 194.120        | 194.280      | 0.160         |
| 59     | 195.860        | 195.940      | 0.080         |



Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

| S. No. | Start Chainage | End Chainage | Design Length |
|--------|----------------|--------------|---------------|
| 60     | 196.040        | 196.080      | 0.040         |
| 61     | 197.880        | 198.000      | 0.120         |
| 62     | 198.740        | 198.840      | 0.100         |
| 63     | 199.520        | 199.580      | 0.060         |
| 64     | 201.120        | 201.160      | 0.040         |
| 65     | 201.360        | 209.500      | 8.140         |
| 66     | 201.840        | 202.060      | 0.220         |
| 67     | 204.120        | 204.180      | 0.060         |
| 68     | 204.360        | 204.480      | 0.120         |
|        |                | Total Length | 19.290 Km     |







Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

#### **11. PROPOSAL FOR STRUCTURES**

11.1 Culverts

|        | lge)           | CC Boy /<br>Iry Arch)                      | (m)           | Spa<br>arrange  | an<br>ement       | Widt<br>culv | h of<br>ert     | Hei<br>abo<br>bed | ght<br>ove<br>level |                   |           |           | Conditio    | on asses         | sment                                                | way<br>/ no)                   |                                             |
|--------|----------------|--------------------------------------------|---------------|-----------------|-------------------|--------------|-----------------|-------------------|---------------------|-------------------|-----------|-----------|-------------|------------------|------------------------------------------------------|--------------------------------|---------------------------------------------|
| S. No. | Design (chaina | Type Of Structure(R<br>Slab / Pipe / Masor | Design Length | Number of Spans | Width of span (m) | Total (m)    | Carriageway (m) | U/s Side (m)      | D/s side (m)        | Box/slab/pip/arch | Head Wall | Wing wall | Return Wall | Parapet/Handrail | Recommendation on<br>widening/Reconstruction<br>etc. | Whether water<br>adequate (yes | Remarks                                     |
| 1      | 2              | 3                                          | 4             | 5               | 6                 | 7            | 8               | 9                 | 10                  | 11                | 12        | 13        | 14          | 15               | 16                                                   | 17                             | 18                                          |
| 1      | 50+340         | Slab                                       | 2             | 2               | 2                 | 14.4         | 6               | 1.3               | 1.3                 | Poor              | -         | -         | Poor        | -                | Reconstruction                                       | Yes                            | Replaced by<br>2mx2.5mx2.5m<br>Box Culverts |
| 2      | 54+306         | Slab                                       | 2             | 2               | 2                 | 8.3          | 10              | 1.3               | 1.3                 | Poor              | -         | -         | Poor        | -                | Reconstruction                                       | Yes                            | Replaced by<br>1mx3mx3m Box<br>Culverts     |
| 3      | 70+690         | Slab                                       | 3             | 1               | 3                 | 13.7         | 3.5             | 1.5               | 1.5                 | Good              | -         | Good      | Good        | Good             | Wearing Coat                                         | Yes                            | Overlaying                                  |
| 4      | 81+225         | Slab                                       | 3             | 1               | 3                 | 13.9         | 6               | 3.5               | 3.5                 | Good              | -         | Good      | Good        | Good             | Wearing Coat                                         | Yes                            | Overlaying                                  |
| 5      | 82+410         | Slab                                       | 3             | 1               | 3                 | 12.5         | 7               | 3.5               | 3.6                 | Good              | -         | Good      | Good        | Good             | Wearing Coat                                         | Yes                            | Overlaying                                  |
| 6      | 83+300         | Slab                                       | 1             | 1               | 1                 | 13.5         | 6               | 1                 | 0.9                 | Poor              | -         | -         | Poor        | -                | Reconstruction                                       | Yes                            | Replaced by<br>1mx1.5mx1.5m<br>Box Culverts |
| 7      | 86+710         | Slab                                       | 3.6           | 1               | 3.6               | 12.5         | 7               | 3.3               | 3.5                 | Good              | Poor      | -         | -           | -                | Rehabilitation                                       |                                | -                                           |
| 8      | 88+045         | Slab                                       | 1             | 0.8             | 1                 | 12           | 7               | 1.2               | 1.3                 | Fair              | Fair      | -         | -           | -                | Reconstruction                                       | Yes                            | Replaced by<br>1mx1.5mx1.5m<br>Box Culverts |

Table: 0.21 Detail of existing culverts

216.6.2017



Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary







Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

# 11.2 Bridges

There is no major bridge in the alignment. There is no causeways are present along this alignment.

| Table: 0.22 | Inventory of | Minor Bridge |
|-------------|--------------|--------------|
|-------------|--------------|--------------|

|       | ge            | Type of                                                   | (m)             | SpanWidth ofHeight aboveEarrangementbridgeBed Level |                      |           |                     | Condition Assessment |             |                                |           |           |             |                      |                                               |                                 |         |
|-------|---------------|-----------------------------------------------------------|-----------------|-----------------------------------------------------|----------------------|-----------|---------------------|----------------------|-------------|--------------------------------|-----------|-----------|-------------|----------------------|-----------------------------------------------|---------------------------------|---------|
| S.No. | Design Chaina | Structure<br>(R.C.C.,Box/<br>Slab/ Pipe,<br>Masonry arch) | Design Length ( | No. of Span                                         | Width of span<br>(m) | Total (m) | Carriage way<br>(m) | u/s side (m)         | D/sside (m) | Box/<br>slab/<br>pipe/A<br>rch | Head Wall | Wing Wall | Return wall | Parapet/Hand<br>rail | Recommendation<br>widening/<br>reconstruction | Whether water<br>adequate (Yes/ | Remarks |
| 1     | 2             | 3                                                         | 4               | 5                                                   | 6                    | 7         | 8                   | 9                    | 10          | 11                             | 12        | 13        | 14          | 15                   | 16                                            | 17                              | 18      |
| 1     | N.A.          | N.A.                                                      | N.A.            | N.A.                                                | N.A.                 | N.A.      | N.A.                | N.A.                 | N.A.        | N.A.                           | N.A.      | N.A.      | N.A.        | N.A.                 | N.A.                                          | N.A.                            | N.A.    |

|          |                      | ory            |          | Condition of Bridge |                 |                                                              |                 |           |       |                    |                   |                |                              |                          |         |
|----------|----------------------|----------------|----------|---------------------|-----------------|--------------------------------------------------------------|-----------------|-----------|-------|--------------------|-------------------|----------------|------------------------------|--------------------------|---------|
| Location | Type of<br>Structure | Flooding histo | Bearings | Expansion<br>Joints | Wearing<br>coat | Parapets/R<br>ailings<br>/crash<br>barriers/Ga<br>urd Piller | Foundation<br>s | Abutments | Piers | Super<br>Structure | Approach<br>slabs | Guide<br>bunds | Other<br>Protective<br>works | Other items<br>(specify) | Remarks |
| 1        | 2                    | 3              | 4        | 5                   | 6               | 7                                                            | 8               | 9         | 10    | 11                 | 12                | 13             | 14                           | 15                       | 16      |
| N.A.     | N.A.                 | N.A.           | N.A.     | N.A.                | N.A.            | N.A.                                                         | N.A.            | N.A.      | N.A.  | N.A.               | N.A.              | N.A.           | N.A.                         | N.A.                     |         |





#### 11.3 Railway Crossings

The Project Road Crosses Railway lines at three locations. Details are given below:-

| S. No. | Design<br>Chainage | LC No.                       | TVU   | Remarks                                                           |
|--------|--------------------|------------------------------|-------|-------------------------------------------------------------------|
| 1      | 95.900             | -                            | 86832 | Deedwana on RIDCOR road (ROB already proposed under other scheme) |
| 2      | 175.870            | Between LC –<br>28 & LC – 29 | -     | Laxmangarh ROB Proposed On Bypass (No Level Crossing)             |
| 3      | 203.700            | LC – 24C                     | -     | Mukundgarh ROB not proposed (Level Crossing not<br>commissioned ) |

#### Table: 0.23 Railway Crossings

## 11.4 Trees in ROW

Since the corridor is mainly passing through existing alignment, not many numbers of trees have been observed adjacent to the existing shoulder. Widening scheme has been so evolved as to cause minimum damage to existing trees, wherever this damage becomes unavoidable, loss will be compensated by planting new tress in consultations with Social Forestry Department of the Government of Rajasthan. Many trees along the new proposed bye-passes will have to be cut but the same shall be compensated. Total trees to be cut for Construction of Project are 901 Nos. Details given separately in EIA / SIA reports.

## 11.5 Utilities

There are electric lines, water pipe lines, water taps and OFC lines observed within the proposed ROW which may require re-location. Utilities, re-location plan has been evolved and submitted. The plans for shifting any water pipe lines, if found in the urban and quasiurban areas will be made, after consultations with the concerned municipalities or agencies, as per design requirements. A separate plan for proposed different utility shifting has been prepared to submit with this report.

#### **12. ENVIRONMENTAL IMPACT ASSESSMENT**

An institutional mechanism needs to be incorporated in the proposed project management and execution system. The PWD will be responsible for the implementation of all the mitigation and management measures suggested in EMP for project road. The PWD is also responsible for implementation of the complete resettlement and rehabilitation for all those affected by the project and is committed to ensure the income restoration of the project affected and project displaced families.

The PWD has certain organizational and institutional capacity, for satisfactory implementation of the EMP.

#### **Environmental Monitoring Plan**

To ensure the effective implementation of the mitigation measures and environmental management plan during construction and operation phase of project road, monitoring plan has



been designed for Ambient Air Quality (AAQ) Monitoring, Water Quality Monitoring, Noise Levels measurements, Soil Erosion and Plantation.

#### **13. COST ESTIMATE AND FINANCIAL ANALYSIS**

The cost estimates for the construction were developed from the basic unit rates for cost of labour, material and equipment. These basic costs have been derived from various sources. These sources include the Ministry of Road Transport and Highways (MoRT&H) standard data book for Rate Analysis published in 2003 and SOR.

The source data was reviewed and analyzed to provide realistic unit rates for the basic work items at current market prices. The item rates were derived based on the MoRT&H data book for rate analysis of 2003. These unit rates were considered to calculate the unit costs. For the suggested pavement design and also on the basis of maintenance regime suggested for cross drainage structures, bill of quantities are worked out. Later on PWD issued fresh guideline in the month of July 2015 wherein it was desired that the Item rates of all the materials has to be taken from BSR Nh Circle Jaipur 2013. The preliminary construction cost is given in Table 0.23.

## 13.1 ABSTRACT OF COST

|                                       | Abstract of Cost                                |              |           |                     |  |  |  |  |  |  |
|---------------------------------------|-------------------------------------------------|--------------|-----------|---------------------|--|--|--|--|--|--|
| S. No.                                | Name of Item                                    | Length / Nos | Unit      | Amount<br>(in lacs) |  |  |  |  |  |  |
| 1                                     | Upgradation & Strengthening of<br>Existing Road | 132.885      | Kms       | 19091.57            |  |  |  |  |  |  |
| 2                                     | Construction of New Road                        | 17.85        | KMs       | 2950.77             |  |  |  |  |  |  |
| 3                                     | <b>Rigid Pavement and Drains</b>                | 8.01         | Kms       | 2302.59             |  |  |  |  |  |  |
| 4                                     | Toll Plaza                                      | 4            | Nos       | 740.00              |  |  |  |  |  |  |
| 5                                     | New CD Works (Balancing Culvert)                | 33           | Nos       | 128.83              |  |  |  |  |  |  |
| 6                                     | Road Furniture for entire length                |              |           | 759.59              |  |  |  |  |  |  |
| 7                                     | New Box Culverts Proposed                       | 6            | Nos       | 105.00              |  |  |  |  |  |  |
| 8                                     | Truck Layby                                     | 3            | Nos       | 84.34               |  |  |  |  |  |  |
| 9                                     | Bus Shelters                                    | 20           | Nos       | 25.00               |  |  |  |  |  |  |
| 10                                    | Development of Junction                         | 75           | Nos       | 809.55              |  |  |  |  |  |  |
| 11                                    | ROB                                             | 1            | Nos.      | 2850.00             |  |  |  |  |  |  |
|                                       | al (Base cost)                                  | 29847.6      |           |                     |  |  |  |  |  |  |
| Escalation @ 5% per annum for 2 years |                                                 |              |           |                     |  |  |  |  |  |  |
|                                       |                                                 |              | TPC @ 15% | 37757.24            |  |  |  |  |  |  |

#### Table 0.24: Preliminary Construction Cost





#### 13.2 FINANCIAL ANALYSIS

| Table 0.25: Traffic Data Inputs      |                          |                          |                                                 |                                |  |  |  |  |  |  |
|--------------------------------------|--------------------------|--------------------------|-------------------------------------------------|--------------------------------|--|--|--|--|--|--|
| Section                              | Tarnau<br>To<br>Deedwana | Deedwana<br>To<br>Ganeri | Ganeri<br>to<br>Laxmangarh (NH-<br>11 Junction) | Laxmangarh<br>To<br>Mukundgarh |  |  |  |  |  |  |
| Design Length in km                  | 56.072                   | 32.660                   | 50.940                                          | 25.893                         |  |  |  |  |  |  |
| Cumulative Length                    | 56.072                   | 88.732                   | 139.672                                         | 165.565                        |  |  |  |  |  |  |
| Section Toll Road Length<br>in km    | 56.072                   | 32.660                   | 50.940                                          | 25.893                         |  |  |  |  |  |  |
| Cumulative Toll Road<br>Length in km | 56.072                   | 88.732                   | 139.672                                         | 165.565                        |  |  |  |  |  |  |
| TVC Location Used                    | Before Bhantri           | Thanu/<br>Aas ki Dhani   | Chhota bhuma                                    | Balaran                        |  |  |  |  |  |  |
| TVC No.                              | TVC-II                   | TVC-III                  | TVC-V                                           | TVC-VI                         |  |  |  |  |  |  |
| Car / Jeep /Van                      | 761                      | 371                      | 2914                                            | 1196                           |  |  |  |  |  |  |
| Buses                                | 173                      | 60                       | 96                                              | 105                            |  |  |  |  |  |  |
| LCV                                  | 58                       | 148                      | 356                                             | 237                            |  |  |  |  |  |  |
| 2AT                                  | 289                      | 133                      | 386                                             | 185                            |  |  |  |  |  |  |
| 3AT                                  | 255                      | 91                       | 227                                             | 218                            |  |  |  |  |  |  |
| MAV                                  | 161                      | 56                       | 105                                             | 4                              |  |  |  |  |  |  |

# Table 0.26: Financial Inputs

| Project Cost                                      | - | Rs. 328.32 Crores |
|---------------------------------------------------|---|-------------------|
| Project Cost with Financial overheads (15%) – TPC | - | Rs. 377.57 Crores |
| Construction starts at                            | - | Jan 2016          |
| Construction period                               | - | 18 Months         |
| Road opens to traffic                             | - | June 2017         |
| Phasing of Project Cost                           | - | 1st Year – 40%    |
|                                                   | - | 2nd Year – 60%    |

#### **Table 0.27 Structuring of Project Finance**

| Tollable PCUs - Average of PCUs     |      |                      |
|-------------------------------------|------|----------------------|
| Non-Toll able PCUs - Average of TPs | 250  | 5.31 % of Total PCUs |
| Total PCUs - Average of TPs         | 3020 |                      |

216.6.201



Consultancy Services for Preparation of Feasibility Report of Two-laning of Km. 39.668 to Km. 205.233 (Design Chainage) of SH-60, SH-20,SH-83, SH-82A & SH-8 comprising the section from Tarnau to Mukundgarh (the "Highway-III") Via Deedwana, Salasar & Laxmangarh Chapter – 0: Executive Summary

| Table 0.28 Maintenance Cost                |   |                            |
|--------------------------------------------|---|----------------------------|
| Annual Maintenance Costs                   | - | 0.0175 Crores Per Km       |
| Periodic Maintenance Cost (Every 5th Year) | - | 0.30 Crores Per Km         |
| Annual Toll Plaza O&M Cost                 | - | 0.75 Crores Per toll Plaza |
| Electrical & Petroleum Cost                | - | 0.003 Crores Km Per Annum  |
| Insurance Cost                             | - | Rs. 0.15%                  |

## 14. Conclusion

The Project may be developed with 2 Lane specifications for the Section from Tarnau to Ganeri and Laxmangarh to Mukundgarh. The section from Ganeri to Laxmangarh is proposed for Development to 2 Lane with Paved Shoulder along with additional 3.00 m wide pedestrian walk way on the RHS for the pedestrian during Festivals.

